
KernelBench: Can LLMs Write Efficient GPU Kernels?

Anne Ouyang * 1 Simon Guo * 1 Simran Arora 1 Alex L Zhang 2 William Hu 1 Christopher Ré 1

Azalia Mirhoseini 1

Abstract

Efficient GPU kernels are crucial for building per-
formant machine learning architectures, but writ-
ing them is a time-consuming challenge that re-
quires significant expertise; therefore, we explore
using language models (LMs) to automate kernel
generation. We introduce KernelBench, an open-
source framework for evaluating LMs’ ability to
write fast and correct kernels on a suite of 250
carefully selected PyTorch ML workloads. Ker-
nelBench represents a real-world engineering en-
vironment and making progress on the introduced
benchmark directly translates to faster practical
kernels. We introduce a new evaluation metric
fastp, which measures the percentage of gener-
ated kernels that are functionally correct and offer
a speedup greater than an adjustable threshold
p over baseline. Our experiments across vari-
ous state-of-the-art models and test-time meth-
ods show that frontier reasoning models perform
the best out of the box but still fall short overall,
matching the PyTorch baseline in less than 20% of
the cases. While we show that results can improve
by leveraging execution and profiling feedback
during iterative refinement, KernelBench remains
a challenging benchmark, with its difficulty in-
creasing as we raise speedup threshold p.

1. Introduction
AI relies on efficient GPU kernels to achieve high perfor-
mance and cost and energy savings; however, developing
kernels remains challenging. There has been a Cambrian
explosion of ML architectures (Tay et al., 2022; Peng et al.,

*Equal contribution 1Department of Computer Science, Stan-
ford University, Stanford, California, USA 2Department of Com-
puter Science, Princeton University, Princeton, New Jersey, USA.
Correspondence to: Anne Ouyang <aco@stanford.edu>, Simon
Guo <simonguo@stanford.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2023; Dao & Gu, 2024a), but their available implementa-
tions routinely underperform their peak potential. We are
seeing a proliferation of AI hardware (NVIDIA, 2017b;
2020; 2022; Jouppi et al., 2023; Groq; Cerebras; Graph-
core), each with different specs and instruction sets, and
porting algorithms across platforms is a pain point. A key
example is the FlashAttention kernel (Dao et al., 2022),
which is crucial for running modern Transformer models
–– the initial kernel released in 2022, five years after the
Transformer was proposed; it took two more years from the
release of NVIDIA Hopper GPUs to transfer the algorithm
to the new hardware platform. We explore the question: Can
language models help write correct and optimized kernels?

AI engineers use a rich set of information when develop-
ing kernels and it is not clear whether language models
(LMs) can mimic the workflow. They use compiler feed-
back, profiling metrics, hardware-specific specs and instruc-
tion sets, and knowledge of hardware-efficiency techniques
(e.g., tiling, fusion, recompute). They can use programming
tools ranging from assembly (e.g., PTX as in DeepSeek-AI
(2025)) to higher-level libraries (ThunderKittens (Spector
et al., 2024), Triton (Tillet et al., 2019)). Compared to ex-
isting LM code generation workloads (Yang et al., 2024a),
kernel writing requires a massive amount and diversity of
information.

We first design an environment that reflects the typical AI
engineer’s workflow and supports providing LMs with this
rich information. The environment should:

• Automate the AI engineer’s workflow. The model should
have full flexibility to decide which operators to optimize
and how to optimize them.

• Support a diverse set of AI algorithms, programming
languages, and hardware platforms.

• Make it easy to evaluate both performance and functional
correctness of LM generations, ideally in a programmatic
way. It should also capture profiling and execution infor-
mation from generated kernels.

We introduce KernelBench to generate and evaluate kernels,
which addresses the above considerations. KernelBench
tests LM optimizations on three levels of AI workloads,
each posing a different set of challenges:

1

KernelBench: Can LLMs Write Efficient GPU Kernels?

Figure 1. KernelBench evaluates LMs’ ability to generate performant GPU Kernels. Overview of tasks in KernelBench: KernelBench
tasks LMs with generating optimized CUDA kernels for a given target PyTorch model architecture and conducts automated evaluation.

1. Individual operations: We include various AI opera-
tors, including matrix multiplies, convolutions, activa-
tions, norms, and losses. While PyTorch already uses
expert-optimized closed-source kernels, making this a
potentially challenging baseline, it is valuable if LMs
can generate open-source kernels for the operations.

2. Sequence of operations: We provide problems that con-
tain 3-6 individual operations together (e.g. a mainloop
operator like matmul followed by pointwise operators
like ReLU and Bias). This enables evaluating the models’
ability to fuse multiple operators.

3. End-to-end architectures: We select architectures
from popular AI repositories on Github including
pytorch, huggingface/transformers, and
huggingface/pytorch-image-models. These
architectures contain many operations.

Mimicking an AI researcher’s workflow, the LM takes Py-
Torch reference code as input and outputs an optimized
version of the code. Similar to the human kernel develop-
ment process, our environment enables the LM to iterate
with compiler and profiler feedback to refine performance.
The LM is free to use any programming language and decide
both which parts of the PyTorch code to optimize, and how
to optimize them. Our pipeline allows us to feed diverse
information to the LMs, including hardware-specific infor-
mation, example kernels, and compiler/profiler feedback.

We observe that frontier and open-source models perform
poorly out-of-the-box on KernelBench, with OpenAI-o1
and DeepSeek-R1 matching the PyTorch Eager baseline on
< 20% of the tasks. These model-generated kernels greatly
suffer from execution errors, functional correctness issues,
and are unable to perform platform-specific optimizations.

To identify areas for improvement, we conduct a series of
experiments and analysis, and find that:

1. Writing functionally correct kernels remains challenging

for models: while models are able to fix execution fail-
ures through either reasoning or multiple attempts, they
struggle to produce functionally correct code. Further-
more, we observe a trade-off between LMs attempting
more complex optimizations / niche hardware instruc-
tions (e.g., tensor core wmma) and producing error-free
kernels. We hypothesize this is due to CUDA being a
low-resource language in open-source training data, only
0.073% of popular code corpus The Stack v1.2 (Li et al.,
2023; Kocetkov et al., 2022).

2. Models demonstrate potential to produce performant
kernels via optimizations: We observe a few instances
where LMs make algorithmic improvements – e.g., ex-
ploiting sparsity, operator fusion, and utilizing hardware
features. We notice more of such instances when we
explicitly condition the LM on hardware information
(e.g., bandwidth and TFLOP specs) and demonstrations
of hardware optimization techniques (e.g., tiling, fusion).
While these capabilities remain nascent, LMs do demon-
strate potential for generating performant kernels.

3. Leveraging feedback is important for reducing execution
errors and discovering faster solutions: By providing
execution results and profiler feedback to the LM in
context, the kernel quality significantly improves after
multiple refinements from 12%, 36%, and 12% in fast1
to 43%, 72%, and 18% respectively.

Our findings highlight the technical challenges we need
to solve in order to adopt LMs for kernel writing. These
include but are not limited to: how to improve LM perfor-
mance in a low-resource data regime, and how to select from
the rich set of information we can provide to models. To
address these challenges, we contribute (1) an open-source
framework to study LM kernel generation with a compre-
hensive suite of evaluation problems and (2) analysis of
where current LMs stand and how to realize a future of
efficient kernels generated by models.

2

KernelBench: Can LLMs Write Efficient GPU Kernels?

2. Related Works
Kernel libraries and compilers. We evaluate existing ap-
proaches for kernel programming along the dimensions of
automation, breadth, and performance. Mainstream kernel
programming libraries like cuDNN (NVIDIA, 2014), CUT-
LASS (NVIDIA, 2017a), and Apple MLX (Apple, 2020)
are hardware-specific and demand substantial engineering
effort from human experts. Other libraries, like ThunderKit-
tens (Spector et al., 2024) and Triton (Tillet et al., 2019),
successfully help AI researchers write a breadth of fast and
correct kernels (Arora et al., 2024; Yang & Zhang, 2024),
but still require human programming effort. Compiler-based
tools, like torch.compile (Paszke et al., 2019) and FlexAt-
tention (Team PyTorch et al., 2024), automatically provide
a narrow slice of optimizations. These methods have pow-
erful guarantees in terms of generating provably-correct
and robust kernels but are based on fixed operator-fusion or
graph-transformation policies (Zheng et al., 2022; Shi et al.,
2023; Zhu et al., 2022). Previous work on ML-based kernel
generation like TVM (Chen et al., 2018) incorporate ML
algorithms within a single, often sand boxed, component
such as schedule generation. In contrast to these efforts, we
ask if LMs can automatically generate performant kernels
for a breadth of AI workloads.

LLMs for performance-optimized code generation. In
the past year, there have been several efforts to build LMs
that can automate algorithmic coding (Chen et al., 2021; Shi
et al., 2024; Li et al., 2022), resolving GitHub issues (Yang
et al., 2024a;b), and domain-specific coding (Yin et al.,
2022; Lai et al., 2022). Other works have explored using
LMs (Chen et al., 2023; Xia & Zhang, 2024) for program
repair and debugging, through models leveraging feedback.
While these works focus on producing correct and func-
tional code, subsequent works have explored LMs’ ability
to produce solutions with better algorithmic and asymptotic
efficiency (Nichols et al., 2024; Waghjale et al., 2024).

KernelBench focuses on wall-clock efficiency. For LMs to
generate high-performance computing (HPC) code, which
requires an understanding of the underlying hardware fea-
tures and device instruction set, and common performance
characteristics of parallel processors. Existing works in
the space of HPC code generation have evaluated LM
performance on translating arbitrary code samples from
C++ to CUDA (TehraniJamsaz et al., 2024; Wen et al.,
2022) or generating well-known, low-level kernels such as
GEMMs (Valero-Lara et al., 2023; Wijk et al., 2024). Ker-
nelBench instead curates a set of 250 diverse kernels from
real-world, modern deep learning workloads, many of which
do not have existing human-written implementations — in
other words, solving KernelBench tasks are immediately
beneficial for real deep learning workloads. See Appendix J
for a comparison with popular coding benchmarks.

3. KernelBench: A Framework for AI Kernel
Generation

KernelBench is a new framework for evaluating the ability
of language models to generate performant kernels for a
breadth of AI workloads. In this section, we describe the
task format, contents, and evaluation metric.

3.1. KernelBench Task Format

KernelBench contains 250 tasks representing a range of AI
workloads, and is easily extensible to new workloads. The
end-to-end specification for a task is illustrated in Figure 1
and described below.

Task input: Given an AI workload, the input to the task is a
reference implementation written in PyTorch. Mimicking an
AI researcher’s workflow, the PyTorch code contains a class
named Model derived from torch.nn.Module(),
where the standard init and forward() functions
(and any helper functions) are populated with the AI work-
load’s PyTorch operations. We explore alternative forms of
input specifications in Appendix M.

AI algorithms generally operate on large tensors of data.
The optimal kernel for a workload depends on the size
and data type (e.g., BF16, FP8) of the tensor. Therefore,
each task additionally contains functions get inputs()
and get init inputs(), which specify the exact input
tensors that the kernel needs to handle.

Task output: Given the input, the LM needs to
output a new class named ModelNew derived from
torch.nn.Module(), which contains custom optimiza-
tions. For example, the LM can incorporate in-line kernel
calls during the forward() function using the CUDA-C
extension in PyTorch.

In order to succeed, the LM needs to identify (1) which
operations in the Model class would benefit most from
optimizations, and (2) how to optimize those operations.
The LM can use any hardware-efficiency techniques such
as fusion and tiling or specialized instructions (e.g., tensor
cores) and any programming library (e.g., PTX, CUDA,
CUTLASS, Triton, ThunderKittens). We focus on CUDA
in this paper, and explore programming libraries like Triton
in Appendix O.

3.2. Task Selection

The 250 tasks in KernelBench are partitioned into three lev-
els, based on the number of primitive operations, or PyTorch
library functions, they contain:

• Level 1 (100 tasks): Single primitive operation. This
level includes the foundational building blocks of AI (e.g.
convolutions, matrix-vector and matrix-matrix multiplica-

3

KernelBench: Can LLMs Write Efficient GPU Kernels?

tions, losses, activations, and layer normalizations).

Since PyTorch makes calls to several well-optimized and
often closed-source kernels under-the-hood, it can be chal-
lenging for LMs to outperform the baseline for these prim-
itive operations. However, if an LM succeeds, the open-
source kernels could be an impactful alternative to the
closed-source (e.g., CuBLAS (NVIDIA, 2023)) kernels.

• Level 2 (100 tasks): Operator sequences. This level
includes AI workloads containing multiple primitive op-
erations, which can be fused into a single kernel for im-
proved performance (e.g., a combination of a convolution,
ReLU, and bias).

Since compiler-based tools such as the PyTorch compiler
are effective at fusion, it can be challenging for LMs
to outperform them. However, LMs may propose more
complex algorithms compared to compiler rules.

• Level 3 (50 tasks): Full ML architectures. This level
includes architectures that power popular AI models, such
as AlexNet and MiniGPT, collected from popular PyTorch
repositories on GitHub.

Given the scale of modern models, it is critical to use ker-
nels when running training and inference. Unfortunately,
it has been difficult for the AI community to generate
performant kernels. For instance, it took 5 years from the
release of the Transformer architecture (Vaswani et al.,
2017) to obtain performant kernels (Dao et al., 2022), let
alone today’s many new architectures. Peak performance
kernels for these architectures require algorithmic modifi-
cations that are often beyond the scope of a compiler.

We reiterate that each task contains a meaningful set of AI
primitive operations or architectures, such that LM success
on the task can directly lead to real world impact. We
provide further details on task definitions and breakdowns
in Appendix K.

3.3. Metric Design

We describe the evaluation approach for KernelBench and
how we compare the success of different LMs.

Evaluation approach KernelBench is an evaluation-only
benchmark. We do not provide ground truth kernels for the
tasks since we imagine users benchmarking on a variety of
hardware platforms (including new platforms), input types,
and workloads. However, by design, KernelBench is auto-
matically verifiable. Given a task, we randomly generate
input tensors of the prescribed shape and precision and col-
lect the PyTorch Model output. We can evaluate whether
LM generations are correct and fast as follows:

1. Correctness We compare the Model output to the LM-
generated ModelNew output. We evaluate on 5 random
inputs per problem (detailed in Appendix B).

2. Performance We compare the wall-clock execution time
of Model against ModelNew using repeated trials to
account for timing variations.

Comparing LMs on KernelBench Some LMs may gen-
erate a small number of correct kernels that are very fast,
while other LMs generate a large number of correct ker-
nels that are quite slow. Here, we explain our proposed
unified metric for ranking LM quality on KernelBench. We
elaborate on our process of score design in Appendix I.

To capture both axes of correctness and performance, we
introduce a new metric called fastp, which is defined as the
fraction of tasks that are both correct and have a speedup
(computed as the ratio of PyTorch wall-clock time to gener-
ated kernel time) greater than threshold p. Formally:

fastp =
1

N

N∑
i=1

1(correcti ∧ {speedupi > p}),

where fast0 is equivalent to the LM’s correctness rate, as
it measures the fraction of tasks for which the LM code is
functionally correct regardless of its speed.

By adjusting the threshold parameter p, we enable evalua-
tion of kernel performance at different speedup thresholds
and capture the speedup distributions. For our evaluations,
we focus on p = 1 as a starting point, with the possibil-
ity of increasing p as future methods for kernel generation
improve. Additionally, using p < 1 for training is valu-
able, since PyTorch relies on complex optimized kernels,
and matching even a fraction of their performance is still
considered beneficial.

4. KernelBench Baseline Evaluation

fast1 over: PyTorch Eager torch.compile

KernelBench Level 1 2 3 1 2 3

GPT-4o 4% 5% 0% 18% 4% 4%
OpenAI o1 10% 24% 12% 28% 19% 4%
DeepSeek V3 6% 4% 8% 20% 2% 2%
DeepSeek R1 12% 36% 2% 38% 37% 2%
Claude 3.5 Sonnet 10% 7% 2% 29% 2% 2%
Llama 3.1-70B Inst. 3% 0% 0% 11% 0% 0%
Llama 3.1-405B Inst. 3% 0% 2% 16% 0% 0%

Table 1. KernelBench is a challenging benchmark for current
LMs. Here we present fast1, i.e. the percentage of problems where
the model-generated kernel is faster than the PyTorch Eager and
torch.compile baseline (default config) on NVIDIA L40S.
The torch.compile baseline runtime is sometimes slower than
Torch Eager – this is due to reproducible runtime overhead (not
compile time) that could be significant for small kernels in Level
1. We focus on PyTorch Eager for the rest of our analysis, but we
elaborate on other baselines in Appendix B.

4

KernelBench: Can LLMs Write Efficient GPU Kernels?

Figure 2. Most LM-generated kernels are slow. This figure shows the distribution of the fastp metric as the speedup threshold p
increases. fast0 represents the number of correct kernels regardless of speed, and fast1 those achieving at least > 1× speedup over
PyTorch. Increasing p increases difficulty.

In this section, we investigate how a range of LMs perform
when evaluated off-the-shelf on KernelBench and explore
their capabilities and failure modes.

4.1. One-shot Baseline

We evaluate LMs using a prompt that contains one example
of a PyTorch Model input and ModelNew output, high-
lighting the task format. The example is simple, containing
only an add operator (See Appendix C.1). Given this in-
context example and the PyTorch task Model to optimize,
the LM generates ModelNew via greedy decoding. We
profile the generated code on an NVIDIA L40S GPU, and
measure the fastp metric across all problems. Table 1 shows
that the LM-generated kernels achieves a speedup over Py-
Torch Eager in fewer than 20% of tasks on average.

4.2. Correctness: Error Analysis

In Figure 3, we analyze the failure modes of LMs across
problems. It can be seen that a large proportion of model-
generated kernels are incorrect. To better understand where
model-generated kernels fail, we break down their correct-
ness issues into execution failures (CUDA/nvcc / Python
compile-time errors, CUDA memory violations, and run-
time errors) and correctness errors (output tensor shape and
value mismatches). We observe that the reasoning LMs (o1,
R1) produce fewer incorrect solutions (< 55%) than other
models (> 70%) due to fewer execution failures. All LMs
struggle with functional correctness to a similar degree.

4.3. Performance: Speedup Distribution

A key point of interest is whether the functionally correct
LM-generated kernels outperform the PyTorch baseline.
Figure 2 shows the distribution of fastp as p varies, in-
dicating the percentage of kernels that are p-times faster
than the PyTorch Eager baseline (the top right of the plot
is better). At p = 1, fewer than 15% of LM-generated

Figure 3. We categorize failure modes of kernel code into ex-
ecution failure and functional correctness. For the one-shot
baseline, reasoning models generate fewer kernels with execution
failures, but all models struggle with functional correctness.

kernels outperform PyTorch across all KernelBench levels.
Reasoning-based LMs generally outperform the other LMs
in providing speedups. We dive into causes of performance
degradation in Appendix N.

4.4. Performance Variations across Hardware

Our one-shot baseline makes no assumptions about the un-
derlying hardware, so a natural question is how our analysis
of the LM-generated kernels generalizes across various GPU
types. Table 14 and Figure 8 show that kernels outperform-
ing PyTorch Eager on NVIDIA L40S in Level 1 achieve sim-
ilar speedups versus the baselines on other GPUs. However,
on problems in Level 2, LMs exhibit larger variations in
speedups across GPUs (Figure 9): DeepSeek R1-generated
kernels achieve a fast1 of 36% on NVIDIA L40S but 47%
on NVIDIA A10G for Level 2. This suggests that one-shot
LM-generated kernels may not generalize well across hard-
ware. To generate more target-specific kernels, we explore
further in Section 5.2 whether providing hardware-specific
details in-context can improve LM performance.

5

KernelBench: Can LLMs Write Efficient GPU Kernels?

Our analysis reveals that the best models available today
struggle to generate correct kernels that outperform the base-
line PyTorch speeds. LM-generated kernels frequently fail
due to simple compiler and run-time errors. Furthermore, it
is difficult for LMs to write kernels that perform well across
hardware platforms given simple instructions.

5. Analysis of Model Capabilities
In the last section, we found that KernelBench is a chal-
lenging benchmark for today’s models. In this section, we
conduct case studies to explore opportunities for improve-
ment in future models and AI systems.

5.1. Case Study: Leveraging the KernelBench
Environment Feedback at Test-Time

As observed in Section 4.2, execution failures are the most
frequent failure mode in LM-generated kernels. The envi-
ronment provided by KernelBench allows us to collect rich
signals, including compiler errors, correctness checks, and
runtime profiling metrics, all of which can be fed back in
to the LM to help it resolve kernel failures. To explore how
well LMs can use this feedback, we evaluate and compare
two baselines: (1) generating multiple parallel samples from
the LM per KernelBench task and (2) sequentially gener-
ating kernels per KernelBench task by allowing the LM to
iteratively refine using the execution feedback.

5.1.1. REPEATED SAMPLING

The KernelBench environment enables programmatic verifi-
cation of LM-generated kernels, allowing us to collect and
evaluate multiple LM generations per task (Brown et al.,
2024; Li et al., 2022; Grubisic et al., 2024). We evaluate this
repeated sampling approach using fastp@k, which measures
the percentage of tasks where the model generated at least
one functionally correct kernel that is p times faster than
PyTorch Eager when drawing k samples.

Figure 4. Repeated sampling helps discover more correct and
performant kernels. As the number of parallel samples k in-
creases (up to 100), fast1@k improves for both DeepSeek-V3 and
Llama 3.1-70B Instruct across all 3 KernelBench levels.

Repeated sampling helps LMs discover more fast and
correct solutions. Figure 4 shows that repeated sampling
with high temperature improves fast1 as k increases across
all three levels with both DeepSeek-V3 and Llama 3.1 70B.
Notably, on Level 2, DeepSeek-V3 reaches a fast1 of 37%
with k = 100 samples, compared to just 4% in the one-shot
baseline.

Examining the samples, we find that high-temperature
sampling helps explore the solution space, increasing the
chances of generating error-free kernels with better opti-
mizations. However, if a model has a very low inherent
probability of solving a task, simply increasing the sampling
budget has limited impact. For example, DeepSeek-V3 was
never able to generate any correct solution for a group of 34
convolution variants in Level 1, even when attempting with
100 samples.

5.1.2. ITERATIVE REFINEMENT OF GENERATIONS

The KernelBench environment is well-suited for collecting
compiler feedback, execution errors, and timing analysis
using tools like the PyTorch profiler as ground-truth signals.
We investigate whether leveraging this feedback can help
LMs to iteratively refine their generations.

Figure 5. The KernelBench framework enables models to re-
ceive and leverage feedback during iterative refinement. These
ground-truth signals include NVCC compiler error messages, exe-
cution statistics (correctness and wall clock time), and the PyTorch
profiler (operator timing breakdown).

We provide feedback to the model after each generation in a
multi-turn process: after the initial generation, we provide
the model with its previous generation G, as well as com-
piler/execution feedback E and/or profiler output P over its
current generation. We define each generation and subse-
quent feedback as a turn, and run this Iterative Refinement
process over N turns. For each turn, we measure fastp@N ,
which is the percentage of tasks where the model generated
at least one functionally correct kernel that is p times faster
than PyTorch Eager by turn N .

Leveraging execution feedback helps reduce errors and
improves overall speedups over time. We examine the
fast1 behavior at turn N = 10 in Table 2 and find that itera-
tive refinement consistently improves performance across
models and levels of KernelBench. DeepSeek-R1 on Level
2 results in the most notable improvement, where the com-
bination of execution feedback E and profiler feedback P

6

KernelBench: Can LLMs Write Efficient GPU Kernels?

Method
Level 1 Level 2 Level 3

Llama DeepSeek DeepSeek Llama DeepSeek DeepSeek Llama DeepSeek DeepSeek
3.1 70B V3 R1 3.1 70B V3 R1 3.1 70B V3 R1

Single Attempt (Baseline) 3% 6% 12% 0% 4% 36% 0% 8% 2%

Repeated Sampling (@10) 5% 11% N/A 3% 14% N/A 1% 14% N/A

Iterative Refinement w G 9% 9% 18% 0% 7% 44% 0% 14% 4%
Iterative Refinement w G+E 5% 13% 41% 5% 5% 62% 8% 22% 12%
Iterative Refinement w G+E+P 7% 19% 43% 4% 6% 72% 2% 14% 18%

Table 2. Both repeated sampling and iterative improvement enable models to generate more correct and fast kernels compared to
baseline: Here we present the percentage of problems where the LM-generated kernel is correct and faster than baseline Torch Eager
(Fast1 in %) for the two test-time methods, both with the same sample budget of 10 calls. We further compare performance within iterative
refinement achieved when leveraging previous Generation G, Execution Result E, and Timing Profiles P . Note we do not repeatedly
sample DeepSeek R1, as its API endpoint does not provide a temperature parameter.

Figure 6. Iterative refinement with execution feedback E and
profiling information P enable models to improve kernel gen-
erations over turns, as shown in the fast1@N trajectory of
DeepSeek-R1 on Level 2. The percentage of problems where
the best generated kernel up to turn N is correct and faster than
PyTorch Eager consistently increases as we increase number of
turns.

boosts fast1 from 36% to 72% (shown in Figure 6).

Furthermore, by examining iterative refinement trajectories,
we find that models self-correct more effectively with execu-
tion feedback E, fixing issues especially related to execution
errors. DeepSeek-R1 on Level 1 and 2 can generate a func-
tional kernel on >90% of the tasks within 10 turns of refine-
ment (Table 9). However, the remaining incorrect kernels
almost always fail due to functional incorrectness, likely
because correctness feedback is less granular than execution
failure messages. We include successful and failed examples
of iterative refinement trajectories in Appendix D.4.

5.1.3. COMPARING REPEATED SAMPLING AND
ITERATIVE REFINEMENT

In Table 2, we compare repeated sampling and iterative re-
finement given a fixed budget of 10 inference calls. Both
methods provide meaningful improvements over the one-
shot baseline, with iterative refinement being more effective
in 5 of the 6 cases. However, ultimately we find that the
effectiveness of the test-time methods is inherently depen-
dent on the quality of the base model. For instance, with
repeated sampling, DeepSeek-V3 consistently outperforms
Llama-3.1 70B across all three levels. Similarly, with itera-
tive refinement, DeepSeek-R1 consistently improves using
feedback E and P , while DeepSeek-V3 and Llama-3.1 70B
does not always benefit from having such information.

5.2. Case Study: Generating Hardware-Efficient
Kernels via Hardware Knowledge

It is clear that LMs demonstrate limited success at gener-
ating hardware-efficient kernels. This is likely due to the
scarcity of kernel code in the training data and the fact
that the optimal kernel may need to change depending on
the hardware platform-specific properties, as discussed in
Section 4.4. In this case study, we explore providing 1)
in-context examples of best-practices for kernel engineering
and 2) in-context hardware specification details.

5.2.1. HARDWARE-AWARE IN-CONTEXT EXAMPLES

Well-written kernels often use techniques such as fusion,
tiling, recompute, and asynchrony to maximize performance.
We find that most of the one-shot generated kernels evalu-
ated in Section 4 often do not use these techniques. Here,
we explore whether providing explicit in-context examples
that use these techniques can help the LMs improve their
performance on KernelBench. Specifically, we include three
in-context examples: GeLU (Hendrycks & Gimpel, 2023)
using operator fusion, matrix multiplication using tiling
(Mills, 2024), and a minimal Flash-Attention (Dao et al.,

7

KernelBench: Can LLMs Write Efficient GPU Kernels?

2022; Kim, 2024) kernel that demonstrates shared memory
I/O management.

In-context examples degrade the LM’s overall fast1 score
since LMs attempt more aggressive optimization strate-
gies, but result in more execution failures. OpenAI o1’s
generations are 25% longer on average using the few-shot
examples, compared to the generations produced by Sec-
tion 4 baseline. However, among the correct solutions, the
LMs apply interesting optimizations: we find that on 77% of
GEMM variants in KernelBench Level 1, o1 applies tiling
and improves speed over the one-shot baseline (although
remains slower than PyTorch Eager due to the lack of tensor
core utilization). On Level 2, o1 applies aggressive shared
memory I/O management on 11 problems, and is able to
outperform PyTorch Eager (See Appendix F).

5.2.2. SPECIFYING HARDWARE INFORMATION

As discussed in Section 4.4, kernel performance varies
depending on the hardware platform. For instance,
FlashAttention-2 (Dao, 2024) degrades 47% in hardware
utilization going from the NVIDIA A100 to H100 GPU.
FlashAttention-3 (Shah et al., 2024), an entirely different al-
gorithm, was written for the H100. In this study, we explore
whether LMs can use (1) hardware specifications such as the
GPU type (H100, A100, etc.), memory sizes, bandwidths,
TFLOPS and (2) hardware knowledge (e.g. definitions of
threads, warps, thread-blocks, streaming multiprocessors)
in-context to generate improved kernels.

Models rarely generate kernels that are optimized for the
underlying hardware, highlighting room for improve-
ment for future models. Certain generations of GPUs
(e.g. H100) feature a variety of new hardware units and
instructions from their predecessors. Providing hardware
information does not significantly impact the outputs of
Llama 3.1 70B or DeepSeek-V3. Interestingly, we find that
a subset of OpenAI o1 and DeepSeek-R1 generated kernels
use hardware-specific instructions and optimizations. R1 at-
tempts to generate warp matrix multiply-accumulate (wmma)
instructions (Figure 10) for approximately 50% of the Level
1 matrix multiplication problems, although most fail to com-
pile. Among the functionally correct generations, R1 and
o1 produce 1-3 outliers per level that are ≥ 2× faster than
the Section 4 baselines. Overall, we find that modern LMs
are better at adjusting their approaches when provided with
few-shot examples in Section 5.2.1 than when conditioned
on hardware information. Even when explicitly guiding
R1 to use architecture-specific instructions (e.g. wmma and
memcpy async) through in-context examples, the model
struggled to apply these instructions correctly on simple
Level 1 matrix multiplication problems. See Appendix G
for more details.

6. Discussion
In this section, we discuss qualitative examples of LM gen-
erations, and discuss opportunities for improvement.

6.1. Deep Dive Into Interesting Kernels

Here, we discuss a few surprising LM-generated kernels that
demonstrate significant speedups over the PyTorch baseline.
See detailed examples in Appendix D.

Operator fusion GPUs have small amounts of fast-access
memory and large amounts of slow-access memory. Fusion
can help reduce slow-access I/O costs by performing multi-
ple operations on data that has been loaded into fast-access
memory. We find that LMs optimize the GELU (2.9x) and
Softsign (1.3x) operators by fusing their computations into
a single kernel. LMs generated a kernel that fuses mul-
tiple foundational operators – matrix multiplication with
division, summation, and scaling – giving a 2.6x speedup.
Overall, LMs leave many fusion opportunities on the table,
we provide additional analysis on kernel fusion behavior in
Appendix L.

Memory hierarchy Effective kernels explicitly manage
how the limited amounts of fast-access memory (e.g., shared
and register memory) gets utilized. In the generated kernels,
we found kernels that uses GPU shared memory – cosine
similarity (2.8x) and triplet margin loss (2.0x) – to achieve
speedups. We did not find successful usages of tensor core
instructions, which are crucial for AI performance.

Algorithmic optimizations Kernels can require algorithmic
modifications to better utilize the hardware features. We
found one interesting generation for the problem of perform-
ing a multiplication between a dense and diagonal matrix,
where the kernel scales each row (or column), rather than
loading the zero-entries of the diagonal matrix, yielding a
13x speedup over PyTorch Eager.

6.2. Opportunities for Future Work

We show that there is significant room for improvement on
KernelBench given the currently available models. First,
future work can explore the development of advanced fine-
tuning and reasoning techniques, including agentic work-
flows. Since CUDA is a low-resource language, it would
be valuable for future work to open-source more high qual-
ity data. Second, LMs generate raw CUDA code in our
experiments. However, future work can explore whether
generating code using alternative programming abstractions
(e.g., provided in ThunderKittens, CUTLASS, Triton, and
others) can simplify the generation problem, for instance by
making it easier for LMs to leverage tensor core instructions.
Third, our evaluation has also been limited to GPUs so far
and future work can expand to other hardware accelerators.

8

KernelBench: Can LLMs Write Efficient GPU Kernels?

6.3. Conclusion

Our contributions are: (1) We present KernelBench, a frame-
work that lays the groundwork for LM-driven kernel opti-
mization, and (2) We evaluate a diverse set of models and
approaches, analyzing their strengths and limitations, and
providing insights for opportunities to enhance kernel gen-
eration using AI models.

Overall, while most benchmarks eventually saturate, Kernel-
Bench is designed to dynamically evolve as new AI work-
loads arise. Our fastp metric can be adapted over time to
measure the speedup threshold (p) over increasingly ad-
vanced baselines (i.e., beyond the PyTorch baseline used
in our work). Since PyTorch is cross-hardware platform
compatible, the PyTorch-based tasks in KernelBench tasks
can be evaluated on every new hardware platform release.

Finally, unlike many benchmarks, success on KernelBench
directly maps to production value and real-world impacts
(lowering costs and reducing energy consumption at scale).
These properties ensure that KernelBench will remain valu-
able in the ever-evolving AI landscape.

Impact Statement
Optimized GPU kernels can lead to significant energy sav-
ings in large-scale machine learning workloads, reducing
both computational costs and environmental impact. By
providing a framework for AI-assisted performance tun-
ing, KernelBench contributes to more energy-efficient AI
systems, aligning with global efforts to reduce the carbon
footprint of computing infrastructure.

KernelBench does not involve human studies or collect user
data, eliminating privacy concerns. It also avoids proprietary
or private code, relying solely on publicly available Github
repositories.

Acknowledgements
We thank Aaryan Singhal, AJ Root, Allen Nie, Anjiang Wei,
Benjamin Spector, Bilal Khan, Bradley Brown, Daniel Y.
Fu, Dylan Patel, Fredrik Kjolstad, Genghan Zhang, Hieu
Pham, Hugh Leather, John Yang, Jon Saad-Falcon, Jor-
dan Juravsky, Marcel Rød, Mark Saroufim, Michael Zhang,
Minkai Xu, Ofir Press, Ryan Ehrlich, Sahan Paliskara,
Sahil Jain, Shicheng (George) Liu, Suhas Kotha, Tatsunori
Hashimoto, Vikram Sharma Mailthody, and Yangjun Ruan
for insightful discussions and constructive feedback in shap-
ing this work. We are also grateful to PyTorch, Prime Intel-
lect, and Modal for supporting this work.

We gratefully acknowledge the support of Google Deep-
Mind, Google Research, Stanford HAI, and members of
the Stanford SEAMS project: IBM and Felicis; NIH

under No. U54EB020405 (Mobilize), NSF under Nos.
CCF2247015 (Hardware-Aware), CCF1763315 (Beyond
Sparsity), CCF1563078 (Volume to Velocity), and 1937301
(RTML); US DEVCOM ARL under Nos. W911NF-23-2-
0184 (Long-context) and W911NF-21-2-0251 (Interactive
Human-AI Teaming); ONR under Nos. N000142312633
(Deep Signal Processing); Stanford HAI under No. 247183;
NXP, Xilinx, LETI-CEA, Intel, IBM, Microsoft, NEC,
Toshiba, TSMC, ARM, Hitachi, BASF, Accenture, Ericsson,
Qualcomm, Analog Devices, Google Cloud, Salesforce, To-
tal, the HAI-GCP Cloud Credits for Research program, the
Stanford Data Science Initiative (SDSI), and members of the
Stanford DAWN project: Meta, Google, and VMWare. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views,
policies, or endorsements, either expressed or implied, of
NIH, ONR, or the U.S. Government.

References
Ansel, J., Yang, E., He, H., Gimelshein, N., Jain, A., Voz-

nesensky, M., Bao, B., Bell, P., Berard, D., Burovski, E.,
Chauhan, G., Chourdia, A., Constable, W., Desmaison,
A., DeVito, Z., Ellison, E., Feng, W., Gong, J., Gschwind,
M., Hirsh, B., Huang, S., Kalambarkar, K., Kirsch, L.,
Lazos, M., Lezcano, M., Liang, Y., Liang, J., Lu, Y.,
Luk, C. K., Maher, B., Pan, Y., Puhrsch, C., Reso, M.,
Saroufim, M., Siraichi, M. Y., Suk, H., Zhang, S., Suo, M.,
Tillet, P., Zhao, X., Wang, E., Zhou, K., Zou, R., Wang,
X., Mathews, A., Wen, W., Chanan, G., Wu, P., and
Chintala, S. Pytorch 2: Faster machine learning through
dynamic python bytecode transformation and graph com-
pilation. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ASPLOS
’24, pp. 929–947, New York, NY, USA, 2024. Associa-
tion for Computing Machinery. ISBN 9798400703850.
doi: 10.1145/3620665.3640366. URL https://doi.
org/10.1145/3620665.3640366.

Apple. Apple ml compute framework (mlx), 2020. URL
https://developer.apple.com/metal/.

Arora, S., Eyuboglu, S., Zhang, M., Timalsina, A., Alberti,
S., Zinsley, D., Zou, J., Rudra, A., and Ré, C. Sim-
ple linear attention language models balance the recall-
throughput tradeoff. International Conference on Ma-
chine Learning, 2024.

Brown, B., Juravsky, J., Ehrlich, R., Clark, R., Le, Q. V., Ré,
C., and Mirhoseini, A. Large language monkeys: Scaling

9

https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://developer.apple.com/metal/

KernelBench: Can LLMs Write Efficient GPU Kernels?

inference compute with repeated sampling, 2024. URL
https://arxiv.org/abs/2407.21787.

Cerebras. Cerebras wafer-scale engine wse architecture. On-
line. https://cerebras.ai/product-chip/.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings,
D., Plappert, M., Chantzis, F., Barnes, E., Herbert-
Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak,
N., Tang, J., Babuschkin, I., Balaji, S., Jain, S., Saun-
ders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,
J., Misra, V., Morikawa, E., Radford, A., Knight, M.,
Brundage, M., Murati, M., Mayer, K., Welinder, P., Mc-
Grew, B., Amodei, D., McCandlish, S., Sutskever, I., and
Zaremba, W. Evaluating large language models trained
on code, 2021. URL https://arxiv.org/abs/
2107.03374.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Cowan,
M., Shen, H., Wang, L., Hu, Y., Ceze, L., Guestrin, C.,
and Krishnamurthy, A. Tvm: an automated end-to-end
optimizing compiler for deep learning. In Proceedings of
the 13th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’18, pp. 579–594, USA,
2018. USENIX Association. ISBN 9781931971478.

Chen, X., Lin, M., Schärli, N., and Zhou, D. Teaching
large language models to self-debug, 2023. URL https:
//arxiv.org/abs/2304.05128.

Dao, T. FlashAttention-2: Faster attention with better paral-
lelism and work partitioning. International Conference
on Learning Representations, 2024.

Dao, T. and Gu, A. Transformers are ssms: Generalized
models and efficient algorithms through structured state
space duality. International Conference on Machine
Learning (ICML), 2024a.

Dao, T. and Gu, A. Transformers are SSMs: Generalized
models and efficient algorithms through structured state
space duality. In International Conference on Machine
Learning (ICML), 2024b.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. FlashAt-
tention: Fast and memory-efficient exact attention with
IO-awareness. In Advances in Neural Information Pro-
cessing Systems, 2022.

DeepSeek-AI. Deepseek-v3 technical report, 2025.
URL https://github.com/deepseek-ai/
DeepSeek-V3.

Graphcore. Graphcore IPU architecture. Online. https:
//www.graphcore.ai/products/ipu.

Groq. Groq architecture. Online. https://groq.com/.

Grubisic, D., Cummins, C., Seeker, V., and Leather, H.
Priority sampling of large language models for compil-
ers, 2024. URL https://arxiv.org/abs/2402.
18734.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus), 2023. URL https://arxiv.org/abs/
1606.08415.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang, T.,
Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I.
Livecodebench: Holistic and contamination free eval-
uation of large language models for code, 2024. URL
https://arxiv.org/abs/2403.07974.

Jouppi, N. P., Kurian, G., Li, S., Ma, P., Nagarajan, R., Nai,
L., Patil, N., Subramanian, S., Swing, A., Towles, B.,
Young, C., Zhou, X., Zhou, Z., and Patterson, D. Tpu v4:
An optically reconfigurable supercomputer for machine
learning with hardware support for embeddings, 2023.
URL https://arxiv.org/abs/2304.01433.

Kim, P. Flashattention minimal. Online, 2024.
https://github.com/tspeterkim/
flash-attention-minimal.

Kocetkov, D., Li, R., Allal, L. B., Li, J., Mou, C., Ferrandis,
C. M., Jernite, Y., Mitchell, M., Hughes, S., Wolf, T.,
Bahdanau, D., von Werra, L., and de Vries, H. The stack:
3 tb of permissively licensed source code, 2022. URL
https://arxiv.org/abs/2211.15533.

Lai, Y., Li, C., Wang, Y., Zhang, T., Zhong, R., Zettlemoyer,
L., tau Yih, S. W., Fried, D., Wang, S., and Yu, T. Ds-
1000: A natural and reliable benchmark for data science
code generation, 2022. URL https://arxiv.org/
abs/2211.11501.

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D.,
Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., Liu, Q.,
Zheltonozhskii, E., Zhuo, T. Y., Wang, T., Dehaene, O.,
Davaadorj, M., Lamy-Poirier, J., Monteiro, J., Shliazhko,
O., Gontier, N., Meade, N., Zebaze, A., Yee, M.-H., Uma-
pathi, L. K., Zhu, J., Lipkin, B., Oblokulov, M., Wang,
Z., Murthy, R., Stillerman, J., Patel, S. S., Abulkhanov,
D., Zocca, M., Dey, M., Zhang, Z., Fahmy, N., Bhat-
tacharyya, U., Yu, W., Singh, S., Luccioni, S., Villegas,
P., Kunakov, M., Zhdanov, F., Romero, M., Lee, T., Timor,
N., Ding, J., Schlesinger, C., Schoelkopf, H., Ebert, J.,
Dao, T., Mishra, M., Gu, A., Robinson, J., Anderson,
C. J., Dolan-Gavitt, B., Contractor, D., Reddy, S., Fried,
D., Bahdanau, D., Jernite, Y., Ferrandis, C. M., Hughes,

10

https://arxiv.org/abs/2407.21787
https://cerebras.ai/product-chip/
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://github.com/deepseek-ai/DeepSeek-V3
https://github.com/deepseek-ai/DeepSeek-V3
https://www.graphcore.ai/products/ipu
https://www.graphcore.ai/products/ipu
https://groq.com/
https://arxiv.org/abs/2402.18734
https://arxiv.org/abs/2402.18734
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2304.01433
https://github.com/tspeterkim/flash-attention-minimal
https://github.com/tspeterkim/flash-attention-minimal
https://arxiv.org/abs/2211.15533
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501

KernelBench: Can LLMs Write Efficient GPU Kernels?

S., Wolf, T., Guha, A., von Werra, L., and de Vries, H.
Starcoder: may the source be with you!, 2023. URL
https://arxiv.org/abs/2305.06161.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser,
J., Leblond, R., Eccles, T., Keeling, J., Gimeno, F.,
Dal Lago, A., Hubert, T., Choy, P., de Masson d’Autume,
C., Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J.,
Gowal, S., Cherepanov, A., Molloy, J., Mankowitz,
D. J., Sutherland Robson, E., Kohli, P., de Freitas,
N., Kavukcuoglu, K., and Vinyals, O. Competition-
level code generation with alphacode. Science, 378
(6624):1092–1097, December 2022. ISSN 1095-9203.
doi: 10.1126/science.abq1158. URL http://dx.doi.
org/10.1126/science.abq1158.

Mills, C. J. Cuda mode notes - lecture 004. On-
line, 2024. https://christianjmills.com/
posts/cuda-mode-notes/lecture-004/.

Nichols, D., Polasam, P., Menon, H., Marathe, A., Gamblin,
T., and Bhatele, A. Performance-aligned llms for gener-
ating fast code, 2024. URL https://arxiv.org/
abs/2404.18864.

NVIDIA. cudnn: Gpu-accelerated library for deep neu-
ral networks, 2014. URL https://developer.
nvidia.com/cudnn.

NVIDIA. Cuda templates for linear algebra subroutines,
2017a. URL https://github.com/NVIDIA/
cutlass.

NVIDIA. Nvidia Tesla V100 GPU architecture, 2017b.

NVIDIA. Nvidia A100 tensor core GPU architecture, 2020.

NVIDIA. Nvidia H100 tensor core GPU architecture, 2022.

NVIDIA. cuBLAS, 2023. URL https://docs.
nvidia.com/cuda/cublas/.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library, 2019. URL
https://arxiv.org/abs/1912.01703.

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcadinho,
S., Cao, H., Cheng, X., Chung, M., Grella, M., Kiran GV,
K., He, X., Hou, H., Kazienko, P., Kocon, J., and Kong,
J. e. a. Rwkv: Reinventing rnns for the transformer era.
Findings of the Association for Computational Linguis-
tics: EMNLP 2023, 2023.

Shah, J., Bikshandi, G., Zhang, Y., Thakkar, V., Ramani, P.,
and Dao, T. Flashattention-3: Fast and accurate attention
with asynchrony and low-precision, 2024. URL https:
//arxiv.org/abs/2407.08608.

Shi, Q., Tang, M., Narasimhan, K., and Yao, S. Can lan-
guage models solve olympiad programming?, 2024. URL
https://arxiv.org/abs/2404.10952.

Shi, Y., Yang, Z., Xue, J., Ma, L., Xia, Y., Miao, Z., Guo,
Y., Yang, F., and Zhou, L. Welder: Scheduling deep
learning memory access via tile-graph. In 17th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 23), pp. 701–718, Boston, MA, July
2023. USENIX Association. ISBN 978-1-939133-34-2.
URL https://www.usenix.org/conference/
osdi23/presentation/shi.

Spector, B., Arora, S., Singhal, A., Fu, D., and Ré, C. Thun-
derkittens: Simple, fast, and adorable ai kernels. 2024.

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. Efficient
transformers: A survey. ACM Computing Surveys, 55(6):
1–28, 2022.

Team PyTorch, He, H., Guessous, D., Liang, Y., and Dong,
J. FlexAttention: The flexibility of PyTorch with the
performance of FlashAttention, 2024. URL https://
pytorch.org/blog/flexattention/.

TehraniJamsaz, A., Bhattacharjee, A., Chen, L., Ahmed,
N. K., Yazdanbakhsh, A., and Jannesari, A. Coderosetta:
Pushing the boundaries of unsupervised code translation
for parallel programming. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?
id=V6hrg4O9gg.

Tillet, P., Kung, H. T., and Cox, D. Triton: an intermediate
language and compiler for tiled neural network computa-
tions. In Proceedings of the 3rd ACM SIGPLAN Interna-
tional Workshop on Machine Learning and Programming
Languages, 2019.

Turing, A. M. On computable numbers, with an ap-
plication to the Entscheidungsproblem. Proceedings
of the London Mathematical Society, 2(42):230–265,
1936. URL http://www.cs.helsinki.fi/u/
gionis/cc05/OnComputableNumbers.pdf.

Valero-Lara, P., Huante, A., Lail, M. A., Godoy, W. F.,
Teranishi, K., Balaprakash, P., and Vetter, J. S. Comparing
llama-2 and gpt-3 llms for hpc kernels generation, 2023.
URL https://arxiv.org/abs/2309.07103.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. 31st Conference on Neural Information
Processing Systems (NIPS 2017), 2017.

11

https://arxiv.org/abs/2305.06161
http://dx.doi.org/10.1126/science.abq1158
http://dx.doi.org/10.1126/science.abq1158
https://christianjmills.com/posts/cuda-mode-notes/lecture-004/
https://christianjmills.com/posts/cuda-mode-notes/lecture-004/
https://arxiv.org/abs/2404.18864
https://arxiv.org/abs/2404.18864
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/2407.08608
https://arxiv.org/abs/2407.08608
https://arxiv.org/abs/2404.10952
https://www.usenix.org/conference/osdi23/presentation/shi
https://www.usenix.org/conference/osdi23/presentation/shi
https://pytorch.org/blog/flexattention/
https://pytorch.org/blog/flexattention/
https://openreview.net/forum?id=V6hrg4O9gg
https://openreview.net/forum?id=V6hrg4O9gg
http://www.cs.helsinki.fi/u/gionis/cc05/OnComputableNumbers.pdf
http://www.cs.helsinki.fi/u/gionis/cc05/OnComputableNumbers.pdf
https://arxiv.org/abs/2309.07103

KernelBench: Can LLMs Write Efficient GPU Kernels?

Waghjale, S., Veerendranath, V., Wang, Z., and Fried, D.
ECCO: Can we improve model-generated code efficiency
without sacrificing functional correctness? In Al-Onaizan,
Y., Bansal, M., and Chen, Y.-N. (eds.), Proceedings
of the 2024 Conference on Empirical Methods in Nat-
ural Language Processing, pp. 15362–15376, Miami,
Florida, USA, November 2024. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
859. URL https://aclanthology.org/2024.
emnlp-main.859/.

Wen, Y., Guo, Q., Fu, Q., Li, X., Xu, J., Tang, Y., Zhao,
Y., Hu, X., Du, Z., Li, L., Wang, C., Zhou, X., and
Chen, Y. BabelTower: Learning to auto-parallelized
program translation. In Chaudhuri, K., Jegelka, S., Song,
L., Szepesvari, C., Niu, G., and Sabato, S. (eds.), Pro-
ceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 23685–23700. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/
v162/wen22b.html.

Wijk, H., Lin, T., Becker, J., Jawhar, S., Parikh, N., Broadley,
T., Chan, L., Chen, M., Clymer, J., Dhyani, J., Ericheva,
E., Garcia, K., Goodrich, B., Jurkovic, N., Kinniment,
M., Lajko, A., Nix, S., Sato, L., Saunders, W., Taran,
M., West, B., and Barnes, E. Re-bench: Evaluating fron-
tier ai rd capabilities of language model agents against
human experts, 2024. URL https://arxiv.org/
abs/2411.15114.

Xia, C. S. and Zhang, L. Automated Program Repair via
Conversation: Fixing 162 out of 337 Bugs for $0.42
Each using ChatGPT. In Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA ’24, pp. 819–831. ACM, September
2024. doi: 10.1145/3650212.3680323. URL http:
//dx.doi.org/10.1145/3650212.3680323.

Yang, J., Jimenez, C. E., Wettig, A., Lieret, K., Yao,
S., Narasimhan, K., and Press, O. Swe-agent: Agent-
computer interfaces enable automated software engineer-
ing. arXiv:2405.15793, 2024a.

Yang, J., Jimenez, C. E., Zhang, A. L., Lieret, K., Yang,
J., Wu, X., Press, O., Muennighoff, N., Synnaeve, G.,
Narasimhan, K. R., Yang, D., Wang, S. I., and Press,
O. Swe-bench multimodal: Do ai systems generalize
to visual software domains?, 2024b. URL https://
arxiv.org/abs/2410.03859.

Yang, S. and Zhang, Y. Fla: A triton-based library
for hardware-efficient implementations of lin-
ear attention mechanism, January 2024. URL
https://github.com/sustcsonglin/
flash-linear-attention.

Yin, P., Li, W.-D., Xiao, K., Rao, A., Wen, Y., Shi, K.,
Howland, J., Bailey, P., Catasta, M., Michalewski, H.,
Polozov, A., and Sutton, C. Natural language to code
generation in interactive data science notebooks, 2022.
URL https://arxiv.org/abs/2212.09248.

Zheng, Z., Yang, X., Zhao, P., Long, G., Zhu, K., Zhu,
F., Zhao, W., Liu, X., Yang, J., Zhai, J., Song, S. L.,
and Lin, W. Astitch: enabling a new multi-dimensional
optimization space for memory-intensive ml training
and inference on modern simt architectures. In Pro-
ceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’22, pp. 359–373,
New York, NY, USA, 2022. Association for Comput-
ing Machinery. ISBN 9781450392051. doi: 10.1145/
3503222.3507723. URL https://doi.org/10.
1145/3503222.3507723.

Zhu, H., Wu, R., Diao, Y., Ke, S., Li, H., Zhang, C.,
Xue, J., Ma, L., Xia, Y., Cui, W., Yang, F., Yang, M.,
Zhou, L., Cidon, A., and Pekhimenko, G. ROLLER:
Fast and efficient tensor compilation for deep learning.
In 16th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 22), pp. 233–248, Carls-
bad, CA, July 2022. USENIX Association. ISBN 978-
1-939133-28-1. URL https://www.usenix.org/
conference/osdi22/presentation/zhu.

12

https://aclanthology.org/2024.emnlp-main.859/
https://aclanthology.org/2024.emnlp-main.859/
https://proceedings.mlr.press/v162/wen22b.html
https://proceedings.mlr.press/v162/wen22b.html
https://arxiv.org/abs/2411.15114
https://arxiv.org/abs/2411.15114
http://dx.doi.org/10.1145/3650212.3680323
http://dx.doi.org/10.1145/3650212.3680323
https://arxiv.org/abs/2410.03859
https://arxiv.org/abs/2410.03859
https://github.com/sustcsonglin/flash-linear-attention
https://github.com/sustcsonglin/flash-linear-attention
https://arxiv.org/abs/2212.09248
https://doi.org/10.1145/3503222.3507723
https://doi.org/10.1145/3503222.3507723
https://www.usenix.org/conference/osdi22/presentation/zhu
https://www.usenix.org/conference/osdi22/presentation/zhu

KernelBench: Can LLMs Write Efficient GPU Kernels?

A. KernelBench Task Example
Here we provide an example task from KernelBench. Each task is wrapped in a class named Model. A task contains two
key functions in the Model class, init and forward; helper functions are included if necessary. We fix the shape of
inputs and vary the numerical values through randomly generated tensors. We provide two functions, get inputs and
get init inputs, for generating random parameters for initializing the model and running a forward pass, respectively.

PyTorch Reference Architecture:

1 import torch
2 import torch.nn as nn
3
4 class Model(nn.Module):
5 """
6 Simple model that performs a single matrix multiplication (C = A * B) with a large K

↪→ dimension
7 """
8 def __init__(self):
9 super(Model, self).__init__()

10
11 def forward(self, A: torch.Tensor, B: torch.Tensor) -> torch.Tensor:
12 """
13 Performs matrix multiplication of A and B.
14
15 Args:
16 A: Input tensor of shape (M, K)
17 B: Input tensor of shape (K, N)
18
19 Returns:
20 Output tensor of shape (M, N)
21 """
22 return torch.matmul(A, B)
23
24 M = 256
25 N = 256
26 K = 131072
27
28 def get_inputs():
29 A = torch.randn(M, K)
30 B = torch.randn(K, N)
31 return [A, B]
32
33 def get_init_inputs():
34 return [] # No special initialization inputs needed

We include an example output from a model below that attempts to optimize the task specification above. The model
is not only responsible for generating the kernel code, but is also responsible for generating the peripheral code to integrate
the kernel into the PyTorch framework. The evaluation framework will run the forward pass of the model as if it is a PyTorch
operator, so a common approach is to inline the CUDA code.

13

KernelBench: Can LLMs Write Efficient GPU Kernels?

1 import torch
2 import torch.nn as nn
3 from torch.utils.cpp_extension import load_inline
4
5 # Define the custom CUDA kernel for matrix multiplication
6 matmul_source = """
7 #include <torch/extension.h>
8 #include <cuda_runtime.h>
9

10 __global__ void matmul_kernel(const float* A, const float* B, float* C, int M, int N, int
↪→ K) {

11 int row = blockIdx.y * blockDim.y + threadIdx.y;
12 int col = blockIdx.x * blockDim.x + threadIdx.x;
13
14 if (row < M && col < N) {
15 float sum = 0.0f;
16 for (int k = 0; k < K; ++k) {
17 sum += A[row * K + k] * B[k * N + col];
18 }
19 C[row * N + col] = sum;
20 }
21 }
22
23 torch::Tensor matmul_cuda(torch::Tensor A, torch::Tensor B) {
24 int M = A.size(0);
25 int N = B.size(1);
26 int K = A.size(1);
27
28 auto C = torch::zeros({M, N}, A.options());
29
30 dim3 threadsPerBlock(16, 16);
31 dim3 numBlocks((N + threadsPerBlock.x - 1) / threadsPerBlock.x, (M + threadsPerBlock.y

↪→ - 1) / threadsPerBlock.y);
32
33 matmul_kernel<<<numBlocks, threadsPerBlock>>>(A.data_ptr<float>(), B.data_ptr<float>()

↪→ , C.data_ptr<float>(), M, N, K);
34
35 return C;
36 }
37 """
38
39 matmul_cpp_source = (
40 "torch::Tensor matmul_cuda(torch::Tensor A, torch::Tensor B);"
41)
42
43 # Compile the inline CUDA code for matrix multiplication
44 matmul = load_inline(
45 name="matmul",
46 cpp_sources=matmul_cpp_source,
47 cuda_sources=matmul_source,
48 functions=["matmul_cuda"],
49 verbose=True,
50 extra_cflags=[""],
51 extra_ldflags=[""],
52)
53
54
55 class ModelNew(nn.Module):
56 def __init__(self):
57 super(ModelNew, self).__init__()
58 self.matmul = matmul
59
60 def forward(self, A: torch.Tensor, B: torch.Tensor) -> torch.Tensor:
61 return self.matmul.matmul_cuda(A, B)

14

KernelBench: Can LLMs Write Efficient GPU Kernels?

B. Evaluation Methodology and Baselines
All evaluations are conducted on a bare-metal NVIDIA L40S GPU with Ada Lovelace architecture unless otherwise stated
(such as the device generalization experiments in Section 4.4 and the hardware case study in 5.2). The NVIDIA L40S has
48 GB of HBM memory and operates at 300W. Our environment uses Python 3.10, PyTorch 2.5.0+cu124, and CUDA
12.4, which is also where our PyTorch Eager and torch.compile baselines are derived from.

B.1. Kernel Evaluation Setup

Recall the KernelBench task entails a PyTorch reference module Model as baseline, and model-generated PyTorch
architecture ModelNew with custom inline CUDA kernel.

For correctness, we set num correctness to 5, where we check equivalence of output between reference architecture Model
and generated architecture with custom kernel ModelNew with 5 randomized inputs. We elaborate on our choice in B.2.

For performance, we measure the wall-clock execution time of nn.module.forward for both Model and ModelNew.
We ensure only one kernel is being evaluated (no other CUDA process) on current GPU. We warm up for 3 itera-
tions and then set num profile to 100 times which measures the elapsed execution time signaled between CUDA events
torch.cuda.Event. We take the mean of the 100 trials, and also note its max, min, and standard deviation. While the
wall clock time might vary for every trial, we note our coefficient of variation (CV): std/mean is consistently < 3%, we use
the mean of both measured wall clock time for comparisons.

To compute the speedup of generated architecture over baseline architecture for individual problems, we use the mean for
both speedup = TModel/TModelNew. For example, if TModel = 2 ms and TModelNew = 1 ms, we have a 2x speedup with
the newly generated kernel. We compare this speedup with our speedup threshold parameter p (as explained in section 3.3)
to compute fastp scores.

B.2. Correctness Analysis Varying Number of Randomly Generated Inputs

Checking equivalence of programs in a formal sense is undecidable. ”The Halting Problem” (Turing, 1936) states that it is
impossible to decide, in general, whether a given program will terminate for every possible input. This problem naturally
extends to checking equivalence because in order to check whether two programs are equivalent, it is necessary to check
their behavior for all inputs, including cases where one or both programs may not terminate. Since determining whether a
program halts on a given input is undecidable (the Halting Problem), checking equivalence also becomes undecidable.

Approximate or heuristic methods are often used in practice for checking program equivalence. Random testing is the most
common practical approach, where the program is run with sets of randomly chosen inputs, and their outputs are compared.
Random testing is particularly effective for AI kernels, where control flow is simpler and the focus is primarily on numerical
correctness. By using diverse inputs, it can uncover errors in computations or memory handling with high probability.

We use five sets of random inputs for correctness, which is a good tradeoff between the ability to catch errors and efficiency.
In an experiment with 100 generated kernels, the results were as follows: 50 kernels were correct (all 5/5 and 100/100), 19
had output value mismatches (19 0/5 and 0/100), 4 had output shape mismatches, 10 encountered runtime errors, and 17 had
compilation errors. Notably, the 0/5 and 0/100 failures indicate that no partial correctness was observed.

B.3. Distribution of Model Performance for One-Shot Baseline

Here we examine the quality of (functionally correct) kernel generations across a wide variety of models. Figure 7 shows
the distribution of speedups for various kernels across different levels and models. The median speedup for both Level 1 and
Level 3 are less than 1, and the median speedup for Level 2 is only slightly above one. Level 1 has the most significant
outliers, in one case showing a speedup greater than 10. We explored some of these outlier cases in greater detail in
Section 6.

Reasoning-optimized models (OpenAI-o1 and DeepSeek-R1) perform the best of out-of-the-box across all levels.
These models demonstrate superior kernel generation capabilities, particularly excelling at Level 2 tasks (which mainly
involve kernel fusion). In contrast, Llama 3.1 models (both 405B and 70B) perform poorly regardless of model size,
suggesting that larger models do not necessarily guarantee better results for this task. DeepSeek-R1, while strong at Level 1
and 2, suffers significantly at Level 3, often generating incorrect kernels.

15

KernelBench: Can LLMs Write Efficient GPU Kernels?

Figure 7. A box and whisker plot of the speedup relative to Torch Eager of (correct) kernels generated by various models in the one-shot
baseline setting. We also write the percentage of correctly generated kernels next to the model name. We observe that among most models,
the median speedup for correctly generated kernels is below 1.

B.4. PyTorch Baselines

PyTorch offers two common execution modes: Eager and torch.compile. Aside from the results shown in Table 1, all
performance analysis is evaluated against PyTorch Eager.

PyTorch Eager is the default execution mode of PyTorch, which dynamically executes computation by invoking calls to
highly optimized closed-source kernels.

PyTorch Compile or torch.compile uses rule-based heuristics over the underlying computation graph during an initial
compilation phase and invokes various backends to perform optimizations like kernel fusion and graph transformations.
In Table 1, our performance baseline for torch.compile assumes the default configuration using PyTorch Inductor
in default mode. Furthermore, we exclude the torch.compile compile time in our timing analysis, as we are only
interested in the raw runtime behavior. torch.compile features multiple other backends and configurations, which we
describe in Table 3.

We observe that the torch.compile baseline runtime is generally faster on Level 2 and 3 of KernelBench reference
problems compared to PyTorch Eager, mostly due to the availability of graph-level optimizations like operator fusion.
However, on Level 1 problems, torch.compile can exhibit higher runtimes than PyTorch Eager, which can be attribute
to empirically-reproducible runtime overhead for torch.compile (not compile time) that is significant for small kernels.

Other torch.compile backends. In Table 4, we show more one-shot baseline results for fast1 against some of the
other torch.compile baselines. We note on some other configurations fast1 drops especially for Level 2, as the
torch.compile backends apply more aggressive optimization (at the cost of extra compile-time overhead, which we do
not measure). Due to the variability of torch.compile across configurations, we focus our analysis on PyTorch Eager.

16

KernelBench: Can LLMs Write Efficient GPU Kernels?

Configuration Backend Mode Description
PyTorch (Eager) - - Standard PyTorch eager execution
Torch Compile inductor default Default torch.compile behavior
Torch Compile inductor reduce-overhead Optimized for reduced overhead
Torch Compile inductor max-autotune Maximum autotuning enabled
Torch Compile inductor max-autotune-no-cudagraphs Maximum autotuning without CUDA graphs
Torch Compile cudagraphs - CUDA graphs with AOT Autograd

Table 3. Configurations and modes for PyTorch execution and optimization backends.

fast1 over:
torch.compile

default cudagraphs max-autotune
max-autotune
no-cudagraphs reduce-overhead

KernelBench Level 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Claude 3.5 Sonnet 29% 2% 2% 31% 7% 2% 31% 2% 0% 29% 2% 2% 31% 2% 0%
DeepSeek V3 20% 2% 2% 21% 4% 20% 21% 2% 2% 20% 2% 2% 21% 2% 0%
DeepSeek R1 38% 37% 2% 42% 52% 0% 42% 29% 0% 38% 32% 4% 42% 28% 0%
GPT-4o 18% 4% 4% 22% 6% 6% 21% 4% 2% 18% 3% 4% 21% 4% 0%
Llama 3.1-70B Inst. 11% 0% 0% 12% 0% 0% 12% 0% 0% 11% 0% 0% 12% 0% 0%
Llama 3.1-405B Inst. 16% 0% 0% 16% 0% 4% 16% 0% 0% 16% 0% 0% 16% 0% 0%
OpenAI O1 28% 19% 4% 33% 37% 26% 34% 8% 4% 30% 19% 6% 34% 8% 2%

Table 4. We compare KernelBench torch.compile baseline runtime across various configurations, all measured on NVIDIA L40S, in
addition to what is showed in Table 1.

C. Experiment Prompting Details
We provide details for the prompting strategies and associated sampling strategies used in Section 4 and Section 5.

C.1. One-shot Baseline Prompt

For the one-shot baseline as shown in Section 4.1, we want to examine each model’s out-of-the-box ability to generate
kernels by providing the minimum set of information while ensuring the instructions and output format are clear. We query
each model with the following prompt and a pair of in-context add examples (the PyTorch reference add and its CUDA
kernel counterpart using inline compilation) to provide the output format. We sample the model with greedy decoding to
ensure deterministic output, which is setting temperature = 0.

1 You write custom CUDA kernels to replace the pytorch operators in the given architecture
2 to get speedups.
3
4 You have complete freedom to choose the set of operators you want to replace. You may
5 make the decision to replace some operators with custom CUDA kernels and leave others
6 unchanged. You may replace multiple operators with custom implementations, consider
7 operator fusion opportunities (combining multiple operators into a single kernel, for
8 example, combining matmul+relu), or algorithmic changes (such as online softmax). You are
9 only limited by your imagination.

10
11 Here\’s an example to show you the syntax of inline embedding custom CUDA operators in
12 torch: The example given architecture is:
13 ‘‘‘
14 import torch
15 import torch.nn as nn
16 import torch.nn.functional as F
17
18
19 class Model(nn.Module):
20 def __init__(self) -> None:
21 super().__init__()
22

17

KernelBench: Can LLMs Write Efficient GPU Kernels?

23 def forward(self, a, b):
24 return a + b
25
26
27 def get_inputs():
28 # randomly generate input tensors based on the model architecture
29 a = torch.randn(1, 128).cuda()
30 b = torch.randn(1, 128).cuda()
31 return [a, b]
32
33
34 def get_init_inputs():
35 # randomly generate tensors required for initialization based on the model

↪→ architecture
36 return []
37 ‘‘‘
38
39 The example new arch with custom CUDA kernels looks like this:
40 ‘‘‘
41 import torch
42 import torch.nn as nn
43 import torch.nn.functional as F
44 from torch.utils.cpp_extension import load_inline
45
46 # Define the custom CUDA kernel for element-wise addition
47 elementwise_add_source = """
48 #include <torch/extension.h>
49 #include <cuda_runtime.h>
50
51 __global__ void elementwise_add_kernel(const float* a, const float* b, float* out, int

↪→ size) {
52 int idx = blockIdx.x * blockDim.x + threadIdx.x;
53 if (idx < size) {
54 out[idx] = a[idx] + b[idx];
55 }
56 }
57
58 torch::Tensor elementwise_add_cuda(torch::Tensor a, torch::Tensor b) {
59 auto size = a.numel();
60 auto out = torch::zeros_like(a);
61
62 const int block_size = 256;
63 const int num_blocks = (size + block_size - 1) / block_size;
64
65 elementwise_add_kernel<<<num_blocks, block_size>>>(a.data_ptr<float>(), b.data_ptr<

↪→ float>(), out.data_ptr<float>(), size);
66
67 return out;
68 }
69 """
70
71 elementwise_add_cpp_source = "torch::Tensor elementwise_add_cuda(torch::Tensor a, torch::

↪→ Tensor b);"
72
73 # Compile the inline CUDA code for element-wise addition
74 elementwise_add = load_inline(
75 name=’elementwise_add’,
76 cpp_sources=elementwise_add_cpp_source,
77 cuda_sources=elementwise_add_source,
78 functions=[’elementwise_add_cuda’],
79 verbose=True,
80 extra_cflags=[’’],
81 extra_ldflags=[’’]
82)
83

18

KernelBench: Can LLMs Write Efficient GPU Kernels?

84 class ModelNew(nn.Module):
85 def __init__(self) -> None:
86 super().__init__()
87 self.elementwise_add = elementwise_add
88
89 def forward(self, a, b):
90 return self.elementwise_add.elementwise_add_cuda(a, b)
91 ‘‘‘
92
93 You are given the following architecture:
94
95 <PyTorch reference architecture for specific KernelBench Problem>
96
97 Optimize the architecture named Model with custom CUDA operators! Name your optimized
98 output architecture ModelNew. Output the new code in codeblocks. Please generate real
99 code, NOT pseudocode, make sure the code compiles and is fully functional. Just output

100 the new model code, no other text, and NO testing code!

C.2. Repeated Sampling Prompts

For repeated sampling, we use the same prompt that we used for the one-shot baseline in Appendix C.1. We used the same
sampling temperature described in (Brown et al., 2024) as they allow sample diversity while ensuring quality. Specifically
we use temperature = 1.6 for Deepseek-V3 and temperature = 0.7 for Llama 3.1-70B.

C.3. Iterative Refinement Prompts

For iterative refinement, we start with the same initial prompt that we used for the one-shot baseline in Appendix C.1. A
limitation of our experiments is that we sample with temperature= 0 to focus on the effect of iterating based on feedback
rather than introducing variability. On subsequent generations, we prompt the model with the following template depending
on the feedback it expects:

1 <Initial prompt from one-shot baseline for specific KernelBench problem.>
2
3 Here is your latest generation:
4 <Previously generated kernel G>
5
6 Your generated architecture ModelNew and kernel was evaluated on GPU and checked against

↪→ the reference architecture Model.
7 Here is your Evaluation Result:
8
9 <Raw Compiler and Execution Feedback from stdout>

10
11 <’if correct:’>
12 Your kernel executed successfully and produced the correct output.
13 Here is your wall clock time: {runtime} milliseconds
14
15 <Profiler information if used and correct.>
16
17 Name your new improved output architecture ModelNew. Output the new code in codeblocks.

↪→ Please generate real code, NOT pseudocode, make sure the code compiles and is fully
↪→ functional. Just output the new model code, no other text, and NO testing code!

For the compiler and execution feedback, we handle timeouts and deadlocks explicitly with ”Your kernel execution timed
out”, but do not provide any other information.

C.4. Few-Shot in Context Prompts

For Few-Shot experiments as outlined in Section 5.2.1. We provide more details about the in-context example in Appendix
F. We sampled these experiments with temperature = 0.

1 <Initial Task prompt from one-shot baseline for Instruction>

19

KernelBench: Can LLMs Write Efficient GPU Kernels?

2 <Initial pair of Reference PyTorch and CUDA kernel equivalent for example add kernel from
↪→ one-shot baseline for Instruction>

3
4 Example <i>
5 Here is an example architecture
6 <PyTorch reference architecture for No. i in-context example>
7
8 Here is an optimized verison with custom CUDA kernels:
9 <PyTorch architecture with Custom CUDA Kernel for No. i in-context example>

10
11 .. up to number of in-context sample times
12
13
14 Task:
15 Here is an example architecture:
16
17 <PyTorch reference architecture for specific KernelBench Problem>
18
19 Name your new improved output architecture ModelNew. Output the new code in codeblocks.

↪→ Please generate real code, NOT pseudocode, make sure the code compiles and is fully
↪→ functional. Just output the new model code, no other text, and NO testing code!

C.5. Hardware Case Study Prompts

Here we provide hardware information. This is used in Section 4.4 and elaborated more in G, sampled with temperature = 0.

1 <Initial Task prompt from one-shot baseline for Instruction>
2 <Initial pair of Reference PyTorch and CUDA kernel equivalent for example add kernel from

↪→ one-shot baseline for Instruction>
3
4 Here is some information about the underlying hardware that you should keep in mind.
5
6 The GPU that will run the kernel is NVIDIA <GPU NAME>.
7
8 - We have <x> GB GDDR6 with ECC of GPU Memory.
9 - We have <x> GB/s of Memory Bandwidth.

10 - We have <x> of RT Core Performance TFLOPS.
11 - We have <x> of FP32 TFLOPS.
12 - We have <x> of TF32 Tensor Core TFLOPS.
13 - We have <x> of FP16 Tensor Core TFLOPS.
14 - We have <x> of FP8 Tensor Core TFLOPS.
15 - We have <x> of Peak INT8 Tensor TOPS.
16 - We have <x> of Peak INT4 Tensor TOPS.
17 - We have <x> 32-bit registers per SM of Register File Size.
18 - We have <x> of Maximum number of registers per thread.
19 - We have <x> of Maximum number of thread blocks per SM.
20 - We have <x> KB of Shared memory capacity per SM.
21 - We have <x> KB of Maximum shared memory per thread block.
22
23
24
25 Here are some concepts about the GPU architecture that could be helpful:
26
27 - Thread: A thread is a single execution unit that can run a single instruction at a time.
28 - Thread Block: A thread block is a group of threads that can cooperate with each other.
29 - Shared Memory: Shared memory is a memory space that can be accessed by all threads in a

↪→ thread block.
30 - Register: A register is a small memory space that can be accessed by a single thread.
31 - Memory Hierarchy: Memory hierarchy is a pyramid of memory types with different speeds

↪→ and sizes.
32 - Memory Bandwidth: Memory bandwidth is the rate at which data can be read from or stored

↪→ into memory.
33 - Cache: Cache is a small memory space that stores frequently accessed data.
34 - HBM: HBM is a high-bandwidth memory technology that uses 3D-stacked DRAM.

20

KernelBench: Can LLMs Write Efficient GPU Kernels?

35
36 Here are some best practices for writing CUDA kernels on GPU
37
38 - Find ways to parallelize sequential code.
39 - Minimize data transfers between the host and the device.
40 - Adjust kernel launch configuration to maximize device utilization.
41 - Ensure that global memory accesses are coalesced.
42 - Minimize redundant accesses to global memory whenever possible.
43 - Avoid long sequences of diverged execution by threads within the same warp.
44 #We added this to reference the specific GPU architecture
45 - Use specialized instructions based on the specific GPU architecture
46
47 You are given the following architecture:
48
49 <PyTorch reference architecture for specific KernelBench Problem>
50
51 Name your new improved output architecture ModelNew. Output the new code in codeblocks.

↪→ Please generate real code, NOT pseudocode, make sure the code compiles and is fully
↪→ functional. Just output the new model code, no other text, and NO testing code!

D. Kernels of Interest
In this section we provide examples of interesting or notable kernel generations. We first expand on the discussion in
Section 6, where we defined the following categories of optimizations: algorithmic optimizations, operator fusion, and using
hardware features.

D.1. Algorithmic Optimizations

13x Speedup on Level 1 Problem 11 by Claude-3.5 Sonnet
The original torch operator is torch.diag(A) @ B, multiplying a diagonal matrix formed from the vector A with the
matrix B. The model identifies an optimization in the special case of a diagonal matrix multiplication, where the diagonal
matrix doesn’t need to be explicitly constructed. Instead, each element of the vector A is directly multiplied with the
corresponding row in matrix B, significantly improving performance:

1 __global__ void diag_matmul_kernel(
2 const float* diag,
3 const float* mat,
4 float* out,
5 const int N,
6 const int M) {
7
8 const int row = blockIdx.y * blockDim.y + threadIdx.y;
9 const int col = blockIdx.x * blockDim.x + threadIdx.x;

10
11 if (row < N && col < M) {
12 out[row * M + col] = diag[row] * mat[row * M + col];
13 }
14 }

D.2. Kernel Fusion

2.9x Speedup on Level 1 Problem 87 by DeepSeek-V3
GeLU reference in torch:

1 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0)))
↪→)

Optimized version fuses in a single kernel. There is also a small constant folding optimization, instead of computing

21

KernelBench: Can LLMs Write Efficient GPU Kernels?

math.sqrt(2.0 / math.pi) repeatedly, the kernel uses the precomputed value 0.7978845608028654f:

1 __global__ void gelu_kernel(const float* x, float* out, int size) {
2 int idx = blockIdx.x * blockDim.x + threadIdx.x;
3 if (idx < size) {
4 float x_val = x[idx];
5 float cdf = 0.5f * (1.0f + tanhf((0.7978845608028654f * (x_val + 0.044715f * x_val

↪→ * x_val * x_val))));
6 out[idx] = x_val * cdf;
7 }
8 }

1.3x Speedup on Level 1 Problem 29 by Claude-3.5 Sonnet
SoftSign reference in torch:

1 x / (1 + torch.abs(x))

Fused kernel:

1 __global__ void softsign_kernel(const float* input, float* output, int size) {
2 int idx = blockIdx.x * blockDim.x + threadIdx.x;
3 if (idx < size) {
4 float x = input[idx];
5 float abs_x = abs(x);
6 output[idx] = x / (1.0f + abs_x);
7 }
8 }

2.6x Speedup on Level 2 Problem 13 by Claude-3.5 Sonnet
Sequence of operators in torch:

1 x = torch.matmul(x, self.weight.T) # Gemm
2 x = x / 2 # Divide
3 x = torch.sum(x, dim=1, keepdim=True) # Sum
4 x = x * self.scaling_factor # Scaling

Fused kernel:

22

KernelBench: Can LLMs Write Efficient GPU Kernels?

1 __global__ void fused_ops_kernel(
2 const float* input,
3 const float* weight,
4 float* output,
5 const float scaling_factor,
6 const int batch_size,
7 const int input_size,
8 const int hidden_size
9) {

10 // Each thread handles one element in the batch
11 const int batch_idx = blockIdx.x * blockDim.x + threadIdx.x;
12
13 if (batch_idx < batch_size) {
14 float sum = 0.0f;
15
16 // Compute matmul and divide for this batch element
17 for(int h = 0; h < hidden_size; h++) {
18 float elem = 0.0f;
19 for(int i = 0; i < input_size; i++) {
20 elem += input[batch_idx * input_size + i] *
21 weight[h * input_size + i];
22 }
23 // Divide by 2 as we go
24 sum += (elem / 2.0f);
25 }
26
27 // Scale and store final result
28 output[batch_idx] = sum * scaling_factor;
29 }
30 }

Despite this good example, overall Level 2 generated kernels show insufficient fusion. It is expected that most Level 2
problems can be expressed in a single fused kernel.

1.9x Speedup on Level 3 Problem 49 by OpenAI-o1
We have a hypothetical architecture of the attention mechanism where the softmax is replaced with a ReLU.

1 att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
2 att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float(’-inf’))
3 att = F.relu(att)

The model found an optimization that fuses the scaling, masked fill, and ReLU but not anything else, resulting in a modest
improvement of 1.9x.

23

KernelBench: Can LLMs Write Efficient GPU Kernels?

1 __global__ void fused_masked_fill_scale_relu_kernel(
2 const float* __restrict__ att,
3 const float* __restrict__ bias,
4 float* __restrict__ output,
5 int total_elems,
6 float scale,
7 int T,
8 float negative_infinity
9) {

10 int idx = blockIdx.x * blockDim.x + threadIdx.x;
11 if (idx < total_elems) {
12 float val = att[idx] * scale;
13 int bias_idx = idx % (T * T);
14 if (bias[bias_idx] == 0.0f) {
15 val = negative_infinity;
16 }
17 if (val < 0.0f) {
18 val = 0.0f;
19 }
20 output[idx] = val;
21 }
22 }

D.3. Hardware Features

2.8x Speedup on Level 1 Problem 96 by OpenAI-o1
Torch reference for Cosine Similarity Loss

1 cosine_sim = torch.nn.functional.cosine_similarity(predictions, targets, dim=1)
2 return torch.mean(1 - cosine_sim)

The generated kernel uses shared memory for reduce redundant global memory accesses, improving data locality and
increasing overall performance. This is a moderately complicated kernel with synchronization points and reductions that
would be tricky for humans to get right.

1 __global__ void cosine_similarity_loss_kernel(
2 const float* __restrict__ predictions,
3 const float* __restrict__ targets,
4 float* __restrict__ losses,
5 const int batch_size,
6 const int input_size
7) {
8 // Each block handles one sample in the batch
9 int sample_idx = blockIdx.x;

10 if (sample_idx >= batch_size) return;
11
12 // Shared memory for reductions
13 extern __shared__ float sdata[];
14
15 // Pointers to data for this sample
16 const float* pred = predictions + sample_idx * input_size;
17 const float* targ = targets + sample_idx * input_size;
18
19 // Intermediate sums for dot product and norms
20 float thread_dot = 0.0f;
21 float thread_pred_norm_sq = 0.0f;
22 float thread_targ_norm_sq = 0.0f;
23
24 for (int idx = threadIdx.x; idx < input_size; idx += blockDim.x) {
25 float p = pred[idx];

24

KernelBench: Can LLMs Write Efficient GPU Kernels?

26 float t = targ[idx];
27 thread_dot += p * t;
28 thread_pred_norm_sq += p * p;
29 thread_targ_norm_sq += t * t;
30 }
31
32 // Reduction for dot product
33 sdata[threadIdx.x] = thread_dot;
34 __syncthreads();
35 for (unsigned int s = blockDim.x / 2; s > 0; s >>= 1) {
36 if (threadIdx.x < s) {
37 sdata[threadIdx.x] += sdata[threadIdx.x + s];
38 }
39 __syncthreads();
40 }
41 float dot_product = sdata[0];
42
43 // Reduction for pred_norm_sq
44 sdata[threadIdx.x] = thread_pred_norm_sq;
45 __syncthreads();
46 for (unsigned int s = blockDim.x / 2; s > 0; s >>= 1) {
47 if (threadIdx.x < s) {
48 sdata[threadIdx.x] += sdata[threadIdx.x + s];
49 }
50 __syncthreads();
51 }
52 float norm_pred = sqrtf(sdata[0] + 1e-8f);
53
54 // Reduction for targ_norm_sq
55 sdata[threadIdx.x] = thread_targ_norm_sq;
56 __syncthreads();
57 for (unsigned int s = blockDim.x / 2; s > 0; s >>= 1) {
58 if (threadIdx.x < s) {
59 sdata[threadIdx.x] += sdata[threadIdx.x + s];
60 }
61 __syncthreads();
62 }
63 float norm_targ = sqrtf(sdata[0] + 1e-8f);
64
65 if (threadIdx.x == 0) {
66 float cosine_sim = dot_product / (norm_pred * norm_targ + 1e-8f);
67 losses[sample_idx] = 1.0f - cosine_sim;
68 }
69 }

1.9x Speedup on Level 1 Problem 98 by Deepseek-R1
Torch reference for Cosine Similarity Loss

1 self.loss_fn = torch.nn.TripletMarginLoss(margin=margin)
2 self.loss_fn(anchor, positive, negative)

Another example of a generated kernel using shared memory:

25

KernelBench: Can LLMs Write Efficient GPU Kernels?

1 __global__ void triplet_margin_loss_kernel(
2 const float* anchor,
3 const float* positive,
4 const float* negative,
5 float* losses,
6 float margin,
7 int feature_size)
8 {
9 extern __shared__ float shared_sums[];

10
11 int batch_idx = blockIdx.x;
12 int tid = threadIdx.x;
13
14 int offset = batch_idx * feature_size;
15
16 const float* a = anchor + offset;
17 const float* p = positive + offset;
18 const float* n = negative + offset;
19
20 float a_p_sum = 0.0f;
21 float a_n_sum = 0.0f;
22
23 int stride = blockDim.x;
24 for (int i = tid; i < feature_size; i += stride) {
25 float diff_ap = a[i] - p[i];
26 a_p_sum += diff_ap * diff_ap;
27 float diff_an = a[i] - n[i];
28 a_n_sum += diff_an * diff_an;
29 }
30
31 shared_sums[tid] = a_p_sum;
32 shared_sums[blockDim.x + tid] = a_n_sum;
33
34 __syncthreads();
35
36 for (int s = blockDim.x / 2; s > 0; s >>= 1) {
37 if (tid < s) {
38 shared_sums[tid] += shared_sums[tid + s];
39 shared_sums[blockDim.x + tid] += shared_sums[blockDim.x + tid + s];
40 }
41 __syncthreads();
42 }
43
44 if (tid == 0) {
45 float d_ap = sqrtf(shared_sums[0]);
46 float d_an = sqrtf(shared_sums[blockDim.x]);
47 losses[batch_idx] = fmaxf(d_ap - d_an + margin, 0.0f);
48 }
49 }

D.4. Iterative Refinement Examples

D.4.1. ITERATIVELY TRYING NEW OPTIMIZATIONS

We provide an example of a kernel that iteratively improves on its existing generation. In the following example, the model
attempts new optimizations incorrectly, fixes them, and continue to attempt new optimizations, improving its kernel to faster
than the torch.compile baseline (1.34ms) but short of the Torch Eager baseline (0.47ms).

Level 1, Problem 63: 2D convolution with square input and square kernel. DeepSeek-R1 with Execution and Profile
Feedback

In this example, we see a 8× speedup in average kernel runtime from its initial generation, where the model repeatedly

26

KernelBench: Can LLMs Write Efficient GPU Kernels?

Turn 1 Turn 2 Turn 3 Turn 4 Turn 5 Turn 6 Turn 7 Turn 8 Turn 9 Turn 10

Compiles? ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓
Correct? ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓
Runtime (ms) 9.1 - 1.57 - 1.83 1.43 - 1.13 - 1.46

Table 5. Iterative refinement trajectory of DeepSeek-R1 with execution feedback E and profiler feedback P on Problem 63, Level 1.
Torch Eager baseline runs in 0.47ms and torch.compile runs in 1.34ms.

(incorrectly) refines its kernel, fixes the compiler issues using feedback, then continues to attempt more optimizations. The
first big jump in performance (Turn 1 → Turn 3) occurs because the model decides to launch thread blocks along an output
channel dimension, when it originally computed these elements sequentially. The model then attempts to use shared memory
in Turn 5, and continues using it, along with texture cache memory with the ldg instruction in Turns 7 and 8.

D.4.2. LEVERAGING FEEDBACK TO CORRECT KERNEL CODE

Level 2, Problem 73: 2D Convolution with a BatchNorm and a scale factor. DeepSeek-R1 with Execution Feedback
We provide an example of a kernel that the model struggles to generate correctly, and produces a correct kernel after iterative
refinement using execution feedback.

Turn 1 Turn 2 Turn 3 Turn 4 Turn 5 Turn 6 Turn 7 Turn 8 Turn 9 Turn 10

Compiles? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Correct? ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Runtime - - - - - - - - - 3.16

Table 6. Iterative refinement trajectory of DeepSeek-R1 with execution feedback E on Problem 73, Level 2. Torch Eager baseline runs in
0.105ms and torch.compile runs in 0.156ms.

In the above example, the model continually produces either the wrong output tensor shape or the wrong values and iterates
on its kernel using this feedback until the final turn, where it generates a functionally correct, albeit non-performant kernel.
We provide another example below that explicitly leverages compiler feedback to fix compiler errors:

Level 2, Problem 23: 3D Convolution with a GroupNorm and return the mean across all but the batch dimension.
DeepSeek-R1 with Execution Feedback

Turn 1 Turn 2 Turn 3 Turn 4 Turn 5 Turn 6 Turn 7 Turn 8 Turn 9 Turn 10

Compiles? ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓
Correct? ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗
Runtime - - 11.4 1.36 - - 1.39 1.33 - -

Table 7. Iterative refinement trajectory of DeepSeek-R1 with execution feedback E on Problem 23, Level 2. Torch Eager baseline runs in
1.29ms and torch.compile runs in 0.719ms.

In the above example, the model attempts to use the CUB library, but incorrectly invokes function calls. The model is then
able to correct these errors and write a slightly faster kernel in Turn 8.

D.4.3. ITERATIVE REFINEMENT NEVER FIXES THE ERROR

Level 1, Problem 54: 3D Convolution square input and square kernel. DeepSeek-R1 with Execution and Profiler
Feedback

This problem is particularly interesting because no model is able to consistently produce functional code for this kernel,
even with different forms of feedback and profiling information. Interestingly, the example before is an arguably more
difficult version of this kernel that fuses the 3D convolution with another operator, and the same model is able to generate
functional code for this task. In the example above, the model consistently makes the same mistake and continually generates

27

KernelBench: Can LLMs Write Efficient GPU Kernels?

Turn 1 Turn 2 Turn 3 Turn 4 Turn 5 Turn 6 Turn 7 Turn 8 Turn 9 Turn 10

Compiles? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Correct? ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Runtime - - - - - - - - - -

Table 8. Iterative refinement trajectory of DeepSeek-R1 with execution feedback E and profiler feedback P on Problem 54, Level 1.
Torch Eager baseline runs in 4.47ms and torch.compile runs in 4.67ms.

a functionally incorrect kernel with the same value errors.

E. Iterative Refinement on Correctness
Here we show that fast0 across iterative refinement 5.1.2 configurations at a turn budget of N = 10 compared to one-shot
baseline 4.1. We find that models self-correct more effectively with execution feedback E, fixing issues especially related to
execution errors. Notably, DeepSeek-R1 on Level 1 and 2 can generate a functional kernel on >90% of the tasks given 10
turns of iterative refinement. However, the remaining incorrect kernels almost always fail due to functional incorrectness,
likely because correctness feedback is less granular than execution failure messages

Method
Level 1 Level 2 Level 3

Llama DeepSeek DeepSeek Llama DeepSeek DeepSeek Llama DeepSeek DeepSeek
3.1 70B V3 R1 3.1 70B V3 R1 3.1 70B V3 R1

Single Attempt (Baseline) 26% 43% 67% 0% 6% 62% 0% 30% 8%

Iterative Refinement (w G) 27% 48% 72% 2% 7% 67% 0% 36% 14%
Iterative Refinement (w G+E) 40% 53% 95% 7% 8% 85% 18% 42% 50%
Iterative Refinement (w G+E+P) 36% 50% 95% 7% 9% 92% 8% 44% 42%

Table 9. Leveraging execution feedback helps reduce errors: Here we present the percentage of problems where the LM-generated
Kernel is correct for iterative refinement. We note leveraging execution feedback helps the model achieve better correctness fast0, which
is the percentage of problems where the model has at least one correct generation up to turn N = 10. We note the various iterative
refinement configurations, leveraging previous Generation G, Execution Result E, and Timing Profiles P .

F. Few Shot Experiment
For this experiment, we provide in-context examples of optimization techniques such as fusion, tiling, recompute, and
asynchrony to models during kernel generation. As described in Section 5.2.1, we provide three in-context examples: a
fused GELU (Hendrycks & Gimpel, 2023), a tiled matrix multiplication (Mills, 2024), and a minimal Flash-Attention (Dao
et al., 2022; Kim, 2024) demonstrating effective shared memory I/O management. The prompt used for this experiment is
described in Appendix C.4. The speedup of these kernels were computed over PyTorch Eager. We compare the performance
of these few-shot kernels over the one-shot baseline below.

28

KernelBench: Can LLMs Write Efficient GPU Kernels?

Baseline Few-Shot

Model Level fast1 fast0 Kernel Length (chars) fast1 fast0 Kernel Length (chars)

1 3% 27% 301018 6% 27% 360212
Llama 3.1-70B 2 0% 0% 646403 0% 0% 566668

3 0% 0% 404596 0% 4% 485332

1 10% 55% 343995 6% 39% 437768
OpenAI o1 2 24% 56% 381474 16% 39% 432800

3 12% 56% 260273 8% 22% 364551

Table 10. Comparison of the Section 4.1 baseline and few-shot prompting performance across models. We examine the fast0, fast1, and
cumulative character length of generated kernels per level.

77% of matrix multiplication problems in Level 1 achieves a speedup over the one-shot baseline through tiling. The runtime
comparison for each GEMM variant is presented below as Table F.

Problem Name Baseline (ms) Few-Shot (ms) Ref Torch (ms)

3D Tensor Matrix Multiplication 20.9 7.71 1.45
Matmul for Upper-Triangular Matrices 14 5.39 2.98
Matrix Scalar Multiplication 1.19 0.811 0.822
Standard Matrix Multiplication 3.39 2.46 0.397
Matmul with Transposed Both 3.44 2.67 0.412
Matmul with Transposed A 3.61 2.99 0.384
4D Tensor Matrix Multiplication 366 338 36
Tall Skinny Matrix Multiplication 3.39 3.59 1.9
Matmul with Diagonal Matrices 0.221 0.237 2.83

Table 11. Performance comparison of the Section 4.1 baseline and few-shot prompting in level 1 matrix multiplication problems.

Few-shot kernels generated for the following problems in level 2 outperformed PyTorch Eager through aggressive shared
memory I/O management.

Problem Name Baseline (ms) Few-Shot (ms) Ref Torch (ms)

Conv2d InstanceNorm Divide 0.514 0.0823 0.0898
Gemm GroupNorm Swish Multiply Swish 0.124 0.0542 0.0891
Matmul Min Subtract 0.0651 0.0342 0.0397
Matmul GroupNorm LeakyReLU Sum 0.0935 0.0504 0.072
ConvTranspose3d Swish GroupNorm HardSwish 33.3 29.6 35.2
ConvTranspose2d Mish Add Hardtanh Scaling 0.235 0.209 0.243
ConvTranspose3d Add HardSwish 15.6 14.1 22.2
ConvTranspose2d Add Min GELU Multiply 0.365 0.349 0.4
ConvTranspose2d BiasAdd Clamp Scaling Clamp... 0.3 0.31 0.368
Conv2d GroupNorm Tanh HardSwish ResidualAdd... 0.124 0.129 0.154
Conv2d ReLU HardSwish 0.0681 0.0711 0.0768

Table 12. Performance comparison of the Section 4.1 baseline and few-shot prompting in level 2 for problems whose few-shot kernels
outperform PyTorch Eager.

29

KernelBench: Can LLMs Write Efficient GPU Kernels?

G. Cross-Hardware Case Study
G.1. Evaluation across different hardware

To evaluate how generated kernels fare across different hardware platforms, we utilize a number of different NVIDIA GPUs
that span different micro-architectures and capabilities. The specific details for each is provided in Table 13.

Provider GPU Type Memory Power Microarchitecture FP16 TFLOPS Memory Bandwidth
Baremetal NVIDIA L40S 48 GB 300W Ada 362.05 864 GB/s
Baremetal NVIDIA H100 80 GB 700W Hopper 989.5 3350 GB/s
Serverless NVIDIA L40S 48 GB 350W Ada 362.05 864 GB/s
Serverless NVIDIA A100 42 GB 400W Ampere 312 1935 GB/s
Serverless NVIDIA L4 24 GB 72W Ada 121 300 GB/s
Serverless NVIDIA T4 16 GB 70W Turing 65 300 GB/s
Serverless NVIDIA A10G 24 GB 300W Ampere 125 600 GB/s

Table 13. Specifications of different GPUs, including memory, power consumption, micro-architecture, FP16 TFLOPS, memory band-
width, and their providers.

We ran the same set of kernels generated in Section 4.1 on a variety of hardware (as listed in Table 13). We computed the
fast1 speedup against the PyTorch Eager baseline profiled on that particular hardware platform in Table 14.

Level GPUs Llama-3.1-70b-Inst DeepSeek-V3 DeepSeek-R1

1

L40S 3% 6% 12%
H100 2% 7% 16%
A100 3% 7% 16%
L4 2% 4% 15%
T4 3% 7% 22%
A10G 2% 7% 12%

2

L40S 0% 4% 36%
H100 0% 4% 42%
A100 0% 4% 38%
L4 0% 4% 36%
T4 0% 4% 46%
A10G 0% 4% 47%

3

L40S 0% 8% 2%
H100 0% 10% 2%
A100 0% 8% 2%
L4 0% 6% 2%
T4 0% 10% 2%
A10G 0% 10% 0%

Table 14. KernelBench result across multiple hardware types: Speedup (fast1) over Torch Eager comparison of GPUs across different
models and levels. The kernels used across different GPUs are the same as the ones generated for Single Attempt without hardware/plat-
form specific information.

Based on the increased variability in fast1 score for DeepSeek R1 as described in Section 4.4 and Table 14, we plot the
individual speedups for each problem (in Levels 1 and 2) across different GPUs. Speedup is computed against PyTorch
Eager and there is a horizontal line at y = 1.0 to mark the cutoff for fast1.

30

KernelBench: Can LLMs Write Efficient GPU Kernels?

Figure 8. Speedup comparison across different GPUs for DeepSeek R1 on Level 1 (log scale).

Figure 9. Speedup comparison across different GPUs for DeepSeek-R1 on Level 2 (log scale).

31

KernelBench: Can LLMs Write Efficient GPU Kernels?

G.2. Effect of Providing Hardware Information

We provided hardware-specific information such as the GPU’s micro-architecture, TFLOPS, and memory bandwidth (as
shown in Table 13) to models during kernel generation. These generations were then profiled on their respective hardware
platforms. The speedup in terms of fast1 over PyTorch Eager is provided below in Table 15.

Level GPUs Llama-3.1-70b-Inst DeepSeek-V3 DeepSeek-R1 OpenAI-o1

1
L40S 2% 5% 14% 13%
H100 3% 6% 14% 9%
A100 4% 4% 16% 9%

2
L40S 1% 4% 33% 25%
H100 2% 2% 35% 33%
A100 2% 1% 31% 32%

3
L40S 0% 2% 0% 10%
H100 2% 8% 0% 12%
A100 0% 0% 2% 8%

Table 15. Providing hardware specifications in context: Speedup (fast1) over Torch Eager comparison of GPUs across different models
and levels.

As described in Section 5.2.2, DeepSeek-R1 begins to generate kernels with warp matrix multiply-accumulate (wmma)
instructions. We show the generated kernel for Problem 1 Level 1 when provided with H100 specifications in context below.

1 #include <torch/extension.h>
2 #include <cuda_fp16.h>
3 #include <cuda_runtime.h>
4 #include <mma.h>
5
6 using namespace nvcuda;
7
8 __global__ void hgemm_kernel(const half* A, const half* B, half* C, int N) {
9 const int WARPS_PER_BLOCK = 8;

10 const int WMMA_M = 16;
11 const int WMMA_N = 16;
12 const int WMMA_K = 16;
13
14 __shared__ half Ashared[WARPS_PER_BLOCK][WMMA_M][WMMA_K];
15 __shared__ half Bshared[WARPS_PER_BLOCK][WMMA_K][WMMA_N];
16
17 int warpId = threadIdx.x / 32;
18 int laneId = threadIdx.x % 32;
19
20 int tileM = (blockIdx.y * WARPS_PER_BLOCK + warpId) * WMMA_M;
21 int tileN = blockIdx.x * WMMA_N;
22
23 wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, half, wmma::row_major> a_frag;
24 wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, half, wmma::row_major> b_frag;
25 wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, half> c_frag;
26 wmma::fill_fragment(c_frag, __float2half(0.0f));
27
28 for (int k = 0; k < N; k += WMMA_K) {
29 int loadAidx = laneId + (tileM + (laneId / WMMA_K)) * N + k + (laneId % WMMA_K);
30 int loadBidx = laneId + (k + (laneId / WMMA_N)) * N + tileN + (laneId % WMMA_N);
31
32 if (tileM + (laneId / WMMA_K) < N && k + (laneId % WMMA_K) < N)
33 Ashared[warpId][laneId / WMMA_K][laneId % WMMA_K] = A[loadAidx];
34 else
35 Ashared[warpId][laneId / WMMA_K][laneId % WMMA_K] = __float2half(0.0f);
36

32

KernelBench: Can LLMs Write Efficient GPU Kernels?

Figure 10. A CUDA kernel generated by DeepSeek-R1 for Level 1 Problem 1 when provided with hardware-specific information on the
H100 GPU.

37 if (k + (laneId / WMMA_N) < N && tileN + (laneId % WMMA_N) < N)
38 Bshared[warpId][laneId / WMMA_N][laneId % WMMA_N] = B[loadBidx];
39 else
40 Bshared[warpId][laneId / WMMA_N][laneId % WMMA_N] = __float2half(0.0f);
41
42 __syncthreads();
43
44 wmma::load_matrix_sync(a_frag, &Ashared[warpId][0][0], WMMA_K);
45 wmma::load_matrix_sync(b_frag, &Bshared[warpId][0][0], WMMA_N);
46 wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
47
48 __syncthreads();
49 }
50
51 int storeCidx = (tileM + (laneId / WMMA_N)) * N + tileN + (laneId % WMMA_N);
52 if (tileM + (laneId / WMMA_N) < N && tileN + (laneId % WMMA_N) < N)
53 C[storeCidx] = c_frag.x[laneId];
54 }
55
56 torch::Tensor hgemm_cuda(torch::Tensor A, torch::Tensor B, int N) {
57 auto C = torch::zeros({N, N}, A.options().dtype(torch::kFloat16));
58
59 const int WARPS_PER_BLOCK = 8;
60 dim3 grid((N + 15) / 16, (N + 15) / (16 * WARPS_PER_BLOCK));
61 dim3 block(32 * WARPS_PER_BLOCK);
62
63 hgemm_kernel<<<grid, block>>>(A.data_ptr<half>(), B.data_ptr<half>(), C.data_ptr<half

↪→ >(), N);
64 return C;
65 }

G.3. In-context examples applying hardware-specific instructions

For this experiment, we combine the approaches of Sections 5.2.1 and 5.2.2 by providing in-context examples using
architecture-specific instructions such as (1) wmma and (2) memcpy async along with the same hardware-specific
information in Table 13. We specifically target A100 GPUs since the Ampere architecture supports both Tensor Core
operations and Asynchronous Memory Movement. We use DeepSeek-R1 based on its ability to generate kernels with wmma
instructions without explicit examples as shown in Section 5.2.2 (though it fails to utilize them correctly). Finally, we target
simple KernelBench matrix multiplication problems (17 of the Level 1 problems).

Qualitatively, providing DeepSeek-R1 with an in-context example using WMMA instructions motivated the model to try
to apply WMMAs as much as possible (all matrix multiplication problems we were targeting had generated kernels that
included WMMAs). However, only 5 out of those 17 kernels were correct. The kernel that achieved a > 3.5x speedup over
PyTorch Eager performed a matrix multiplication for two upper triangular matrices and skipped unnecessary computation,
an optimization enabled by prior knowledge about input matrix characteristics rather than better Tensor Core utilization.
The remaining 4 kernels were slower than PyTorch Eager.

33

KernelBench: Can LLMs Write Efficient GPU Kernels?

Figure 11. Speedup over PyTorch Eager when providing DeepSeek-R1 with an in-context example using WMMA instructions to perform
a basic matrix multiplication.

On the other hand, providing DeepSeek-R1 with an in-context example using memcpy async instructions also motivated it to
apply these instructions to all of its generated kernels. However, none of the kernels were correct. The fact that DeepSeek-R1
points to certain hardware capabilities being easier for DeepSeek-R1 to exploit than others.

H. High-Throughput Evaluation System
H.1. Single-shot Experiments: Batched Kernel Generation

Given the high volume of GPU kernels to evaluate, we build a fast and highly-parallelized evaluation system, where we
separate into the kernel generation and evaluation process into 3 stages, as shown in Figure 12.

• Inference: We query LMs in parallel and store the generated kernel.

• CPU Pre-Compile: We compile the model-generated kernels with nvcc for a specified hardware into a binary,
parallelized on CPUs and each kernel binary is saved to their individual specific directory for caching.

• GPU Evaluation: With the kernel binary already built on CPU, we focus on evaluating multiple kernels in parallel
across multiple GPU devices. However, to ensure accurate kernel timing, we only evaluate one kernel at time on one
device.

H.2. Iterative Refinement Experiments: GPU Orchestrator System

Based on the single-shot system, we also design a platform to handle multiple iterative refinement experiments at once.
We treat each iterative refinement experiment as a finite state machine, where the states are LM-based kernel generation,
pre-compilation, kernel execution, and profiling. The transitions are based on environment feedback, and can change based
on different experiment setups.

34

KernelBench: Can LLMs Write Efficient GPU Kernels?

Figure 12. KernelBench provide a high throughput kernel generation and evaluation system. We parallelized generation, compilation,
and evaluation of kernels across CPUs and GPUs.

Our system was run on a node with 8 available GPUs. Unlike the single-shot system, batching each generation and kernel
execution is highly inefficient – thus, we design a pipelined, multiprocessing system with a GPU orchestrator with the
following characteristics:

• CPU Parallelism: The orchestrator spawns multiple independent processes that each handle an independent task in
KernelBench. These processes run the multi-turn state machine logic for the iterative refinement experiments – only
the kernel execution state requires acquiring a GPU.

• Acquiring GPUs: The GPU orchestrator keeps a separate process running that handles which processes can acquire a
GPU using semaphores. Processes can request a GPU from this process when it is ready to execute and evaluate kernel
code. We try to minimize process control over a GPU to maximize resource throughput, given a system with a limited
number of available GPUs.

• Pre-compiling on the CPU: To avoid processes hogging GPU time, we pre-compile kernels with nvcc on the CPU
for a specified hardware into a binary. We also did this same trick for the single-shot system, but for separate reasons.

• Evaluating Kernels on the GPU: The only state where the finite state machine uses the GPU is for kernel execution
and profiling. We found that waiting on GPUs is the primary bottleneck in the orchestrator, so we designed the
orchestrator to maximize device occupancy.

The system generally supports overlapping the generation of kernel code and the execution of already-generated kernel
code. There are also several unavoidable errors such as CUDA illegal memory accesses and deadlocks due to faulty
kernel generations that the orchestrator solves by releasing and spawning new processes when encountered, and we wrote
specifically handlers to ensure these errors are properly captured without crashing the orchestrator itself.

H.3. UI: Visualizing Kernel Generation Trajectories

To qualitatively observe the generated and compare them across techniques, we design an interface to easily visualize them.
We provide this as part of the KernelBench framework.

35

KernelBench: Can LLMs Write Efficient GPU Kernels?

Figure 13. We provide a visual interface for kernel inspection. This allows us to easily examine kernel content, its performance, and
compare across various techniques and configurations.

I. KernelBench Score Design: Comparing Correctness and Performance
Evaluating kernel generation models requires balancing two crucial aspects: correctness and performance. Correctness
ensures that the generated kernel produces the expected outputs, while performance determines the efficiency of execution,
typically measured in speedup. Since optimizing one aspect can sometimes degrade the other (e.g., aggressive optimizations
may introduce more correctness errors), KernelBench uses the fastp metric. In this section, we also include some other
metrics we have considered and compare them. Table 16 first shows correctness and speedup separately.

Model Level 1 Level 2 Level 3

% Correct Speedup % Correct Speedup % Correct Speedup

claude-3.5-sonnet 53.0 0.329074 10.0 1.026136 12.0 0.448122
deepseek-V3 44.0 0.252212 5.0 1.023760 30.0 0.778776
deepseek-r1 67.0 0.483147 62.0 1.039562 8.0 0.685164
gpt-4o 39.0 0.330257 9.0 1.000646 14.0 0.612829
llama-3.1-405b 40.0 0.228077 0.0 0.000000 4.0 0.944302
llama-3.1-70b 27.0 0.178835 0.0 0.000000 0.0 0.000000
openai-o1 55.0 0.325485 56.0 0.844315 56.0 0.783615

Table 16. Correctness and Speedup of Models across different levels. Speedup here is measured as the geometric mean of the correct
samples only.

I.1. Metrics Exploration

The various metrics we explored are defined as follow.

Let ci be an indicator variable denoting correctness of the i-th sample, where:

ci =

{
1, if the solution is correct
0, otherwise

Let Tbi be the baseline execution time and Tgi be the actual execution time for the generated kernel. The speedup ratio for a

36

KernelBench: Can LLMs Write Efficient GPU Kernels?

sample is defined as:

Si =
Tbi

Tgi

Let n be the total number of samples and ncorrect =
∑n

i=1 ci be the number of correct samples.

Figure 14. Model Performance Ranking Across Various Scoring Metrics

Figure 14 compares model rankings under different performance metrics, capturing variations in correctness and execution
speed. Each cell displays the ranking and the corresponding raw score for a given model and metric. Differences in rankings
highlight the impact of metric design on performance evaluation.

Arithmetic Mean Speed Ratio (Correct Only)

AMSRcorrect =
1

ncorrect

n∑
i=1

ciSi

Arithmetic Mean Speed Ratio (All Samples)

AMSR =
1

n

n∑
i=1

ciSi

Arithmetic Mean Speed Ratio (Lazy)

AMSRlazy =
1

n

n∑
i=1

max(ciSi, 1)

37

KernelBench: Can LLMs Write Efficient GPU Kernels?

Geometric Mean Speed Ratio (Correct Only)

GMSRcorrect =

(
n∏

i=1

Sci
i

) 1
ncorrect

Geometric Mean Speed Ratio (All Samples)

GMSR =

(
n∏

i=1

Sci
i

) 1
n

Geometric Mean Speed Ratio (Lazy)

GMSRlazy =

(
n∏

i=1

max(Si, 1)

) 1
n

Scaled Geometric Mean Speed Ratio

SGMSR =
ncorrect

n
× GMSRcorrect

Adjustable Weighted Score

AWS =

n∑
i=1

ci (correctness weight + perf weight × Si)

where correctness and performance weights satisfy:

correctness weight + perf weight = 1

We use correctness weight=perf weight=0.5 in our experiments.

Weighted Log Score

WLS =

n∑
i=1

ci log(1 + Si)

38

KernelBench: Can LLMs Write Efficient GPU Kernels?

J. KernelBench vs. LiveCodeBench Correlation
To assess the relationship between general coding ability and kernel-specific performance, we compare model rankings
across LiveCodeBench (Jain et al., 2024) and KernelBench (Levels 1-3).

Figure 15. Heatmap of model rankings across LiveCodeBench and KernelBench (Levels 1-3).

We observe that LiveCodeBench performance tend to correlate strongly KernelBench, though the rankings are
not perfectly aligned. llama-3.1-70b and llama-3.1-405b consistently rank the worst across benchmarks, suggesting
that weaker general coding ability correlates with poor kernel-specific performance. Openai-o1, which ranks 1st in
LiveCodeBench, remains highly competitive in KernelBench (2nd in Level 1 and 2, 1st in Level 3). Deepseek-r1, ranking
2nd in LiveCodeBench, achieves 1st place in KernelBench Level 1 and Level 2.

While models that perform well in LiveCodeBench generally achieve strong results in KernelBench, the variability in
rankings across different levels of KernelBench suggests that additional skills are required for high performance in
kernel-specific tasks. For example, deepseek-r1, which ranks 2nd in LiveCodeBench, drops to 4th in KernelBench level 3,
indicating that some aspects of kernel optimization may favor different model strengths.

K. KernelBench Tasks Breakdown
K.1. KernelBench Tasks

Reference KernelBench tasks are given in FP32, and given a tolerance threshold (1e−2), using lower precision solutions is
valid. Furthermore, the problem size of each task is fixed, since our goal is specialized fast kernels not generally fast kernels
for any arbitrary shape.

Here we list the names of the KernelBench tasks categorized by level.

39

KernelBench: Can LLMs Write Efficient GPU Kernels?

List of Tasks of All Levels
Level 1 Task Names

1. Square matrix multiplication

2. Standard matrix multiplication

3. Batched matrix multiplication

4. Matrix vector multiplication

5. Matrix scalar multiplication

6. Matmul with large K dimension

7. Matmul with small K dimension

8. Matmul with irregular shapes

9. Tall skinny matrix multiplication

10. 3D tensor matrix multiplication

11. 4D tensor matrix multiplication

12. Matmul with diagonal matrices

13. Matmul for symmetric matrices

14. Matmul for upper triangular matrices

15. Matmul for lower triangular matrices

16. Matmul with transposed A

17. Matmul with transposed B

18. Matmul with transposed both

19. ReLU

20. LeakyReLU

21. Sigmoid

22. Tanh

23. Softmax

24. LogSoftmax

25. Swish

26. GELU

27. SELU

28. HardSigmoid

29. Softplus

30. Softsign

31. ELU

32. HardTanh

33. BatchNorm

34. InstanceNorm

35. GroupNorm

36. RMSNorm

37. FrobeniusNorm

38. L1Norm

39. L2Norm

40. LayerNorm

41. Max Pooling 1D

42. Max Pooling 2D

43. Max Pooling 3D

44. Average Pooling 1D

45. Average Pooling 2D

46. Average Pooling 3D

47. Sum reduction over a dimension

48. Mean reduction over a dimension

49. Max reduction over a dimension

50. Product reduction over a dimension

51. Argmax over a dimension

52. Argmin over a dimension

53. Min reduction over a dimension

54. conv standard 3D square input square kernel

55. conv standard 2D asymmetric input square kernel

56. conv standard 2D asymmetric input asymmetric kernel

57. conv transposed 2D square input square kernel

58. conv transposed 3D asymmetric input asymmetric kernel

59. conv standard 3D asymmetric input square kernel

60. conv standard 3D square input asymmetric kernel

61. conv transposed 3D square input square kernel

62. conv standard 2D square input asymmetric kernel

63. conv standard 2D square input square kernel

64. conv transposed 1D

65. conv transposed 2D square input asymmetric kernel

66. conv standard 3D asymmetric input asymmetric kernel

67. conv standard 1D

68. conv transposed 3D square input asymmetric kernel

69. conv transposed 2D asymmetric input asymmetric kernel

70. conv transposed 3D asymmetric input square kernel

40

KernelBench: Can LLMs Write Efficient GPU Kernels?

71. conv transposed 2D asymmetric input square kernel

72. conv transposed 3D asymmetric input asymmetric kernel
strided padded grouped

73. conv transposed 3D asymmetric input square kernel strided
padded grouped

74. conv transposed 1D dilated

75. conv transposed 2D asymmetric input asymmetric kernel
strided grouped padded dilated

76. conv standard 1D dilated strided

77. conv transposed 3D square input square kernel padded di-
lated strided

78. conv transposed 2D asymmetric input asymmetric kernel
padded

79. conv transposed 1D asymmetric input square kernel padded
strided dilated

80. conv standard 2D square input asymmetric kernel dilated
padded

81. conv transposed 2D asymmetric input square kernel dilated
padded strided

82. conv depthwise 2D square input square kernel

83. conv depthwise 2D square input asymmetric kernel

84. conv depthwise 2D asymmetric input square kernel

85. conv depthwise 2D asymmetric input asymmetric kernel

86. conv depthwise separable 2D

87. conv pointwise 2D

88. MinGPTNewGelu

89. cumsum

90. cumprod

91. cumsum reverse

92. cumsum exclusive

93. masked cumsum

94. MSELoss

95. CrossEntropyLoss

96. HuberLoss

97. CosineSimilarityLoss

98. KLDivLoss

99. TripletMarginLoss

100. HingeLoss

Level 2 Task Names

1. Conv2D ReLU BiasAdd

2. ConvTranspose2d BiasAdd Clamp Scaling Clamp Divide

3. ConvTranspose3d Sum LayerNorm AvgPool GELU

4. Conv2d Mish Mish

5. ConvTranspose2d Subtract Tanh

6. Conv3d Softmax MaxPool MaxPool

7. Conv3d ReLU LeakyReLU GELU Sigmoid BiasAdd

8. Conv3d Divide Max GlobalAvgPool BiasAdd Sum

9. Matmul Subtract Multiply ReLU

10. ConvTranspose2d MaxPool Hardtanh Mean Tanh

11. ConvTranspose2d BatchNorm Tanh MaxPool GroupNorm

12. Gemm Multiply LeakyReLU

13. ConvTranspose3d Mean Add Softmax Tanh Scaling

14. Gemm Divide Sum Scaling

15. ConvTranspose3d BatchNorm Subtract

16. ConvTranspose2d Mish Add Hardtanh Scaling

17. Conv2d InstanceNorm Divide

18. Matmul Sum Max AvgPool LogSumExp LogSumExp

19. ConvTranspose2d GELU GroupNorm

20. ConvTranspose3d Sum ResidualAdd Multiply ResidualAdd

21. Conv2d Add Scale Sigmoid GroupNorm

22. Matmul Scale ResidualAdd Clamp LogSumExp Mish

23. Conv3d GroupNorm Mean

24. Conv3d Min Softmax

25. Conv2d Min Tanh Tanh

26. ConvTranspose3d Add HardSwish

27. Conv3d HardSwish ReLU Softmax Mean

28. BMM InstanceNorm Sum ResidualAdd Multiply

29. Matmul Mish Mish

30. Gemm GroupNorm Hardtanh

31. Conv2d Min Add Multiply

32. Conv2d Scaling Min

33. Gemm Scale BatchNorm

34. ConvTranspose3d LayerNorm GELU Scaling

35. Conv2d Subtract HardSwish MaxPool Mish

41

KernelBench: Can LLMs Write Efficient GPU Kernels?

36. ConvTranspose2d Min Sum GELU Add

37. Matmul Swish Sum GroupNorm

38. ConvTranspose3d AvgPool Clamp Softmax Multiply

39. Gemm Scale BatchNorm

40. Matmul Scaling ResidualAdd

41. Gemm BatchNorm GELU GroupNorm Mean ReLU

42. ConvTranspose2d GlobalAvgPool BiasAdd LogSumExp
Sum Multiply

43. Conv3d Max LogSumExp ReLU

44. ConvTranspose2d Multiply GlobalAvgPool GlobalAvgPool
Mean

45. Gemm Sigmoid Sum LogSumExp

46. Conv2d Subtract Tanh Subtract AvgPool

47. Conv3d Mish Tanh

48. Conv3d Scaling Tanh Multiply Sigmoid

49. ConvTranspose3d Softmax Sigmoid

50. ConvTranspose3d Scaling AvgPool BiasAdd Scaling

51. Gemm Subtract GlobalAvgPool LogSumExp GELU Residu-
alAdd

52. Conv2d Activation BatchNorm

53. Gemm Scaling Hardtanh GELU

54. Conv2d Multiply LeakyReLU GELU

55. Matmul MaxPool Sum Scale

56. Matmul Sigmoid Sum

57. Conv2d ReLU HardSwish

58. ConvTranspose3d LogSumExp HardSwish Subtract Clamp
Max

59. Matmul Swish Scaling

60. ConvTranspose3d Swish GroupNorm HardSwish

61. ConvTranspose3d ReLU GroupNorm

62. Matmul GroupNorm LeakyReLU Sum

63. Gemm ReLU Divide

64. Gemm LogSumExp LeakyReLU LeakyReLU GELU GELU

65. Conv2d AvgPool Sigmoid Sum

66. Matmul Dropout Mean Softmax

67. Conv2d GELU GlobalAvgPool

68. Matmul Min Subtract

69. Conv2d HardSwish ReLU

70. Gemm Sigmoid Scaling ResidualAdd

71. Conv2d Divide LeakyReLU

72. ConvTranspose3d BatchNorm AvgPool AvgPool

73. Conv2d BatchNorm Scaling

74. ConvTranspose3d LeakyReLU Multiply LeakyReLU Max

75. Gemm GroupNorm Min BiasAdd

76. Gemm Add ReLU

77. ConvTranspose3d Scale BatchNorm GlobalAvgPool

78. ConvTranspose3d Max Max Sum

79. Conv3d Multiply InstanceNorm Clamp Multiply Max

80. Gemm Max Subtract GELU

81. Gemm Swish Divide Clamp Tanh Clamp

82. Conv2d Tanh Scaling BiasAdd Max

83. Conv3d GroupNorm Min Clamp Dropout

84. Gemm BatchNorm Scaling Softmax

85. Conv2d GroupNorm Scale MaxPool Clamp

86. Matmul Divide GELU

87. Conv2d Subtract Subtract Mish

88. Gemm GroupNorm Swish Multiply Swish

89. ConvTranspose3d MaxPool Softmax Subtract Swish Max

90. Conv3d LeakyReLU Sum Clamp GELU

91. ConvTranspose2d Softmax BiasAdd Scaling Sigmoid

92. Conv2d GroupNorm Tanh HardSwish ResidualAdd LogSum-
Exp

93. ConvTranspose2d Add Min GELU Multiply

94. Gemm BiasAdd Hardtanh Mish GroupNorm

95. Matmul Add Swish Tanh GELU Hardtanh

96. ConvTranspose3d Multiply Max GlobalAvgPool Clamp

97. Matmul BatchNorm BiasAdd Divide Swish

98. Matmul AvgPool GELU Scale Max

99. Matmul GELU Softmax

100. ConvTranspose3d Clamp Min Divide

Level 3 Task Names

42

KernelBench: Can LLMs Write Efficient GPU Kernels?

1. MLP

2. ShallowWideMLP

3. DeepNarrowMLP

4. LeNet5

5. AlexNet

6. GoogleNetInceptionModule

7. GoogleNetInceptionV1

8. ResNetBasicBlock

9. ResNet18

10. ResNet101

11. VGG16

12. VGG19

13. DenseNet121TransitionLayer

14. DenseNet121DenseBlock

15. DenseNet121

16. DenseNet201

17. SqueezeNetFireModule

18. SqueezeNet

19. MobileNetV1

20. MobileNetV2

21. EfficientNetMBConv

22. EfficientNetB0

23. EfficientNetB1

24. EfficientNetB2

25. ShuffleNetUnit

26. ShuffleNet

27. RegNet

28. VisionTransformer

29. SwinMLP

30. SwinTransformerV2

31. VisionAttention

32. ConvolutionalVisionTransformer

33. VanillaRNN

34. VanillaRNNHidden

35. LTSM

36. LTSMHn

37. LTSMCn

38. LTSMBidirectional

39. GRU

40. GRUHidden

41. GRUBirectional

42. GRUBidirectionalHidden

43. MinGPTCausalAttention

44. MiniGPTBlock

45. UNetSoftmax

46. NetVladWithGhostClusters

47. NetVladNoGhostClusters

48. Mamba2ReturnY

49. Mamba2ReturnFinalState

50. ReLUSelfAttention

K.2. Level 2 Synthetic Generation

We want to especially elaborate on the design and construction of Level 2 problems. The construction of level 2 is done by randomly
picking one main operator and 2 to 5 epilogue operators, for a total of 3 to 6 operators per task. Figure 16, which highlights the relative
frequency of different task sizes.

The mainloop operators include Matmul, BMM, Conv2d, Conv3d, ConvTranspose2d, and ConvTranspose3d, as shown in Figure 17.

The epilogue operators are divided into different classes:

• activations: ReLU, Sigmoid, Tanh, LeakyReLU, GELU, Swish, Softmax, Mish, Hardtanh, HardSwish
• element-wise ops: Add, Multiply, Subtract, Divide, Clamp, Scale, ResidualAdd
• normalizations: BatchNorm, LayerNorm, InstanceNorm, GroupNorm
• pooling: MaxPool, AvgPool, GlobalAvgPool
• bias: BiasAdd
• reductions: Sum, Mean, Max, Min, LogSumExp
• others: Dropout, ResidualAdd, Scaling

The distribution of epilogue operators in Level 2 tasks is illustrated in Figure 18.

L. Kernel Fusion Investigation
Kernel Fusion is an important optimization deployed in optimizing Deep Learning programs. By fusing multiple operations
into a single kernel, the optimized program can reduce memory traffic which improves performance especially as data
movement is expensive. Just to reiterate, in KernelBench the model has full flexibility to decide what subset of operators in
the PyTorch reference to optimize and fuse. We believe this is one of the crucial abilities when a model is given distinct or
new architectures in the real-world setting.

KernelBench’s 3-level categorization helps disentangle fusion decisions and kernel generation. Level 1 problems (single
operators) only test the model’s ability to write optimized kernels; Level 2 and 3 problems are designed to additionally
evaluate the model’s ability to identify and leverage fusion opportunities.

43

KernelBench: Can LLMs Write Efficient GPU Kernels?

Figure 16. Histogram of the number of operators per task in Level 2.

Figure 17. Histogram of main operators in Level 2 tasks. Figure 18. Histogram of epilogue operators in Level 2 tasks.

From the baseline results in Section 4.1, we investigate the particular fusion choices made by the language model and
how these influence the runtime of these kernels. We focus specifically on Level 2 tasks, where fusions can be applied to
all problems. They are composed with one mainloop (e.g. conv, matmul) and 2 - 5 epilogue operations (non-linearities,
reductions, etc). Figure 17 and 18 shows distribution of these operators in the 100 Level programs.

We focus our analysis on the behavior of DeepSeek-R1, which has the best performance on Level 2 problems as shown in
Table 1.

L.1. LM-generated Kernel Fusions on Level 2

We manually inspected all 100 generated programs and note down the fusion patterns. Model always attempts to generate
1-2 fused kernels per problem: 88 problems have 1 fused kernels, and 12 problems contain 2 fused kernels.

One interesting point of analysis is how aggressively the LM chooses to fuse operators. In Figure 19, we plot a histogram to
inspect the size (in terms of ratio of total operators) of generated fused kernels in Level 2. Specifically, for each kernel we
count number of operators fused compared to the total number of operators in the program. For example, suppose a program
has 6 operators, and the LM chooses to fuse the first two and last four operators. Then we add 33.3% and 66.6% to our list.

44

KernelBench: Can LLMs Write Efficient GPU Kernels?

Figure 19. Distribution of Fusions by DeepSeek-R1 on Level 2 Problems. We bucket (in increments of 10%) all fusions performed by
DeepSeek-R1 on Level 2 based on the percentage of operators it fused in the full task. We inspect the fused kernels in terms of ratio
of total operators of that program. Specifically, for each kernel we count number of operators fused compared to the total number of
operators in the program.

We observe that the models attempt to fuse more than half the operators on average. Only 18% of programs fuse all operators
in a program into a single kernel.

L.2. Understanding Fusion in Slower Kernels

To understand the quality of the fusion decision and how poor fusion leads to low performance, we analyzed the DeepSeek-R1
Level 2 kernels that were slower than PyTorch Eager (as shown in Table 17) and drew two observations:

1. Main loop operators (e.g., Conv) were not fused with epilogue operators.

2. The model’s attempt to fuse main loop operators (e.g., GEMM + other ops) was not faster than launching highly
optimized CuBLAS kernels.

L.3. Comparison with Auto-Fusion techniques

We focus comparison on widely-adopted torch.compile in PyTorch 2 (Ansel et al., 2024) which employs an auto-
fusion policy over TorchInductor’s define-by-run IR. In Table 17, we can see the difference in fusion decisions of R1 and
torch.compile in Table XX. torch.compile often creates sophisticated fusion patterns, by breaking Convolutions or
GroupNorm into smaller multi-pass kernels that compute parietal results and statistics in parallel, something R1-kernels
rarely do with room for improvement. However, 37% of R1-kernels actually are faster than torch.compile, as
torch.compile has to fit pre-existing defined templates, whereas R1 can generate more custom optimizations.

45

KernelBench: Can LLMs Write Efficient GPU Kernels?

Problem Speedup Sequence of Operators Total LLM Generated torch.compile

63 0.1810 [gemm, relu, divide] 3 [(gemm, relu, divide)] [gemm, (relu,div)]
59 0.1996 [matmul, swish, scaling] 3 [(matmul, swish, scaling)] [gemm, (sigmoid,mul)]
35 0.2331 [conv2d, subtract, hardswish, maxpool,

mish]
5 [conv2d, (subtract, hardswish), (maxpool,

mish)]
[convolution, convolution, convolution,
(convolution,sub,hardswish),
(convolution,sub,
hardswish,max pool2d with indices,mish)]

27 0.5501 [conv3d, hardswish, relu, softmax, mean] 5 [conv, (hardswish, relu), (softmax, mean)] [convolution,
(convolution,hardswish,relu, softmax),
(convolu-
tion,hardswish,relu, softmax,mean)]

80 0.6156 [gemm, max, subtract, gelu] 4 [gemm, (max, subtract, gelu)] [gemm, (max,mean,sub,gelu)]
37 0.6922 [matmul, swish, sum, groupnorm] 4 [(matmul, swish, sum, groupnorm)] [gemm, native group norm,

native group norm]
54 0.7394 [conv2d, multiply, leakyrelu, gelu] 4 [conv, (multiply, leakyrelu, gelu)] [convolution, convolution, convolution,

(convolution,mul,leaky relu,gelu)]
69 0.7433 [conv2d, hardswish, relu] 3 [conv, (hardswish, relu)] [convolution, convolution, convolution,

(convolution,hardswish,relu)]
25 0.7701 [conv2d, min, tanh, tanh] 4 [conv, (min, tanh, tanh)] [convolution, convolution, convolution,

(convolution,min,tanh)]
36 0.7859 [convtranspose2d, min, sum, gelu, add] 5 [convtranspose, (min, sum, gelu, add)] [convolution, convolution, convolution,

(convolution,min), sum, (gelu,add)]
71 0.8231 [conv2d, divide, leakyrelu] 3 [conv2d, (divide, leakyrelu)] [convolution, convolution, convolution,

(convolution,div,leaky relu)]
32 0.8399 [conv2d, scaling, min] 3 [conv, (scaling, min)] [convolution, convolution, convolution,

(convolution,mul,min)]
68 0.8411 [matmul, min, subtract] 3 [matmul, (min, subtract)] [gemm, (minimum,sub)]
64 0.8595 [gemm, logsumexp, leakyrelu, leakyrelu,

gelu, gelu]
6 [gemm, logsumexp, (leakyrelu, leakyrelu,

gelu, gelu)]
[gemm, (logsumexp,leaky relu,gelu)]

65 0.8615 [conv2d, avgpool, sigmoid, sum] 4 [conv, (avgpool, sigmoid, sum)] [convolution, convolution, convolution,
convolution,
(convolution,avg pool2d,sigmoid,sum)]

86 0.8622 [matmul, divide, gelu] 3 [matmul, (divide, gelu)] [gemm, (div,gelu)]
46 0.8671 [conv2d, subtract, tanh, subtract, avgpool] 5 [(conv2d), (subtract, tanh, subtract),

(avgpool)]
[convolution, convolution, convolution,
(convolution,sub,tanh),
(convolution,sub,tanh,avg pool2d)]

12 0.8715 [gemm, multiply, leakyrelu] 3 [gemm, (multiply, leakyrelu)] [gemm, (mul,leaky relu)]
87 0.8930 [conv2d, subtract, subtract, mish] 4 [conv, (subtract, subtract, mish)] [convolution, convolution, convolution,

(convolution,sub,mish)]
47 0.9063 [conv3d, mish, tanh] 3 [conv, (mish, tanh)] [convolution, (convolution,mish,tanh)]
82 0.9092 [conv2d, tanh, scaling, biasadd, max] 5 [conv2d, (tanh, scaling, biasadd), max] [convolution, convolution, convolution,

(convolution,tanh,mul,add),
max pool2d with indices]

52 0.9380 [conv2d, softplus, tanh, multiply,
batchnorm]

5 [conv2d, (softplus, tanh, multiply),
batchnorm]

[convolution, convolution, convolution,
(convolution,softplus,tanh,mul,
native batch norm legit functional),

(convolution,softplus,tanh,mul,
native batch norm legit functional),

(convolution,softplus,tanh,mul,
native batch norm legit functional),

(convolution,softplus,tanh,mul,
native batch norm legit functional), add]

38 0.9515 [convtranspose3d, avgpool, clamp,
softmax, multiply]

5 [(convtranspose3d), (avgpool), (clamp,
softmax, multiply)]

[convolution, convolution,
(convolution,avg pool3d,clamp),
softmax, (softmax,mul)]

9 0.9657 [matmul, subtract, multiply, relu] 4 [matmul, (subtract, multiply, relu)] [gemm, (sub,mul,relu)]
78 0.9701 [convtranspose3d, max, max, sum] 4 [convtranspose, (max, max, sum)] [convolution, convolution,

(convolution,max pool3d with indices),
max pool3d with indices, sum]

5 0.9909 [convtranspose2d, subtract, tanh] 3 [convtranspose, (subtract, tanh)] [convolution, convolution, convolution,
(convolution,sub,tanh)]

Table 17. Fusion Decisions of Level 2 Problems where LM-Generated code was slower than PyTorch Eager. Here we investigate
the programs generated by DeepSeek-R1 on Level 2 KernelBench Problems, specifically those that are slower than PyTorch Eager
(sorted by lower speedup). We list the sequence of operators in the program, and fusion decisions made by R1, comparing that with
torch.compile generated kernels.

46

KernelBench: Can LLMs Write Efficient GPU Kernels?

M. Alternate Input Representations
We explore alternative input representations of the KernelBench problems to the Language Model other than a PyTorch
reference.

For the PyTorch example as shown in Section C.1 that describes the simple operation a+b used in our baseline prompt.

M.1. Natural language representation

Natural Language might be easiest to start for developer from a chat interface, but could suffer from ambiguity, especially
for complex operations. We provide a specification in natural language that is as verbose as possible.

1 This program should demonstrate element-wise tensor addition.
2 This prorgam takes two input tensors of the same shape and performs element-wise addition

↪→ between them. Each input tensor has a batch size of 1 and contains 128 features.
3
4 The model has no learnable parameters and simply acts as a direct addition operation

↪→ between its inputs. Both input tensors are expected to be on the GPU (CUDA device).
5
6 Operation: Element-wise addition
7 Input shapes: (1, 128) for both inputs
8 Output shape: (1, 128)
9 Parameters: None

10 Device: CUDA (GPU)
11 Purpose: Simple demonstration of tensor addition

M.2. Directed-acyclic graph (DAG) representation

A DAG representation explicitly layouts all transforms and operators in the program, which might be more beneficial for the
model to conduct kernel fusion (fusing nodes in the graph).

ONNX Graph Representation1

1 Here is a graph representation of the PyTorch program.
2
3 Inputs: [’input’, ’b’]
4 Outputs: [’add’]
5
6 Nodes:
7 Op Type: Add
8 Inputs: [’input’, ’b’]
9 Outputs: [’add’]

10 Attributes: []
11
12
13 To be specific, the input we will provide will be:
14 a: a tensor of shape (1, 128) of FP32
15 b: a tensor of shape (1, 128) of FP32

Torch FX Representation2

1 Here is a DAG representation of the program in tabular form
2 opcode name target args kwargs
3 ------------- ------ ----------------------- ------ --------
4 placeholder a a () {}
5 placeholder b b () {}
6 call_function add <built-in function add> (a, b) {}
7 output output output (add,) {}

1ONNX (Open Neural Network Exchange) is a standard representation of neural network programs, which could exported from
PyTorch, https://onnx.ai/onnx/intro/

2PyTorch FX is a toolkit that help extract symbolic trace and intermediate representations of PyTorch Programs, https://pytorch.
org/docs/stable/fx.html

47

https://onnx.ai/onnx/intro/
https://pytorch.org/docs/stable/fx.html
https://pytorch.org/docs/stable/fx.html

KernelBench: Can LLMs Write Efficient GPU Kernels?

8
9

10 To be specific, the input we will provide will be:
11 a: a tensor of shape (1, 128) of FP32
12 b: a tensor of shape (1, 128) of FP32

M.3. Result Testing on Representative Problem

We use the same format for the baseline prompt in C.1, instead of updating the task from PyTorch to PyTorch
to CUDA, to Alterative Format (Natural Language, DAG) representation to PyTorch + CUDA. We replace the
pair of <PyTorch, CUDA> one-shot example with <Add example in desired representation, CUDA>.
Table 18 shows the result when testing this on a representative problem in KernelBench, specifically Level 2
19 ConvTranspose2d GELU GroupNorm . We chose this example because it was correct when using the PyTorch
representation, and represents a semantically common pattern in Level 2. We hope test on this example give us insights on
the strengths and weaknesses of various representations.

Input Representation Execution Result Analysis
PyTorch Correct Implement Operator in CUDA, No Fusion

Natural Language Compilation Error / Logical Error Wrong initialization, Did not use weight parameters-
DAG (ONNX) Output Value Mismatch Implement Operator in CUDA, Wrong Normalization

DAG (torch FX) Output Value Mismatch Attempted Fusion, incorrect group convolution

Table 18. Degraded performance with non-PyTorch input specifications on example KernelBench problem. Evaluation of Level
2 problem 19 ConvTranspose2d GELU GroupNorm using OpenAI GPT-4o and o1 (medium reasoning effort), across various
alternative input representations, best of 5 sampling.

As we observed, when replacing the PyTorch representation with other forms of specifications, the model suffers from
ambiguity in its specifications. With natural language especially, despite giving it a verbose description, the model gets
confused and creates a program that has wrong initialization or neglects to use weight parameters altogether. DAG
representations, especially torch FX, helped model to discover fusion; but going from graph to kernel add additional
challenge to implement a functionally correct program. DAG representations might be a beneficial complement to the
reference program in PyTorch, though they are not a sufficient replacement.

We chose the PyTorch code reference as a precise, unambiguous, and verifiable input for KernelBench, which is crucial for
rigorous benchmarking. Using PyTorch often mirrors the experience of AI researchers (as noted in Section 1, 3) - - who
start with PyTorch and then optimize (e.g., popular FlashAttention (Kim, 2024), Mamba (Dao & Gu, 2024b) repositories
follow the workflow of PyTorch code with some inline CUDA kernels). The PyTorch reference is also an unambiguous
source for verifying generated code for correctness. It is also worth noting that LLMs are fine-tuned on sequence data, such
as code, and PyTorch is a natural choice for benchmarking and setup as a code translation task. Future work could consider
alternative representations.

48

KernelBench: Can LLMs Write Efficient GPU Kernels?

N. Performance Degradation Analysis
Table 19 presents the best speedup achieved by any evaluated model for each problem instance, sorted first by Level and
then by ascending speedup (defined as generated code wall clock time over baseline torch reference time). We note the
following observations and include some examples of LLM-generated code:

1. Many foundational operations in level 1, particularly matrix multiplications (matmuls) and convolutions (convs),
frequently result in significant slowdowns compared to the highly-optimized proprietary libraries like cuDNN
used by PyTorch’s baseline that use more advanced hardware features. For instance, even the best model
achieved only 0.0105 speedup for 69 conv transposed 2D asymmetric input asymmetric kernel and 0.1011 for
11 4D tensor matrix multiplication.

2. While models sometimes correctly identify opportunities for fusion in Level 2 tasks, the resulting kernel performance
is often poor. This suggests that even if the fusion strategy is conceptually sound, the LLM’s implementation
of the core fused components (like the matmul or convolution within the sequence) is inefficient, negating
any potential benefits from reduced memory access; examples like 63 Gemm ReLU Divide (0.1849 speedup) and
59 Matmul Swish Scaling (0.1996 speedup) illustrate this issue where complex fusions are much slower than the
baseline –– both cases successfully fuse all three operators into a single kernel but they’re disadvantaged by the matmul
implementation.

3. We observe patterns suggesting that LLMs might generate a custom CUDA kernel for a relatively minor operation
within a larger sequence. While potentially optimizing that single step locally, this can disrupt PyTorch’s native
fusion capabilities (like TorchInductor), preventing more holistic, graph-level optimizations across the sequence that
could have yielded greater overall performance gains. One example we found is 4 LeNet5 in level 3. The model
generated a custom implementation for ReLU that resulted in 0.6451 speedup.

The generated code for the example problems listed above is included below:

N.1. Code Examples

Note all speedups are against PyTorch Eager.

Slow core operator: 0.0105 speedup for 69 conv transposed 2D asymmetric input asymmetric kernel

1 __global__ void conv_transpose2d_kernel(
2 const float* input,
3 const float* weight,
4 float* output,
5 const int batch_size,
6 const int in_channels,
7 const int out_channels,
8 const int height_in,
9 const int width_in,

10 const int height_out,
11 const int width_out,
12 const int kernel_h,
13 const int kernel_w,
14 const int stride_h,
15 const int stride_w,
16 const int padding_h,
17 const int padding_w,
18 const int out_padding_h,
19 const int out_padding_w,
20 const int dilation_h,
21 const int dilation_w,
22 const int groups
23) {
24 const int h_out = blockIdx.y;
25 const int w_out = blockIdx.x;
26 const int batch_idx = blockIdx.z / out_channels;
27 const int out_ch = blockIdx.z % out_channels;

49

KernelBench: Can LLMs Write Efficient GPU Kernels?

28
29 if (h_out >= height_out || w_out >= width_out || batch_idx >= batch_size)
30 return;
31
32 float sum = 0.0f;
33 const int in_ch_per_group = in_channels / groups;
34 const int out_ch_per_group = out_channels / groups;
35 const int group = out_ch / out_ch_per_group;
36
37 for (int kh = 0; kh < kernel_h; kh++) {
38 for (int kw = 0; kw < kernel_w; kw++) {
39 const int h_in = (h_out + padding_h - kh * dilation_h) / stride_h;
40 const int w_in = (w_out + padding_w - kw * dilation_w) / stride_w;
41
42 if (h_in >= 0 && h_in < height_in && w_in >= 0 && w_in < width_in) {
43 for (int in_ch = group * in_ch_per_group;
44 in_ch < (group + 1) * in_ch_per_group;
45 in_ch++) {
46
47 const float input_val = input[
48 batch_idx * in_channels * height_in * width_in +
49 in_ch * height_in * width_in +
50 h_in * width_in +
51 w_in
52];
53
54 const float weight_val = weight[
55 in_ch * out_ch_per_group * kernel_h * kernel_w +
56 (out_ch % out_ch_per_group) * kernel_h * kernel_w +
57 kh * kernel_w +
58 kw
59];
60
61 sum += input_val * weight_val;
62 }
63 }
64 }
65 }
66
67 output[
68 batch_idx * out_channels * height_out * width_out +
69 out_ch * height_out * width_out +
70 h_out * width_out +
71 w_out
72] = sum;

Slow core operator: 0.1011 speedup for 11 4D tensor matrix multiplication

1 __global__ void tensor_matmul_kernel(const float* A, const float* B, float* C, int b, int
↪→ i, int j, int l, int k) {

2 int idx_b = blockIdx.x;
3 int idx_i = blockIdx.y;
4 int idx_j = blockIdx.z;
5 int idx_k = threadIdx.x;
6
7 if (idx_b < b && idx_i < i && idx_j < j && idx_k < k) {
8 float sum = 0.0f;
9 for (int idx_l = 0; idx_l < l; ++idx_l) {

10 sum += A[idx_b * i * j * l + idx_i * j * l + idx_j * l + idx_l] * B[idx_l * k
↪→ + idx_k];

11 }
12 C[idx_b * i * j * k + idx_i * j * k + idx_j * k + idx_k] = sum;
13 }
14 }

50

KernelBench: Can LLMs Write Efficient GPU Kernels?

Good fusion pattern but bad implementation: 0.1849 speedup for 63 Gemm ReLU Divide

1 __global__ void linear_relu_div_kernel(
2 const float* __restrict__ x,
3 const float* __restrict__ w,
4 const float* __restrict__ b,
5 float* __restrict__ out,
6 int batch_size,
7 int in_features,
8 int out_features,
9 float divisor

10) {
11 int idx = blockIdx.x * blockDim.x + threadIdx.x;
12 int total = batch_size * out_features;
13 if (idx < total) {
14 int i = idx / out_features;
15 int j = idx % out_features;
16 float val = 0.0f;
17 for (int k = 0; k < in_features; k++) {
18 val += x[i * in_features + k] * w[j * in_features + k];
19 }
20 val += b[j];
21 val = val > 0.f ? val : 0.f;
22 val /= divisor;
23 out[idx] = val;
24 }
25 }

Good fusion pattern but bad implementation: 0.1996 speedup for 59 Matmul Swish Scaling

1 __global__ void fused_linear_swish_scale_kernel(
2 const float* input, const float* weight, const float* bias,
3 float* output, int B, int IN, int OUT, float scale) {
4
5 int tid = blockIdx.x * blockDim.x + threadIdx.x;
6 if(tid >= B * OUT) return;
7
8 int row = tid / OUT;
9 int col = tid % OUT;

10
11 float sum = 0.0f;
12 for(int i=0; i<IN; ++i) {
13 sum += input[row*IN + i] * weight[col*IN + i];
14 }
15 sum += bias[col];
16
17 float swish = sum * (1.0f / (1.0f + expf(-sum)));
18 output[tid] = swish * scale;
19 }

Minor custom kernel impacting framework’s inherent fusion ability: 0.6451 speedup for 4 LeNet5

1 relu_source = r"""
2 #include <torch/extension.h>
3 #include <cuda_runtime.h>
4
5 __global__ void relu_kernel(const float* in, float* out, int size) {
6 int idx = blockIdx.x * blockDim.x + threadIdx.x;
7 if (idx < size) {
8 float val = in[idx];
9 out[idx] = val > 0.0f ? val : 0.0f;

10 }
11 }
12

51

KernelBench: Can LLMs Write Efficient GPU Kernels?

13 torch::Tensor relu_cuda(torch::Tensor input) {
14 auto size = input.numel();
15 auto out = torch::zeros_like(input);
16
17 const int block_size = 256;
18 const int grid_size = (size + block_size - 1) / block_size;
19
20 relu_kernel<<<grid_size, block_size>>>(
21 input.data_ptr<float>(),
22 out.data_ptr<float>(),
23 (int)size
24);
25
26 return out;
27 }
28 """
29
30 relu_cpp_source = r"torch::Tensor relu_cuda(torch::Tensor input);"
31
32 # Compile the inline custom ReLU operator
33 relu_module = load_inline(
34 name="custom_relu",
35 cpp_sources=relu_cpp_source,
36 cuda_sources=relu_source,
37 functions=["relu_cuda"],
38 verbose=False
39)
40
41 class ModelNew(nn.Module):
42 def __init__(self, num_classes):
43 """
44 Optimized LeNet-5 architecture with a custom CUDA-based ReLU.
45 """
46 super(ModelNew, self).__init__()
47
48 # Convolutional layers
49 self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1)
50 self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1)
51
52 # Fully connected layers
53 self.fc1 = nn.Linear(in_features=16*5*5, out_features=120)
54 self.fc2 = nn.Linear(in_features=120, out_features=84)
55 self.fc3 = nn.Linear(in_features=84, out_features=num_classes)
56
57 # Reference to custom ReLU extension
58 self.custom_relu = relu_module.relu_cuda
59
60 def forward(self, x):
61 # conv1 + custom relu + max pool
62 x = self.conv1(x)
63 x = self.custom_relu(x)
64 x = F.max_pool2d(x, kernel_size=2, stride=2)
65
66 # conv2 + custom relu + max pool
67 x = self.conv2(x)
68 x = self.custom_relu(x)
69 x = F.max_pool2d(x, kernel_size=2, stride=2)
70
71 # Flatten
72 x = x.view(-1, 16*5*5)
73
74 # fc1 + custom relu
75 x = self.fc1(x)
76 x = self.custom_relu(x)
77

52

KernelBench: Can LLMs Write Efficient GPU Kernels?

78 # fc2 + custom relu
79 x = self.fc2(x)
80 x = self.custom_relu(x)
81
82 # final fc
83 x = self.fc3(x)
84 return x

Table 19: Best achieved speedup per problem instance across evaluated
models, categorized by difficulty level and sorted by ascending speedup

Level Speedup Problem Model
1 0.0105 69 conv transposed 2D asymmetric input a... claude-3.5-sonnet
1 0.0316 78 conv transposed 2D asymmetric input asymm... claude-3.5-sonnet
1 0.0442 35 GroupNorm openai-o1
1 0.0597 68 conv transposed 3D square input asymm... deepseek-r1
1 0.0734 40 LayerNorm llama-3.1-405b
1 0.1011 11 4D tensor matrix multiplication deepseek-V3
1 0.1151 91 cumsum reverse claude-3.5-sonnet
1 0.1196 16 Matmul with transposed A claude-3.5-sonnet
1 0.1198 18 Matmul with transposed both openai-o1
1 0.1332 93 masked cumsum openai-o1
1 0.1336 77 conv transposed 3D square input square k... deepseek-r1
1 0.1553 6 Matmul with large K dimension claude-3.5-sonnet
1 0.1576 1 Square matrix multiplication claude-3.5-sonnet
1 0.1594 2 Standard matrix multiplication claude-3.5-sonnet
1 0.1681 97 CosineSimilarityLoss deepseek-V3
1 0.1871 80 conv standard 2D square input asymmetric.̇. deepseek-r1
1 0.1893 10 3D tensor matrix multiplication claude-3.5-sonnet
1 0.1895 17 Matmul with transposed B deepseek-r1
1 0.1979 13 Matmul for symmetric matrices claude-3.5-sonnet
1 0.2083 8 Matmul with irregular shapes claude-3.5-sonnet
1 0.2097 62 conv standard 2D square input asymmet... deepseek-r1
1 0.2164 66 conv standard 3D asymmetric input asy... deepseek-r1
1 0.2523 3 Batched matrix multiplication deepseek-r1
1 0.2584 54 conv standard 3D square input square.̇. deepseek-r1
1 0.274 86 conv depthwise separable 2D deepseek-r1
1 0.3152 24 LogSoftmax deepseek-r1
1 0.4097 89 cumsum openai-o1
1 0.4179 7 Matmul with small K dimension deepseek-r1
1 0.4479 23 Softmax deepseek-r1
1 0.4807 15 Matmul for lower triangular matrices deepseek-V3
1 0.5271 81 conv transposed 2D asymmetric input squar... deepseek-r1
1 0.5497 87 conv pointwise 2D openai-o1
1 0.5529 14 Matmul for upper triangular matrices claude-3.5-sonnet
1 0.5901 9 Tall skinny matrix multiplication claude-3.5-sonnet

53

KernelBench: Can LLMs Write Efficient GPU Kernels?

Table 19: Best achieved speedup per problem instance across evaluated
models, categorized by difficulty level and sorted by ascending speedup
(continued)

Level Speedup Problem Model
1 0.6027 47 Sum reduction over a dimension deepseek-r1
1 0.6105 19 ReLU deepseek-V3
1 0.6908 5 Matrix scalar multiplication deepseek-r1
1 0.6915 48 Mean reduction over a dimension claude-3.5-sonnet
1 0.6953 44 Average Pooling 1D deepseek-r1
1 0.7117 27 SELU claude-3.5-sonnet
1 0.7125 26 GELU deepseek-r1
1 0.7273 22 Tanh deepseek-r1
1 0.7349 31 ELU claude-3.5-sonnet
1 0.7375 28 HardSigmoid deepseek-r1
1 0.7756 20 LeakyReLU deepseek-r1
1 0.7809 50 Product reduction over a dimension deepseek-r1
1 0.8112 29 Softplus deepseek-r1
1 0.8117 34 InstanceNorm gpt-4o
1 0.83 39 L2Norm deepseek-r1
1 0.8622 67 conv standard 1D deepseek-r1
1 0.8702 21 Sigmoid deepseek-r1
1 0.872 46 Average Pooling 3D deepseek-r1
1 0.8808 32 HardTanh claude-3.5-sonnet
1 0.8942 85 conv depthwise 2D asymmetric input asymme... deepseek-r1
1 0.9352 94 MSELoss deepseek-V3
1 0.9439 96 HuberLoss deepseek-r1
1 0.9543 4 Matrix vector multiplication deepseek-r1
1 0.9671 38 L1Norm gpt-4o
1 0.9737 90 cumprod deepseek-r1
1 0.9842 52 Argmin over a dimension deepseek-r1
1 0.9859 45 Average Pooling 2D openai-o1
1 1.0022 65 conv transposed 2D square input asymm... openai-o1
1 1.0084 37 FrobeniusNorm gpt-4o
1 1.0115 98 KLDivLoss deepseek-V3
1 1.0131 25 Swish openai-o1
1 1.0259 53 Min reduction over a dimension deepseek-r1
1 1.0308 49 Max reduction over a dimension gpt-4o
1 1.0697 100 HingeLoss llama-3.1-70b
1 1.093 51 Argmax over a dimension openai-o1
1 1.116 42 Max Pooling 2D openai-o1
1 1.1386 41 Max Pooling 1D openai-o1
1 1.1417 76 conv standard 1D dilated strided deepseek-r1

54

KernelBench: Can LLMs Write Efficient GPU Kernels?

Table 19: Best achieved speedup per problem instance across evaluated
models, categorized by difficulty level and sorted by ascending speedup
(continued)

Level Speedup Problem Model
1 1.1545 43 Max Pooling 3D deepseek-r1
1 1.185 83 conv depthwise 2D square input asymmetric... deepseek-r1
1 1.2706 64 conv transposed 1D deepseek-r1
1 1.4855 79 conv transposed 1D asymmetric input squar... deepseek-r1
1 1.5 30 Softsign deepseek-r1
1 1.5319 33 BatchNorm deepseek-r1
1 1.7083 36 RMSNorm openai-o1
1 1.9202 95 CrossEntropyLoss claude-3.5-sonnet
1 1.9637 99 TripletMarginLoss deepseek-r1
1 4.1341 88 MinGPTNewGelu deepseek-r1
1 13.2243 12 Matmul with diagonal matrices claude-3.5-sonnet
2 0.1849 63 Gemm ReLU Divide openai-o1
2 0.1996 59 Matmul Swish Scaling deepseek-r1
2 0.3008 33 Gemm Scale BatchNorm openai-o1
2 0.3564 94 Gemm BiasAdd Hardtanh Mish GroupNorm openai-o1
2 0.4642 66 Matmul Dropout Mean Softmax openai-o1
2 0.4912 44 ConvTranspose2d Multiply GlobalAvgPool Glob... openai-o1
2 0.5501 27 Conv3d HardSwish ReLU Softmax Mean deepseek-r1
2 0.5672 67 Conv2d GELU GlobalAvgPool openai-o1
2 0.6156 80 Gemm Max Subtract GELU deepseek-r1
2 0.6777 4 Conv2d Mish Mish openai-o1
2 0.6922 37 Matmul Swish Sum GroupNorm deepseek-r1
2 0.7181 85 Conv2d GroupNorm Scale MaxPool Clamp openai-o1
2 0.7433 69 Conv2d HardSwish ReLU deepseek-r1
2 0.7451 35 Conv2d Subtract HardSwish MaxPool Mish openai-o1
2 0.7701 25 Conv2d Min Tanh Tanh deepseek-r1
2 0.7712 21 Conv2d Add Scale Sigmoid GroupNorm openai-o1
2 0.7859 36 ConvTranspose2d Min Sum GELU Add deepseek-r1
2 0.7915 54 Conv2d Multiply LeakyReLU GELU openai-o1
2 0.8231 71 Conv2d Divide LeakyReLU deepseek-r1
2 0.8377 23 Conv3d GroupNorm Mean openai-o1
2 0.8399 32 Conv2d Scaling Min deepseek-r1
2 0.8411 68 Matmul Min Subtract deepseek-r1
2 0.8595 64 Gemm LogSumExp LeakyReLU LeakyReLU GELU G... deepseek-r1
2 0.8615 65 Conv2d AvgPool Sigmoid Sum deepseek-r1
2 0.8622 86 Matmul Divide GELU deepseek-r1
2 0.8715 12 Gemm Multiply LeakyReLU deepseek-r1
2 0.8801 61 ConvTranspose3d ReLU GroupNorm openai-o1

55

KernelBench: Can LLMs Write Efficient GPU Kernels?

Table 19: Best achieved speedup per problem instance across evaluated
models, categorized by difficulty level and sorted by ascending speedup
(continued)

Level Speedup Problem Model
2 0.9006 46 Conv2d Subtract Tanh Subtract AvgPool openai-o1
2 0.9008 22 Matmul Scale ResidualAdd Clamp LogSumExp ... gpt-4o
2 0.9009 97 Matmul BatchNorm BiasAdd Divide Swish gpt-4o
2 0.9062 47 Conv3d Mish Tanh deepseek-r1
2 0.9092 82 Conv2d Tanh Scaling BiasAdd Max deepseek-r1
2 0.9229 87 Conv2d Subtract Subtract Mish openai-o1
2 0.9236 3 ConvTranspose3d Sum LayerNorm AvgPool GELU openai-o1
2 0.938 52 Conv2d Activation BatchNorm openai-o1
2 0.9657 9 Matmul Subtract Multiply ReLU deepseek-r1
2 0.9701 78 ConvTranspose3d Max Max Sum deepseek-r1
2 0.9909 5 ConvTranspose2d Subtract Tanh openai-o1
2 0.9922 38 ConvTranspose3d AvgPool Clamp Softmax Mult... openai-o1
2 1.0014 31 Conv2d Min Add Multiply deepseek-r1
2 1.008 13 ConvTranspose3d Mean Add Softmax Tanh Sca... claude-3.5-sonnet
2 1.0114 24 Conv3d Min Softmax openai-o1
2 1.0118 72 ConvTranspose3d BatchNorm AvgPool AvgPool openai-o1
2 1.025 41 Gemm BatchNorm GELU GroupNorm Mean ReLU openai-o1
2 1.0511 43 Conv3d Max LogSumExp ReLU deepseek-r1
2 1.1045 16 ConvTranspose2d Mish Add Hardtanh Scaling claude-3.5-sonnet
2 1.11 53 Gemm Scaling Hardtanh GELU deepseek-r1
2 1.1227 100 ConvTranspose3d Clamp Min Divide deepseek-r1
2 1.1327 57 Conv2d ReLU HardSwish deepseek-r1
2 1.1331 93 ConvTranspose2d Add Min GELU Multiply gpt-4o
2 1.1376 96 ConvTranspose3d Multiply Max GlobalAvgPool.̇. deepseek-V3
2 1.1503 95 Matmul Add Swish Tanh GELU Hardtanh deepseek-r1
2 1.1508 10 ConvTranspose2d MaxPool Hardtanh Mean Tanh deepseek-r1
2 1.1792 50 ConvTranspose3d Scaling AvgPool BiasAdd Sc... deepseek-r1
2 1.1838 83 Conv3d GroupNorm Min Clamp Dropout openai-o1
2 1.1852 60 ConvTranspose3d Swish GroupNorm HardSwish deepseek-r1
2 1.1976 91 ConvTranspose2d Softmax BiasAdd Scaling Si... openai-o1
2 1.2267 2 ConvTranspose2d BiasAdd Clamp Scaling Clamp... openai-o1
2 1.2419 92 Conv2d GroupNorm Tanh HardSwish ResidualAd... openai-o1
2 1.2444 19 ConvTranspose2d GELU GroupNorm deepseek-r1
2 1.2534 49 ConvTranspose3d Softmax Sigmoid deepseek-r1
2 1.2964 30 Gemm GroupNorm Hardtanh deepseek-r1
2 1.3112 55 Matmul MaxPool Sum Scale deepseek-r1
2 1.32 81 Gemm Swish Divide Clamp Tanh Clamp deepseek-r1
2 1.3333 8 Conv3d Divide Max GlobalAvgPool BiasAdd Su... gpt-4o

56

KernelBench: Can LLMs Write Efficient GPU Kernels?

Table 19: Best achieved speedup per problem instance across evaluated
models, categorized by difficulty level and sorted by ascending speedup
(continued)

Level Speedup Problem Model
2 1.3736 79 Conv3d Multiply InstanceNorm Clamp Multipl... openai-o1
2 1.3981 62 Matmul GroupNorm LeakyReLU Sum deepseek-r1
2 1.4289 74 ConvTranspose3d LeakyReLU Multiply LeakyReL... openai-o1
2 1.4467 98 Matmul AvgPool GELU Scale Max deepseek-r1
2 1.4604 39 Gemm Scale BatchNorm deepseek-r1
2 1.4662 42 ConvTranspose2d GlobalAvgPool BiasAdd LogSu... deepseek-r1
2 1.5042 29 Matmul Mish Mish deepseek-r1
2 1.5456 17 Conv2d InstanceNorm Divide deepseek-r1
2 1.5745 26 ConvTranspose3d Add HardSwish deepseek-r1
2 1.6439 88 Gemm GroupNorm Swish Multiply Swish deepseek-r1
2 1.7277 58 ConvTranspose3d LogSumExp HardSwish Subtrac... deepseek-r1
2 1.7476 51 Gemm Subtract GlobalAvgPool LogSumExp GELU... deepseek-r1
2 1.8268 18 Matmul Sum Max AvgPool LogSumExp LogSumEx... deepseek-r1
2 1.8839 48 Conv3d Scaling Tanh Multiply Sigmoid openai-o1
2 2.0192 90 Conv3d LeakyReLU Sum Clamp GELU claude-3.5-sonnet
2 2.3173 7 Conv3d ReLU LeakyReLU GELU Sigmoid BiasAdd claude-3.5-sonnet
2 2.3347 40 Matmul Scaling ResidualAdd openai-o1
2 2.4595 20 ConvTranspose3d Sum ResidualAdd Multiply R... deepseek-r1
2 2.6044 14 Gemm Divide Sum Scaling claude-3.5-sonnet
3 0.0107 33 VanillaRNN claude-3.5-sonnet
3 0.18 43 MinGPTCausalAttention openai-o1
3 0.3408 34 VanillaRNNHidden openai-o1
3 0.5782 1 MLP deepseek-r1
3 0.6927 24 EfficientNetB2 openai-o1
3 0.7214 22 EfficientNetB0 openai-o1
3 0.7382 9 ResNet18 openai-o1
3 0.7455 20 MobileNetV2 openai-o1
3 0.767 23 EfficientNetB1 deepseek-V3
3 0.7815 10 ResNet101 openai-o1
3 0.8083 46 NetVladWithGhostClusters deepseek-V3
3 0.8194 13 DenseNet121TransitionLayer claude-3.5-sonnet
3 0.8249 32 ConvolutionalVisionTransformer openai-o1
3 0.8284 7 GoogleNetInceptionV1 openai-o1
3 0.855 15 DenseNet121 gpt-4o
3 0.8587 18 SqueezeNet gpt-4o
3 0.8591 16 DenseNet201 gpt-4o
3 0.8699 47 NetVladNoGhostClusters llama-3.1-405b
3 0.8743 28 VisionTransformer gpt-4o

57

KernelBench: Can LLMs Write Efficient GPU Kernels?

Table 19: Best achieved speedup per problem instance across evaluated
models, categorized by difficulty level and sorted by ascending speedup
(continued)

Level Speedup Problem Model
3 0.8846 19 MobileNetV1 deepseek-V3
3 0.9343 27 RegNet openai-o1
3 0.9608 26 ShuffleNet gpt-4o
3 0.9811 5 AlexNet openai-o1
3 0.9858 25 ShuffleNetUnit deepseek-V3
3 1.0048 14 DenseNet121DenseBlock openai-o1
3 1.0089 6 GoogleNetInceptionModule openai-o1
3 1.012 8 ResNetBasicBlock openai-o1
3 1.025 29 SwinMLP llama-3.1-405b
3 1.027 11 VGG16 deepseek-V3
3 1.0442 12 VGG19 deepseek-V3
3 1.08 36 LTSMHn openai-o1
3 1.0922 3 DeepNarrowMLP deepseek-r1
3 1.2704 44 MiniGPTBlock deepseek-V3
3 1.405 4 LeNet5 claude-3.5-sonnet
3 1.9376 50 ReLUSelfAttention openai-o1

O. Alternative Library: Triton
Alternative GPU programming tools to CUDA – such as CUTLASS (NVIDIA, 2017a), Triton (Tillet et al., 2019), Thun-
derKittens (Spector et al., 2024) – have been developed to make GPU programming easier by exposing a higher level of
abstraction. We agree that this is an exciting direction to improve model performance and had noted this as a direction
for future work in Section 6.2. We reiterate that the goal of this work is to propose a new benchmark framework and to
thoroughly evaluate the baselines, rather than to solve the full kernel generation problem.

O.1. Triton Task Specification

We extend KernelBench with a Triton evaluation backend and a Triton task specification. Instead of <PyTorch, PyTorch
+ CUDA>, we now define the task as <PyTorch, PyTorch + Triton>.

Similar to the PyTorch one-shot example used in C.1 that describes the simple operation a+b, we provide the model with an
inline Just-In-Time compilation (JIT) kernel example in Triton.

1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4 import triton
5 import triton.language as tl
6
7
8 @triton.jit
9 def add_kernel(

10 x_ptr, # Pointer to first input
11 y_ptr, # Pointer to second input
12 out_ptr, # Pointer to output
13 n_elements, # Total number of elements in input/output
14 BLOCK_SIZE: tl.constexpr,

58

KernelBench: Can LLMs Write Efficient GPU Kernels?

15):
16 # Each program handles a contiguous block of data of size BLOCK_SIZE
17 block_start = tl.program_id(0) * BLOCK_SIZE
18 # Create a range of offsets [0..BLOCK_SIZE-1]
19 offsets = block_start + tl.arange(0, BLOCK_SIZE)
20 # Mask to ensure we don’t go out of bounds
21 mask = offsets < n_elements
22 # Load input values
23 x = tl.load(x_ptr + offsets, mask=mask, other=0.0)
24 y = tl.load(y_ptr + offsets, mask=mask, other=0.0)
25 # Perform the elementwise addition
26 out = x + y
27 # Store the result
28 tl.store(out_ptr + offsets, out, mask=mask)
29
30
31 def triton_add(x: torch.Tensor, y: torch.Tensor):
32 """
33 This function wraps the Triton kernel call. It:
34 1. Ensures the inputs are contiguous on GPU.
35 2. Calculates the grid (blocks) needed.
36 3. Launches the Triton kernel.
37 """
38 assert x.is_cuda and y.is_cuda, "Tensors must be on CUDA."
39 x = x.contiguous()
40 y = y.contiguous()
41
42 # Prepare output tensor
43 out = torch.empty_like(x)
44
45 # Number of elements in the tensor
46 n_elements = x.numel()
47 BLOCK_SIZE = 128 # Tunable parameter for block size
48
49 # Determine the number of blocks needed
50 grid = lambda meta: ((n_elements + meta["BLOCK_SIZE"] - 1) // meta["BLOCK_SIZE"],)
51
52 # Launch the Triton kernel
53 add_kernel[grid](x, y, out, n_elements, BLOCK_SIZE=BLOCK_SIZE)
54 return out
55
56
57 class ModelNew(nn.Module):
58 def __init__(self) -> None:
59 super().__init__()
60
61 def forward(self, a, b):
62 # Instead of "return a + b", call our Triton-based addition
63 return triton_add(a, b)

fast1 over: PyTorch Eager torch.compile

KernelBench Level 1 2 3 1 2 3

GPT-4o 2% 7% 2% 13% 2% 2%
OpenAI o1 3% 17% 10% 22% 13% 8%
DeepSeek R1 6% 13% 2% 19% 13% 4%
Llama 3.1-70B Inst. 1% 0% 0% 9% 0% 0%

Table 20. KernelBench-Triton Baseline. Similar to Table 1, we present fast1 against PyTorch Eager and torch.compile on NVIDIA
L40S. The LMs target Triton here instead of CUDA.

59

KernelBench: Can LLMs Write Efficient GPU Kernels?

O.2. Baseline Evaluation with Triton

We again conduct baseline evaluation on 3 Levels on KernelBench, just like Section 4.1, but with the Triton task and
associated evaluation. As shown in Table 20, we find that models perform worse when targeting Triton compared to CUDA
(Table 1), both in terms of correctness and performance. For example, DeepSeek R1 fast1 drops from 12%, 36%, 2% to
6%, 13%, 2% for Level 1, 2, and 3 respectively. Analyzing the errors and samples, we found many Triton-related errors,
likely due to Triton being a more rare source of training data than CUDA, highlighting challenges for using low-resource
domain-specific libraries.

60

