

Are Data Embeddings Effective in Time Series Forecasting?

Reza Nematirad

*Department of Electrical and Computer Engineering
Kansas State University*

nematirad@ksu.edu

Anil Pahwa

*Department of Electrical and Computer Engineering
Kansas State University*

pahwa@ksu.edu

Balasubramaniam Natarajan

*Department of Electrical and Computer Engineering
Kansas State University*

bala@ksu.edu

Reviewed on OpenReview: <https://openreview.net/forum?id=yeu44ZRvZZ>

Abstract

Time series forecasting plays a crucial role in many real-world applications, and numerous complex forecasting models have been proposed in recent years. Despite their architectural innovations, most state-of-the-art models report only marginal improvements—typically just a few thousandths in standard error metrics. These models often incorporate complex data embedding layers, which typically transform raw inputs into higher-dimensional representations to enhance accuracy. But are data embedding techniques actually effective in time series forecasting? Through extensive ablation studies across fifteen state-of-the-art models on multiple benchmark datasets, we find that removing data embedding layers from many state-of-the-art models does not degrade forecasting performance—in many cases, it improves both accuracy and computational efficiency. The gains from removing embedding layers often exceed the performance differences typically reported between competing state-of-the-art models. The code is available at <https://github.com/Tims2D/DataEmbedding>.

1 Introduction

Time series forecasting is a fundamental task in machine learning with broad applications, including energy systems, traffic management, healthcare, finance, and weather prediction (Wang et al., 2024b). In recent years, numerous deep learning frameworks have been proposed to improve forecasting performance. These models often employ complex architectures such as statistical components, Transformers, Multilayer Perceptrons (MLPs), and Convolutional Neural Networks (CNNs). Despite architectural diversity, recent state-of-the-art models achieve gains of only a few thousandths of a point in common metrics such as mean squared error (MSE) or mean absolute error (MAE). Table 1 presents the performance of several time series forecasting models (Nematirad et al., 2025; Yu et al., 2025; Liu et al., 2023; Li et al., 2024b; Wang et al., 2023; 2024a; Han et al., 2024; Dai et al., 2024b) that report state-of-the-art results. Despite substantial architectural differences, the actual improvements in MSE and MAE are often minimal—frequently less than a thousandth compared to competing models. For instance, Times2D outperforms LiNo on the ETTh1 dataset at a prediction horizon of 96 by only 0.001 in both MSE and MAE.

Furthermore, time series forecasting algorithms consist of complex and advanced components. However, their effectiveness and their individual contributions to overall forecasting performance are not adequately investigated. One prominent component is data embedding, which typically transforms raw input data into higher-dimensional representations. For instance, PDF Dai et al. (2024b) and Times2D Nematirad et al. (2025) apply various data embedding techniques without sufficiently justifying the rationale behind using

Table 1: Performance of recent multivariate forecasting models on the ETTh1 and ETTm1 datasets for prediction horizon $H \in \{96, 192, 336, 720\}$ and input length $L = 96$. **red** and **blue** denote best and second-best results.

Models		Times2D (2025)		LiNo (2025)		iTransformer (2024)		RLinear (2024)		MICN (2024)		TimeMixer (2024)		SOFTS (2024)		PDF (2024)	
Data	H	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	96	0.378	0.394	0.379	0.395	0.386	0.405	0.395	0.419	0.404	0.428	0.375	0.400	0.381	0.399	0.387	0.405
	192	0.431	0.422	0.423	0.423	0.441	0.436	0.424	0.445	0.471	0.471	0.429	0.421	0.435	0.411	0.439	0.438
	336	0.463	0.436	0.455	0.438	0.487	0.458	0.446	0.466	0.571	0.538	0.484	0.458	0.480	0.452	0.494	0.464
	720	0.473	0.464	0.459	0.456	0.503	0.491	0.470	0.488	0.651	0.622	0.498	0.482	0.499	0.448	0.491	0.484
ETTm1	96	0.324	0.363	0.322	0.361	0.334	0.368	0.329	0.367	0.320	0.374	0.320	0.357	0.325	0.361	0.335	0.367
	192	0.370	0.386	0.365	0.383	0.377	0.391	0.367	0.385	0.378	0.414	0.361	0.381	0.375	0.389	0.377	0.393
	336	0.402	0.406	0.401	0.408	0.426	0.420	0.399	0.410	0.428	0.452	0.390	0.404	0.405	0.412	0.408	0.415
	720	0.459	0.439	0.469	0.447	0.491	0.459	0.454	0.483	0.482	0.441	0.454	0.441	0.466	0.447	0.457	0.448

them. On the other hand, models such as PatchTST Nie et al. (2023), SOFTS Han et al. (2024), MICN Wang et al. (2023), and ETSFormer Woo et al. (2023) provide specific justifications for incorporating particular embedding techniques into their architecture. However, the effectiveness of the utilized embedding techniques is not adequately discussed. Consequently, it is unclear whether data embedding techniques truly improve forecasting performance.

Motivated by the minimal improvements achieved through increasingly complex models (Table 1) and insufficient evaluation of core components, we revisit the effectiveness of data embedding layers in time series forecasting. We directly investigate a simple yet important question: **are data embeddings actually effective in time series forecasting?**

Our claim is simple but promising: **removing the data embedding layers from many state-of-the-art forecasting models does not degrade forecasting performance—in many cases, it enhances both forecasting accuracy and computational efficiency.** Interestingly, the gains from removing embedding layers often exceed the performance differences typically reported between competing state-of-the-art models. Our goal is not to imply that data embedding will never be effective in time series forecasting. Instead, we aim to highlight our promising findings and suggest that the community should devote greater attention to critically assessing the actual impact of embedding layers in time series forecasting models.

We substantiate our claims by conducting extensive experiments using fifteen time series forecasting models on seven standard benchmark datasets originally reported in their studies. Each selected model explicitly utilizes data embedding as a core architectural component. First, we make a great effort to reproduce the results of the standard time series models, using their publicly available publications and the code provided in their official repositories. Next, we identify the data embedding components in each model and rerun the models with these embedding layers bypassed. It should be noted that, in the absence of embedding layers, some preprocessing steps, such as permutation and concatenation are performed to reconcile the input with the model expected dimensions. We further clarify our definition of data embedding and detail the specific steps taken to bypass embedding components in the following sections. Then, we evaluate forecasting performance and computational efficiency in both settings, with and without embedding layers. Additionally, we include five traditional baseline models, such as RNN, LSTM, GRU, ConvLSTM, and BiLSTM, that generally operate without explicit embedding layers, providing a comprehensive performance comparison across different architectural complexities. The contributions of this study are summarized as follows:

- To our knowledge, this is the first systematic study to rigorously evaluate the effectiveness of data embedding layers in time series forecasting models.
- We conduct comprehensive ablation studies on fifteen high-performing forecasting algorithms across multiple standard benchmark datasets. We show that removing embedding layers generally does

not degrade forecasting performance—in many cases, it enhances both forecasting accuracy and computational efficiency.

- We highlight that the gains from removing embedding layers often exceed the performance differences typically reported between competing state-of-the-art models. This finding emphasizes the importance of carefully evaluating the model components before adding further complexity.

2 Data embedding and their removal

Data embedding layers are widely used in modern time series forecasting models. They typically transform the temporal or feature dimension of the raw input sequence into a higher-dimensional representation space of size d (Koshil et al., 2024). The transformed data are then fed into downstream neural components that are designed to operate on this embedding dimension d . In contrast, in scenarios without embedding, the raw input data are passed directly to the forecasting model. Since the original architectures were designed to process inputs of size d (with embedding), we adjust the input interface of the embedding-removed configurations so that the downstream layers receive tensors consistent with the raw input dimensions. Data embedding strategies can be categorized as follows.

2.1 Value embedding

Value embedding refers to the transformation of raw input time series into a latent feature space, typically of higher dimension. Formally, given a multivariate input sequence $\mathbf{X} \in \mathbb{R}^{B \times L \times N}$, where B is the batch size, L is the sequence length, and N is the number of input variables (features), a value embedding module projects \mathbf{X} into an embedding space of dimension d by mapping the variable dimension $N \rightarrow d$. Two value embedding methods are commonly used (Li et al., 2024a):

- **Token-based convolutional embedding:** Applies a 1D convolution along the temporal axis to project input features into a higher-dimensional space. This operation can be expressed as

$$\mathbf{U} = \text{Conv1D}(\mathbf{X})$$

where $\mathbf{U} \in \mathbb{R}^{B \times L \times d}$.

- **Linear projection:** Applies a linear transformation independently at each time step and maps each input feature vector $\mathbf{x}_t \in \mathbb{R}^N$ to an embedding vector in \mathbb{R}^d .

In scenarios where embedding is not used, the input tensor \mathbf{X} is passed directly to the downstream layers without projection:

$$\mathbf{U} = \mathbf{X} \in \mathbb{R}^{B \times L \times N}$$

In these scenarios, to ensure compatibility with downstream components originally designed to process dimension d (e.g., multi-head attention, feed-forward layers), we modify these layers to accept inputs of dimension N instead. Specifically, any layer parameters that operated on dimension d are adjusted to operate on dimension N . This allows us to isolate the effect of the embedding transformation itself while preserving the model’s core computational structure.

2.2 Temporal embedding

Temporal embedding encodes time-related features such as minute, hour, day, or month into continuous vectors. Two main types of temporal embedding are used in forecasting models (Li et al., 2021):

- **Discrete temporal embedding:** Embeds categorical time fields (e.g., hour of day, day of week, month) using one of the following techniques:
 - **Fixed embedding:** Uses non-trainable sinusoidal vectors to map each discrete time index to a fixed vector based on sine and cosine functions.

- **Learnable embedding:** Implements trainable lookup tables (via `nn.Embedding`) that map each discrete temporal category to a vector learned during training.
- **Continuous time feature embedding:** Encodes normalized continuous features (e.g., scaled hour or day values) using a linear projection. Time features are fed into a fully connected layer that maps them to the embedding space \mathbb{R}^d .

Given the time covariates $\mathbf{X}_{\text{mark}} \in \mathbb{R}^{B \times L \times N_{\text{time}}}$, where N_{time} is the number of temporal features (e.g., hour-of-day, day-of-week, month, etc.), a temporal embedding layer projects each temporal component into a shared latent space of dimension d , resulting in:

$$\mathbf{U} = \text{TemporalEmbedding}(\mathbf{X}_{\text{mark}}) \in \mathbb{R}^{B \times L \times d}$$

In scenarios where embedding is not used, the temporal features \mathbf{X}_{mark} are used directly. To ensure compatibility with downstream components originally designed to process dimension d , we modify these layers to accept inputs of dimension N_{time} instead.

2.3 Positional embedding

Positional embedding injects information about the position of each time step in the sequence, which is not inherently modeled by components like attention or MLPs. Unlike value or temporal embeddings, which depend on the content of the input features or time-related fields, positional embeddings are purely based on the position index in the sequence.

Given an embedding dimension d and sequence length L , a deterministic positional matrix $\mathbf{P} \in \mathbb{R}^{1 \times L \times d}$ is constructed using sine and cosine functions at varying frequencies:

$$\mathbf{P}_{t,2i} = \sin\left(\frac{t}{10000^{2i/d}}\right), \quad \mathbf{P}_{t,2i+1} = \cos\left(\frac{t}{10000^{2i/d}}\right)$$

Here, $i \in [0, \lfloor \frac{d}{2} \rfloor]$ denotes the embedding dimension index. The constant 10000 is an empirically chosen scaling factor that ensures smooth variation across dimensions (Chen et al., 2023). Given the input $\mathbf{X} \in \mathbb{R}^{B \times N \times L}$, the positional matrix \mathbf{P} is broadcast across the batch dimension and typically added to the value and/or temporal embeddings before being passed to the model. The output after incorporating positional information is:

$$\mathbf{U} = \text{PositionalEmbedding}(\mathbf{X}) \in \mathbb{R}^{B \times N \times d}$$

In scenarios where embedding is not used, positional encoding is omitted, and the input is passed directly to the model:

$$\mathbf{U} = \mathbf{X} \in \mathbb{R}^{B \times N \times L}$$

To preserve compatibility with downstream components originally designed to process dimension d (e.g., multi-head attention with d -dimensional queries/keys/values, feed-forward layers with d -dimensional inputs), we modify these layers to accept inputs of dimension L instead.

2.4 Inverted embedding

Inverted embedding refers to a design where both the raw input features and the associated time-based features (e.g., hour, day, month) are concatenated along the feature dimension. Given an input sequence $\mathbf{X} \in \mathbb{R}^{B \times N \times L}$ and temporal covariates $\mathbf{X}_{\text{mark}} \in \mathbb{R}^{B \times N_{\text{time}} \times L}$, the two are combined as

$$\mathbf{X}_{\text{concat}} = \text{Concat}(\mathbf{X}, \mathbf{X}_{\text{mark}}) \in \mathbb{R}^{B \times (N+N_{\text{time}}) \times L}$$

Unlike traditional embeddings (value, temporal, positional) that enrich or project the feature dimension while preserving the sequence length, inverted embedding treats each *variable* as a token and applies the

projection along the temporal dimension. A linear mapping $\mathbf{W} \in \mathbb{R}^{L \times d}$ transforms the sequence dimension into the embedding space:

$$\mathbf{U} = \mathbf{X}_{\text{concat}} \cdot \mathbf{W} \in \mathbb{R}^{B \times (N+N_{\text{time}}) \times d}$$

This design emphasizes temporal patterns of individual variables rather than stepwise tokens, enabling the model to capture variable-level dynamics across the entire horizon (Han et al., 2024; Wan et al., 2025).

In scenarios without embedding, the projection step is skipped and the concatenated tensor is used directly:

$$\mathbf{U} = \mathbf{X}_{\text{concat}} \in \mathbb{R}^{B \times (N+N_{\text{time}}) \times L}$$

To ensure compatibility with downstream components originally designed to process dimension d , we modify these layers to accept inputs of dimension L instead.

2.5 Patch embedding

Patch embedding segments the input time series into overlapping or non-overlapping temporal patches. Each patch is then projected into a latent embedding space. This reduces input length for long series while preserving fine-grained patterns. Given a multivariate time series input $\mathbf{X} \in \mathbb{R}^{B \times N \times L}$, patching is applied along the temporal axis. The sequence for each variable is divided into fixed-length patches of size P , using a sliding window with stride S , producing:

$$\mathbf{X}_{\text{patch}} \in \mathbb{R}^{B \times N \times L_p \times P}, \quad L_p = \left\lfloor \frac{L-P}{S} \right\rfloor + 1.$$

When embedding is applied, each patch is linearly projected into a latent space of dimension d :

$$\mathbf{Z} = \mathbf{X}_{\text{patch}} \cdot \mathbf{W}_P, \quad \mathbf{W}_P \in \mathbb{R}^{P \times d}, \quad \mathbf{Z} \in \mathbb{R}^{B \times N \times L_p \times d}.$$

The tensor is then reshaped for downstream processing:

$$\mathbf{U} = \text{Reshape}(\mathbf{Z}) \in \mathbb{R}^{(B \cdot N) \times L_p \times d}.$$

In scenarios without embedding, the projection step is omitted and the reshaped patches are used directly:

$$\mathbf{U} = \text{Reshape}(\mathbf{X}_{\text{patch}}) \in \mathbb{R}^{(B \cdot N) \times L_p \times P},$$

To maintain compatibility with downstream components originally configured for inputs of dimension d , these layers are adjusted to operate on inputs of dimension P instead. A complete summary of the embedding categories and techniques used in this study is provided in Appendix A.1. In addition, a detailed analysis of which architectural components are affected when embeddings are removed is provided in Appendix A.2.

3 Related works

The Multi-scale Isometric Convolution Network (MICN) Wang et al. (2023) decomposes the input into seasonal and trend components. A value embedding via 1D convolution (token embedding) is applied to the seasonal sequence, combined with a time-based embedding using fixed values and a sinusoidal positional embedding. These three embedded components are summed and passed through a dropout layer before being fed into the model. ETSformer Woo et al. (2023) proposes a Transformer architecture inspired by exponential smoothing, using decomposed components for level, growth, and seasonality. It employs a value embedding module implemented via 1D convolution to map input features into a latent space. WITRAN Jia et al. (2023) introduces a bi-granular recurrent framework for time series forecasting that models short- and long-term repetitive patterns through 2D information flows. The model concatenates raw input features and time-based covariates along the feature dimension. Then, a fixed temporal embedding is applied to the feature dimension.

The Series-cOre Fused Time Series forecaster (SOFTS) Han et al. (2024) is an efficient MLP-based framework that introduces the STar Aggregate-Redistribute (STAR) module, which employs a centralized strategy to

aggregate all series into a global core representation. SOFTS employs an inverted embedding mechanism. It uses linear projection to combine multivariate feature values and time-related metadata. Then, the combined representation is mapped into a high-dimensional space over the sequence dimension. EDformer Chakraborty et al. (2024) introduces a decomposition-based Transformer that separates multivariate time series into trend and seasonal components. It adopts an inverted embedding strategy by concatenating the seasonal component with time-based features and projecting the sequence dimension into a latent space using a linear layer. PPDformer Wan et al. (2025) also adopts an inverted embedding design. It concatenates denoised multivariate feature values with time-based features across the feature axis, and maps the sequence into the embedding space using a linear projection.

Times2D Nematirad et al. (2025) proposes a multi-block decomposition that transforms raw multivariate time series into 2D periodic segments using the Fast Fourier Transform. These segments are passed through 2D convolutional layers, followed by flattening to produce embeddings. This patch-style embedding does not rely on common value, temporal, or positional embeddings.

Crossformer Zhang & Yan (2023) introduces a hierarchical Transformer architecture that models both temporal and cross-variable dependencies for multivariate forecasting. It employs a dual-embedding mechanism. First, it employs a patch-based embedding strategy where the multivariate time series is first segmented into fixed-length patches using a sliding window. Then, each patch is projected into a latent space using the summation of value embedding through linear layers and sinusoidal positional embeddings within the patches.

PatchTST Nie et al. (2023) proposes a channel-independent Transformer for time series forecasting, where each univariate time series is processed separately. It applies the same patch-based embedding mechanism. Unlike Crossformer, PatchTST focuses solely on modeling temporal dependencies within each variable and does not capture cross-variable interactions.

4 Experimental setup

Baselines. We evaluate fifteen high-performing time series forecasting models alongside five traditional baseline architectures. The fifteen state-of-the-art models have been introduced in top-tier venues in artificial intelligence and machine learning. Models selected in this study cover a broad spectrum of architectural paradigms. Transformer-based architectures include Crossformer (Zhang & Yan, 2023), PatchTST (Nie et al., 2023), ETSformer (Woo et al., 2023), iFlowformer (Kang et al., 2025) and iFlashAttention (Kang et al., 2025). MLP-based approaches comprise MICN (Wang et al., 2023), SOFTS (Han et al., 2024), EDformer (Chakraborty et al., 2024), LiNo (Yu et al., 2025), Minusformer (Liang et al., 2024), and VarDrop (Kang et al., 2025). Finally, hybrid and decomposition-based frameworks are represented by Times2D (Nematirad et al., 2025), PDF (Dai et al., 2024a), PPDformer (Wan et al., 2025), and WITRAN (Jia et al., 2023). Additionally, we include five traditional recurrent and convolutional architectures (RNN, LSTM, GRU, ConvLSTM, and BiLSTM) that generally operate without explicit embedding layers, providing broader performance context.

Benchmarks. We evaluate all models on seven widely used benchmark datasets spanning diverse domains and temporal resolutions: ETTh1, ETTh2 (hourly), ETTm1, and ETTm2 (15-minute) representing electricity transformer temperature data where each timestamp is a 7-dimensional vector, Weather (10-minute meteorological observations with 21 variables per timestamp), Exchange (8-dimensional daily foreign exchange rate vectors), and National Illness (7-dimensional weekly illness case-rate vectors across U.S. regions). These datasets capture diverse temporal patterns, sampling frequencies (10-minute to weekly), and feature dimensions (from 7 to 21) across various domains (Jin et al., 2024). Additional details on the datasets are provided in Appendix A.3.

Setup and Evaluation Metric. All input time series are normalized using the mean and standard deviation from the training set. The sequence length is fixed in both embedding settings. For all datasets except National Illness, prediction horizons are $H \in \{96, 192, 336, 720\}$. For National Illness, due to its weekly resolution, we use $H \in \{24, 36, 48, 60\}$. Forecasting accuracy is evaluated using MSE and MAE. Computational efficiency is assessed through multiple metrics: (1) average training time per epoch, with

breakdowns for data loading, forward pass, and backward pass with optimization; (2) GPU memory usage, including both peak allocated and peak reserved memory; and (3) inference latency per sample. All timing metrics are reported in seconds, and memory usage in megabytes (MB).

Infrastructure. All experiments are conducted on a high-performance Linux workstation equipped with an NVIDIA L40S GPU (46 GB memory), CUDA version 12.9, and dual AMD EPYC 7713 64-core processors (128 threads in total). The system has 1 TB of RAM and runs on Ubuntu with Python 3.10 and PyTorch 2.2.1.

5 Results

We present a comprehensive comparison of model performance with and without data embedding layers. Accuracy results for the ETTh1 and ETTm1 datasets are reported in Tables 2 and 4, respectively. Computational efficiency results for ETTh1 and ETTm1 are given in Tables 3 and 5. Additional results for ETTh2, ETTm2, Weather, Exchange Rate, and National Illness are provided in Appendix A.4, Tables 10, 12, 16, 14, and 18, respectively. Below, we summarize key trends observed across models and datasets.

Accuracy typically improves without embeddings. For the fifteen state-of-the-art models, in over 95% of the evaluated configurations, removing data embedding layers improves forecasting accuracy across both MSE and MAE. On the ETTh1 dataset, removing the embedding layer yields an average reduction of 0.0296 in MSE and 0.0193 in MAE (Tables 2). ETTh2 (Table 10) exhibits similar behavior, with MSE and MAE decreasing by 0.0208 and 0.0096, respectively. For the higher-resolution ETTm1 and ETTm2 datasets, the improvements are also evident, with average reductions of 0.0282 and 0.0080 in MSE, and 0.0203 and 0.0091 in MAE, respectively (Tables 4; Appendix A.4, Tables 12).

Notably, in some cases, the observed gains are remarkably large. For instance, removing the embedding layer from ETSformer on the ETTh1 dataset at horizon 720 reduces MSE by 0.360 and MAE by 0.248. Similarly, Crossformer on ETTm1 at the same horizon achieves a 0.356 drop in MSE, while ETSformer again yields a 0.246 reduction in MAE. Even on shorter horizons and across other datasets such as ETTh2 and ETTm2, we observe improvements exceeding 0.2 in key metrics (Appendix A.4). These results highlight that removing embedding layers can lead to dramatic performance gains.

Furthermore, these accuracy gains are meaningful in practice. As shown in Table 1, recent state-of-the-art forecasting models surpass the second-best models by only 0.001 to 0.009 in evaluation metrics. In contrast, our results show that simply removing the data embedding layers leads to much larger improvements. For example, on the ETTh1 dataset with horizon 96, Times2D and LiNo report MSEs of 0.378 and 0.379, and MAEs of 0.394 and 0.395. These differences are minimal. However, removing the embedding layer from Times2D improves its MSE by 0.019 and MAE by 0.011. For LiNo, the improvements are also notable, with reductions of 0.007 in MSE and 0.006 in MAE. These findings suggest that simplifying model architectures by eliminating embedding layers can yield benefits that exceed those obtained by designing entirely new forecasting models. These findings suggest that raw input features in multivariate time series often contain sufficient representational richness for forecasting tasks without the need for additional embedding transformations.

Unlike the consistent improvements observed in state-of-the-art models, traditional recurrent and convolutional architectures (RNN, LSTM, GRU, ConvLSTM, BiLSTM) show mixed responses to embedding removal. These models are typically designed to operate directly on raw input data, with most representation learning handled by the hidden and convolutional layers. In this setting, adding an embedding layer acts mainly as an extra linear projection rather than a core modeling component, so its impact is small and horizon-dependent—sometimes slightly helpful, sometimes slightly harmful—rather than following a clear systematic trend.

Significant computational savings. Removing data embedding layers consistently reduces computational overhead. The average training time per epoch decreases across all datasets, with savings of up to 25 seconds on ETTh1 and ETTm1. Memory usage also decreases notably. Tables 3 and 5 report detailed

Table 2: ETTh1 forecasting results with and without embeddings for input length $L = 96$ and prediction horizons $H \in \{96, 192, 336, 720\}$. Bold values indicate better performance.

Model	Metric	With Embedding						Without Embedding					
		H				Time	Mem	H				Time	Mem
		96	192	336	720			96	192	336	720		
PDF	MSE	0.387	0.439	0.494	0.491	48.01	2857	0.377	0.430	0.484	0.503	16.50	2760
	MAE	0.405	0.438	0.464	0.484			0.401	0.429	0.453	0.481		
ETSformer	MSE	0.564	0.747	0.987	0.987	24.61	4506	0.563	0.611	0.643	0.627	10.95	4496
	MAE	0.536	0.651	0.788	0.806			0.505	0.528	0.545	0.558		
PatchTST	MSE	0.389	0.449	0.498	0.544	10.90	4351	0.385	0.438	0.488	0.541	8.41	4353
	MAE	0.409	0.445	0.474	0.517			0.404	0.433	0.459	0.511		
MICN	MSE	0.404	0.471	0.576	0.651	19.75	2739	0.402	0.450	0.475	0.531	5.52	2709
	MAE	0.428	0.471	0.538	0.622			0.421	0.448	0.473	0.527		
SOFTS	MSE	0.385	0.445	0.501	0.565	9.93	2706	0.383	0.444	0.486	0.519	7.97	2223
	MAE	0.405	0.441	0.469	0.529			0.401	0.439	0.462	0.502		
VarDrop	MSE	0.416	0.447	0.490	0.537	9.94	497	0.386	0.442	0.491	0.495	8.37	395
	MAE	0.425	0.445	0.466	0.504			0.408	0.439	0.467	0.488		
Crossformer	MSE	0.390	0.561	0.639	0.921	40.48	4396	0.404	0.501	0.634	0.871	40.32	4383
	MAE	0.421	0.543	0.588	0.755			0.427	0.493	0.581	0.739		
iFlashAttention	MSE	0.407	0.456	0.487	0.5532	10.80	2293	0.387	0.443	0.490	0.492	9.75	2292
	MAE	0.420	0.451	0.467	0.5131			0.407	0.439	0.467	0.486		
iFlowformer	MSE	0.394	0.459	0.493	0.545	12.40	2297	0.391	0.441	0.479	0.499	7.69	2281
	MAE	0.408	0.450	0.466	0.508			0.409	0.440	0.458	0.490		
PPDformer	MSE	0.415	0.460	0.496	0.506	36.08	2738	0.398	0.470	0.473	0.487	17.92	2709
	MAE	0.424	0.451	0.468	0.492			0.419	0.455	0.461	0.486		
LiNo	MSE	0.379	0.443	0.476	0.496	3.83	2036	0.372	0.429	0.454	0.460	3.61	2026
	MAE	0.395	0.432	0.446	0.474			0.389	0.427	0.436	0.458		
EDformer	MSE	0.433	0.520	0.582	0.661	3.52	2260	0.420	0.493	0.546	0.666	3.64	2661
	MAE	0.449	0.504	0.537	0.608			0.441	0.488	0.519	0.618		
Minusformer	MSE	0.382	0.431	0.481	0.522	8.03	2395	0.374	0.425	0.477	0.520	7.44	2693
	MAE	0.398	0.430	0.454	0.492			0.395	0.429	0.450	0.493		
WITRAN	MSE	0.552	0.646	0.757	0.899	16.34	2050	0.545	0.634	0.764	0.895	16.38	2036
	MAE	0.548	0.608	0.676	0.746			0.541	0.599	0.659	0.746		
Times2D	MSE	0.378	0.431	0.463	0.473	5.58	778	0.359	0.427	0.461	0.472	6.48	758
	MAE	0.394	0.422	0.436	0.464			0.383	0.421	0.435	0.463		
BiLSTM	MSE	0.938	0.992	1.087	1.206	14.09	1696	0.963	0.996	1.024	1.036	13.79	1658
	MAE	0.718	0.758	0.819	0.873			0.725	0.755	0.771	0.787		
ConvLSTM	MSE	0.979	1.065	1.115	1.192	10.18	685	1.038	1.07	1.09	1.116	10.17	659
	MAE	0.725	0.782	0.816	0.862			0.771	0.791	0.809	0.837		
GRU	MSE	0.909	1.047	1.116	1.218	10.11	658	0.879	1.052	1.111	1.053	9.815	653
	MAE	0.702	0.758	0.805	0.91			0.676	0.785	0.814	0.791		
LSTM	MSE	0.972	1.019	1.058	1.204	10.72	666	0.979	1.092	1.099	1.09	10.63	661
	MAE	0.742	0.768	0.795	0.868			0.738	0.792	0.803	0.808		
RNN	MSE	0.979	1.007	1.058	1.125	5.357	626	0.926	1.133	1.165	1.2	62.58	636
	MAE	0.741	0.766	0.805	0.849			0.695	0.834	0.861	0.887		

Table 3: Average efficiency results for the ETTh1 dataset with and without embeddings, including DataLoader time, forward pass time, backward pass with optimization time, peak allocated GPU memory, peak reserved GPU memory, and inference latency.

Model	With Embedding						Without Embedding					
	DL	FW	BW	PA	PR	Lat	DL	FW	BW	PA	PR	Lat
PDF	0.063	0.112	0.166	1304	1494	0.044	0.052	0.079	0.116	497.4	585.5	0.022
MICN	0.02	0.022	0.07	1266	1811	0.019	0.012	0.005	0.006	102.6	117	0.004
ETSformer	0.001	0.027	0.041	2157	2456	0.032	0.001	0.009	0.013	171.7	192.5	0.006
PatchTST	0.015	0.009	0.02	445.3	545.5	0.008	0.013	0.005	0.012	184.3	190.5	0.003
SOFTS	0.011	0.004	0.009	205.6	229	0.003	0.011	0.004	0.008	164.8	319.5	0.002
VarDrop	0.011	0.005	0.014	228.5	274	0.004	0.01	0.005	0.011	166.9	322	0.004
Crossformer	0.008	0.024	0.065	1514	1758	0.016	0.008	0.024	0.065	1514	1762	0.016
FlashAttention	0.013	0.007	0.016	232.6	279.5	0.006	0.012	0.006	0.013	167.7	324	0.005
iFlowformer	0.006	0.006	0.013	259	291.5	0.004	0.006	0.005	0.012	170.4	325	0.004
PPDformer	0.047	0.054	0.061	944.6	1575	0.053	0.038	0.043	0.028	379.3	775	0.044
LiNo	0.031	0.011	0.02	210.4	251.5	0.039	0.03	0.007	0.009	58.44	71	0.034
EDformer	0.039	0.005	0.01	143.7	184	0.004	0.048	0.004	0.012	201.2	360.5	0.003
Minusformer	0.008	0.005	0.011	246.6	353	0.004	0.008	0.004	0.007	161.4	201	0.003
WITRAN	0.025	0.038	0.062	46.53	61	0.042	0.025	0.038	0.062	46.53	61.5	0.041
Times2D	0.041	0.025	0.043	286.6	472	0.018	0.041	0.024	0.04	240.1	431.5	0.017
BiLSTM	0.014	0.012	0.023	320.6	397	0.012	0.013	0.012	0.022	300.3	369	0.012
ConvLSTM	0.019	0.008	0.042	149.6	198	0.007	0.013	0.007	0.014	143.4	184.5	0.006
GRU	0.013	0.007	0.013	143.3	181.5	0.006	0.013	0.006	0.013	132.1	174.5	0.006
LSTM	0.011	0.007	0.014	144.8	184.5	0.007	0.011	0.007	0.014	132	179	0.006
RNN	0.01	0.003	0.004	105.3	135.5	0.001	0.01	0.001	0.003	94.76	132.5	0.001

breakdowns across data loading, forward and backward passes, memory allocation, and inference latency. On ETTh1 and ETTm1, forward and backward times drop by up to an order of magnitude for heavy models such as PDF, MICN, ETSformer, and PPDformer, while DataLoader time remains essentially unchanged. Peak and reserved GPU memory also shrink sharply: on ETTh1 and ETTm1, peak reserved memory decreases from roughly 1.5–2.5 GB to under 0.6 GB for PDF, MICN, ETSformer, and LiNo, and from about 2.6 GB to nearly 1.1 GB for PPDformer. Inference latency shows similar gains, often improving by a factor of 2–5 (e.g., PDF from 0.044s to 0.022s on ETTh1 and from 0.049s to 0.025s on ETTm1).

Tables 11, 13, 15, 17, and 19 in Appendix A.4 report the corresponding efficiency results for ETTh2, ETTm2, Exchange, Weather, and National Illness, and show the same overall pattern. This indicates that embedding layers are a considerable source of computational overhead in both modern and traditional forecasting models, and that strategically removing them offers a simple way to improve training and inference efficiency without sacrificing accuracy.

Performance gains increase with horizon length. The effect of removing the embedding layer increases as the forecasting horizon increases across all four benchmarks. While short-term configurations (e.g., $H = 96$) show limited changes, longer horizons often yield substantial improvements. For instance, on ETTm1, Crossformer shows an MSE reduction of 0.003 at $H = 96$, which increases significantly to 0.365 at $H = 720$. This finding indicates that embedding-free designs may be advantageous for long-term forecasting tasks.

Architectural sensitivity to embedding layers. Embedding removal impacts architectural families differently. Transformer-based models rely on self-attention mechanisms to capture long-range dependencies, but they do not include any inherent structure to model sequential order. Unlike recurrent architectures, Transformers require explicit positional and token embeddings to encode temporal progression. In theory, these embeddings are intended to compensate for the lack of built-in sequence modeling. However, our empirical results reveal that removing these embeddings often leads to better performance. MLP-based architectures employ purely feedforward pathways and rely on dense transformations to model dependencies

Table 4: ETTm1 forecasting results with and without embeddings for input length $L = 96$ and prediction horizons $H \in \{96, 192, 336, 720\}$. Bold values indicate better performance.

Model	Metric	With Embedding						Without Embedding					
		H				Time	Mem	H				Time	Mem
		96	192	336	720			96	192	336	720		
PDF	MSE	0.335	0.377	0.408	0.457	194.3	2961	0.321	0.365	0.392	0.451	64.44	2880
	MAE	0.367	0.393	0.415	0.448			0.359	0.386	0.405	0.442		
ETSformer	MSE	0.526	0.577	0.677	0.802	94.28	2803	0.373	0.408	0.441	0.499	33.18	2200
	MAE	0.515	0.553	0.620	0.708			0.397	0.410	0.429	0.462		
PatchTST	MSE	0.344	0.375	0.407	0.473	58.62	2476	0.348	0.370	0.393	0.459	23.48	2893
	MAE	0.367	0.395	0.415	0.453			0.371	0.387	0.406	0.440		
MICN	MSE	0.320	0.378	0.428	0.483	70.17	2850	0.354	0.363	0.416	0.478	17.05	2805
	MAE	0.374	0.414	0.452	0.482			0.380	0.395	0.416	0.455		
SOFTS	MSE	0.325	0.384	0.429	0.477	33.51	2403	0.323	0.367	0.407	0.475	27.16	2419
	MAE	0.361	0.397	0.423	0.455			0.341	0.386	0.411	0.452		
VarDrop	MSE	0.340	0.398	0.439	0.490	36.26	504	0.344	0.382	0.428	0.505	27.86	393
	MAE	0.375	0.403	0.427	0.457			0.378	0.397	0.425	0.467		
Crossformer	MSE	0.366	0.413	0.453	0.867	233.8	2237	0.363	0.406	0.447	0.511	230.4	2228
	MAE	0.406	0.427	0.454	0.711			0.404	0.418	0.446	0.481		
iFlashAttention	MSE	0.350	0.402	0.442	0.500	45.11	2438	0.344	0.382	0.434	0.527	34.28	2421
	MAE	0.381	0.405	0.428	0.464			0.378	0.397	0.428	0.476		
iFlowformer	MSE	0.340	0.418	0.420	0.492	45.66	2409	0.339	0.388	0.448	0.501	34.97	2331
	MAE	0.373	0.412	0.424	0.461			0.372	0.399	0.434	0.470		
PPDformer	MSE	0.356	0.411	0.440	0.503	149.5	2840	0.339	0.389	0.432	0.493	86.75	2833
	MAE	0.392	0.420	0.438	0.471			0.376	0.400	0.429	0.467		
LiNo	MSE	0.331	0.400	0.435	0.503	13.50	2146	0.323	0.375	0.418	0.497	12.47	2145
	MAE	0.365	0.404	0.423	0.463			0.361	0.390	0.416	0.462		
EDformer	MSE	0.395	0.432	0.486	0.544	10.87	2404	0.378	0.426	0.463	0.551	11.36	2805
	MAE	0.427	0.448	0.478	0.509			0.413	0.443	0.466	0.520		
Minusformer	MSE	0.351	0.384	0.451	0.491	40.98	2528	0.330	0.381	0.449	0.490	32.57	2847
	MAE	0.377	0.394	0.432	0.459			0.367	0.392	0.428	0.457		
WITRAN	MSE	0.640	0.769	0.827	0.951	107.8	937	0.637	0.688	0.803	0.860	107.6	914
	MAE	0.590	0.668	0.714	0.766			0.585	0.622	0.699	0.713		
Times2D	MSE	0.325	0.370	0.402	0.459	21.30	783	0.324	0.368	0.397	0.458	21.09	761
	MAE	0.363	0.386	0.406	0.439			0.361	0.383	0.403	0.438		
BiLSTM	MSE	0.947	0.967	0.999	1.081	54.11	1703	0.928	0.964	1.005	1.056	52.59	1668
	MAE	0.686	0.7	0.726	0.782			0.679	0.705	0.737	0.77		
ConvLSTM	MSE	0.937	0.988	1.02	1.08	38.85	677	0.918	0.936	0.98	1.036	122.3	657
	MAE	0.686	0.72	0.749	0.789			0.686	0.7	0.735	0.775		
GRU	MSE	0.837	0.819	1.005	1.089	35.7	665	0.931	0.961	0.989	1.07	35.27	657
	MAE	0.631	0.638	0.729	0.787			0.678	0.702	0.725	0.777		
LSTM	MSE	0.927	0.96	1.007	1.09	39.33	668	0.968	0.99	1.02	1.072	37.8	665
	MAE	0.688	0.712	0.75	0.803			0.724	0.738	0.759	0.791		
RNN	MSE	1.06	0.905	1.096	1.024	15.64	635	0.964	1.006	1.028	1.094	15.3	632
	MAE	0.744	0.662	0.77	0.739			0.703	0.733	0.755	0.797		

Table 5: Average efficiency results for the ETTm1 dataset with and without embeddings, including DataLoader time, forward pass time, backward pass with optimization time, peak allocated GPU memory, peak reserved GPU memory, and inference latency.

Model	With Embedding						Without Embedding					
	DL	FW	BW	PA	PR	Lat	DL	FW	BW	PA	PR	Lat
PDF	0.064	0.116	0.18	1304	1493	0.049	0.053	0.084	0.122	497.4	585.5	0.025
MICN	0.017	0.022	0.07	1266	1811	0.019	0.008	0.005	0.006	102.6	117	0.004
ETSformer	0.001	0.027	0.04	2157	2456	0.033	0.001	0.008	0.012	171.7	192.5	0.006
PatchTST	0.011	0.009	0.02	445.3	545.5	0.008	0.008	0.005	0.011	184.3	190.5	0.003
SOFTS	0.008	0.004	0.009	205.6	229	0.003	0.007	0.004	0.008	164.8	319.5	0.002
VarDrop	0.008	0.005	0.013	228.5	274	0.004	0.007	0.004	0.011	166.9	322	0.003
Crossformer	0.008	0.025	0.07	1643	1909	0.017	0.007	0.024	0.065	1514	1762	0.016
FlashAttention	0.01	0.007	0.016	232.6	279.5	0.006	0.009	0.006	0.014	167.7	324	0.005
iFlowformer	0.004	0.005	0.013	259	291.5	0.004	0.004	0.005	0.012	170.4	325	0.004
PPDformer	0.034	0.058	0.074	1120	2596	0.059	0.029	0.047	0.037	444	1066	0.049
LiNo	0.018	0.009	0.018	210.4	251.5	0.043	0.017	0.007	0.008	58.44	71	0.04
EDformer	0.022	0.005	0.01	143.7	184	0.004	0.021	0.004	0.012	201.2	360.5	0.003
Minusformer	0.006	0.005	0.011	246.6	353	0.004	0.007	0.004	0.007	161.4	201	0.003
WITRAN	0.023	0.046	0.065	46.53	61	0.043	0.023	0.048	0.064	46.53	61.5	0.043
Times2D	0.025	0.025	0.042	286.6	472.5	0.018	0.025	0.024	0.041	240.1	431.5	0.017
BiLSTM	0.011	0.012	0.023	320.6	397	0.012	0.011	0.012	0.022	300.3	369	0.012
ConvLSTM	0.024	0.007	0.014	149.6	198	0.007	0.009	0.016	0.027	143.4	184.5	0.006
GRU	0.009	0.007	0.013	143.3	181.5	0.006	0.009	0.006	0.013	132.1	174.5	0.006
LSTM	0.008	0.007	0.014	144.8	184.5	0.007	0.008	0.007	0.014	132	179.5	0.006
RNN	0.006	0.002	0.004	105.3	135.5	0.001	0.006	0.001	0.003	94.76	132.5	0.001

across time and variables. Since MLPs do not explicitly model sequence order, embedding layers might be expected to play a more important role. Yet, our results show that embeddings are often redundant in MLPs. Hybrid and decomposition-based models incorporate preprocessing such as seasonal-trend decomposition, filtering, or statistical projections. These models are less sensitive to the presence of embedding layers. For example, PDF shows a modest gain. Since these architectures already extract and isolate key patterns before learning begins, embedding layers often duplicate or disrupt this structure, resulting in minimal or inconsistent effects.

Confidence intervals. Since deep learning models are inherently stochastic and sensitive to random initialization, we compute 95% confidence intervals (CIs) to assess the statistical reliability of our findings on ETTh1 and ETTm1. The results demonstrate that in all cases—except for LiNo on ETTm1 with $H = 720$ in both MAE and MSE—removing the embedding layers improves performance. Additionally, the corresponding confidence intervals for the models with and without embedding layers do not overlap, indicating statistically significant improvements. Tables 20 and 21 in Appendix A.5 report the MSE and MAE, respectively, along with corresponding 95% confidence intervals for selected high-performing models.

Configurations with degraded performance. While the majority of models benefit from removing embedding layers, a few configurations exhibit performance degradation. This outcome can be attributed to several architectural and/or hardware-related factors. First, in the absence of the embedding layer, the model manually permutes, concatenates, and processes the raw input data to reconcile it with the model expected dimensions. These operations introduce additional intermediate tensors and temporary memory allocations, which increase the average memory usage during training. Second, the lower dimensionality resulting from the removal of embedding layers does not align well with the tile sizes optimized in GPU libraries such as cuBLAS, leading to less efficient matrix multiplications and increased computational time. In particular, EDformer originally uses an inverted embedding that transforms the sequence length (e.g., 96) into a typically higher dimension (e.g., 512). EDformer trains approximately 0.3 to 0.5 seconds slower per epoch and consumes an additional 400 MB of memory on average when the embedding layers are removed. The extra permutation,

concatenation, and duplication required to adapt the raw inputs to the expected format increases memory usage. Furthermore, the encoder operates on input tensors with a sequence dimension of 96 instead of 512, which reduces computational throughput due to suboptimal memory access patterns and kernel launch configurations in GPU backends.

6 Conclusion

In this paper, we presented a large-scale study assessing the effectiveness of embedding layers in modern time series forecasting models. Our results show that, despite their widespread use, removing data embedding layers from many state-of-the-art forecasting models does not degrade forecasting performance—in many cases, it enhances both forecasting accuracy and computational efficiency. These findings suggest that raw multivariate inputs are often sufficiently informative without the need for additional embedding transformations. Our goal is not to imply that data embedding will never be effective in time series forecasting. Instead, we aim to highlight our promising findings and suggest that the community devote greater attention to critically assessing the actual impact of embedding layers in existing models. For future studies, the effectiveness of embedding layers can be explored on other tasks (e.g., classification, clustering, and imputation) and datasets. Additionally, the effectiveness of other overlooked architectural components—such as normalization strategies, including RevIN—can be investigated.

Limitations

Here, we outline the limitations of our study:

- We evaluate the impact of data embedding layers specifically for time-series forecasting. However, embedding layers may play different roles in other downstream tasks such as classification, clustering, or imputation, which are not explored in this work.
- The analysis focuses solely on the effect of embedding layers and does not account for potential interactions with other architectural components such as normalization strategies or residual connections.

Broader impact statement

This work makes a fundamental contribution to time series analysis, particularly in the context of forecasting. It encourages researchers to move beyond default assumptions and critically assess whether each architectural component, such as data embedding layers, meaningfully contributes to performance. Our findings promote a shift in focus: rather than continually developing more complex models, researchers across domains are encouraged to revisit and analyze existing architectures. This approach can lead to significant savings in time, resources, and energy. While our results are limited to forecasting tasks on regularly sampled datasets, the broader methodology—systematic ablation testing of architectural components—can inspire more rigorous empirical validation in other areas of machine learning. We hope this work supports the community in understanding the role and effectiveness of foundational model elements before advancing to further architectural complexity and innovation.

Author Contributions

Reza Nematirad: Conceptualization, software, investigation, formal analysis, writing - original draft, writing - review & editing. Anil Pahwa: Supervision, project administration, review & editing. Balasubramaniam Natarajan: Supervision, review & editing.

Acknowledgments

This research was conducted with funding from the NSF under Award No. 2225341.

References

Sanjay Chakraborty, Ibrahim Delibasoglu, and Fredrik Heintz. Edformer: Embedded decomposition transformer for interpretable multivariate time series predictions, 2024. URL <https://arxiv.org/abs/2412.12227>.

Yuqi Chen, Kan Ren, Yansen Wang, Yuchen Fang, Weiwei Sun, and Dongsheng Li. Contiformer: Continuous-time transformer for irregular time series modeling. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=YJDz4F2AZu>.

Tao Dai, Beiliang Wu, Peiyuan Liu, Naiqi Li, Jigang Bao, Yong Jiang, and Shu-Tao Xia. Periodicity decoupling framework for long-term series forecasting. *International Conference on Learning Representations*, 2024a.

Tao Dai, Beiliang Wu, Peiyuan Liu, Naiqi Li, Jigang Bao, Yong Jiang, and Shu-Tao Xia. Periodicity decoupling framework for long-term series forecasting. In *The Twelfth International Conference on Learning Representations*, 2024b. URL <https://openreview.net/forum?id=dp27P5HBBt>.

Lu Han, Xu-Yang Chen, Han-Jia Ye, and De-Chuan Zhan. SOFTS: Efficient multivariate time series forecasting with series-core fusion. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=89AUi5L1uA>.

Yuxin Jia, Youfang Lin, Xinyan Hao, Yan Lin, Shengnan Guo, and Huaiyu Wan. WITRAN: Water-wave information transmission and recurrent acceleration network for long-range time series forecasting. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=y08bkEtNBK>.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-LLM: Time series forecasting by reprogramming large language models. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=Unb5CVpta>.

Junhyeok Kang, Yooju Shin, and Jae-Gil Lee. Vardrop: Enhancing training efficiency by reducing variate redundancy in periodic time series forecasting. In *AAAI*, 2025.

Mykhailo Koshil, Thomas Nagler, Matthias Feurer, and Katharina Eggensperger. Towards localization via data embedding for tabPFN. In *NeurIPS 2024 Third Table Representation Learning Workshop*, 2024. URL <https://openreview.net/forum?id=LFyQyV5HxQ>.

Linsen Li, Chunfei Jian, Feng Wan, Dongdong Geng, Ziquan Fang, Lu Chen, Yunjun Gao, Weihao Jiang, and Jiang Zhu. Lagcnn: A fast yet effective model for multivariate long-term time series forecasting. In *Proceedings of the 33rd ACM International Conference on Information and Knowledge Management*, pp. 1235–1244, 2024a.

Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An investigation on affine mapping, 2024b. URL <https://openreview.net/forum?id=T97kxctihq>.

Zhihan Li, Youjian Zhao, Jiaqi Han, Ya Su, Rui Jiao, Xidao Wen, and Dan Pei. Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In *Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining*, pp. 3220–3230, 2021.

Daojun Liang, Haixia Zhang, Dongfeng Yuan, Bingzheng Zhang, and Minggao Zhang. Minusformer: Improving time series forecasting by progressively learning residuals. *arXiv preprint arXiv:2402.02332*, 2024.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long. itransformer: Inverted transformers are effective for time series forecasting. *arXiv preprint arXiv:2310.06625*, 2023.

Reza Nematirad, Anil Pahwa, and Balasubramaniam Natarajan. Times2d: Multi-period decomposition and derivative mapping for general time series forecasting. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 19651–19658, 2025.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words: Long-term forecasting with transformers. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=Jbdc0vT0col>.

Meng Wan, Qi Su, Huan Hao, Jue Wang, Yuexiu Cui, Yuxuan Bi, Rongqiang Cao, Peng Shi, Yangang Wang, Zonghua Qiu, et al. Ppdformer: Channel-specific periodic patch division for time series forecasting. In *ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2025.

Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. MICN: Multi-scale local and global context modeling for long-term series forecasting. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=zt53IDUR1U>.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang, and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In *The Twelfth International Conference on Learning Representations*, 2024a. URL <https://openreview.net/forum?id=7oLshfEIC2>.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yun-Zhong Qiu, Jianmin Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting with exogenous variables. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024b. URL <https://openreview.net/forum?id=INAeUQ041T>.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. ETSformer: Exponential smoothing transformers for time-series forecasting, 2023. URL https://openreview.net/forum?id=5m_3whfo483.

Guoqi Yu, Yaoming Li, Xiaoyu Guo, Shujun Wang, Zirui Liu, Dayu Wang, and Tong Yang. Lino: Advancing recursive residual decomposition of linear and nonlinear patterns for robust time series forecasting, 2025. URL <https://openreview.net/forum?id=JeZS4jQF77>.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=vSVLM2j9eie>.

A Appendix

A.1 Embedding layer categories

This section provides a summary of the embedding categories and techniques used in our study.

Table 6: Summary of embedding layer categories and techniques used in this study.

Category	Technique	Description
Temporal	Fixed embedding	Maps discrete temporal indices to non-trainable, sinusoidal embeddings.
	Learnable embedding	Maps discrete temporal indices (e.g., hour, day) to trainable embeddings.
	TimeFeature	Projects numeric time features into high-dimensional space via linear projection.
Value	Token embedding	Projects multivariate features to higher dimensions using 1D convolution.
	Linear projection	Maps input features directly to embedding space using linear layers.
Positional	Sinusoidal positional	Encodes sequence positions using fixed sine and cosine functions.
	Learnable positional	Learns embeddings for positional indices in sequences.
Combined	Inverted	Fuses variables and time features using linear transformations.
Patching	Patchwise encoding	Divides input sequences into patches, encodes each patch, and adds positional info.

A.2 Model Invariances When Removing Embeddings

This section clarifies which architectural components change when the embedding layer is removed and which remain fixed. We use d_{model} to denote the embedding dimension used in the original models, c_{in} to denote the raw input dimension (number of input features), and seq_len to denote the sequence length (number of time steps). Table 7 summarizes the effects of embedding techniques that transform the feature dimension from c_{in} to d_{model} , and Table 8 summarizes the effects for embedding techniques that transform the temporal dimension from seq_len to d_{model} .

Table 7: Summary of components affected by the embedding layers that transform the feature dimension from c_{in} to d_{model} .

Component	Affected by Removing Embedding?	Notes / Conditions
Multi-head attention	Yes, projection layers switch from d_{model} to c_{in}	Must satisfy $c_{\text{in}} \bmod n_{\text{heads}} = 0$
Feed-forward layers (MLPs)	Yes, input/output dimensions change to c_{in}	Hidden dimension d_{ff} stays fixed
LayerNorm / residual connections	Yes, normalization width becomes c_{in}	No change to computation
Convolution layers	Yes, <code>in_channels</code> becomes c_{in}	Kernel sizes, strides, and receptive fields unchanged
Positional embeddings	Yes, dimension becomes c_{in} or is disabled	Temporal positions unaffected
Number of layers (depth)	No	Encoder/decoder depth unchanged
Temporal dimensions	No	seq_len , pred_len , patch length, stride unchanged
Attention mechanism type	No	Full/local/flash attention unchanged
Receptive field	No	Determined by architecture, not d_{model}
Parameter sharing / weight tying	No	Rules unchanged

Table 8: Summary of components affected by the embedding layers that transform the temporal dimension from seq_len to d_{model} .

Component	Affected by Removing Inverted Embedding?	Notes / Conditions
Multi-head attention	Yes, projection layers switch from d_{model} to seq_len	Must satisfy $\text{seq_len} \bmod n_{\text{heads}} = 0$
Feed-forward layers (MLPs)	Yes, input/output dimensions change to seq_len	Hidden dimension d_{ff} stays fixed
LayerNorm / residual connections	Yes, normalization width becomes seq_len	No change to computation
Convolution layers	Yes, <code>in_channels</code> becomes seq_len	Kernel sizes, strides, and receptive fields unchanged
Temporal encoding	Yes, method changes from learned to concatenated	With: learned temporal embeddings; Without: raw time features
Number of layers (depth)	No	Encoder/decoder depth unchanged
Channel/variante dimensions	No	$c_{\text{in}} + n_{\text{time_features}}$ unchanged
Attention mechanism type	No	Full/local/flash attention unchanged
Sequence dimension for attention	No	Attention operates over $c_{\text{in}} + n_{\text{time_features}}$
Receptive field	No	Determined by architecture, not d_{model}
Parameter sharing / weight tying	No	Rules unchanged

A.3 Benchmark datasets

The benchmark datasets used in this paper cover diverse domains, sampling frequencies, and temporal behaviors, enabling a broad and rigorous evaluation of time series forecasting performance. The Electricity Transformer Temperature (ETT) datasets—ETTh1 and ETTh2 at hourly resolution, and ETTm1 and ETTm2 at 15-minute resolution—contain two years of transformer oil temperature and electrical load-related measurements collected from two counties in China. Each timestamp includes six operational features along with the target oil temperature, providing multivariate sequences.

The weather dataset consists of one year of meteorological observations recorded at 21 weather stations across Germany. It includes 21 meteorological variables sampled every 10 minutes, representing a high-frequency multivariate dataset with strong short-term fluctuations.

The exchange rate dataset includes more than three decades of daily exchange rates for eight major foreign currencies against the U.S. dollar. This dataset captures the volatility and non-stationarity typical of financial time series and provides a long-span, low-frequency benchmark for testing forecasting robustness.

Finally, the National Illness dataset provides weekly influenza-like illness case rates with severe complications collected across U.S. regions from 2002 to 2020. Together, these datasets span high-frequency (10-minute), medium-frequency (15-minute and hourly), daily, and weekly sampling regimes, with diverse feature dimensions and temporal dynamics. This diversity provides a robust foundation for evaluating the impact of data embedding layers on time series forecasting algorithms (Jin et al., 2024).

Table 9: Summary of benchmark datasets used in this study.

Dataset	Dimension	Train / Val / Test	Frequency	Duration
Weather	21	(36,600 / 5,079 / 10,348)	10 minutes	Jan 2020 – Jan 2021
ETTm1	7	(34,465 / 11,521 / 11,521)	15 minutes	Jul 2016 – Jul 2018
ETTm2	7	(34,465 / 11,521 / 11,521)	15 minutes	Jul 2016 – Jul 2018
ETTh1	7	(8,545 / 2,881 / 2,881)	1 hour	Jul 2016 – Jul 2018
ETTh2	7	(8,545 / 2,881 / 2,881)	1 hour	Jul 2016 – Jul 2018
Exchange Rate	8	(40,960 / 5,320 / 11,376)	Daily	Jan 1990 – Oct 2021
National Illness	7	(4,067 / 434 / 1,106)	Weekly	Jan 2002 – Jul 2020

A.4 Forecasting results on ETTh2 and ETTm2, Exchange Rate, Weather, and National Illness

This section presents additional forecasting results on the ETTh2, ETTm2, Exchange Rate, Weather, and National Illness datasets, complementing the ETTh1 and ETTm1 results reported in the main text (Table 2 and Table 4). These datasets span a diverse range of temporal resolutions—from high-frequency 10-minute and 15-minute observations to low-frequency weekly and daily records—and exhibit substantially different temporal behaviors, noise patterns, and seasonal structures. Evaluating models on this broader collection of benchmarks allows us to verify whether the trends observed in the main paper generalize beyond the ETTm1 and ETTh1 datasets. Across these datasets, we report the same set of forecasting accuracy metrics (MSE and MAE) over multiple prediction horizons, along with the corresponding computational efficiency metrics. These additional results allow us to examine whether the effects of removing embedding layers remain consistent under different data scales, sampling rates, and domain characteristics. In particular, the Exchange Rate and Illness datasets represent low-resolution, low-dimensional forecasting tasks, whereas ETTm2 and Weather reflect higher-resolution, multivariate inputs.

Table 10: ETTh2 forecasting results with and without embeddings for input length $L = 96$ and prediction horizons $H \in \{96, 192, 336, 720\}$. Bold values indicate better performance.

Model	Metric	With Embedding						Without Embedding					
		H				Time	Mem	H				Time	Mem
		96	192	336	720			96	192	336	720		
PDF	MSE	0.307	0.376	0.414	0.437	47.82	2838	0.300	0.375	0.412	0.431	16.45	2752
	MAE	0.353	0.401	0.426	0.452			0.348	0.397	0.426	0.447		
ETSformer	MSE	0.399	0.521	0.615	0.692	23.50	2721	0.345	0.436	0.487	0.494	8.80	2080
	MAE	0.435	0.505	0.569	0.616			0.399	0.446	0.483	0.497		
PatchTST	MSE	0.300	0.382	0.435	0.447	14.96	2351	0.297	0.375	0.413	0.418	6.46	2758
	MAE	0.350	0.404	0.441	0.463			0.384	0.399	0.428	0.440		
MICN	MSE	0.354	0.475	0.602	0.829	17.95	2761	0.333	0.463	0.567	0.804	5.24	2708
	MAE	0.400	0.477	0.540	0.654			0.389	0.472	0.527	0.646		
SOFTS	MSE	0.305	0.375	0.437	0.439	10.06	634	0.295	0.374	0.416	0.434	8.09	473
	MAE	0.350	0.396	0.437	0.447			0.347	0.395	0.430	0.450		
VarDrop	MSE	0.306	0.393	0.423	0.436	9.64	2288	0.303	0.383	0.423	0.418	8.39	2274
	MAE	0.355	0.406	0.438	0.452			0.353	0.400	0.436	0.442		
Crossformer	MSE	0.588	0.978	0.996	1.161	56.51	2243	0.573	0.757	0.796	0.945	56.41	2223
	MAE	0.576	0.698	0.709	0.787			0.537	0.628	0.643	0.803		
iFlashAttention	MSE	0.306	0.392	0.428	0.442	11.43	2303	0.305	0.382	0.426	0.417	10.00	2294
	MAE	0.355	0.406	0.438	0.455			0.353	0.400	0.430	0.440		
iFlowformer	MSE	0.308	0.389	0.431	0.440	13.02	2293	0.308	0.382	0.422	0.432	10.70	2281
	MAE	0.357	0.409	0.440	0.453			0.355	0.402	0.433	0.447		
PPDformer	MSE	0.321	0.405	0.439	0.461	36.94	2727	0.320	0.401	0.436	0.438	22.24	2714
	MAE	0.365	0.415	0.445	0.465			0.361	0.406	0.439	0.454		
LiNo	MSE	0.305	0.384	0.389	0.417	3.96	2035	0.296	0.378	0.385	0.412	3.83	2021
	MAE	0.352	0.398	0.413	0.436			0.345	0.395	0.411	0.432		
EDformer	MSE	0.422	0.485	0.549	0.799	3.66	2288	0.404	0.484	0.504	0.688	3.98	2661
	MAE	0.429	0.464	0.500	0.621			0.423	0.482	0.490	0.593		
Minusformer	MSE	0.304	0.379	0.430	0.427	10.94	2420	0.293	0.373	0.421	0.422	8.78	2699
	MAE	0.349	0.396	0.435	0.441			0.344	0.393	0.429	0.439		
WITRAN	MSE	1.659	2.810	2.641	3.488	27.12	804	1.771	2.752	2.632	3.752	25.12	803
	MAE	1.055	1.464	1.415	1.663			1.120	1.439	1.403	1.682		
Times2D	MSE	0.292	0.376	0.379	0.413	5.52	775	0.294	0.371	0.376	0.406	5.19	740
	MAE	0.340	0.391	0.407	0.434			0.342	0.390	0.405	0.429		
BiLSTM	MSE	1.433	1.925	2.258	2.466	13.98	1700	0.863	3.155	2.95	2.377	13.83	1661
	MAE	0.996	1.154	1.279	1.365			0.74	1.478	1.478	1.23		
ConvLSTM	MSE	1.362	1.834	2.04	2.176	10.36	672	0.978	2.62	2.435	2.624	10.26	661
	MAE	0.935	1.074	1.148	1.208			0.784	1.354	1.29	1.34		
GRU	MSE	0.947	1.717	1.926	3.377	10.26	663	0.924	1.816	2.263	2.2	9.701	648
	MAE	0.782	1.041	1.112	1.615			0.769	1.107	1.249	1.217		
LSTM	MSE	0.902	2.631	2.842	2.903	11.5	664	0.928	2.633	3.377	2.737	10.61	659
	MAE	0.758	1.399	1.466	1.476			0.773	1.381	1.604	1.274		
RNN	MSE	0.994	2.555	1.643	1.942	5.24	633	0.962	1.963	2.434	2.265	4.81	633
	MAE	0.834	1.271	0.968	1.049			0.766	1.158	1.278	1.19		

Table 11: Average efficiency results for the ETTh2 dataset with and without embeddings, including DataLoader time, forward pass time, backward pass with optimization time, peak allocated GPU memory, peak reserved GPU memory, and inference latency.

Model	With Embedding						Without Embedding					
	DL	FW	BW	PA	PR	Lat	DL	FW	BW	PA	PR	Lat
PDF	0.064	0.113	0.173	1304	1494	0.053	0.053	0.082	0.121	497.4	585.5	0.027
MICN	0.02	0.022	0.07	1266	1811	0.019	0.012	0.007	0.007	102.6	117	0.004
ETSformer	0.001	0.027	0.041	2157	2456	0.033	0.001	0.008	0.012	171.7	192.5	0.006
PatchTST	0.014	0.009	0.02	445.3	545.5	0.008	0.012	0.005	0.011	184.3	190.5	0.003
SOFTS	0.011	0.004	0.009	205.6	229	0.003	0.011	0.004	0.008	164.8	319.5	0.002
VarDrop	0.011	0.005	0.013	228.5	274	0.004	0.011	0.005	0.011	166.9	322	0.003
Crossformer	0.008	0.024	0.065	1514	1758	0.016	0.008	0.024	0.065	1514	1762	0.016
FlashAttention	0.013	0.007	0.017	232.6	279.5	0.006	0.012	0.007	0.014	167.7	324	0.005
iFlowformer	0.006	0.006	0.013	259	291.5	0.004	0.006	0.005	0.012	170.4	325	0.004
PPDformer	0.047	0.062	0.097	1290	2888	0.058	0.041	0.051	0.042	461.6	1084	0.047
LiNo	0.031	0.01	0.018	210.4	251.5	0.043	0.029	0.007	0.009	58.44	71	0.038
EDformer	0.043	0.005	0.01	143.7	184	0.004	0.045	0.004	0.012	201.2	360.5	0.003
Minusformer	0.01	0.005	0.011	246.6	353	0.004	0.008	0.004	0.007	161.4	201	0.003
WITRAN	0.027	0.048	0.064	46.53	61	0.043	0.026	0.049	0.065	46.53	61.5	0.043
Times2D	0.04	0.026	0.042	286.6	472	0.018	0.04	0.025	0.04	240.1	431.5	0.018
BiLSTM	0.014	0.012	0.023	320.6	397	0.012	0.014	0.012	0.022	300.3	369	0.012
ConvLSTM	0.013	0.008	0.052	149.6	198	0.007	0.013	0.007	0.014	143.4	184.5	0.006
GRU	0.013	0.007	0.013	143.3	181.5	0.006	0.013	0.006	0.013	132.1	174.5	0.006
LSTM	0.011	0.007	0.014	144.8	184.5	0.007	0.011	0.007	0.014	132	179	0.006
RNN	0.01	0.002	0.004	105.3	135.5	0.001	0.01	0.001	0.003	94.76	132.5	0.001

Table 12: ETTm2 forecasting results with and without embeddings for input length $L = 96$ and prediction horizons $H \in \{96, 192, 336, 720\}$. Bold values indicate better performance.

Model	Metric	With Embedding						Without Embedding					
		H				Time	Mem	H				Time	Mem
		96	192	336	720			96	192	336	720		
PDF	MSE	0.183	0.246	0.300	0.403	193.9	2975	0.176	0.241	0.304	0.402	66.29	2877
	MAE	0.265	0.307	0.342	0.401			0.258	0.301	0.344	0.403		
ETSformer	MSE	0.267	0.333	0.398	0.501	92.92	2806	0.189	0.255	0.318	0.432	32.23	2209
	MAE	0.372	0.409	0.444	0.495			0.284	0.323	0.361	0.427		
PatchTST	MSE	0.183	0.248	0.311	0.407	58.71	2472	0.177	0.244	0.314	0.410	24.58	2458
	MAE	0.263	0.309	0.351	0.402			0.261	0.305	0.350	0.408		
MICN	MSE	0.183	0.272	0.396	0.579	70.61	2845	0.193	0.280	0.314	0.508	17.24	2836
	MAE	0.280	0.346	0.429	0.532			0.292	0.358	0.350	0.498		
SOFTS	MSE	0.180	0.251	0.315	0.417	30.73	638	0.179	0.247	0.309	0.411	28.43	481
	MAE	0.262	0.309	0.349	0.407			0.263	0.308	0.346	0.405		
VarDrop	MSE	0.182	0.250	0.312	0.410	36.48	499	0.181	0.250	0.322	0.421	28.34	391
	MAE	0.266	0.311	0.350	0.405			0.265	0.309	0.357	0.410		
Crossformer	MSE	0.237	0.450	0.640	1.660	232.8	2145	0.257	0.437	0.701	1.520	232.7	2131
	MAE	0.342	0.462	0.548	0.914			0.336	0.442	0.602	0.886		
iFlashAttention	MSE	0.182	0.250	0.312	0.411	39.93	2389	0.194	0.249	0.322	0.416	33.69	2375
	MAE	0.266	0.311	0.349	0.405			0.279	0.309	0.357	0.408		
iFlowformer	MSE	0.183	0.249	0.311	0.409	32.70	2391	0.181	0.248	0.312	0.420	27.12	2391
	MAE	0.269	0.310	0.349	0.404			0.267	0.307	0.348	0.410		
PPDformer	MSE	0.188	0.269	0.322	0.417	148.7	2870	0.180	0.254	0.308	0.407	86.57	2802
	MAE	0.276	0.329	0.357	0.411			0.260	0.307	0.345	0.403		
LiNo	MSE	0.177	0.244	0.309	0.404	13.98	2147	0.173	0.241	0.304	0.403	11.19	2171
	MAE	0.260	0.304	0.346	0.398			0.256	0.301	0.342	0.399		
EDformer	MSE	0.310	0.500	0.647	0.755	12.34	2397	0.262	0.449	0.668	0.776	10.93	2804
	MAE	0.388	0.492	0.590	0.637			0.353	0.474	0.607	0.617		
Minusformer	MSE	0.183	0.248	0.309	0.409	41.26	2543	0.176	0.246	0.308	0.401	33.69	2848
	MAE	0.268	0.308	0.347	0.402			0.260	0.304	0.345	0.400		
WITRAN	MSE	0.807	1.136	1.293	4.448	109.5	943	0.795	1.092	1.313	4.439	107.5	925
	MAE	0.722	0.903	0.916	1.793			0.709	0.886	0.965	1.628		
Times2D	MSE	0.179	0.241	0.301	0.397	20.72	781	0.175	0.240	0.300	0.394	21.53	764
	MAE	0.263	0.301	0.339	0.394			0.256	0.299	0.338	0.392		
BiLSTM	MSE	0.419	0.599	0.895	2.205	54.71	1705	0.346	0.574	0.902	1.641	52.75	1662
	MAE	0.477	0.602	0.762	1.23			0.442	0.591	0.753	1.045		
ConvLSTM	MSE	0.395	0.6	1.303	1.855	91.44	685	0.549	0.765	1.082	2.208	36.62	670
	MAE	0.465	0.617	0.908	1.109			0.589	0.712	0.858	1.259		
GRU	MSE	0.321	0.698	0.883	1.478	36.14	667	0.375	0.647	1.035	1.52	35.36	656
	MAE	0.415	0.646	0.745	0.968			0.469	0.65	0.795	1.001		
LSTM	MSE	0.338	0.519	0.846	1.695	39.92	670	0.418	0.503	0.879	1.685	36.15	662
	MAE	0.428	0.548	0.735	1.076			0.495	0.551	0.737	1.067		
RNN	MSE	0.456	0.578	1.033	2.368	16.53	634	0.617	0.734	0.869	1.294	14.51	636
	MAE	0.498	0.58	0.809	1.223			0.607	0.668	0.743	0.913		

Table 13: Average efficiency results for the ETTm2 dataset with and without embeddings, including DataLoader time, forward pass time, backward pass with optimization time, peak allocated GPU memory, peak reserved GPU memory, and inference latency.

Model	With Embedding						Without Embedding					
	DL	FW	BW	PA	PR	Lat	DL	FW	BW	PA	PR	Lat
PDF	0.065	0.116	0.182	1304	1494	0.048	0.053	0.082	0.122	497.4	585.5	0.024
MICN	0.017	0.022	0.07	1266	1811	0.019	0.008	0.005	0.006	102.6	117	0.005
ETSformer	0.001	0.027	0.04	2157	2456	0.033	0.001	0.008	0.012	171.7	192.5	0.006
PatchTST	0.011	0.009	0.02	445.3	545.5	0.008	0.008	0.005	0.011	184.3	190.5	0.003
SOFTS	0.008	0.004	0.009	205.6	229	0.003	0.007	0.003	0.008	164.8	319.5	0.002
VarDrop	0.008	0.005	0.013	228.5	274	0.004	0.008	0.004	0.011	166.9	322	0.003
Crossformer	0.007	0.024	0.065	1514	1757	0.016	0.007	0.024	0.065	1514	1762	0.016
FlashAttention	0.01	0.007	0.017	232.6	279.5	0.006	0.009	0.006	0.014	167.7	324	0.005
iFlowformer	0.01	0.008	0.019	259	291.5	0.006	0.01	0.007	0.015	170.4	324.5	0.006
PPDformer	0.023	0.06	0.08	1206	2708	0.059	0.02	0.05	0.042	448.3	1080	0.049
LiNo	0.019	0.01	0.018	210.4	251	0.043	0.017	0.007	0.008	58.44	71	0.04
EDformer	0.022	0.005	0.01	143.7	184	0.004	0.02	0.004	0.012	201.2	360.5	0.003
Minusformer	0.006	0.005	0.011	246.6	353	0.004	0.006	0.004	0.007	161.4	201	0.003
WITRAN	0.026	0.046	0.062	46.53	61	0.041	0.027	0.046	0.063	46.53	61.5	0.042
Times2D	0.025	0.025	0.042	286.6	472	0.018	0.025	0.025	0.04	240.1	431	0.017
BiLSTM	0.011	0.012	0.023	320.6	397	0.012	0.011	0.012	0.022	300.3	369	0.012
ConvLSTM	0.009	0.007	0.02	149.6	198	0.007	0.008	0.007	0.014	143.4	184.5	0.006
GRU	0.009	0.007	0.013	143.3	181.5	0.006	0.009	0.006	0.013	132.1	174.5	0.006
LSTM	0.008	0.007	0.014	144.8	184.5	0.007	0.008	0.007	0.014	132	179.5	0.006
RNN	0.006	0.002	0.004	105.3	135.5	0.001	0.014	0.001	0.003	94.76	132.5	0.001

Table 14: Exchange Rate forecasting results with and without embeddings for prediction horizons $H \in \{96, 192, 336, 720\}$. Bold values indicate better performance.

Model	Metric	With Embedding								Without Embedding					
		H				Time		Mem		H				Time	
		96	192	336	720					96	192	336	720		
PDF	MSE	0.083	0.176	0.336	0.969	64.11	545	0.085	0.178	0.332	0.895	59.31	454		
	MAE	0.201	0.299	0.418	0.73					0.202	0.298	0.416	0.71		
MICN	MSE	0.097	0.212	0.369	0.69	143.3	1496	0.079	0.155	0.292	0.759	36.1	384		
	MAE	0.22	0.349	0.465	0.638					0.203	0.294	0.415	0.668		
ETSformer	MSE	0.129	0.217	0.369	0.892	196.6	1694	0.091	0.188	0.358	0.576	62.59	367		
	MAE	0.272	0.349	0.455	0.726					0.216	0.323	0.452	0.598		
PatchTST	MSE	0.084	0.175	0.324	1.138	67.92	734	0.084	0.181	0.327	0.913	45.23	379		
	MAE	0.202	0.297	0.412	0.783					0.203	0.304	0.415	0.717		
SOFTS	MSE	0.086	0.18	0.329	0.919	36.31	385	0.099	0.187	0.344	0.844	31.51	395		
	MAE	0.206	0.302	0.415	0.719					0.222	0.309	0.427	0.696		
VarDrop	MSE	0.11	0.191	0.345	0.85	44.84	412	0.088	0.183	0.34	0.868	37.28	391		
	MAE	0.238	0.318	0.427	0.698					0.209	0.305	0.423	0.704		
Crossformer	MSE	0.302	0.754	1.411	1.159	386.1	1711	0.218	0.436	1.098	1.307	382.8	1685		
	MAE	0.421	0.647	0.948	0.877					0.341	0.506	0.801	0.901		
FlashAttention	MSE	0.112	0.184	0.326	0.88	49.59	422	0.088	0.183	0.34	0.868	43.84	406		
	MAE	0.24	0.311	0.416	0.709					0.209	0.305	0.424	0.704		
iFlowformer	MSE	0.09	0.188	0.336	0.8	58.63	448	0.088	0.183	0.337	0.867	54.22	410		
	MAE	0.212	0.311	0.422	0.675					0.209	0.304	0.422	0.704		
PPDformer	MSE	0.103	0.203	0.371	1.022	214.2	911	0.112	0.218	0.357	0.903	148.3	583		
	MAE	0.228	0.321	0.442	0.764					0.232	0.331	0.432	0.719		
LiNo	MSE	0.087	0.186	0.346	0.928	43.48	305	0.085	0.178	0.328	0.83	38.56	280		
	MAE	0.206	0.308	0.427	0.733					0.204	0.299	0.416	0.685		
EDformer	MSE	0.098	0.296	0.752	0.909	18.63	412	0.12	0.219	1.113	0.96	16.52	348		
	MAE	0.23	0.382	0.611	0.737					0.239	0.327	0.73	0.745		
Minusformer	MSE	0.087	0.176	0.316	1.207	68.71	555	0.084	0.177	0.331	0.854	59.23	437		
	MAE	0.207	0.299	0.407	0.814					0.204	0.298	0.416	0.696		
WITRAN	MSE	0.85	0.963	1.732	3.153	179.9	292	0.894	0.985	1.698	3.183	173.1	294		
	MAE	0.762	0.791	1.1	1.498					0.783	0.8	1.088	1.505		
Times2D	MSE	0.082	0.172	0.327	0.847	42.7	479	0.082	0.175	0.325	0.837	42.08	451		
	MAE	0.199	0.293	0.413	0.692					0.198	0.296	0.412	0.688		
BiLSTM	MSE	0.541	0.849	1.401	2.094	57.76	880	0.36	0.539	0.757	0.943	55.98	843		
	MAE	0.595	0.747	0.983	1.216					0.486	0.602	0.732	0.815		
ConvLSTM	MSE	0.51	1.156	1.501	2.426	104.1	692	0.553	0.828	1.032	1.843	42.7	674		
	MAE	0.585	0.889	0.967	1.31					0.611	0.758	0.835	1.135		
GRU	MSE	0.465	1.234	0.921	1.187	121.6	670	0.388	0.585	0.837	1.126	34.46	662		
	MAE	0.563	0.918	0.809	0.932					0.503	0.63	0.765	0.879		
LSTM	MSE	0.589	1.099	1.168	1.778	35.21	1497	0.596	0.959	0.86	1.185	34.43	1494		
	MAE	0.609	0.867	0.886	1.064					0.653	0.781	0.786	0.91		
RNN	MSE	0.586	0.68	0.839	1.116	15.68	631	0.517	1.493	0.904	1.105	14.9	630		
	MAE	0.662	0.715	0.788	0.895					0.59	1.057	0.803	0.877		

Table 15: Average efficiency results for the Exchange Rate dataset with and without embeddings, including DataLoader time, forward pass time, backward pass with optimization time, peak allocated GPU memory, peak reserved GPU memory, and inference latency.

Model	With Embedding						Without Embedding					
	DL	FW	BW	PA	PR	Lat	DL	FW	BW	PA	PR	Lat
PDF	0.014	0.025	0.048	446.9	504	0.018	0.014	0.023	0.041	302.5	334.5	0.016
MICN	0.01	0.022	0.069	1266	1807	0.018	0.008	0.004	0.008	166.8	241.5	0.003
ETSformer	0.015	0.059	0.072	2157	2455	0.057	0.009	0.012	0.017	173.1	194.5	0.009
PatchTST	0.009	0.01	0.024	472.2	591	0.008	0.007	0.005	0.013	200.6	228	0.004
SOFTS	0.007	0.004	0.009	208.7	230.5	0.003	0.007	0.004	0.008	165.6	300	0.002
VarDrop	0.007	0.005	0.013	231.2	259	0.004	0.01	0.004	0.01	168.2	303	0.003
Crossformer	0.011	0.028	0.117	1640	1866	0.025	0.011	0.028	0.112	1639	1863	0.025
FlashAttention	0.008	0.006	0.016	235.6	266.5	0.006	0.007	0.006	0.013	169	304.5	0.005
iFlowformer	0.008	0.008	0.019	263.2	288.5	0.006	0.008	0.007	0.016	171.8	306	0.006
PPDformer	0.018	0.062	0.074	1104	2160	0.057	0.013	0.05	0.036	419.6	953.5	0.05
LiNo	0.008	0.009	0.008	56.93	64	0.041	0.007	0.005	0.008	31.7	37	0.004
EDformer	0.017	0.005	0.011	148.6	195.5	0.004	0.018	0.005	0.013	202.5	362.5	0.003
Minusformer	0.005	0.005	0.012	246.9	352.5	0.004	0.005	0.004	0.009	167.7	336	0.004
WITRAN	0.021	0.047	0.067	46.75	61	0.044	0.017	0.047	0.067	46.75	61.5	0.044
Times2D	0.022	0.027	0.045	321.6	518	0.019	0.023	0.027	0.042	267.2	459	0.018
BiLSTM	0.013	0.012	0.023	320.8	398	0.012	0.007	0.012	0.022	300.5	369.5	0.011
ConvLSTM	0.005	0.007	0.028	149.8	198	0.007	0.005	0.007	0.021	143.6	184.5	0.006
GRU	0.012	0.007	0.025	143.6	182	0.006	0.012	0.006	0.019	132.3	174.5	0.006
LSTM	0.005	0.007	0.014	145	184.5	0.007	0.005	0.006	0.013	132.2	180	0.006
RNN	0.004	0.002	0.004	105.5	135.5	0.001	0.004	0.001	0.003	94.99	133	0.001

Table 16: Weather forecasting results with and without embeddings for prediction horizons $H \in \{96, 192, 336, 720\}$. Bold values indicate better performance.

Model	Metric	With Embedding						Without Embedding					
		H				Time	Mem	H				Time	Mem
		96	192	336	720			96	192	336	720		
PDF	MSE	0.175	0.22	0.276	0.35	98.54	881	0.178	0.224	0.279	0.354	89.46	778
	MAE	0.217	0.255	0.296	0.346			0.219	0.258	0.298	0.347		
MICN	MSE	0.192	0.233	0.275	0.327	40.29	776	0.186	0.226	0.261	0.31	38.76	728
	MAE	0.265	0.3	0.333	0.371			0.255	0.291	0.313	0.349		
VarDrop	MSE	0.196	0.243	0.293	0.364	49.43	423	0.178	0.224	0.284	0.358	57.7	510
	MAE	0.234	0.273	0.308	0.355			0.218	0.258	0.301	0.351		
Crossformer	MSE	0.16	0.204	0.274	0.401	327.3	2068	0.153	0.207	0.272	0.353	321.2	2082
	MAE	0.231	0.274	0.334	0.404			0.224	0.271	0.323	0.379		
FlashAttention	MSE	0.195	0.243	0.293	0.364	56.08	456	0.176	0.222	0.283	0.356	72.95	578
	MAE	0.234	0.273	0.308	0.355			0.215	0.255	0.3	0.35		
iFlowformer	MSE	0.173	0.227	0.279	0.359	62.12	438	0.172	0.227	0.283	0.357	59.96	519
	MAE	0.215	0.261	0.298	0.352			0.211	0.26	0.3	0.349		
PPDformer	MSE	0.195	0.239	0.293	0.362	454.7	1492	0.16	0.21	0.27	0.348	268.6	797
	MAE	0.243	0.277	0.314	0.357			0.204	0.254	0.297	0.348		
LiNo	MSE	0.163	0.205	0.262	0.349	22.12	842	0.159	0.207	0.265	0.346	16.62	624
	MAE	0.207	0.247	0.289	0.347			0.204	0.249	0.294	0.347		
EDformer	MSE	0.201	0.25	0.292	0.354	56.67	554	0.172	0.21	0.263	0.331	37.66	527
	MAE	0.268	0.317	0.348	0.396			0.229	0.266	0.31	0.358		
Minusformer	MSE	0.17	0.223	0.282	0.355	83.18	562	0.175	0.223	0.279	0.356	78.74	526
	MAE	0.21	0.257	0.3	0.348			0.214	0.257	0.298	0.349		
WITRAN	MSE	0.502	0.439	0.44	0.604	184.8	291	0.506	0.395	0.398	0.55	186	293
	MAE	0.526	0.477	0.469	0.563				0.52	0.439	0.432	0.53	
Times2D	MSE	0.181	0.232	0.285	0.357	187.1	6137	0.179	0.23	0.281	0.356	170	5358
	MAE	0.233	0.262	0.3	0.347				0.229	0.26	0.297	0.347	
BiLSTM	MSE	0.239	0.272	0.336	0.418	70.51	1218	0.239	0.282	0.329	0.398	69.12	1161
	MAE	0.328	0.35	0.398	0.453				0.328	0.363	0.396	0.438	
ConvLSTM	MSE	0.297	0.313	0.387	0.469	55.02	849	0.292	0.29	0.338	0.405	52.24	843
	MAE	0.374	0.386	0.437	0.486				0.376	0.371	0.404	0.445	
GRU	MSE	0.576	0.291	0.35	0.435	45.24	807	0.195	0.256	0.301	0.415	45.16	785
	MAE	0.563	0.367	0.405	0.459				0.283	0.338	0.375	0.45	
LSTM	MSE	0.288	0.297	0.353	0.432	44.05	1668	0.232	0.278	0.315	0.413	44.24	1624
	MAE	0.363	0.37	0.41	0.458				0.321	0.359	0.378	0.449	
RNN	MSE	0.423	0.37	0.347	0.858	40	683	0.228	0.29	0.341	0.434	40.26	655
	MAE	0.477	0.436	0.407	0.723				0.315	0.371	0.403	0.465	

Table 17: Average efficiency results for the Weather dataset with and without embeddings, including DataLoader time, forward pass time, backward pass with optimization time, peak allocated GPU memory, peak reserved GPU memory, and inference latency.

Model	With Embedding						Without Embedding					
	DL	FW	BW	PA	PR	Lat	DL	FW	BW	PA	PR	Lat
PDF	0.01	0.017	0.036	581.4	622.5	0.011	0.01	0.017	0.031	384.4	420	0.01
MICN	0.008	0.004	0.01	430.1	571	0.003	0.008	0.004	0.009	307.2	509	0.003
ETSformer	0.007	0.021	0.025	635.4	756	0.027	0.006	0.008	0.011	127.1	146	0.006
PatchTST	0.003	0.003	0.005	91.53	112	0.002	0.003	0.002	0.005	177.5	286.5	0.002
SOFTS	0.005	0.002	0.004	103.7	130.5	0.002	0.005	0.002	0.007	164	315.5	0.002
VarDrop	0.011	0.006	0.012	143.8	186	0.004	0.011	0.005	0.011	181.4	436	0.003
Crossformer	0.013	0.027	0.095	1342	1474	0.021	0.013	0.027	0.091	1339	1472	0.021
FlashAttention	0.011	0.007	0.014	160	205	0.006	0.012	0.01	0.02	185.4	441.5	0.008
iFlowformer	0.012	0.009	0.018	196.6	245	0.007	0.011	0.007	0.017	186.2	440.5	0.006
PPDformer	0.037	0.122	0.182	2188	4088	0.111	0.039	0.09	0.068	810.6	1456	0.084
LiNo	0.02	0.013	0.023	444.5	547	0.036	0.02	0.011	0.008	134.1	162.5	0.032
EDformer	0.016	0.005	0.012	284.8	350	0.004	0.014	0.004	0.007	195.8	314.5	0.003
Minusformer	0.009	0.005	0.013	288.6	370.5	0.004	0.01	0.004	0.01	186.6	439	0.003
WITRAN	0.021	0.048	0.064	50.26	68.5	0.042	0.021	0.047	0.064	50.26	63.5	0.044
Times2D	0.139	0.237	0.24	915.2	1207	0.16	0.137	0.255	0.193	780.8	1077	0.234
BiLSTM	0.01	0.014	0.028	733.5	841	0.014	0.01	0.014	0.028	674	768	0.013
ConvLSTM	0.014	0.008	0.018	339.8	441	0.008	0.008	0.008	0.042	321.4	411	0.007
GRU	0.008	0.008	0.016	308.2	386.5	0.007	0.008	0.007	0.023	277.6	356.5	0.007
LSTM	0.007	0.008	0.018	324.6	409.5	0.008	0.007	0.007	0.018	288.1	374.5	0.007
RNN	0.008	0.008	0.025	154.5	208	0.007	0.008	0.007	0.012	137.3	175.5	0.007

Table 18: National illness forecasting results with and without embeddings for prediction horizons $H \in \{24, 36, 48, 60\}$. Bold values indicate better performance.

Model	Metric	With Embedding						Without Embedding					
		H				Time	Mem	H				Time	Mem
		96	192	336	720			96	192	336	720		
PDF	MSE	1.981	2.203	1.882	1.885	9.2	823	2.28	2.288	2.1	2.001	8.702	741
	MAE	0.842	0.873	0.838	0.869			0.903	0.935	0.894	0.91		
MICN	MSE	2.809	2.83	2.918	2.91	4.775	738	2.879	2.862	2.849	2.965	3.552	563
	MAE	1.162	1.156	1.167	1.161			1.162	1.155	1.154	1.177		
ETSformer	MSE	2.918	3.239	3.201	3.343	6.861	948	4.24	4.686	4.617	4.282	4.425	607
	MAE	1.174	1.237	1.212	1.232			1.442	1.53	1.51	1.44		
PatchTST	MSE	1.785	1.677	1.587	2.252	4.798	1225	1.888	1.776	1.886	1.715	3.784	1083
	MAE	0.85	0.858	0.827	1.011			0.885	0.872	0.9	0.888		
SOFTS	MSE	2.37	1.722	2.115	1.89	3.168	639	1.54	1.777	1.77	1.886	3.041	597
	MAE	0.9	0.865	0.914	0.925			0.751	0.848	0.871	0.938		
VarDrop	MSE	3.004	2.708	2.576	2.285	3.493	1677	1.814	2.185	1.866	1.976	4.046	1632
	MAE	0.994	0.956	0.953	0.993			0.855	0.886	0.871	0.955		
Crossformer	MSE	4.903	4.965	4.258	4.971	10.44	2585	4.583	4.925	4.47	5.069	10.35	2582
	MAE	1.545	1.542	1.383	1.561			1.493	1.541	1.447	1.584		
FlashAttention	MSE	4.4	3.64	2.307	2.064	4.364	1355	1.521	2.466	2.086	2.067	4.697	1360
	MAE	1.069	1.053	0.966	0.981			0.796	0.941	0.92	0.979		
iFlowformer	MSE	1.426	2.255	2.02	2.286	4.006	1163	1.398	2.299	1.931	1.925	3.51	1114
	MAE	0.794	0.905	0.916	1.017			0.761	0.911	0.907	0.935		
PPDformer	MSE	3.785	2.444	2.378	3.809	9.519	2192	1.726	2.038	1.994	2.118	7.497	2014
	MAE	1.07	0.962	0.963	1.176			0.822	0.939	0.882	0.972		
LiNo	MSE	1.791	1.729	1.958	2.345	3.713	567	1.744	1.883	1.904	1.959	3.225	545
	MAE	0.895	0.841	0.911	1.014			0.845	0.829	0.881	0.92		
EDformer	MSE	2.531	3.053	2.87	2.849	2.268	1839	3.072	3.322	3.516	3.34	2.143	1970
	MAE	1.08	1.191	1.186	1.215			1.204	1.266	1.317	1.287		
Minusformer	MSE	2.225	2.597	2.515	2.396	3.219	681	1.542	2.151	1.9	2.052	2.678	652
	MAE	0.925	0.94	0.935	0.934			0.788	0.868	0.84	0.906		
Times2D	MSE	1.883	1.891	1.971	2.063	5.485	724	1.853	1.853	1.834	2	5.432	710
	MAE	0.84	0.871	0.909	0.931			0.819	0.859	0.874	0.945		
BiLSTM	MSE	5.14	5.714	5.908	5.842	6.429	867	4.771	5.326	8.16	6.1	6.258	831
	MAE	1.496	1.606	1.653	1.651			1.43	1.558	2.072	1.679		
ConvLSTM	MSE	5.403	5.635	5.841	5.939	4.409	673	5.674	6.229	6.427	6.202	4.419	667
	MAE	1.544	1.599	1.637	1.646			1.582	1.683	1.725	1.697		
GRU	MSE	5.254	5.957	5.673	5.472	4.321	663	4.887	5.714	5.858	4.746	4.241	660
	MAE	1.514	1.641	1.593	1.591			1.466	1.611	1.641	1.495		
LSTM	MSE	5.243	5.921	5.728	5.825	4.346	660	5.041	5.238	6.262	6.048	4.328	658
	MAE	1.524	1.634	1.626	1.656			1.486	1.536	1.69	1.659		
RNN	MSE	4.937	5.568	5.12	5.226	2.68	611	4.98	5.664	5.254	5.439	2.351	620
	MAE	1.501	1.59	1.559	1.575			1.495	1.602	1.589	1.618		

Table 19: Average efficiency results for the National Illness dataset with and without embeddings, including DataLoader time, forward pass time, backward pass with optimization time, peak allocated GPU memory, peak reserved GPU memory, and inference latency.

Model	With Embedding						Without Embedding					
	DL	FW	BW	PA	PR	Lat	DL	FW	BW	PA	PR	Lat
PDF	0.041	0.042	0.064	352.2	388	0.035	0.045	0.041	0.06	224.3	243.5	0.023
MICN	0.015	0.005	0.013	165.9	393.5	0.004	0.015	0.004	0.006	54.38	76.5	0.004
ETSformer	0.015	0.012	0.025	633.3	753.5	0.022	0.014	0.007	0.01	118.5	124	0.006
PatchTST	0.008	0.004	0.008	152.1	158	0.003	0.007	0.002	0.006	152	158	0.002
SOFTS	0.012	0.002	0.006	201.5	222	0.002	0.013	0.002	0.005	156.8	184	0.002
VarDrop	0.012	0.003	0.01	224.6	266	0.003	0.013	0.005	0.009	158.3	186	0.004
Crossformer	0.009	0.008	0.023	836.1	897.5	0.006	0.009	0.008	0.023	834.2	891.5	0.006
FlashAttention	0.014	0.004	0.011	201.6	242.6	0.003	0.016	0.007	0.013	155.6	184	0.004
iFlowformer	0.013	0.004	0.01	219.4	248	0.003	0.013	0.004	0.007	156.1	184	0.003
PPDformer	0.016	0.024	0.029	613.2	759.5	0.022	0.015	0.021	0.018	245.5	611.5	0.02
LiNo	0.013	0.007	0.006	45.97	52	0.031	0.012	0.004	0.006	21.97	26.5	0.004
EDformer	0.044	0.004	0.007	133.7	168	0.003	0.044	0.004	0.009	187.3	438	0.002
Minusformer	0.012	0.003	0.008	229.3	272.5	0.003	0.012	0.003	0.005	164	245	0.002
Times2D	0.015	0.01	0.016	156.9	218	0.008	0.015	0.01	0.015	155.2	208	0.007
BiLSTM	0.017	0.012	0.023	319.5	390	0.012	0.016	0.012	0.022	299.4	360	0.011
ConvLSTM	0.014	0.007	0.014	146.4	180	0.007	0.014	0.006	0.013	140.3	176	0.006
GRU	0.015	0.007	0.013	138.7	172	0.006	0.015	0.006	0.013	126	168	0.006
LSTM	0.014	0.007	0.014	142.1	176	0.007	0.013	0.006	0.013	127	171	0.006
RNN	0.014	0.002	0.004	104.5	137.7	0.002	0.014	0.001	0.003	92.97	114.3	0.001

A.5 Statistical significance analysis

Table 20: Confidence intervals for MSE of selected models on ETTh1 and ETTm1 with input length $L = 96$ and prediction horizons $H \in \{96, 192, 336, 720\}$. **Bold** values indicate better performance.

Models	H	Times2D		PDF		LiNo		SOFTS	
		With Embedding				Without Embedding			
		MSE	CI	MSE	CI	MSE	CI	MSE	CI
ETTh1	96	0.379	(0.378, 0.380)	0.385	(0.382, 0.388)	0.385	(0.384, 0.386)	0.384	(0.383, 0.386)
	192	0.431	(0.429, 0.433)	0.439	(0.436, 0.442)	0.442	(0.438, 0.446)	0.448	(0.445, 0.450)
	336	0.473	(0.469, 0.476)	0.492	(0.486, 0.498)	0.476	(0.471, 0.480)	0.501	(0.494, 0.509)
	720	0.473	(0.469, 0.477)	0.521	(0.501, 0.544)	0.482	(0.473, 0.491)	0.538	(0.524, 0.552)
ETTm1	96	0.326	(0.323, 0.328)	0.335	(0.334, 0.336)	0.332	(0.331, 0.333)	0.328	(0.325, 0.330)
	192	0.371	(0.370, 0.372)	0.374	(0.372, 0.376)	0.383	(0.375, 0.392)	0.386	(0.381, 0.391)
	336	0.407	(0.402, 0.411)	0.403	(0.401, 0.405)	0.438	(0.432, 0.444)	0.438	(0.428, 0.447)
	720	0.459	(0.455, 0.463)	0.457	(0.455, 0.459)	0.496	(0.485, 0.506)	0.480	(0.477, 0.482)
		With Embedding				Without Embedding			
		MSE	CI	MSE	CI	MSE	CI	MSE	CI
ETTh1	96	0.361	(0.359, 0.364)	0.378	(0.376, 0.380)	0.377	(0.375, 0.379)	0.383	(0.382, 0.384)
	192	0.428	(0.427, 0.429)	0.432	(0.428, 0.436)	0.428	(0.426, 0.429)	0.441	(0.438, 0.444)
	336	0.466	(0.463, 0.469)	0.479	(0.476, 0.482)	0.463	(0.460, 0.466)	0.487	(0.483, 0.490)
	720	0.472	(0.468, 0.476)	0.518	(0.499, 0.537)	0.470	(0.464, 0.476)	0.526	(0.514, 0.537)
ETTm1	96	0.325	(0.322, 0.327)	0.324	(0.322, 0.326)	0.326	(0.323, 0.329)	0.322	(0.321, 0.323)
	192	0.369	(0.368, 0.370)	0.368	(0.365, 0.370)	0.373	(0.370, 0.376)	0.368	(0.367, 0.369)
	336	0.401	(0.397, 0.406)	0.395	(0.394, 0.397)	0.421	(0.415, 0.426)	0.406	(0.405, 0.407)
	720	0.455	(0.451, 0.459)	0.454	(0.452, 0.456)	0.497	(0.492, 0.502)	0.476	(0.474, 0.477)

Table 21: Confidence intervals for MAE of selected models on ETTh1 and ETTm1 with input length $L = 96$ and prediction horizons $H \in \{96, 192, 336, 720\}$. **Bold** values indicate better performance.

Models	H	Times2D		PDF		LiNo		SOFTS	
		With Embedding							
		MAE	CI	MAE	CI	MAE	CI	MAE	CI
ETTh1	96	0.402	(0.400, 0.405)	0.405	(0.403, 0.407)	0.403	(0.402, 0.404)	0.404	(0.403, 0.405)
	192	0.432	(0.431, 0.433)	0.438	(0.436, 0.440)	0.433	(0.431, 0.436)	0.442	(0.440, 0.444)
	336	0.442	(0.440, 0.444)	0.466	(0.463, 0.470)	0.446	(0.444, 0.448)	0.469	(0.464, 0.475)
	720	0.465	(0.462, 0.468)	0.497	(0.484, 0.509)	0.468	(0.463, 0.473)	0.513	(0.504, 0.521)
ETTm1	96	0.364	(0.362, 0.366)	0.368	(0.367, 0.369)	0.367	(0.366, 0.368)	0.365	(0.363, 0.366)
	192	0.390	(0.385, 0.395)	0.392	(0.390, 0.393)	0.395	(0.390, 0.399)	0.397	(0.394, 0.400)
	336	0.410	(0.405, 0.415)	0.414	(0.412, 0.416)	0.426	(0.423, 0.429)	0.429	(0.424, 0.433)
	720	0.441	(0.439, 0.443)	0.465	(0.457, 0.472)	0.460	(0.455, 0.465)	0.455	(0.454, 0.457)
Without Embedding									
		MAE	CI	MAE	CI	MAE	CI	MAE	CI
ETTh1	96	0.392	(0.391, 0.393)	0.399	(0.398, 0.400)	0.399	(0.397, 0.401)	0.402	(0.401, 0.403)
	192	0.422	(0.421, 0.423)	0.431	(0.429, 0.433)	0.425	(0.424, 0.426)	0.437	(0.435, 0.439)
	336	0.439	(0.438, 0.440)	0.453	(0.450, 0.455)	0.440	(0.438, 0.441)	0.463	(0.460, 0.466)
	720	0.465	(0.463, 0.467)	0.491	(0.481, 0.500)	0.463	(0.459, 0.466)	0.506	(0.500, 0.513)
ETTm1	96	0.363	(0.361, 0.365)	0.362	(0.360, 0.364)	0.363	(0.361, 0.365)	0.361	(0.360, 0.362)
	192	0.387	(0.385, 0.389)	0.387	(0.385, 0.388)	0.389	(0.387, 0.390)	0.386	(0.385, 0.387)
	336	0.406	(0.403, 0.408)	0.408	(0.407, 0.409)	0.419	(0.416, 0.423)	0.411	(0.410, 0.412)
	720	0.439	(0.438, 0.441)	0.455	(0.451, 0.460)	0.461	(0.458, 0.464)	0.451	(0.451, 0.452)

A.6 Embedding and Input Dimensions Across Models

Table 22 summarizes the embedding dimensions used by each forecasting model when the data embedding layer is enabled, as well as the corresponding raw input dimension when embeddings are removed. For all datasets, the reported dimensions correspond to experiments with input sequence length $L = 96$ and prediction length $H = 96$, except for the National Illness dataset where a prediction horizon of $H = 60$ is used following standard practice. This table provides a unified view of how each model transforms input features under both settings, clarifying architectural differences across the full set of benchmark datasets.

Table 22: Embedding dimension d_{model} (with embeddings) and input dimension c_{in} (without embeddings) for all models. Values are for $L = 96$, $H = 96$, except National Illness ($H = 60$).

Model	ETTh1		ETTh2		ETTm1		ETTm2		Weather		Exchange		National Illness	
	d_{model}	c_{in}	d_{model}	c_{in}										
PDF	512	7	512	7	512	7	512	7	64	21	64	8	64	7
MICN	512	7	512	7	512	7	512	7	32	21	512	8	64	7
ETSformer	512	7	512	7	512	7	512	7	512	21	512	8	512	7
LiNo	512	7	512	7	512	7	512	7	512	21	256	8	256	7
Times2D	64	7	64	7	64	7	64	7	64	21	64	8	64	7
SOFTS	256	7	128	7	128	7	256	7	512	21	512	8	512	7
PatchTST	512	7	512	7	512	7	512	7	128	21	512	8	16	7
VarDrop	512	7	512	7	512	7	512	7	512	21	512	8	512	7
FlashAttention	512	7	512	7	512	7	512	7	512	21	512	8	512	7
iFlowformer	512	7	512	7	512	7	512	7	512	21	512	8	512	7
WITRAN	32	7	32	7	32	7	32	7	32	21	32	8	32	7
Minusformer	512	7	512	7	512	7	512	7	512	21	512	8	512	7
EDformer	512	7	512	7	512	7	512	7	512	21	512	8	512	7
PPDformer	512	7	512	7	512	7	512	7	512	21	512	8	512	7
Crossformer	512	7	512	7	512	7	512	7	256	21	512	8	512	7