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Abstract

Time series forecasting plays a crucial role in many real-world applications, and numerous
complex forecasting models have been proposed in recent years. Despite their architectural
innovations, most state-of-the-art models report only marginal improvements—typically just
a few thousandths in standard error metrics. These models often incorporate complex data
embedding layers, which typically transform raw inputs into higher-dimensional represen-
tations to enhance accuracy. But are data embedding techniques actually effective in time
series forecasting? Through extensive ablation studies across fifteen state-of-the-art models
on multiple benchmark datasets, we find that removing data embedding layers from many
state-of-the-art models does not degrade forecasting performance—in many cases, it im-
proves both accuracy and computational efficiency. The gains from removing embedding
layers often exceed the performance differences typically reported between competing state-
of-the-art models. The code is available at https://github.com/Tims2D/DataEmbedding.

1 Introduction

Time series forecasting is a fundamental task in machine learning with broad applications, including en-
ergy systems, traffic management, healthcare, finance, and weather prediction (Wang et al., 2024b). In
recent years, numerous deep learning frameworks have been proposed to improve forecasting performance.
These models often employ complex architectures such as statistical components, Transformers, Multilayer
Perceptrons (MLPs), and Convolutional Neural Networks (CNNs). Despite architectural diversity, recent
state-of-the-art models achieve gains of only a few thousandths of a point in common metrics such as mean
squared error (MSE) or mean absolute error (MAE). Table 1 presents the performance of several time series
forecasting models (Nematirad et al., 2025; Yu et al., 2025; Liu et al., 2023; Li et al., 2024b; Wang et al.,
2023; 2024a; Han et al., 2024; Dai et al., 2024b) that report state-of-the-art results. Despite substantial
architectural differences, the actual improvements in MSE and MAE are often minimal—frequently less
than a thousandth compared to competing models. For instance, Times2D outperforms LiNo on the ETTh1
dataset at a prediction horizon of 96 by only 0.001 in both MSE and MAE.

Furthermore, time series forecasting algorithms consist of complex and advanced components. However,
their effectiveness and their individual contributions to overall forecasting performance are not adequately
investigated. One prominent component is data embedding, which typically transforms raw input data into
higher-dimensional representations. For instance, PDF Dai et al. (2024b) and Times2D Nematirad et al.
(2025) apply various data embedding techniques without sufficiently justifying the rationale behind using
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Table 1: Performance of recent multivariate forecasting models on the ETTh1 and ETTm1 datasets for
prediction horizon H ∈ {96, 192, 336, 720} and input length L = 96. red and blue denote best and second-
best results.

Models Times2D LiNo iTransformer RLinear MICN TimeMixer SOFTS PDF
(2025) (2025) (2024) (2024) (2024) (2024) (2024) (2024)

Data H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 96 0.378 0.394 0.379 0.395 0.386 0.405 0.395 0.419 0.404 0.428 0.375 0.400 0.381 0.399 0.387 0.405
192 0.431 0.422 0.423 0.423 0.441 0.436 0.424 0.445 0.471 0.471 0.429 0.421 0.435 0.411 0.439 0.438
336 0.463 0.436 0.455 0.438 0.487 0.458 0.446 0.466 0.571 0.538 0.484 0.458 0.480 0.452 0.494 0.464
720 0.473 0.464 0.459 0.456 0.503 0.491 0.470 0.488 0.651 0.622 0.498 0.482 0.499 0.448 0.491 0.484

ETTm1 96 0.324 0.363 0.322 0.361 0.334 0.368 0.329 0.367 0.320 0.374 0.320 0.357 0.325 0.361 0.335 0.367
192 0.370 0.386 0.365 0.383 0.377 0.391 0.367 0.385 0.378 0.414 0.361 0.381 0.375 0.389 0.377 0.393
336 0.402 0.406 0.401 0.408 0.426 0.420 0.399 0.410 0.428 0.452 0.390 0.404 0.405 0.412 0.408 0.415
720 0.459 0.439 0.469 0.447 0.491 0.459 0.454 0.483 0.482 0.441 0.454 0.441 0.466 0.447 0.457 0.448

them. On the other hand, models such as PatchTST Nie et al. (2023), SOFTS Han et al. (2024), MICN Wang
et al. (2023), and ETSFormer Woo et al. (2023) provide specific justifications for incorporating particular
embedding techniques into their architecture. However, the effectiveness of the utilized embedding techniques
is not adequately discussed. Consequently, it is unclear whether data embedding techniques truly improve
forecasting performance.

Motivated by the minimal improvements achieved through increasingly complex models (Table 1) and in-
sufficient evaluation of core components, we revisit the effectiveness of data embedding layers in time series
forecasting. We directly investigate a simple yet important question: are data embeddings actually
effective in time series forecasting?

Our claim is simple but promising: removing the data embedding layers from many state-of-the-art
forecasting models does not degrade forecasting performance—in many cases, it enhances both
forecasting accuracy and computational efficiency. Interestingly, the gains from removing em-
bedding layers often exceed the performance differences typically reported between competing
state-of-the-art models. Our goal is not to imply that data embedding will never be effective
in time series forecasting. Instead, we aim to highlight our promising findings and suggest
that the community should devote greater attention to critically assessing the actual impact
of embedding layers in time series forecasting models.

We substantiate our claims by conducting extensive experiments using fifteen time series forecasting models
on seven standard benchmark datasets originally reported in their studies. Each selected model explicitly
utilizes data embedding as a core architectural component. First, we make a great effort to reproduce the
results of the standard time series models, using their publicly available publications and the code provided
in their official repositories. Next, we identify the data embedding components in each model and rerun
the models with these embedding layers bypassed. It should be noted that, in the absence of embedding
layers, some preprocessing steps, such as permutation and concatenation are performed to reconcile the
input with the model expected dimensions. We further clarify our definition of data embedding and detail
the specific steps taken to bypass embedding components in the following sections. Then, we evaluate
forecasting performance and computational efficiency in both settings, with and without embedding layers.
Additionally, we include five traditional baseline models, such as RNN, LSTM, GRU, ConvLSTM, and
BiLSTM, that generally operate without explicit embedding layers, providing a comprehensive performance
comparison across different architectural complexities. The contributions of this study are summarized as
follows:

• To our knowledge, this is the first systematic study to rigorously evaluate the effectiveness of data
embedding layers in time series forecasting models.

• We conduct comprehensive ablation studies on fifteen high-performing forecasting algorithms across
multiple standard benchmark datasets. We show that removing embedding layers generally does
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not degrade forecasting performance—in many cases, it enhances both forecasting accuracy and
computational efficiency.

• We highlight that the gains from removing embedding layers often exceed the performance differ-
ences typically reported between competing state-of-the-art models. This finding emphasizes the
importance of carefully evaluating the model components before adding further complexity.

2 Data embedding and their removal

Data embedding layers are widely used in modern time series forecasting models. They typically transform
the temporal or feature dimension of the raw input sequence into a higher-dimensional representation space
of size d (Koshil et al., 2024). The transformed data are then fed into downstream neural components that
are designed to operate on this embedding dimension d. In contrast, in scenarios without embedding, the
raw input data are passed directly to the forecasting model. Since the original architectures were designed
to process inputs of size d (with embedding), we adjust the input interface of the embedding-removed
configurations so that the downstream layers receive tensors consistent with the raw input dimensions. Data
embedding strategies can be categorized as follows.

2.1 Value embedding

Value embedding refers to the transformation of raw input time series into a latent feature space, typically
of higher dimension. Formally, given a multivariate input sequence X ∈ RB×L×N , where B is the batch
size, L is the sequence length, and N is the number of input variables (features), a value embedding module
projects X into an embedding space of dimension d by mapping the variable dimension N → d. Two value
embedding methods are commonly used (Li et al., 2024a):

• Token-based convolutional embedding: Applies a 1D convolution along the temporal axis to
project input features into a higher-dimensional space. This operation can be expressed as

U = Conv1D(X)

where U ∈ RB×L×d.

• Linear projection: Applies a linear transformation independently at each time step and maps each
input feature vector xt ∈ RN to an embedding vector in Rd.

In scenarios where embedding is not used, the input tensor X is passed directly to the downstream layers
without projection:

U = X ∈ RB×L×N

In these scenarios, to ensure compatibility with downstream components originally designed to process
dimension d (e.g., multi-head attention, feed-forward layers), we modify these layers to accept inputs of
dimension N instead. Specifically, any layer parameters that operated on dimension d are adjusted to
operate on dimension N . This allows us to isolate the effect of the embedding transformation itself while
preserving the model’s core computational structure.

2.2 Temporal embedding

Temporal embedding encodes time-related features such as minute, hour, day, or month into continuous
vectors. Two main types of temporal embedding are used in forecasting models (Li et al., 2021):

• Discrete temporal embedding: Embeds categorical time fields (e.g., hour of day, day of week,
month) using one of the following techniques:

– Fixed embedding: Uses non-trainable sinusoidal vectors to map each discrete time index to
a fixed vector based on sine and cosine functions.
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– Learnable embedding: Implements trainable lookup tables (via nn.Embedding) that map
each discrete temporal category to a vector learned during training.

• Continuous time feature embedding: Encodes normalized continuous features (e.g., scaled hour
or day values) using a linear projection. Time features are fed into a fully connected layer that maps
them to the embedding space Rd.

Given the time covariates Xmark ∈ RB×L×Ntime , where Ntime is the number of temporal features (e.g., hour-
of-day, day-of-week, month, etc.), a temporal embedding layer projects each temporal component into a
shared latent space of dimension d, resulting in:

U = TemporalEmbedding(Xmark) ∈ RB×L×d

In scenarios where embedding is not used, the temporal features Xmark are used directly. To ensure com-
patibility with downstream components originally designed to process dimension d, we modify these layers
to accept inputs of dimension Ntime instead.

2.3 Positional embedding

Positional embedding injects information about the position of each time step in the sequence, which is not
inherently modeled by components like attention or MLPs. Unlike value or temporal embeddings, which
depend on the content of the input features or time-related fields, positional embeddings are purely based
on the position index in the sequence.

Given an embedding dimension d and sequence length L, a deterministic positional matrix P ∈ R1×L×d is
constructed using sine and cosine functions at varying frequencies:

Pt,2i = sin
(

t

100002i/d

)
, Pt,2i+1 = cos

(
t

100002i/d

)
Here, i ∈

[
0,

⌊
d
2
⌋)

denotes the embedding dimension index. The constant 10000 is an empirically chosen
scaling factor that ensures smooth variation across dimensions (Chen et al., 2023). Given the input X ∈
RB×N×L, the positional matrix P is broadcast across the batch dimension and typically added to the value
and/or temporal embeddings before being passed to the model. The output after incorporating positional
information is:

U = PositionalEmbedding(X) ∈ RB×N×d

In scenarios where embedding is not used, positional encoding is omitted, and the input is passed directly
to the model:

U = X ∈ RB×N×L

To preserve compatibility with downstream components originally designed to process dimension d (e.g.,
multi-head attention with d-dimensional queries/keys/values, feed-forward layers with d-dimensional inputs),
we modify these layers to accept inputs of dimension L instead.

2.4 Inverted embedding

Inverted embedding refers to a design where both the raw input features and the associated time-based
features (e.g., hour, day, month) are concatenated along the feature dimension. Given an input sequence
X ∈ RB×N×L and temporal covariates Xmark ∈ RB×Ntime×L, the two are combined as

Xconcat = Concat(X, Xmark) ∈ RB×(N+Ntime)×L

Unlike traditional embeddings (value, temporal, positional) that enrich or project the feature dimension
while preserving the sequence length, inverted embedding treats each variable as a token and applies the
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projection along the temporal dimension. A linear mapping W ∈ RL×d transforms the sequence dimension
into the embedding space:

U = Xconcat · W ∈ RB×(N+Ntime)×d

This design emphasizes temporal patterns of individual variables rather than stepwise tokens, enabling the
model to capture variable-level dynamics across the entire horizon (Han et al., 2024; Wan et al., 2025).

In scenarios without embedding, the projection step is skipped and the concatenated tensor is used directly:

U = Xconcat ∈ RB×(N+Ntime)×L

To ensure compatibility with downstream components originally designed to process dimension d, we modify
these layers to accept inputs of dimension L instead.

2.5 Patch embedding

Patch embedding segments the input time series into overlapping or non-overlapping temporal patches.
Each patch is then projected into a latent embedding space. This reduces input length for long series while
preserving fine-grained patterns. Given a multivariate time series input X ∈ RB×N×L, patching is applied
along the temporal axis. The sequence for each variable is divided into fixed-length patches of size P , using
a sliding window with stride S, producing:

Xpatch ∈ RB×N×Lp×P , Lp =
⌊

L−P
S

⌋
+ 1.

When embedding is applied, each patch is linearly projected into a latent space of dimension d:

Z = Xpatch · WP , WP ∈ RP ×d, Z ∈ RB×N×Lp×d.

The tensor is then reshaped for downstream processing:

U = Reshape(Z) ∈ R(B·N)×Lp×d.

In scenarios without embedding, the projection step is omitted and the reshaped patches are used directly:

U = Reshape(Xpatch) ∈ R(B·N)×Lp×P ,

To maintain compatibility with downstream components originally configured for inputs of dimension d, these
layers are adjusted to operate on inputs of dimension P instead. A complete summary of the embedding
categories and techniques used in this study is provided in Appendix A.1. In addition, a detailed analysis of
which architectural components are affected when embeddings are removed is provided in Appendix A.2.

3 Related works

The Multi-scale Isometric Convolution Network (MICN) Wang et al. (2023) decomposes the input into
seasonal and trend components. A value embedding via 1D convolution (token embedding) is applied to
the seasonal sequence, combined with a time-based embedding using fixed values and a sinusoidal positional
embedding. These three embedded components are summed and passed through a dropout layer before
being fed into the model. ETSformer Woo et al. (2023) proposes a Transformer architecture inspired by
exponential smoothing, using decomposed components for level, growth, and seasonality. It employs a value
embedding module implemented via 1D convolution to map input features into a latent space. WITRAN
Jia et al. (2023) introduces a bi-granular recurrent framework for time series forecasting that models short-
and long-term repetitive patterns through 2D information flows. The model concatenates raw input features
and time-based covariates along the feature dimension. Then, a fixed temporal embedding is applied to the
feature dimension.

The Series-cOre Fused Time Series forecaster (SOFTS) Han et al. (2024) is an efficient MLP-based framework
that introduces the STar Aggregate-Redistribute (STAR) module, which employs a centralized strategy to
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aggregate all series into a global core representation. SOFTS employs an inverted embedding mechanism.
It uses linear projection to combine multivariate feature values and time-related metadata. Then, the
combined representation is mapped into a high-dimensional space over the sequence dimension. EDformer
Chakraborty et al. (2024) introduces a decomposition-based Transformer that separates multivariate time
series into trend and seasonal components. It adopts an inverted embedding strategy by concatenating
the seasonal component with time-based features and projecting the sequence dimension into a latent space
using a linear layer. PPDformer Wan et al. (2025) also adopts an inverted embedding design. It concatenates
denoised multivariate feature values with time-based features across the feature axis, and maps the sequence
into the embedding space using a linear projection.

Times2D Nematirad et al. (2025) proposes a multi-block decomposition that transforms raw multivariate
time series into 2D periodic segments using the Fast Fourier Transform. These segments are passed through
2D convolutional layers, followed by flattening to produce embeddings. This patch-style embedding does not
rely on common value, temporal, or positional embeddings.

Crossformer Zhang & Yan (2023) introduces a hierarchical Transformer architecture that models both tem-
poral and cross-variable dependencies for multivariate forecasting. It employs a dual-embedding mechanism.
First, it employs a patch-based embedding strategy where the multivariate time series is first segmented
into fixed-length patches using a sliding window. Then, each patch is projected into a latent space using
the summation of value embedding through linear layers and sinusoidal positional embeddings within the
patches.

PatchTST Nie et al. (2023) proposes a channel-independent Transformer for time series forecasting, where
each univariate time series is processed separately. It applies the same patch-based embedding mechanism.
Unlike Crossformer, PatchTST focuses solely on modeling temporal dependencies within each variable and
does not capture cross-variable interactions.

4 Experimental setup

Baselines. We evaluate fifteen high-performing time series forecasting models alongside five traditional
baseline architectures. The fifteen state-of-the-art models have been introduced in top-tier venues in artificial
intelligence and machine learning. Models selected in this study cover a broad spectrum of architectural
paradigms. Transformer-based architectures include Crossformer (Zhang & Yan, 2023), PatchTST (Nie
et al., 2023), ETSformer (Woo et al., 2023), iFlowformer (Kang et al., 2025) and iFlashAttention (Kang et al.,
2025). MLP-based approaches comprise MICN (Wang et al., 2023), SOFTS (Han et al., 2024), EDformer
(Chakraborty et al., 2024), LiNo (Yu et al., 2025), Minusformer (Liang et al., 2024), and VarDrop (Kang et al.,
2025). Finally, hybrid and decomposition-based frameworks are represented by Times2D (Nematirad et al.,
2025), PDF (Dai et al., 2024a), PPDformer (Wan et al., 2025), and WITRAN (Jia et al., 2023). Additionally,
we include five traditional recurrent and convolutional architectures (RNN, LSTM, GRU, ConvLSTM, and
BiLSTM) that generally operate without explicit embedding layers, providing broader performance context.

Benchmarks. We evaluate all models on seven widely used benchmark datasets spanning diverse do-
mains and temporal resolutions: ETTh1, ETTh2 (hourly), ETTm1, and ETTm2 (15-minute) representing
electricity transformer temperature data where each timestamp is a 7-dimensional vector, Weather (10-
minute meteorological observations with 21 variables per timestamp), Exchange (8-dimensional daily foreign
exchange rate vectors), and National Illness (7-dimensional weekly illness case-rate vectors across U.S. re-
gions). These datasets capture diverse temporal patterns, sampling frequencies (10-minute to weekly), and
feature dimensions (from 7 to 21) across various domains (Jin et al., 2024). Additional details on the datasets
are provided in Appendix A.3.

Setup and Evaluation Metric. All input time series are normalized using the mean and standard
deviation from the training set. The sequence length is fixed in both embedding settings. For all datasets
except National Illness, prediction horizons are H ∈ {96, 192, 336, 720}. For National Illness, due to its
weekly resolution, we use H ∈ {24, 36, 48, 60}. Forecasting accuracy is evaluated using MSE and MAE.
Computational efficiency is assessed through multiple metrics: (1) average training time per epoch, with
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breakdowns for data loading, forward pass, and backward pass with optimization; (2) GPU memory usage,
including both peak allocated and peak reserved memory; and (3) inference latency per sample. All timing
metrics are reported in seconds, and memory usage in megabytes (MB).

Infrastructure. All experiments are conducted on a high-performance Linux workstation equipped with
an NVIDIA L40S GPU (46 GB memory), CUDA version 12.9, and dual AMD EPYC 7713 64-core processors
(128 threads in total). The system has 1 TB of RAM and runs on Ubuntu with Python 3.10 and PyTorch
2.2.1.

5 Results

We present a comprehensive comparison of model performance with and without data embedding layers.
Accuracy results for the ETTh1 and ETTm1 datasets are reported in Tables 2 and 4, respectively. Compu-
tational efficiency results for ETTh1 and ETTm1 are given in Tables 3 and 5. Additional results for ETTh2,
ETTm2, Weather, Exchange Rate, and National Illness are provided in Appendix A.4, Tables 10, 12, 16, 14,
and 18, respectively. Below, we summarize key trends observed across models and datasets.

Accuracy typically improves without embeddings. For the fifteen state-of-the-art models, in over
95% of the evaluated configurations, removing data embedding layers improves forecasting accuracy across
both MSE and MAE. On the ETTh1 dataset, removing the embedding layer yields an average reduction of
0.0296 in MSE and 0.0193 in MAE (Tables 2). ETTh2 (Table 10) exhibits similar behavior, with MSE and
MAE decreasing by 0.0208 and 0.0096, respectively. For the higher-resolution ETTm1 and ETTm2 datasets,
the improvements are also evident, with average reductions of 0.0282 and 0.0080 in MSE, and 0.0203 and
0.0091 in MAE, respectively (Tables 4; Appendix A.4, Tables 12).

Notably, in some cases, the observed gains are remarkably large. For instance, removing the embedding layer
from ETSformer on the ETTh1 dataset at horizon 720 reduces MSE by 0.360 and MAE by 0.248. Similarly,
Crossformer on ETTm1 at the same horizon achieves a 0.356 drop in MSE, while ETSformer again yields a
0.246 reduction in MAE. Even on shorter horizons and across other datasets such as ETTh2 and ETTm2, we
observe improvements exceeding 0.2 in key metrics (Appendix A.4). These results highlight that removing
embedding layers can lead to dramatic performance gains.

Furthermore, these accuracy gains are meaningful in practice. As shown in Table 1, recent state-of-the-art
forecasting models surpass the second-best models by only 0.001 to 0.009 in evaluation metrics. In contrast,
our results show that simply removing the data embedding layers leads to much larger improvements. For
example, on the ETTh1 dataset with horizon 96, Times2D and LiNo report MSEs of 0.378 and 0.379, and
MAEs of 0.394 and 0.395. These differences are minimal. However, removing the embedding layer from
Times2D improves its MSE by 0.019 and MAE by 0.011. For LiNo, the improvements are also notable,
with reductions of 0.007 in MSE and 0.006 in MAE. These findings suggest that simplifying model archi-
tectures by eliminating embedding layers can yield benefits that exceed those obtained by designing entirely
new forecasting models. These findings suggest that raw input features in multivariate time series often
contain sufficient representational richness for forecasting tasks without the need for additional embedding
transformations.

Unlike the consistent improvements observed in state-of-the-art models, traditional recurrent and convo-
lutional architectures (RNN, LSTM, GRU, ConvLSTM, BiLSTM) show mixed responses to embedding
removal. These models are typically designed to operate directly on raw input data, with most representa-
tion learning handled by the hidden and convolutional layers. In this setting, adding an embedding layer
acts mainly as an extra linear projection rather than a core modeling component, so its impact is small and
horizon-dependent—sometimes slightly helpful, sometimes slightly harmful—rather than following a clear
systematic trend.

Significant computational savings. Removing data embedding layers consistently reduces computa-
tional overhead. The average training time per epoch decreases across all datasets, with savings of up to
25 seconds on ETTh1 and ETTm1. Memory usage also decreases notably. Tables 3 and 5 report detailed
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Table 2: ETTh1 forecasting results with and without embeddings for input length L = 96 and prediction
horizons H ∈ {96, 192, 336, 720}. Bold values indicate better performance.
Model Metric With Embedding Without Embedding

H Time Mem H Time Mem

96 192 336 720 96 192 336 720

PDF MSE 0.387 0.439 0.494 0.491 48.01 2857 0.377 0.430 0.484 0.503 16.50 2760
MAE 0.405 0.438 0.464 0.484 0.401 0.429 0.453 0.481

ETSformer MSE 0.564 0.747 0.987 0.987 24.61 4506 0.563 0.611 0.643 0.627 10.95 4496
MAE 0.536 0.651 0.788 0.806 0.505 0.528 0.545 0.558

PatchTST MSE 0.389 0.449 0.498 0.544 10.90 4351 0.385 0.438 0.488 0.541 8.41 4353
MAE 0.409 0.445 0.474 0.517 0.404 0.433 0.459 0.511

MICN MSE 0.404 0.471 0.576 0.651 19.75 2739 0.402 0.450 0.475 0.531 5.52 2709
MAE 0.428 0.471 0.538 0.622 0.421 0.448 0.473 0.527

SOFTS MSE 0.385 0.445 0.501 0.565 9.93 2706 0.383 0.444 0.486 0.519 7.97 2223
MAE 0.405 0.441 0.469 0.529 0.401 0.439 0.462 0.502

VarDrop MSE 0.416 0.447 0.490 0.537 9.94 497 0.386 0.442 0.491 0.495 8.37 395
MAE 0.425 0.445 0.466 0.504 0.408 0.439 0.467 0.488

Crossformer MSE 0.390 0.561 0.639 0.921 40.48 4396 0.404 0.501 0.634 0.871 40.32 4383
MAE 0.421 0.543 0.588 0.755 0.427 0.493 0.581 0.739

iFlashAttention MSE 0.407 0.456 0.487 0.5532 10.80 2293 0.387 0.443 0.490 0.492 9.75 2292
MAE 0.420 0.451 0.467 0.5131 0.407 0.439 0.467 0.486

iFlowformer MSE 0.394 0.459 0.493 0.545 12.40 2297 0.391 0.441 0.479 0.499 7.69 2281
MAE 0.408 0.450 0.466 0.508 0.409 0.440 0.458 0.490

PPDformer MSE 0.415 0.460 0.496 0.506 36.08 2738 0.398 0.470 0.473 0.487 17.92 2709
MAE 0.424 0.451 0.468 0.492 0.419 0.455 0.461 0.486

LiNo MSE 0.379 0.443 0.476 0.496 3.83 2036 0.372 0.429 0.454 0.460 3.61 2026
MAE 0.395 0.432 0.446 0.474 0.389 0.427 0.436 0.458

EDformer MSE 0.433 0.520 0.582 0.661 3.52 2260 0.420 0.493 0.546 0.666 3.64 2661
MAE 0.449 0.504 0.537 0.608 0.441 0.488 0.519 0.618

Minusformer MSE 0.382 0.431 0.481 0.522 8.03 2395 0.374 0.425 0.477 0.520 7.44 2693
MAE 0.398 0.430 0.454 0.492 0.395 0.429 0.450 0.493

WITRAN MSE 0.552 0.646 0.757 0.899 16.34 2050 0.545 0.634 0.764 0.895 16.38 2036
MAE 0.548 0.608 0.676 0.746 0.541 0.599 0.659 0.746

Times2D MSE 0.378 0.431 0.463 0.473 5.58 778 0.359 0.427 0.461 0.472 6.48 758
MAE 0.394 0.422 0.436 0.464 0.383 0.421 0.435 0.463

BiLSTM MSE 0.938 0.992 1.087 1.206 14.09 1696 0.963 0.996 1.024 1.036 13.79 1658
MAE 0.718 0.758 0.819 0.873 0.725 0.755 0.771 0.787

ConvLSTM MSE 0.979 1.065 1.115 1.192 10.18 685 1.038 1.07 1.09 1.116 10.17 659
MAE 0.725 0.782 0.816 0.862 0.771 0.791 0.809 0.837

GRU MSE 0.909 1.047 1.116 1.218 10.11 658 0.879 1.052 1.111 1.053 9.815 653
MAE 0.702 0.758 0.805 0.91 0.676 0.785 0.814 0.791

LSTM MSE 0.972 1.019 1.058 1.204 10.72 666 0.979 1.092 1.099 1.09 10.63 661
MAE 0.742 0.768 0.795 0.868 0.738 0.792 0.803 0.808

RNN MSE 0.979 1.007 1.058 1.125 5.357 626 0.926 1.133 1.165 1.2 62.58 636
MAE 0.741 0.766 0.805 0.849 0.695 0.834 0.861 0.887
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Table 3: Average efficiency results for the ETTh1 dataset with and without embeddings, including Dat-
aLoader time, forward pass time, backward pass with optimization time, peak allocated GPU memory, peak
reserved GPU memory, and inference latency.

With Embedding Without Embedding

Model DL FW BW PA PR Lat DL FW BW PA PR Lat

PDF 0.063 0.112 0.166 1304 1494 0.044 0.052 0.079 0.116 497.4 585.5 0.022
MICN 0.02 0.022 0.07 1266 1811 0.019 0.012 0.005 0.006 102.6 117 0.004
ETSformer 0.001 0.027 0.041 2157 2456 0.032 0.001 0.009 0.013 171.7 192.5 0.006
PatchTST 0.015 0.009 0.02 445.3 545.5 0.008 0.013 0.005 0.012 184.3 190.5 0.003
SOFTS 0.011 0.004 0.009 205.6 229 0.003 0.011 0.004 0.008 164.8 319.5 0.002
VarDrop 0.011 0.005 0.014 228.5 274 0.004 0.01 0.005 0.011 166.9 322 0.004
Crossformer 0.008 0.024 0.065 1514 1758 0.016 0.008 0.024 0.065 1514 1762 0.016
FlashAttention 0.013 0.007 0.016 232.6 279.5 0.006 0.012 0.006 0.013 167.7 324 0.005
iFlowformer 0.006 0.006 0.013 259 291.5 0.004 0.006 0.005 0.012 170.4 325 0.004
PPDformer 0.047 0.054 0.061 944.6 1575 0.053 0.038 0.043 0.028 379.3 775 0.044
LiNo 0.031 0.011 0.02 210.4 251.5 0.039 0.03 0.007 0.009 58.44 71 0.034
EDformer 0.039 0.005 0.01 143.7 184 0.004 0.048 0.004 0.012 201.2 360.5 0.003
Minusformer 0.008 0.005 0.011 246.6 353 0.004 0.008 0.004 0.007 161.4 201 0.003
WITRAN 0.025 0.038 0.062 46.53 61 0.042 0.025 0.038 0.062 46.53 61.5 0.041
Times2D 0.041 0.025 0.043 286.6 472 0.018 0.041 0.024 0.04 240.1 431.5 0.017
BiLSTM 0.014 0.012 0.023 320.6 397 0.012 0.013 0.012 0.022 300.3 369 0.012
ConvLSTM 0.019 0.008 0.042 149.6 198 0.007 0.013 0.007 0.014 143.4 184.5 0.006
GRU 0.013 0.007 0.013 143.3 181.5 0.006 0.013 0.006 0.013 132.1 174.5 0.006
LSTM 0.011 0.007 0.014 144.8 184.5 0.007 0.011 0.007 0.014 132 179 0.006
RNN 0.01 0.003 0.004 105.3 135.5 0.001 0.01 0.001 0.003 94.76 132.5 0.001

breakdowns across data loading, forward and backward passes, memory allocation, and inference latency.
On ETTh1 and ETTm1, forward and backward times drop by up to an order of magnitude for heavy models
such as PDF, MICN, ETSformer, and PPDformer, while DataLoader time remains essentially unchanged.
Peak and reserved GPU memory also shrink sharply: on ETTh1 and ETTm1, peak reserved memory de-
creases from roughly 1.5–2.5 GB to under 0.6 GB for PDF, MICN, ETSformer, and LiNo, and from about
2.6 GB to nearly 1.1 GB for PPDformer. Inference latency shows similar gains, often improving by a factor
of 2–5 (e.g., PDF from 0.044 s to 0.022 s on ETTh1 and from 0.049 s to 0.025 s on ETTm1).

Tables 11, 13, 15, 17, and 19 in Appendix A.4 report the corresponding efficiency results for ETTh2, ETTm2,
Exchange, Weather, and National Illness, and show the same overall pattern. This indicates that embedding
layers are a considerable source of computational overhead in both modern and traditional forecasting models,
and that strategically removing them offers a simple way to improve training and inference efficiency without
sacrificing accuracy.

Performance gains increase with horizon length. The effect of removing the embedding layer in-
creases as the forecasting horizon increases across all four benchmarks. While short-term configurations
(e.g., H = 96) show limited changes, longer horizons often yield substantial improvements. For instance, on
ETTm1, Crossformer shows an MSE reduction of 0.003 at H = 96, which increases significantly to 0.365 at
H = 720. This finding indicates that embedding-free designs may be advantageous for long-term forecasting
tasks.

Architectural sensitivity to embedding layers. Embedding removal impacts architectural families
differently. Transformer-based models rely on self-attention mechanisms to capture long-range dependencies,
but they do not include any inherent structure to model sequential order. Unlike recurrent architectures,
Transformers require explicit positional and token embeddings to encode temporal progression. In theory,
these embeddings are intended to compensate for the lack of built-in sequence modeling. However, our
empirical results reveal that removing these embeddings often leads to better performance. MLP-based
architectures employ purely feedforward pathways and rely on dense transformations to model dependencies

9



Published in Transactions on Machine Learning Research (12/2025)

Table 4: ETTm1 forecasting results with and without embeddings for input length L = 96 and prediction
horizons H ∈ {96, 192, 336, 720}. Bold values indicate better performance.
Model Metric With Embedding Without Embedding

H Time Mem H Time Mem

96 192 336 720 96 192 336 720

PDF MSE 0.335 0.377 0.408 0.457 194.3 2961 0.321 0.365 0.392 0.451 64.44 2880
MAE 0.367 0.393 0.415 0.448 0.359 0.386 0.405 0.442

ETSformer MSE 0.526 0.577 0.677 0.802 94.28 2803 0.373 0.408 0.441 0.499 33.18 2200
MAE 0.515 0.553 0.620 0.708 0.397 0.410 0.429 0.462

PatchTST MSE 0.344 0.375 0.407 0.473 58.62 2476 0.348 0.370 0.393 0.459 23.48 2893
MAE 0.367 0.395 0.415 0.453 0.371 0.387 0.406 0.440

MICN MSE 0.320 0.378 0.428 0.483 70.17 2850 0.354 0.363 0.416 0.478 17.05 2805
MAE 0.374 0.414 0.452 0.482 0.380 0.395 0.416 0.455

SOFTS MSE 0.325 0.384 0.429 0.477 33.51 2403 0.323 0.367 0.407 0.475 27.16 2419
MAE 0.361 0.397 0.423 0.455 0.341 0.386 0.411 0.452

VarDrop MSE 0.340 0.398 0.439 0.490 36.26 504 0.344 0.382 0.428 0.505 27.86 393
MAE 0.375 0.403 0.427 0.457 0.378 0.397 0.425 0.467

Crossformer MSE 0.366 0.413 0.453 0.867 233.8 2237 0.363 0.406 0.447 0.511 230.4 2228
MAE 0.406 0.427 0.454 0.711 0.404 0.418 0.446 0.481

iFlashAttention MSE 0.350 0.402 0.442 0.500 45.11 2438 0.344 0.382 0.434 0.527 34.28 2421
MAE 0.381 0.405 0.428 0.464 0.378 0.397 0.428 0.476

iFlowformer MSE 0.340 0.418 0.420 0.492 45.66 2409 0.339 0.388 0.448 0.501 34.97 2331
MAE 0.373 0.412 0.424 0.461 0.372 0.399 0.434 0.470

PPDformer MSE 0.356 0.411 0.440 0.503 149.5 2840 0.339 0.389 0.432 0.493 86.75 2833
MAE 0.392 0.420 0.438 0.471 0.376 0.400 0.429 0.467

LiNo MSE 0.331 0.400 0.435 0.503 13.50 2146 0.323 0.375 0.418 0.497 12.47 2145
MAE 0.365 0.404 0.423 0.463 0.361 0.390 0.416 0.462

EDformer MSE 0.395 0.432 0.486 0.544 10.87 2404 0.378 0.426 0.463 0.551 11.36 2805
MAE 0.427 0.448 0.478 0.509 0.413 0.443 0.466 0.520

Minusformer MSE 0.351 0.384 0.451 0.491 40.98 2528 0.330 0.381 0.449 0.490 32.57 2847
MAE 0.377 0.394 0.432 0.459 0.367 0.392 0.428 0.457

WITRAN MSE 0.640 0.769 0.827 0.951 107.8 937 0.637 0.688 0.803 0.860 107.6 914
MAE 0.590 0.668 0.714 0.766 0.585 0.622 0.699 0.713

Times2D MSE 0.325 0.370 0.402 0.459 21.30 783 0.324 0.368 0.397 0.458 21.09 761
MAE 0.363 0.386 0.406 0.439 0.361 0.383 0.403 0.438

BiLSTM MSE 0.947 0.967 0.999 1.081 54.11 1703 0.928 0.964 1.005 1.056 52.59 1668
MAE 0.686 0.7 0.726 0.782 0.679 0.705 0.737 0.77

ConvLSTM MSE 0.937 0.988 1.02 1.08 38.85 677 0.918 0.936 0.98 1.036 122.3 657
MAE 0.686 0.72 0.749 0.789 0.686 0.7 0.735 0.775

GRU MSE 0.837 0.819 1.005 1.089 35.7 665 0.931 0.961 0.989 1.07 35.27 657
MAE 0.631 0.638 0.729 0.787 0.678 0.702 0.725 0.777

LSTM MSE 0.927 0.96 1.007 1.09 39.33 668 0.968 0.99 1.02 1.072 37.8 665
MAE 0.688 0.712 0.75 0.803 0.724 0.738 0.759 0.791

RNN MSE 1.06 0.905 1.096 1.024 15.64 635 0.964 1.006 1.028 1.094 15.3 632
MAE 0.744 0.662 0.77 0.739 0.703 0.733 0.755 0.797
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Table 5: Average efficiency results for the ETTm1 dataset with and without embeddings, including Dat-
aLoader time, forward pass time, backward pass with optimization time, peak allocated GPU memory, peak
reserved GPU memory, and inference latency.

With Embedding Without Embedding

Model DL FW BW PA PR Lat DL FW BW PA PR Lat

PDF 0.064 0.116 0.18 1304 1493 0.049 0.053 0.084 0.122 497.4 585.5 0.025
MICN 0.017 0.022 0.07 1266 1811 0.019 0.008 0.005 0.006 102.6 117 0.004
ETSformer 0.001 0.027 0.04 2157 2456 0.033 0.001 0.008 0.012 171.7 192.5 0.006
PatchTST 0.011 0.009 0.02 445.3 545.5 0.008 0.008 0.005 0.011 184.3 190.5 0.003
SOFTS 0.008 0.004 0.009 205.6 229 0.003 0.007 0.004 0.008 164.8 319.5 0.002
VarDrop 0.008 0.005 0.013 228.5 274 0.004 0.007 0.004 0.011 166.9 322 0.003
Crossformer 0.008 0.025 0.07 1643 1909 0.017 0.007 0.024 0.065 1514 1762 0.016
FlashAttention 0.01 0.007 0.016 232.6 279.5 0.006 0.009 0.006 0.014 167.7 324 0.005
iFlowformer 0.004 0.005 0.013 259 291.5 0.004 0.004 0.005 0.012 170.4 325 0.004
PPDformer 0.034 0.058 0.074 1120 2596 0.059 0.029 0.047 0.037 444 1066 0.049
LiNo 0.018 0.009 0.018 210.4 251.5 0.043 0.017 0.007 0.008 58.44 71 0.04
EDformer 0.022 0.005 0.01 143.7 184 0.004 0.021 0.004 0.012 201.2 360.5 0.003
Minusformer 0.006 0.005 0.011 246.6 353 0.004 0.007 0.004 0.007 161.4 201 0.003
WITRAN 0.023 0.046 0.065 46.53 61 0.043 0.023 0.048 0.064 46.53 61.5 0.043
Times2D 0.025 0.025 0.042 286.6 472.5 0.018 0.025 0.024 0.041 240.1 431.5 0.017
BiLSTM 0.011 0.012 0.023 320.6 397 0.012 0.011 0.012 0.022 300.3 369 0.012
ConvLSTM 0.024 0.007 0.014 149.6 198 0.007 0.009 0.016 0.027 143.4 184.5 0.006
GRU 0.009 0.007 0.013 143.3 181.5 0.006 0.009 0.006 0.013 132.1 174.5 0.006
LSTM 0.008 0.007 0.014 144.8 184.5 0.007 0.008 0.007 0.014 132 179.5 0.006
RNN 0.006 0.002 0.004 105.3 135.5 0.001 0.006 0.001 0.003 94.76 132.5 0.001

across time and variables. Since MLPs do not explicitly model sequence order, embedding layers might be
expected to play a more important role. Yet, our results show that embeddings are often redundant in MLPs.
Hybrid and decomposition-based models incorporate preprocessing such as seasonal-trend decomposition,
filtering, or statistical projections. These models are less sensitive to the presence of embedding layers.
For example, PDF shows a modest gain. Since these architectures already extract and isolate key patterns
before learning begins, embedding layers often duplicate or disrupt this structure, resulting in minimal or
inconsistent effects.

Confidence intervals. Since deep learning models are inherently stochastic and sensitive to random
initialization, we compute 95% confidence intervals (CIs) to assess the statistical reliability of our findings
on ETTh1 and ETTm1. The results demonstrate that in all cases—except for LiNo on ETTm1 with
H = 720 in both MAE and MSE—removing the embedding layers improves performance. Additionally,
the corresponding confidence intervals for the models with and without embedding layers do not overlap,
indicating statistically significant improvements. Tables 20 and 21 in Appendix A.5 report the MSE and
MAE, respectively, along with corresponding 95% confidence intervals for selected high-performing models.

Configurations with degraded performance. While the majority of models benefit from removing
embedding layers, a few configurations exhibit performance degradation. This outcome can be attributed to
several architectural and/or hardware-related factors. First, in the absence of the embedding layer, the model
manually permutes, concatenates, and processes the raw input data to reconcile it with the model expected
dimensions. These operations introduce additional intermediate tensors and temporary memory allocations,
which increase the average memory usage during training. Second, the lower dimensionality resulting from the
removal of embedding layers does not align well with the tile sizes optimized in GPU libraries such as cuBLAS,
leading to less efficient matrix multiplications and increased computational time. In particular, EDformer
originally uses an inverted embedding that transforms the sequence length (e.g., 96) into a typically higher
dimension (e.g., 512). EDformer trains approximately 0.3 to 0.5 seconds slower per epoch and consumes an
additional 400 MB of memory on average when the embedding layers are removed. The extra permutation,
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concatenation, and duplication required to adapt the raw inputs to the expected format increases memory
usage. Furthermore, the encoder operates on input tensors with a sequence dimension of 96 instead of
512, which reduces computational throughput due to suboptimal memory access patterns and kernel launch
configurations in GPU backends.

6 Conclusion

In this paper, we presented a large-scale study assessing the effectiveness of embedding layers in modern time
series forecasting models. Our results show that, despite their widespread use, removing data embedding
layers from many state-of-the-art forecasting models does not degrade forecasting performance—in many
cases, it enhances both forecasting accuracy and computational efficiency. These findings suggest that raw
multivariate inputs are often sufficiently informative without the need for additional embedding transfor-
mations. Our goal is not to imply that data embedding will never be effective in time series forecasting.
Instead, we aim to highlight our promising findings and suggest that the community devote greater atten-
tion to critically assessing the actual impact of embedding layers in existing models. For future studies, the
effectiveness of embedding layers can be explored on other tasks (e.g., classification, clustering, and impu-
tation) and datasets. Additionally, the effectiveness of other overlooked architectural components—such as
normalization strategies, including RevIN—can be investigated.

Limitations

Here, we outline the limitations of our study:

• We evaluate the impact of data embedding layers specifically for time-series forecasting. However,
embedding layers may play different roles in other downstream tasks such as classification, clustering,
or imputation, which are not explored in this work.

• The analysis focuses solely on the effect of embedding layers and does not account for potential
interactions with other architectural components such as normalization strategies or residual con-
nections.

Broader impact statement

This work makes a fundamental contribution to time series analysis, particularly in the context of forecasting.
It encourages researchers to move beyond default assumptions and critically assess whether each architectural
component, such as data embedding layers, meaningfully contributes to performance. Our findings promote
a shift in focus: rather than continually developing more complex models, researchers across domains are
encouraged to revisit and analyze existing architectures. This approach can lead to significant savings
in time, resources, and energy. While our results are limited to forecasting tasks on regularly sampled
datasets, the broader methodology—systematic ablation testing of architectural components—can inspire
more rigorous empirical validation in other areas of machine learning. We hope this work supports the
community in understanding the role and effectiveness of foundational model elements before advancing to
further architectural complexity and innovation.
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A Appendix

A.1 Embedding layer categories

This section provides a summary of the embedding categories and techniques used in our study.

Table 6: Summary of embedding layer categories and techniques used in this study.
Category Technique Description

Temporal
Fixed embedding Maps discrete temporal indices to non-trainable, sinusoidal em-

beddings.
Learnable embedding Maps discrete temporal indices (e.g., hour, day) to trainable

embeddings.
TimeFeature Projects numeric time features into high-dimensional space via

linear projection.

Value Token embedding Projects multivariate features to higher dimensions using 1D
convolution.

Linear projection Maps input features directly to embedding space using linear
layers.

Positional Sinusoidal positional Encodes sequence positions using fixed sine and cosine functions.
Learnable positional Learns embeddings for positional indices in sequences.

Combined Inverted Fuses variables and time features using linear transformations.

Patching Patchwise encoding Divides input sequences into patches, encodes each patch, and
adds positional info.
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A.2 Model Invariances When Removing Embeddings

This section clarifies which architectural components change when the embedding layer is removed and which
remain fixed. We use dmodel to denote the embedding dimension used in the original models, cin to denote
the raw input dimension (number of input features), and seq_len to denote the sequence length (number of
time steps). Table 7 summarizes the effects of embedding techniques that transform the feature dimension
from cin to dmodel, and Table 8 summarizes the effects for embedding techniques that transform the temporal
dimension from seq_len to dmodel.

Table 7: Summary of components affected by the embedding layers that transform the feature dimension
from cin to dmodel.
Component Affected by Removing Embed-

ding?
Notes / Conditions

Multi-head attention Yes, projection layers switch from
dmodel to cin

Must satisfy cin mod nheads = 0

Feed-forward layers (MLPs) Yes, input/output dimensions change
to cin

Hidden dimension dff stays fixed

LayerNorm / residual connec-
tions

Yes, normalization width becomes cin No change to computation

Convolution layers Yes, in_channels becomes cin Kernel sizes, strides, and receptive
fields unchanged

Positional embeddings Yes, dimension becomes cin or is dis-
abled

Temporal positions unaffected

Number of layers (depth) No Encoder/decoder depth unchanged
Temporal dimensions No seq_len, pred_len, patch length, stride

unchanged
Attention mechanism type No Full/local/flash attention unchanged
Receptive field No Determined by architecture, not dmodel
Parameter sharing / weight ty-
ing

No Rules unchanged

Table 8: Summary of components affected by the embedding layers that transform the temporal dimension
from seq_len to dmodel.
Component Affected by Removing Inverted

Embedding?
Notes / Conditions

Multi-head attention Yes, projection layers switch from
dmodel to seq_len

Must satisfy seq_len mod nheads = 0

Feed-forward layers (MLPs) Yes, input/output dimensions change
to seq_len

Hidden dimension dff stays fixed

LayerNorm / residual connec-
tions

Yes, normalization width becomes
seq_len

No change to computation

Convolution layers Yes, in_channels becomes seq_len Kernel sizes, strides, and receptive
fields unchanged

Temporal encoding Yes, method changes from learned to
concatenated

With: learned temporal embeddings;
Without: raw time features

Number of layers (depth) No Encoder/decoder depth unchanged
Channel/variate dimensions No cin + ntime_features unchanged
Attention mechanism type No Full/local/flash attention unchanged
Sequence dimension for atten-
tion

No Attention operates over cin +
ntime_features

Receptive field No Determined by architecture, not dmodel
Parameter sharing / weight ty-
ing

No Rules unchanged
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A.3 Benchmark datasets

The benchmark datasets used in this paper cover diverse domains, sampling frequencies, and temporal
behaviors, enabling a broad and rigorous evaluation of time series forecasting performance. The Electric-
ity Transformer Temperature (ETT) datasets—ETTh1 and ETTh2 at hourly resolution, and ETTm1 and
ETTm2 at 15-minute resolution—contain two years of transformer oil temperature and electrical load-related
measurements collected from two counties in China. Each timestamp includes six operational features along
with the target oil temperature, providing multivariate sequences.

The weather dataset consists of one year of meteorological observations recorded at 21 weather stations across
Germany. It includes 21 meteorological variables sampled every 10 minutes, representing a high-frequency
multivariate dataset with strong short-term fluctuations.

The exchange rate dataset includes more than three decades of daily exchange rates for eight major foreign
currencies against the U.S. dollar. This dataset captures the volatility and non-stationarity typical of financial
time series and provides a long-span, low-frequency benchmark for testing forecasting robustness.

Finally, the National Illness dataset provides weekly influenza-like illness case rates with severe complications
collected across U.S. regions from 2002 to 2020. Together, these datasets span high-frequency (10-minute),
medium-frequency (15-minute and hourly), daily, and weekly sampling regimes, with diverse feature dimen-
sions and temporal dynamics. This diversity provides a robust foundation for evaluating the impact of data
embedding layers on time series forecasting algorithms (Jin et al., 2024).

Table 9: Summary of benchmark datasets used in this study.
Dataset Dimension Train / Val / Test Frequency Duration

Weather 21 (36,600 / 5,079 / 10,348) 10 minutes Jan 2020 – Jan 2021
ETTm1 7 (34,465 / 11,521 / 11,521) 15 minutes Jul 2016 – Jul 2018
ETTm2 7 (34,465 / 11,521 / 11,521) 15 minutes Jul 2016 – Jul 2018
ETTh1 7 (8,545 / 2,881 / 2,881) 1 hour Jul 2016 – Jul 2018
ETTh2 7 (8,545 / 2,881 / 2,881) 1 hour Jul 2016 – Jul 2018
Exchange Rate 8 (40,960 / 5,320 / 11,376) Daily Jan 1990 – Oct 2021
National Illness 7 (4,067 / 434 / 1,106) Weekly Jan 2002 – Jul 2020
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A.4 Forecasting results on ETTh2 and ETTm2, Exchange Rate, Weather, and National Illness

This section presents additional forecasting results on the ETTh2, ETTm2, Exchange Rate, Weather, and
National Illness datasets, complementing the ETTh1 and ETTm1 results reported in the main text (Table 2
and Table 4). These datasets span a diverse range of temporal resolutions—from high-frequency 10-minute
and 15-minute observations to low-frequency weekly and daily records—and exhibit substantially different
temporal behaviors, noise patterns, and seasonal structures. Evaluating models on this broader collection
of benchmarks allows us to verify whether the trends observed in the main paper generalize beyond the
ETTm1 and ETTh1 datasets. Across these datasets, we report the same set of forecasting accuracy metrics
(MSE and MAE) over multiple prediction horizons, along with the corresponding computational efficiency
metrics. These additional results allow us to examine whether the effects of removing embedding layers
remain consistent under different data scales, sampling rates, and domain characteristics. In particular,
the Exchange Rate and Illness datasets represent low-resolution, low-dimensional forecasting tasks, whereas
ETTm2 and Weather reflect higher-resolution, multivariate inputs.
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Table 10: ETTh2 forecasting results with and without embeddings for input length L = 96 and prediction
horizons H ∈ {96, 192, 336, 720}. Bold values indicate better performance.

Model Metric With Embedding Without Embedding

H Time Mem H Time Mem

96 192 336 720 96 192 336 720

PDF MSE 0.307 0.376 0.414 0.437 47.82 2838 0.300 0.375 0.412 0.431 16.45 2752
MAE 0.353 0.401 0.426 0.452 0.348 0.397 0.426 0.447

ETSformer MSE 0.399 0.521 0.615 0.692 23.50 2721 0.345 0.436 0.487 0.494 8.80 2080
MAE 0.435 0.505 0.569 0.616 0.399 0.446 0.483 0.497

PatchTST MSE 0.300 0.382 0.435 0.447 14.96 2351 0.297 0.375 0.413 0.418 6.46 2758
MAE 0.350 0.404 0.441 0.463 0.384 0.399 0.428 0.440

MICN MSE 0.354 0.475 0.602 0.829 17.95 2761 0.333 0.463 0.567 0.804 5.24 2708
MAE 0.400 0.477 0.540 0.654 0.389 0.472 0.527 0.646

SOFTS MSE 0.305 0.375 0.437 0.439 10.06 634 0.295 0.374 0.416 0.434 8.09 473
MAE 0.350 0.396 0.437 0.447 0.347 0.395 0.430 0.450

VarDrop MSE 0.306 0.393 0.423 0.436 9.64 2288 0.303 0.383 0.423 0.418 8.39 2274
MAE 0.355 0.406 0.438 0.452 0.353 0.400 0.436 0.442

Crossformer MSE 0.588 0.978 0.996 1.161 56.51 2243 0.573 0.757 0.796 0.945 56.41 2223
MAE 0.576 0.698 0.709 0.787 0.537 0.628 0.643 0.803

iFlashAttention MSE 0.306 0.392 0.428 0.442 11.43 2303 0.305 0.382 0.426 0.417 10.00 2294
MAE 0.355 0.406 0.438 0.455 0.353 0.400 0.430 0.440

iFlowformer MSE 0.308 0.389 0.431 0.440 13.02 2293 0.308 0.382 0.422 0.432 10.70 2281
MAE 0.357 0.409 0.440 0.453 0.355 0.402 0.433 0.447

PPDformer MSE 0.321 0.405 0.439 0.461 36.94 2727 0.320 0.401 0.436 0.438 22.24 2714
MAE 0.365 0.415 0.445 0.465 0.361 0.406 0.439 0.454

LiNo MSE 0.305 0.384 0.389 0.417 3.96 2035 0.296 0.378 0.385 0.412 3.83 2021
MAE 0.352 0.398 0.413 0.436 0.345 0.395 0.411 0.432

EDformer MSE 0.422 0.485 0.549 0.799 3.66 2288 0.404 0.484 0.504 0.688 3.98 2661
MAE 0.429 0.464 0.500 0.621 0.423 0.482 0.490 0.593

Minusformer MSE 0.304 0.379 0.430 0.427 10.94 2420 0.293 0.373 0.421 0.422 8.78 2699
MAE 0.349 0.396 0.435 0.441 0.344 0.393 0.429 0.439

WITRAN MSE 1.659 2.810 2.641 3.488 27.12 804 1.771 2.752 2.632 3.752 25.12 803
MAE 1.055 1.464 1.415 1.663 1.120 1.439 1.403 1.682

Times2D MSE 0.292 0.376 0.379 0.413 5.52 775 0.294 0.371 0.376 0.406 5.19 740
MAE 0.340 0.391 0.407 0.434 0.342 0.390 0.405 0.429

BiLSTM MSE 1.433 1.925 2.258 2.466 13.98 1700 0.863 3.155 2.95 2.377 13.83 1661
MAE 0.996 1.154 1.279 1.365 0.74 1.478 1.478 1.23

ConvLSTM MSE 1.362 1.834 2.04 2.176 10.36 672 0.978 2.62 2.435 2.624 10.26 661
MAE 0.935 1.074 1.148 1.208 0.784 1.354 1.29 1.34

GRU MSE 0.947 1.717 1.926 3.377 10.26 663 0.924 1.816 2.263 2.2 9.701 648
MAE 0.782 1.041 1.112 1.615 0.769 1.107 1.249 1.217

LSTM MSE 0.902 2.631 2.842 2.903 11.5 664 0.928 2.633 3.377 2.737 10.61 659
MAE 0.758 1.399 1.466 1.476 0.773 1.381 1.604 1.274

RNN MSE 0.994 2.555 1.643 1.942 5.24 633 0.962 1.963 2.434 2.265 4.81 633
MAE 0.834 1.271 0.968 1.049 0.766 1.158 1.278 1.19
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Table 11: Average efficiency results for the ETTh2 dataset with and without embeddings, including Dat-
aLoader time, forward pass time, backward pass with optimization time, peak allocated GPU memory, peak
reserved GPU memory, and inference latency.

With Embedding Without Embedding

Model DL FW BW PA PR Lat DL FW BW PA PR Lat

PDF 0.064 0.113 0.173 1304 1494 0.053 0.053 0.082 0.121 497.4 585.5 0.027
MICN 0.02 0.022 0.07 1266 1811 0.019 0.012 0.007 0.007 102.6 117 0.004
ETSformer 0.001 0.027 0.041 2157 2456 0.033 0.001 0.008 0.012 171.7 192.5 0.006
PatchTST 0.014 0.009 0.02 445.3 545.5 0.008 0.012 0.005 0.011 184.3 190.5 0.003
SOFTS 0.011 0.004 0.009 205.6 229 0.003 0.011 0.004 0.008 164.8 319.5 0.002
VarDrop 0.011 0.005 0.013 228.5 274 0.004 0.011 0.005 0.011 166.9 322 0.003
Crossformer 0.008 0.024 0.065 1514 1758 0.016 0.008 0.024 0.065 1514 1762 0.016
FlashAttention 0.013 0.007 0.017 232.6 279.5 0.006 0.012 0.007 0.014 167.7 324 0.005
iFlowformer 0.006 0.006 0.013 259 291.5 0.004 0.006 0.005 0.012 170.4 325 0.004
PPDformer 0.047 0.062 0.097 1290 2888 0.058 0.041 0.051 0.042 461.6 1084 0.047
LiNo 0.031 0.01 0.018 210.4 251.5 0.043 0.029 0.007 0.009 58.44 71 0.038
EDformer 0.043 0.005 0.01 143.7 184 0.004 0.045 0.004 0.012 201.2 360.5 0.003
Minusformer 0.01 0.005 0.011 246.6 353 0.004 0.008 0.004 0.007 161.4 201 0.003
WITRAN 0.027 0.048 0.064 46.53 61 0.043 0.026 0.049 0.065 46.53 61.5 0.043
Times2D 0.04 0.026 0.042 286.6 472 0.018 0.04 0.025 0.04 240.1 431.5 0.018
BiLSTM 0.014 0.012 0.023 320.6 397 0.012 0.014 0.012 0.022 300.3 369 0.012
ConvLSTM 0.013 0.008 0.052 149.6 198 0.007 0.013 0.007 0.014 143.4 184.5 0.006
GRU 0.013 0.007 0.013 143.3 181.5 0.006 0.013 0.006 0.013 132.1 174.5 0.006
LSTM 0.011 0.007 0.014 144.8 184.5 0.007 0.011 0.007 0.014 132 179 0.006
RNN 0.01 0.002 0.004 105.3 135.5 0.001 0.01 0.001 0.003 94.76 132.5 0.001
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Table 12: ETTm2 forecasting results with and without embeddings for input length L = 96 and prediction
horizons H ∈ {96, 192, 336, 720}. Bold values indicate better performance.
Model Metric With Embedding Without Embedding

H Time Mem H Time Mem

96 192 336 720 96 192 336 720

PDF MSE 0.183 0.246 0.300 0.403 193.9 2975 0.176 0.241 0.304 0.402 66.29 2877
MAE 0.265 0.307 0.342 0.401 0.258 0.301 0.344 0.403

ETSformer MSE 0.267 0.333 0.398 0.501 92.92 2806 0.189 0.255 0.318 0.432 32.23 2209
MAE 0.372 0.409 0.444 0.495 0.284 0.323 0.361 0.427

PatchTST MSE 0.183 0.248 0.311 0.407 58.71 2472 0.177 0.244 0.314 0.410 24.58 2458
MAE 0.263 0.309 0.351 0.402 0.261 0.305 0.350 0.408

MICN MSE 0.183 0.272 0.396 0.579 70.61 2845 0.193 0.280 0.314 0.508 17.24 2836
MAE 0.280 0.346 0.429 0.532 0.292 0.358 0.350 0.498

SOFTS MSE 0.180 0.251 0.315 0.417 30.73 638 0.179 0.247 0.309 0.411 28.43 481
MAE 0.262 0.309 0.349 0.407 0.263 0.308 0.346 0.405

VarDrop MSE 0.182 0.250 0.312 0.410 36.48 499 0.181 0.250 0.322 0.421 28.34 391
MAE 0.266 0.311 0.350 0.405 0.265 0.309 0.357 0.410

Crossformer MSE 0.237 0.450 0.640 1.660 232.8 2145 0.257 0.437 0.701 1.520 232.7 2131
MAE 0.342 0.462 0.548 0.914 0.336 0.442 0.602 0.886

iFlashAttention MSE 0.182 0.250 0.312 0.411 39.93 2389 0.194 0.249 0.322 0.416 33.69 2375
MAE 0.266 0.311 0.349 0.405 0.279 0.309 0.357 0.408

iFlowformer MSE 0.183 0.249 0.311 0.409 32.70 2391 0.181 0.248 0.312 0.420 27.12 2391
MAE 0.269 0.310 0.349 0.404 0.267 0.307 0.348 0.410

PPDformer MSE 0.188 0.269 0.322 0.417 148.7 2870 0.180 0.254 0.308 0.407 86.57 2802
MAE 0.276 0.329 0.357 0.411 0.260 0.307 0.345 0.403

LiNo MSE 0.177 0.244 0.309 0.404 13.98 2147 0.173 0.241 0.304 0.403 11.19 2171
MAE 0.260 0.304 0.346 0.398 0.256 0.301 0.342 0.399

EDformer MSE 0.310 0.500 0.647 0.755 12.34 2397 0.262 0.449 0.668 0.776 10.93 2804
MAE 0.388 0.492 0.590 0.637 0.353 0.474 0.607 0.617

Minusformer MSE 0.183 0.248 0.309 0.409 41.26 2543 0.176 0.246 0.308 0.401 33.69 2848
MAE 0.268 0.308 0.347 0.402 0.260 0.304 0.345 0.400

WITRAN MSE 0.807 1.136 1.293 4.448 109.5 943 0.795 1.092 1.313 4.439 107.5 925
MAE 0.722 0.903 0.916 1.793 0.709 0.886 0.965 1.628

Times2D MSE 0.179 0.241 0.301 0.397 20.72 781 0.175 0.240 0.300 0.394 21.53 764
MAE 0.263 0.301 0.339 0.394 0.256 0.299 0.338 0.392

BiLSTM MSE 0.419 0.599 0.895 2.205 54.71 1705 0.346 0.574 0.902 1.641 52.75 1662
MAE 0.477 0.602 0.762 1.23 0.442 0.591 0.753 1.045

ConvLSTM MSE 0.395 0.6 1.303 1.855 91.44 685 0.549 0.765 1.082 2.208 36.62 670
MAE 0.465 0.617 0.908 1.109 0.589 0.712 0.858 1.259

GRU MSE 0.321 0.698 0.883 1.478 36.14 667 0.375 0.647 1.035 1.52 35.36 656
MAE 0.415 0.646 0.745 0.968 0.469 0.65 0.795 1.001

LSTM MSE 0.338 0.519 0.846 1.695 39.92 670 0.418 0.503 0.879 1.685 36.15 662
MAE 0.428 0.548 0.735 1.076 0.495 0.551 0.737 1.067

RNN MSE 0.456 0.578 1.033 2.368 16.53 634 0.617 0.734 0.869 1.294 14.51 636
MAE 0.498 0.58 0.809 1.223 0.607 0.668 0.743 0.913
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Table 13: Average efficiency results for the ETTm2 dataset with and without embeddings, including Dat-
aLoader time, forward pass time, backward pass with optimization time, peak allocated GPU memory, peak
reserved GPU memory, and inference latency.

With Embedding Without Embedding

Model DL FW BW PA PR Lat DL FW BW PA PR Lat

PDF 0.065 0.116 0.182 1304 1494 0.048 0.053 0.082 0.122 497.4 585.5 0.024
MICN 0.017 0.022 0.07 1266 1811 0.019 0.008 0.005 0.006 102.6 117 0.005
ETSformer 0.001 0.027 0.04 2157 2456 0.033 0.001 0.008 0.012 171.7 192.5 0.006
PatchTST 0.011 0.009 0.02 445.3 545.5 0.008 0.008 0.005 0.011 184.3 190.5 0.003
SOFTS 0.008 0.004 0.009 205.6 229 0.003 0.007 0.003 0.008 164.8 319.5 0.002
VarDrop 0.008 0.005 0.013 228.5 274 0.004 0.008 0.004 0.011 166.9 322 0.003
Crossformer 0.007 0.024 0.065 1514 1757 0.016 0.007 0.024 0.065 1514 1762 0.016
FlashAttention 0.01 0.007 0.017 232.6 279.5 0.006 0.009 0.006 0.014 167.7 324 0.005
iFlowformer 0.01 0.008 0.019 259 291.5 0.006 0.01 0.007 0.015 170.4 324.5 0.006
PPDformer 0.023 0.06 0.08 1206 2708 0.059 0.02 0.05 0.042 448.3 1080 0.049
LiNo 0.019 0.01 0.018 210.4 251 0.043 0.017 0.007 0.008 58.44 71 0.04
EDformer 0.022 0.005 0.01 143.7 184 0.004 0.02 0.004 0.012 201.2 360.5 0.003
Minusformer 0.006 0.005 0.011 246.6 353 0.004 0.006 0.004 0.007 161.4 201 0.003
WITRAN 0.026 0.046 0.062 46.53 61 0.041 0.027 0.046 0.063 46.53 61.5 0.042
Times2D 0.025 0.025 0.042 286.6 472 0.018 0.025 0.025 0.04 240.1 431 0.017
BiLSTM 0.011 0.012 0.023 320.6 397 0.012 0.011 0.012 0.022 300.3 369 0.012
ConvLSTM 0.009 0.007 0.02 149.6 198 0.007 0.008 0.007 0.014 143.4 184.5 0.006
GRU 0.009 0.007 0.013 143.3 181.5 0.006 0.009 0.006 0.013 132.1 174.5 0.006
LSTM 0.008 0.007 0.014 144.8 184.5 0.007 0.008 0.007 0.014 132 179.5 0.006
RNN 0.006 0.002 0.004 105.3 135.5 0.001 0.014 0.001 0.003 94.76 132.5 0.001
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Table 14: Exchange Rate forecasting results with and without embeddings for prediction horizons H ∈
{96, 192, 336, 720}. Bold values indicate better performance.

Model Metric With Embedding Without Embedding

H Time Mem H Time Mem

96 192 336 720 96 192 336 720

PDF MSE 0.083 0.176 0.336 0.969 64.11 545 0.085 0.178 0.332 0.895 59.31 454
MAE 0.201 0.299 0.418 0.73 0.202 0.298 0.416 0.71

MICN MSE 0.097 0.212 0.369 0.69 143.3 1496 0.079 0.155 0.292 0.759 36.1 384
MAE 0.22 0.349 0.465 0.638 0.203 0.294 0.415 0.668

ETSformer MSE 0.129 0.217 0.369 0.892 196.6 1694 0.091 0.188 0.358 0.576 62.59 367
MAE 0.272 0.349 0.455 0.726 0.216 0.323 0.452 0.598

PatchTST MSE 0.084 0.175 0.324 1.138 67.92 734 0.084 0.181 0.327 0.913 45.23 379
MAE 0.202 0.297 0.412 0.783 0.203 0.304 0.415 0.717

SOFTS MSE 0.086 0.18 0.329 0.919 36.31 385 0.099 0.187 0.344 0.844 31.51 395
MAE 0.206 0.302 0.415 0.719 0.222 0.309 0.427 0.696

VarDrop MSE 0.11 0.191 0.345 0.85 44.84 412 0.088 0.183 0.34 0.868 37.28 391
MAE 0.238 0.318 0.427 0.698 0.209 0.305 0.423 0.704

Crossformer MSE 0.302 0.754 1.411 1.159 386.1 1711 0.218 0.436 1.098 1.307 382.8 1685
MAE 0.421 0.647 0.948 0.877 0.341 0.506 0.801 0.901

FlashAttention MSE 0.112 0.184 0.326 0.88 49.59 422 0.088 0.183 0.34 0.868 43.84 406
MAE 0.24 0.311 0.416 0.709 0.209 0.305 0.424 0.704

iFlowformer MSE 0.09 0.188 0.336 0.8 58.63 448 0.088 0.183 0.337 0.867 54.22 410
MAE 0.212 0.311 0.422 0.675 0.209 0.304 0.422 0.704

PPDformer MSE 0.103 0.203 0.371 1.022 214.2 911 0.112 0.218 0.357 0.903 148.3 583
MAE 0.228 0.321 0.442 0.764 0.232 0.331 0.432 0.719

LiNo MSE 0.087 0.186 0.346 0.928 43.48 305 0.085 0.178 0.328 0.83 38.56 280
MAE 0.206 0.308 0.427 0.733 0.204 0.299 0.416 0.685

EDformer MSE 0.098 0.296 0.752 0.909 18.63 412 0.12 0.219 1.113 0.96 16.52 348
MAE 0.23 0.382 0.611 0.737 0.239 0.327 0.73 0.745

Minusformer MSE 0.087 0.176 0.316 1.207 68.71 555 0.084 0.177 0.331 0.854 59.23 437
MAE 0.207 0.299 0.407 0.814 0.204 0.298 0.416 0.696

WITRAN MSE 0.85 0.963 1.732 3.153 179.9 292 0.894 0.985 1.698 3.183 173.1 294
MAE 0.762 0.791 1.1 1.498 0.783 0.8 1.088 1.505

Times2D MSE 0.082 0.172 0.327 0.847 42.7 479 0.082 0.175 0.325 0.837 42.08 451
MAE 0.199 0.293 0.413 0.692 0.198 0.296 0.412 0.688

BiLSTM MSE 0.541 0.849 1.401 2.094 57.76 880 0.36 0.539 0.757 0.943 55.98 843
MAE 0.595 0.747 0.983 1.216 0.486 0.602 0.732 0.815

ConvLSTM MSE 0.51 1.156 1.501 2.426 104.1 692 0.553 0.828 1.032 1.843 42.7 674
MAE 0.585 0.889 0.967 1.31 0.611 0.758 0.835 1.135

GRU MSE 0.465 1.234 0.921 1.187 121.6 670 0.388 0.585 0.837 1.126 34.46 662
MAE 0.563 0.918 0.809 0.932 0.503 0.63 0.765 0.879

LSTM MSE 0.589 1.099 1.168 1.778 35.21 1497 0.596 0.959 0.86 1.185 34.43 1494
MAE 0.609 0.867 0.886 1.064 0.653 0.781 0.786 0.91

RNN MSE 0.586 0.68 0.839 1.116 15.68 631 0.517 1.493 0.904 1.105 14.9 630
MAE 0.662 0.715 0.788 0.895 0.59 1.057 0.803 0.877

23



Published in Transactions on Machine Learning Research (12/2025)

Table 15: Average efficiency results for the Exchange Rate dataset with and without embeddings, including
DataLoader time, forward pass time, backward pass with optimization time, peak allocated GPU memory,
peak reserved GPU memory, and inference latency.

With Embedding Without Embedding

Model DL FW BW PA PR Lat DL FW BW PA PR Lat

PDF 0.014 0.025 0.048 446.9 504 0.018 0.014 0.023 0.041 302.5 334.5 0.016
MICN 0.01 0.022 0.069 1266 1807 0.018 0.008 0.004 0.008 166.8 241.5 0.003
ETSformer 0.015 0.059 0.072 2157 2455 0.057 0.009 0.012 0.017 173.1 194.5 0.009
PatchTST 0.009 0.01 0.024 472.2 591 0.008 0.007 0.005 0.013 200.6 228 0.004
SOFTS 0.007 0.004 0.009 208.7 230.5 0.003 0.007 0.004 0.008 165.6 300 0.002
VarDrop 0.007 0.005 0.013 231.2 259 0.004 0.01 0.004 0.01 168.2 303 0.003
Crossformer 0.011 0.028 0.117 1640 1866 0.025 0.011 0.028 0.112 1639 1863 0.025
FlashAttention 0.008 0.006 0.016 235.6 266.5 0.006 0.007 0.006 0.013 169 304.5 0.005
iFlowformer 0.008 0.008 0.019 263.2 288.5 0.006 0.008 0.007 0.016 171.8 306 0.006
PPDformer 0.018 0.062 0.074 1104 2160 0.057 0.013 0.05 0.036 419.6 953.5 0.05
LiNo 0.008 0.009 0.008 56.93 64 0.041 0.007 0.005 0.008 31.7 37 0.004
EDformer 0.017 0.005 0.011 148.6 195.5 0.004 0.018 0.005 0.013 202.5 362.5 0.003
Minusformer 0.005 0.005 0.012 246.9 352.5 0.004 0.005 0.004 0.009 167.7 336 0.004
WITRAN 0.021 0.047 0.067 46.75 61 0.044 0.017 0.047 0.067 46.75 61.5 0.044
Times2D 0.022 0.027 0.045 321.6 518 0.019 0.023 0.027 0.042 267.2 459 0.018
BiLSTM 0.013 0.012 0.023 320.8 398 0.012 0.007 0.012 0.022 300.5 369.5 0.011
ConvLSTM 0.005 0.007 0.028 149.8 198 0.007 0.005 0.007 0.021 143.6 184.5 0.006
GRU 0.012 0.007 0.025 143.6 182 0.006 0.012 0.006 0.019 132.3 174.5 0.006
LSTM 0.005 0.007 0.014 145 184.5 0.007 0.005 0.006 0.013 132.2 180 0.006
RNN 0.004 0.002 0.004 105.5 135.5 0.001 0.004 0.001 0.003 94.99 133 0.001

24



Published in Transactions on Machine Learning Research (12/2025)

Table 16: Weather forecasting results with and without embeddings for prediction horizons H ∈
{96, 192, 336, 720}. Bold values indicate better performance.

Model Metric With Embedding Without Embedding

H Time Mem H Time Mem

96 192 336 720 96 192 336 720

PDF MSE 0.175 0.22 0.276 0.35 98.54 881 0.178 0.224 0.279 0.354 89.46 778
MAE 0.217 0.255 0.296 0.346 0.219 0.258 0.298 0.347

MICN MSE 0.192 0.233 0.275 0.327 40.29 776 0.186 0.226 0.261 0.31 38.76 728
MAE 0.265 0.3 0.333 0.371 0.255 0.291 0.313 0.349

VarDrop MSE 0.196 0.243 0.293 0.364 49.43 423 0.178 0.224 0.284 0.358 57.7 510
MAE 0.234 0.273 0.308 0.355 0.218 0.258 0.301 0.351

Crossformer MSE 0.16 0.204 0.274 0.401 327.3 2068 0.153 0.207 0.272 0.353 321.2 2082
MAE 0.231 0.274 0.334 0.404 0.224 0.271 0.323 0.379

FlashAttention MSE 0.195 0.243 0.293 0.364 56.08 456 0.176 0.222 0.283 0.356 72.95 578
MAE 0.234 0.273 0.308 0.355 0.215 0.255 0.3 0.35

iFlowformer MSE 0.173 0.227 0.279 0.359 62.12 438 0.172 0.227 0.283 0.357 59.96 519
MAE 0.215 0.261 0.298 0.352 0.211 0.26 0.3 0.349

PPDformer MSE 0.195 0.239 0.293 0.362 454.7 1492 0.16 0.21 0.27 0.348 268.6 797
MAE 0.243 0.277 0.314 0.357 0.204 0.254 0.297 0.348

LiNo MSE 0.163 0.205 0.262 0.349 22.12 842 0.159 0.207 0.265 0.346 16.62 624
MAE 0.207 0.247 0.289 0.347 0.204 0.249 0.294 0.347

EDformer MSE 0.201 0.25 0.292 0.354 56.67 554 0.172 0.21 0.263 0.331 37.66 527
MAE 0.268 0.317 0.348 0.396 0.229 0.266 0.31 0.358

Minusformer MSE 0.17 0.223 0.282 0.355 83.18 562 0.175 0.223 0.279 0.356 78.74 526
MAE 0.21 0.257 0.3 0.348 0.214 0.257 0.298 0.349

WITRAN MSE 0.502 0.439 0.44 0.604 184.8 291 0.506 0.395 0.398 0.55 186 293
MAE 0.526 0.477 0.469 0.563 0.52 0.439 0.432 0.53

Times2D MSE 0.181 0.232 0.285 0.357 187.1 6137 0.179 0.23 0.281 0.356 170 5358
MAE 0.233 0.262 0.3 0.347 0.229 0.26 0.297 0.347

BiLSTM MSE 0.239 0.272 0.336 0.418 70.51 1218 0.239 0.282 0.329 0.398 69.12 1161
MAE 0.328 0.35 0.398 0.453 0.328 0.363 0.396 0.438

ConvLSTM MSE 0.297 0.313 0.387 0.469 55.02 849 0.292 0.29 0.338 0.405 52.24 843
MAE 0.374 0.386 0.437 0.486 0.376 0.371 0.404 0.445

GRU MSE 0.576 0.291 0.35 0.435 45.24 807 0.195 0.256 0.301 0.415 45.16 785
MAE 0.563 0.367 0.405 0.459 0.283 0.338 0.375 0.45

LSTM MSE 0.288 0.297 0.353 0.432 44.05 1668 0.232 0.278 0.315 0.413 44.24 1624
MAE 0.363 0.37 0.41 0.458 0.321 0.359 0.378 0.449

RNN MSE 0.423 0.37 0.347 0.858 40 683 0.228 0.29 0.341 0.434 40.26 655
MAE 0.477 0.436 0.407 0.723 0.315 0.371 0.403 0.465
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Table 17: Average efficiency results for the Weather dataset with and without embeddings, including Dat-
aLoader time, forward pass time, backward pass with optimization time, peak allocated GPU memory, peak
reserved GPU memory, and inference latency.

With Embedding Without Embedding

Model DL FW BW PA PR Lat DL FW BW PA PR Lat

PDF 0.01 0.017 0.036 581.4 622.5 0.011 0.01 0.017 0.031 384.4 420 0.01
MICN 0.008 0.004 0.01 430.1 571 0.003 0.008 0.004 0.009 307.2 509 0.003
ETSformer 0.007 0.021 0.025 635.4 756 0.027 0.006 0.008 0.011 127.1 146 0.006
PatchTST 0.003 0.003 0.005 91.53 112 0.002 0.003 0.002 0.005 177.5 286.5 0.002
SOFTS 0.005 0.002 0.004 103.7 130.5 0.002 0.005 0.002 0.007 164 315.5 0.002
VarDrop 0.011 0.006 0.012 143.8 186 0.004 0.011 0.005 0.011 181.4 436 0.003
Crossformer 0.013 0.027 0.095 1342 1474 0.021 0.013 0.027 0.091 1339 1472 0.021
FlashAttention 0.011 0.007 0.014 160 205 0.006 0.012 0.01 0.02 185.4 441.5 0.008
iFlowformer 0.012 0.009 0.018 196.6 245 0.007 0.011 0.007 0.017 186.2 440.5 0.006
PPDformer 0.037 0.122 0.182 2188 4088 0.111 0.039 0.09 0.068 810.6 1456 0.084
LiNo 0.02 0.013 0.023 444.5 547 0.036 0.02 0.011 0.008 134.1 162.5 0.032
EDformer 0.016 0.005 0.012 284.8 350 0.004 0.014 0.004 0.007 195.8 314.5 0.003
Minusformer 0.009 0.005 0.013 288.6 370.5 0.004 0.01 0.004 0.01 186.6 439 0.003
WITRAN 0.021 0.048 0.064 50.26 68.5 0.042 0.021 0.047 0.064 50.26 63.5 0.044
Times2D 0.139 0.237 0.24 915.2 1207 0.16 0.137 0.255 0.193 780.8 1077 0.234
BiLSTM 0.01 0.014 0.028 733.5 841 0.014 0.01 0.014 0.028 674 768 0.013
ConvLSTM 0.014 0.008 0.018 339.8 441 0.008 0.008 0.008 0.042 321.4 411 0.007
GRU 0.008 0.008 0.016 308.2 386.5 0.007 0.008 0.007 0.023 277.6 356.5 0.007
LSTM 0.007 0.008 0.018 324.6 409.5 0.008 0.007 0.007 0.018 288.1 374.5 0.007
RNN 0.008 0.008 0.025 154.5 208 0.007 0.008 0.007 0.012 137.3 175.5 0.007
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Table 18: National illness forecasting results with and without embeddings for prediction horizons H ∈
{24, 36, 48, 60}. Bold values indicate better performance.
Model Metric With Embedding Without Embedding

H Time Mem H Time Mem

96 192 336 720 96 192 336 720

PDF MSE 1.981 2.203 1.882 1.885 9.2 823 2.28 2.288 2.1 2.001 8.702 741
MAE 0.842 0.873 0.838 0.869 0.903 0.935 0.894 0.91

MICN MSE 2.809 2.83 2.918 2.91 4.775 738 2.879 2.862 2.849 2.965 3.552 563
MAE 1.162 1.156 1.167 1.161 1.162 1.155 1.154 1.177

ETSformer MSE 2.918 3.239 3.201 3.343 6.861 948 4.24 4.686 4.617 4.282 4.425 607
MAE 1.174 1.237 1.212 1.232 1.442 1.53 1.51 1.44

PatchTST MSE 1.785 1.677 1.587 2.252 4.798 1225 1.888 1.776 1.886 1.715 3.784 1083
MAE 0.85 0.858 0.827 1.011 0.885 0.872 0.9 0.888

SOFTS MSE 2.37 1.722 2.115 1.89 3.168 639 1.54 1.777 1.77 1.886 3.041 597
MAE 0.9 0.865 0.914 0.925 0.751 0.848 0.871 0.938

VarDrop MSE 3.004 2.708 2.576 2.285 3.493 1677 1.814 2.185 1.866 1.976 4.046 1632
MAE 0.994 0.956 0.953 0.993 0.855 0.886 0.871 0.955

Crossformer MSE 4.903 4.965 4.258 4.971 10.44 2585 4.583 4.925 4.47 5.069 10.35 2582
MAE 1.545 1.542 1.383 1.561 1.493 1.541 1.447 1.584

FlashAttention MSE 4.4 3.64 2.307 2.064 4.364 1355 1.521 2.466 2.086 2.067 4.697 1360
MAE 1.069 1.053 0.966 0.981 0.796 0.941 0.92 0.979

iFlowformer MSE 1.426 2.255 2.02 2.286 4.006 1163 1.398 2.299 1.931 1.925 3.51 1114
MAE 0.794 0.905 0.916 1.017 0.761 0.911 0.907 0.935

PPDformer MSE 3.785 2.444 2.378 3.809 9.519 2192 1.726 2.038 1.994 2.118 7.497 2014
MAE 1.07 0.962 0.963 1.176 0.822 0.939 0.882 0.972

LiNo MSE 1.791 1.729 1.958 2.345 3.713 567 1.744 1.883 1.904 1.959 3.225 545
MAE 0.895 0.841 0.911 1.014 0.845 0.829 0.881 0.92

EDformer MSE 2.531 3.053 2.87 2.849 2.268 1839 3.072 3.322 3.516 3.34 2.143 1970
MAE 1.08 1.191 1.186 1.215 1.204 1.266 1.317 1.287

Minusformer MSE 2.225 2.597 2.515 2.396 3.219 681 1.542 2.151 1.9 2.052 2.678 652
MAE 0.925 0.94 0.935 0.934 0.788 0.868 0.84 0.906

Times2D MSE 1.883 1.891 1.971 2.063 5.485 724 1.853 1.853 1.834 2 5.432 710
MAE 0.84 0.871 0.909 0.931 0.819 0.859 0.874 0.945

BiLSTM MSE 5.14 5.714 5.908 5.842 6.429 867 4.771 5.326 8.16 6.1 6.258 831
MAE 1.496 1.606 1.653 1.651 1.43 1.558 2.072 1.679

ConvLSTM MSE 5.403 5.635 5.841 5.939 4.409 673 5.674 6.229 6.427 6.202 4.419 667
MAE 1.544 1.599 1.637 1.646 1.582 1.683 1.725 1.697

GRU MSE 5.254 5.957 5.673 5.472 4.321 663 4.887 5.714 5.858 4.746 4.241 660
MAE 1.514 1.641 1.593 1.591 1.466 1.611 1.641 1.495

LSTM MSE 5.243 5.921 5.728 5.825 4.346 660 5.041 5.238 6.262 6.048 4.328 658
MAE 1.524 1.634 1.626 1.656 1.486 1.536 1.69 1.659

RNN MSE 4.937 5.568 5.12 5.226 2.68 611 4.98 5.664 5.254 5.439 2.351 620
MAE 1.501 1.59 1.559 1.575 1.495 1.602 1.589 1.618
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Table 19: Average efficiency results for the National Illness dataset with and without embeddings, including
DataLoader time, forward pass time, backward pass with optimization time, peak allocated GPU memory,
peak reserved GPU memory, and inference latency.

With Embedding Without Embedding

Model DL FW BW PA PR Lat DL FW BW PA PR Lat

PDF 0.041 0.042 0.064 352.2 388 0.035 0.045 0.041 0.06 224.3 243.5 0.023
MICN 0.015 0.005 0.013 165.9 393.5 0.004 0.015 0.004 0.006 54.38 76.5 0.004
ETSformer 0.015 0.012 0.025 633.3 753.5 0.022 0.014 0.007 0.01 118.5 124 0.006
PatchTST 0.008 0.004 0.008 152.1 158 0.003 0.007 0.002 0.006 152 158 0.002
SOFTS 0.012 0.002 0.006 201.5 222 0.002 0.013 0.002 0.005 156.8 184 0.002
VarDrop 0.012 0.003 0.01 224.6 266 0.003 0.013 0.005 0.009 158.3 186 0.004
Crossformer 0.009 0.008 0.023 836.1 897.5 0.006 0.009 0.008 0.023 834.2 891.5 0.006
FlashAttention 0.014 0.004 0.011 201.6 242.6 0.003 0.016 0.007 0.013 155.6 184 0.004
iFlowformer 0.013 0.004 0.01 219.4 248 0.003 0.013 0.004 0.007 156.1 184 0.003
PPDformer 0.016 0.024 0.029 613.2 759.5 0.022 0.015 0.021 0.018 245.5 611.5 0.02
LiNo 0.013 0.007 0.006 45.97 52 0.031 0.012 0.004 0.006 21.97 26.5 0.004
EDformer 0.044 0.004 0.007 133.7 168 0.003 0.044 0.004 0.009 187.3 438 0.002
Minusformer 0.012 0.003 0.008 229.3 272.5 0.003 0.012 0.003 0.005 164 245 0.002
Times2D 0.015 0.01 0.016 156.9 218 0.008 0.015 0.01 0.015 155.2 208 0.007
BiLSTM 0.017 0.012 0.023 319.5 390 0.012 0.016 0.012 0.022 299.4 360 0.011
ConvLSTM 0.014 0.007 0.014 146.4 180 0.007 0.014 0.006 0.013 140.3 176 0.006
GRU 0.015 0.007 0.013 138.7 172 0.006 0.015 0.006 0.013 126 168 0.006
LSTM 0.014 0.007 0.014 142.1 176 0.007 0.013 0.006 0.013 127 171 0.006
RNN 0.014 0.002 0.004 104.5 137.7 0.002 0.014 0.001 0.003 92.97 114.3 0.001
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A.5 Statistical significance analysis

Table 20: Confidence intervals for MSE of selected models on ETTh1 and ETTm1 with input length L = 96
and prediction horizons H ∈ {96, 192, 336, 720}. Bold values indicate better performance.

Models H
Times2D PDF LiNo SOFTS

With Embedding

MSE CI MSE CI MSE CI MSE CI

ETTh1

96 0.379 (0.378, 0.380) 0.385 (0.382, 0.388) 0.385 (0.384, 0.386) 0.384 (0.383, 0.386)
192 0.431 (0.429, 0.433) 0.439 (0.436, 0.442) 0.442 (0.438, 0.446) 0.448 (0.445, 0.450)
336 0.473 (0.469, 0.476) 0.492 (0.486, 0.498) 0.476 (0.471, 0.480) 0.501 (0.494, 0.509)
720 0.473 (0.469, 0.477) 0.521 (0.501, 0.544) 0.482 (0.473, 0.491) 0.538 (0.524, 0.552)

ETTm1

96 0.326 (0.323, 0.328) 0.335 (0.334, 0.336) 0.332 (0.331, 0.333) 0.328 (0.325, 0.330)
192 0.371 (0.370, 0.372) 0.374 (0.372, 0.376) 0.383 (0.375, 0.392) 0.386 (0.381, 0.391)
336 0.407 (0.402, 0.411) 0.403 (0.401, 0.405) 0.438 (0.432, 0.444) 0.438 (0.428, 0.447)
720 0.459 (0.455, 0.463) 0.457 (0.455, 0.459) 0.496 (0.485, 0.506) 0.480 (0.477, 0.482)

Without Embedding

MSE CI MSE CI MSE CI MSE CI

ETTh1

96 0.361 (0.359, 0.364) 0.378 (0.376, 0.380) 0.377 (0.375, 0.379) 0.383 (0.382, 0.384)
192 0.428 (0.427, 0.429) 0.432 (0.428, 0.436) 0.428 (0.426, 0.429) 0.441 (0.438, 0.444)
336 0.466 (0.463, 0.469) 0.479 (0.476, 0.482) 0.463 (0.460, 0.466) 0.487 (0.483, 0.490)
720 0.472 (0.468, 0.476) 0.518 (0.499, 0.537) 0.470 (0.464, 0.476) 0.526 (0.514, 0.537)

ETTm1

96 0.325 (0.322, 0.327) 0.324 (0.322, 0.326) 0.326 (0.323, 0.329) 0.322 (0.321, 0.323)
192 0.369 (0.368, 0.370) 0.368 (0.365, 0.370) 0.373 (0.370, 0.376) 0.368 (0.367, 0.369)
336 0.401 (0.397, 0.406) 0.395 (0.394, 0.397) 0.421 (0.415, 0.426) 0.406 (0.405, 0.407)
720 0.455 (0.451, 0.459) 0.454 (0.452, 0.456) 0.497 (0.492, 0.502) 0.476 (0.474, 0.477)
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Table 21: Confidence intervals for MAE of selected models on ETTh1 and ETTm1 with input length L = 96
and prediction horizons H ∈ {96, 192, 336, 720}. Bold values indicate better performance.

Models H
Times2D PDF LiNo SOFTS

With Embedding

MAE CI MAE CI MAE CI MAE CI

ETTh1

96 0.402 (0.400, 0.405) 0.405 (0.403, 0.407) 0.403 (0.402, 0.404) 0.404 (0.403, 0.405)
192 0.432 (0.431, 0.433) 0.438 (0.436, 0.440) 0.433 (0.431, 0.436) 0.442 (0.440, 0.444)
336 0.442 (0.440, 0.444) 0.466 (0.463, 0.470) 0.446 (0.444, 0.448) 0.469 (0.464, 0.475)
720 0.465 (0.462, 0.468) 0.497 (0.484, 0.509) 0.468 (0.463, 0.473) 0.513 (0.504, 0.521)

ETTm1

96 0.364 (0.362, 0.366) 0.368 (0.367, 0.369) 0.367 (0.366, 0.368) 0.365 (0.363, 0.366)
192 0.390 (0.385, 0.395) 0.392 (0.390, 0.393) 0.395 (0.390, 0.399) 0.397 (0.394, 0.400)
336 0.410 (0.405, 0.415) 0.414 (0.412, 0.416) 0.426 (0.423, 0.429) 0.429 (0.424, 0.433)
720 0.441 (0.439, 0.443) 0.465 (0.457, 0.472) 0.460 (0.455, 0.465) 0.455 (0.454, 0.457)

Without Embedding

MAE CI MAE CI MAE CI MAE CI

ETTh1

96 0.392 (0.391, 0.393) 0.399 (0.398, 0.400) 0.399 (0.397, 0.401) 0.402 (0.401, 0.403)
192 0.422 (0.421, 0.423) 0.431 (0.429, 0.433) 0.425 (0.424, 0.426) 0.437 (0.435, 0.439)
336 0.439 (0.438, 0.440) 0.453 (0.450, 0.455) 0.440 (0.438, 0.441) 0.463 (0.460, 0.466)
720 0.465 (0.463, 0.467) 0.491 (0.481, 0.500) 0.463 (0.459, 0.466) 0.506 (0.500, 0.513)

ETTm1

96 0.363 (0.361, 0.365) 0.362 (0.360, 0.364) 0.363 (0.361, 0.365) 0.361 (0.360, 0.362)
192 0.387 (0.385, 0.389) 0.387 (0.385, 0.388) 0.389 (0.387, 0.390) 0.386 (0.385, 0.387)
336 0.406 (0.403, 0.408) 0.408 (0.407, 0.409) 0.419 (0.416, 0.423) 0.411 (0.410, 0.412)
720 0.439 (0.438, 0.441) 0.455 (0.451, 0.460) 0.461 (0.458, 0.464) 0.451 (0.451, 0.452)
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A.6 Embedding and Input Dimensions Across Models

Table 22 summarizes the embedding dimensions used by each forecasting model when the data embedding
layer is enabled, as well as the corresponding raw input dimension when embeddings are removed. For
all datasets, the reported dimensions correspond to experiments with input sequence length L = 96 and
prediction length H = 96, except for the National Illness dataset where a prediction horizon of H = 60 is
used following standard practice. This table provides a unified view of how each model transforms input
features under both settings, clarifying architectural differences across the full set of benchmark datasets.

Table 22: Embedding dimension dmodel (with embeddings) and input dimension cin (without embeddings)
for all models. Values are for L = 96, H = 96, except National Illness (H = 60).
Model ETTh1 ETTh2 ETTm1 ETTm2 Weather Exchange National Illness

dmodel cin dmodel cin dmodel cin dmodel cin dmodel cin dmodel cin dmodel cin

PDF 512 7 512 7 512 7 512 7 64 21 64 8 64 7
MICN 512 7 512 7 512 7 512 7 32 21 512 8 64 7
ETSformer 512 7 512 7 512 7 512 7 512 21 512 8 512 7
LiNo 512 7 512 7 512 7 512 7 512 21 256 8 256 7
Times2D 64 7 64 7 64 7 64 7 64 21 64 8 64 7
SOFTS 256 7 128 7 128 7 256 7 512 21 512 8 512 7
PatchTST 512 7 512 7 512 7 512 7 128 21 512 8 16 7
VarDrop 512 7 512 7 512 7 512 7 512 21 512 8 512 7
FlashAttention 512 7 512 7 512 7 512 7 512 21 512 8 512 7
iFlowformer 512 7 512 7 512 7 512 7 512 21 512 8 512 7
WITRAN 32 7 32 7 32 7 32 7 32 21 32 8 32 7
Minusformer 512 7 512 7 512 7 512 7 512 21 512 8 512 7
EDformer 512 7 512 7 512 7 512 7 512 21 512 8 512 7
PPDformer 512 7 512 7 512 7 512 7 512 21 512 8 512 7
Crossformer 512 7 512 7 512 7 512 7 256 21 512 8 512 7
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