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Abstract: In unstructured environments, robotic manipulation tasks involving
objects with constrained motion trajectories—such as door opening—often ex-
perience discrepancies between the robot’s vision-guided end-effector trajectory
and the object’s constrained motion path. Such discrepancies generate unintended
harmful forces, which, if exacerbated, may lead to task failure and potential dam-
age to the manipulated objects or the robot itself. To address this issue, this paper
introduces a novel diffusion framework, termed SafeDiff. Unlike conventional
methods that sequentially fuse visual and tactile data to predict future robot states,
our approach generates a prospective state sequence based on the current robot
state and visual context observations, using real-time force feedback as a cali-
bration signal. This implicitly adjusts the robot’s state within the state space, en-
hancing operational success rates and significantly reducing harmful forces during
manipulation. Additionally, we develop a large-scale simulation dataset named
SafeDoorManip50k, offering extensive multimodal data to train and evaluate the
proposed method. Extensive experiments show that our visual-tactile model sub-
stantially mitigates the risk of harmful forces in the door opening task, across both
simulated and real-world settings. Project page is available at this URL.
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1 Introduction

In industrial and everyday settings, robotic ma-
nipulation tasks often involve objects whose
motion trajectories are inherently constrained,
such as opening doors, closing windows,
pulling drawers, or assembling bolts and pins.
Under visual guidance, the motion trajectory
generated for the robot end-effector may devi-
ate from the constrained trajectory of the ma-
nipulated object, leading to unintended addi-
tional forces at the end-effector, as illustrated
in Fig. 1. As these mismatches increase, they
can cause task failure, and the resulting harmful
forces may even damage the manipulated object
or the robot’s joint motors. Therefore, ensuring
precise force regulation is critical for both safe
and efficient manipulation. In this work, we de-
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Figure 1: The restoring force exerted by the
robot’s end-effector can be decomposed into three
components: F;, I}, and I,. The component F,
is tangent with the door’s opening trajectory and is
termed the effective force. The forces lying in the
xOy plane are orthogonal to the trajectory. These
forces might cause damage to both the robot and
the door and are referred to as harmful forces.

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.


https://i-am-future.github.io/safediff/

fine that maintaining the harmful forces during manipulation remain within a safe threshold as force
safety.

Traditional approaches to force safety primarily rely on impedance control, which regulates the stiff-
ness and damping characteristics of the robot’s end-effector to adapt to external forces and achieve
compliant motion. However, these methods necessitate explicit modeling of interaction dynamics,
making them well-suited for structured environments where system parameters can be accurately
defined. As the demand for robotic manipulation in unstructured settings grows, end-to-end deep
learning approaches [1, 2] have emerged as a promising alternative, offering enhanced adaptability
and data-driven force regulation without the need for explicit system modeling. Despite notable
advancements, existing research predominantly focuses on improving task success rates, often ne-
glecting the critical aspect of precise force control.

To address this gap, we propose a novel deep learning-based state planning approach to enhance
force safety in robotic manipulation. Unlike traditional force control methods, our approach employs
pure position control, significantly reducing hardware requirements while maintaining adaptability
across diverse unstructured manipulation tasks. From the perspective of state planning, force safety
issues mainly arise when the generated state fails to meet the specific physical properties of the
structured environments. Taking the door-opening task shown in Fig. 1 as an example, the door can
only move along the arc-shaped trajectory determined by its physical properties (e.g. the door’s size,
opening angle, and position relative to the robot). This indicates that all states of the robot’s end-
effector, generated by the state planning model, must strictly adhere to this arc-shaped trajectory to
ensure force safety. Otherwise, the robot controller will attempt to reach states outside this trajectory,
resulting in harmful forces. To be brief, we define the state that lies on this arc-shaped trajectory as
safe state, while those outside are deemed unsafe. In this paper, our primary focus is on planning
safe states to ensure force safety throughout the robotic manipulation process.

An intuitive solution for the above safe door-opening state planning can be found in bionics: when
opening the door, humans estimate future door-opening states based on the door’s physical prop-
erties—such as size, opening angle, and so forth—using visual perception, and then modify them
in real-time based on the forces sensed through tactile feedback during the actual door-opening
process. Inspired by this, we aim to dynamically integrate real-time tactile feedback to refine the
vision-guided generated states. However, this solution remains challenging due to the intricate,
nonlinear dynamics between the current force feedback and the refinement of future states. These
dynamics are influenced by factors like the robot’s manipulability, positions relative to the door, and
other physical considerations in the real world. To address such an issue, we develop a diffusion-
based model named SafeDiff to plan safe states, leveraging the effectiveness of diffusion models in
approximating complex distributions. In this work, we utilize offline demonstrations collected from
the simulator to learn the aforementioned dynamics of the door opening and embed this knowledge
into the state representation. This allows us to perform implicit calibration on vision-guided states
online, utilizing real-time tactile feedback obtained during inference. Such a process enables the
generated states to progressively satisfy the constraints imposed by the door’s properties, thereby
ensuring force safety during the entire door-opening process.

This work makes three key contributions: (1) We propose SafeDiff, a diffusion-based model that
integrates real-time tactile feedback to implicitly calibrate vision-guided robot states, achieving ro-
bustness against external disturbances and maintaining force safety where prior methods often fail.
(2) We demonstrate that SafeDiff achieves superior safe state planning across both simulation and
real-world experiments, with strong few-shot sim-to-real transfer that greatly reduces real-world
data requirements and minimizes object damage risk. (3) We introduce a novel benchmark for force
safety in robotic manipulation, including three physically grounded, computationally efficient met-
rics and the large-scale simulation dataset SafeDoorManip50k for door-opening tasks.



2 Related Works

2.1 Vision-based Robotic Manipulation

Numerous studies on vision-based robotic manipulation have addressed tasks such as object grasp-
ing [3, 4], articulated object manipulation [5, 6], and object reorientation [7]. These works empha-
size improving the robot’s environmental perception through various visual modalities to enhance
task success rates. For instance, [3, 4, 8] proposed using RGB-only images for robust robotic ma-
nipulation, while SAGCI [9], RLAfford [6], and Flowbot3D [10] rely solely on point clouds for
observations. Additionally, [11, 12] integrated both RGB images and point clouds to promote the
performance on specific manipulation tasks. However, the objects manipulated by robots are of-
ten fragile, especially articulated ones. In view of this, vision-based manipulation is challenging to
apply in real-world applications because it cannot accurately reflect the force safety status of the
manipulated objects. Therefore, it is of great significance for robots to incorporate tactile feedback
such that it can dynamically adjust the planned states and handle objects in a safer manner.

2.2 Multimodal Tactile Feedback for Enhanced Manipulation

Various learning-based approaches have employed tactile feedback to enhance robotic manipula-
tion. For instance, [13] introduced a tactile perception-driven method that enables robots to learn
how to grasp objects without relying on visual input. Numerous studies focus on grasp stability
[14, 15, 16], as well as regrasping [17, 18]. A few methods [19, 20, 21, 22] combine reinforcement
learning with tactile feedback to formulate manipulation strategies. And very few approaches lever-
age the combined benefits of both vision and touch. For example, [23] integrated prior knowledge
with dynamic model adaptation to locally compensate for changing dynamics, while [24] developed
a self-supervised learning framework that fuses visual and tactile inputs for peg insertion, improving
learning efficiency. However, the majority of these works used tactile feedback to improve manipu-
lation effectiveness rather than to guide safe planning.

2.3 Datasets for Door Opening

In recent years, a primary approach for door manipulation tasks has been to build simulation envi-
ronments that emulate real-world conditions. Studies such as [10, 25, 26, 27, 28, 11, 29] have intro-
duced a variety of simulated door-opening mechanisms, including pushing, pulling, and even those
involving latching mechanisms. Moreover, datasets like PartNet-Mobility [30] and AKB-48 [31]
offer diverse collections of articulated objects, including doors, but their focus on visual data col-
lection overlooks crucial modalities such as tactile information, limiting their effectiveness for safe
door-opening states planning. To address these shortcomings, we developed a comprehensive door
manipulation environment with multi-modal inputs and provided a large-scale door-opening dataset
to support safe manipulation planning.

3 Methodology

3.1 Preliminary

We begin by briefly reviewing the diffusion models, a class of generative models that synthesize
data by reversing a Markovian process where Gaussian noise is progressively added to data sam-
ples. These models consist of two primary phases: the forward process and the reverse process.
In the forward process, the original data is systematically corrupted, transitioning from a struc-
tured state to pure Gaussian noise over a predefined number of steps, described by the equation
xy = \Joyxs_1 + /1 — aze, where € is Gaussian noise and o are variance-preserving coefficients.
The reverse process entails learning to undo the noise addition to recover the original data from
its noisy state. This involves training a neural network to estimate the reverse conditional distribu-
tion p(x;—1|x¢), utilizing advanced deep learning techniques. A typical application of the diffusion
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Figure 2: Our framework takes a noise sequence as input, visual information, current robot state, and
its corresponding force feedback as conditions and outputs the final safe states through 7" denoising
iterations. The architecture consists of an encoder and a decoder. The encoder is composed of
a series of multi-scale Vision-Guided Mapping Modules (VMMs) that integrate visual data using
FiLM [32] and generate state representations initially. The decoder comprises a stack of Tactile-
Guided Calibration Modules (TCMs) which can refine the state representations based on tactile
feedback.

model in robotic manipulation is Decision Diffuser [33], which makes decisions using a return-
conditional diffusion model, allowing policies to generate behaviors satisfying constraints.

3.2 The Overall Framework

Motivated by the Decision Diffuser [33], the proposed SafeDiff aims to generate a consistent robot
state sequence S = {Si}£_, that ensures force safety conditioned on visual-tactile information
experienced during manipulation, thereby preventing any potential damage to the door. As shown
in Fig. 2, we employ an encoder-decoder architecture for our diffusion model. Given the visual
representation O of the current scene context, typically obtained from the image I € R *W >3 and
the current robot state R € R7t6+7+7 (representing end effector pose, velocity, and joint position,
velocity respectively), the initial input to the model is a set of Gaussian noise N € RX*7 with
length L. After T iterations, the model produces a sequence of L consecutive robot states S &€
RE*7. Notably, we have opted to replace the action sequence generated in [33] with a sequence of
robot states. This option stems from the fact that, while the door opening trajectory is predictable,
conventional control actions do not inherently guarantee force safety. Instead, each robot state is
closely correlated with the current state’s potential harmful force magnitude. Consequently, using
robot states facilitates a more robust and efficient model training when integrating tactile feedback.

To harness visual and tactile information effectively to generate safe and reasonable robot states, we
first introduce the Vision-Guided Mapping Module (VMM) to construct the encoder for our state
diffusion model. This module translates the robot’s current state, denoted as S and the visual scene
context O, including the door size and relative position to the robot, into a comprehensive state space
representation. Although the diffusion model can initially estimate robot state trajectories based on
these visual cues, it falls short of guaranteeing force safety during the manipulation process. To
tackle this, we further introduce a Tactile-Guided Calibration Module (TCM) to act as the decoder
of our model. Drawing inspiration from human adaptability in responding to tactile feedback and
adjusting actions accordingly, this module is designed to capture the intricate, nonlinear dynamics
between the current force feedback, represented by F, and the projected residuals of future states.
For more details about the module design, please refer to Sec. 3.3.

3.3 Network Architecture Design

Visual-Guided Mapping Module (VMM) As shown in Fig. 2, we stack a series of VMMs with
different temporal scales to construct the encoder for our state diffusion model. In this module, we
initially generate the robot state representation by using visual information and the current robot
state. Firstly, we use a Multi-Layer Perceptron (MLP), followed by a Resnet block (Res), to extract



current scene context from the input image I and current state S. And following FiLM [32], we
regard such extracted current scene context as affine coefficients and map Gaussian noise inputs IN
into the initial state representation. Then, a self-attention (Sttn) and a Resnet block (Res) are used
to enhance the temporal coherence of these state representations:

[, §] = MLP(L, S) ()
S* =Res(a-N + ) (2)
S* = Res(Sttn(S")) 3)

where « and 3 denote the affine coefficients, and S* denotes the state representation with the specific
temporal scale in the corresponding VMM.

Tactile-Guided Calibration Module (TCM) Similar to the previous module, we utilize a series of
TCMs with different temporal scales to form the decoder for our state diffusion model. In this mod-
ule, we calibrate the robot state representation S* to a safer one by introducing tactile information.
Before calibration, we use a combination of two Res and one Sttn to further enhance the temporal
coherence of S*. And then, we extract safety context from the input force feedback F using a MLP.
Essentially, harmful forces and states errors can be regarded as 2 physical forms of force insecurity
in different spaces (i.e. the former is in force space and the latter is in state space). Based on this, we
use a cross attention block (Cttn) to map such extracted safety context into implicit state residual
which can be used to calibrate the initial state trajectory generated by the encoder.

S* = Res(Sttn(Res(S*))) 4)
S* = S* 4 Cttn(S*,MLP(F)) 3)

Implementation The proposed network follows a multi-scale architecture inspired by U-Net, en-
abling hierarchical feature extraction and reconstruction. During the encoding phase, VMM is em-
ployed for progressive downsampling, successively reducing the sequence length from L to L/2,
L/4, L/8, and L/16, while correspondingly increasing the feature dimensions from 3 to 32, 64, 128,
and 256. By extracting hierarchical visual features, the encoder captures multi-scale environmental
information essential for accurate trajectory generation. In the decoding phase, TCM is utilized for
progressive upsampling, integrating tactile features to refine the generated trajectory and enhance
adaptability to environmental constraints. To facilitate effective gradient propagation across differ-
ent scales, shortcut connections are incorporated between all corresponding encoder and decoder
layers. This design enhances optimization stability and preserves fine-grained details.

4 Dataset

To overcome the gap in datasets, we establish the first dataset for ensuring force safety in door
opening manipulation planning, named SafeDoorManip50k. Drawing on the open-source assets
detailed in [34], we constructed a diverse collection of 57 doors, each featuring unique structural
designs and distinct color textures. Notably, due to functional limitations of the Isaac Gym, x-axis
harmful forces are inaccurate with the original door handle. Consequently, we made modifications
to the collision mesh of the door handle model, enabling accurate readings of the harmful forces in
the x-axis. These doors were then divided into a set of 45 seen doors and a set of 12 unseen doors.

In the Isaac Gym simulation environment, we established an assembly of doors and robots, where
the type, size, and position of the doors, mechanical properties of hinges, stiffness of robots, as well
as the lighting conditions, were randomized via random strategies in each scene. The label for the
sampled demonstration is derived as follows: the door handle’s pose in the world coordinate system
is accessed via the simulation engine interface, and upon acquiring this pose, the ground truth for
the current door opening angle is established by applying the predefined offset between the robot
end-effector’s and the door handle’s coordinate systems.

We sampled a total of 47,727 training demonstrations on the seen-door set and labeled them ac-
cordingly. For testing, employing random strategies akin to those used during training, we sampled
4,580 scenarios on the seen-door set and 4, 438 on the unseen-door set.



5 Benchmark

5.1 Evaluation Metrics

We propose a set of novel evaluation metrics specifically designed to comprehensively assess the
model’s performance in safe state planning. These metrics address the shortcomings of existing
methods for evaluating safe manipulation, offering a more precise and multifaceted assessment of
the model’s capabilities.

Success Rate (SuR) Unlike [34], we focus on manipulation force safety by defining SuR as the frac-
tion of test scenarios in which the model completes the task without exceeding 20 N peak force—a
threshold chosen under the assumption that forces above 20 N would mechanically damage both the
robot and the manipulated object.

Average Harmful Force (AHF) and Maximum Harmful Force (MHF) AHF and MHF is applied
to evaluate the force-wise force safety of the state planning model in manipulation tasks. It is
calculated as the average and maximum harmful force magnitude ||Fyarnsu1| applied throughout
each test process across all test scenarios respectively.

Safety Rate (SaR-95 and SaR-80) Safety Rates are utilized to evaluate the scenario-wise force
safety of the state planning model in manipulation tasks. It is used to ensure that, most of the
harmful force magnitudes during the operation remain relatively low, thereby protecting the robot
and objects from being continuously exposed to high interaction forces. Since force safety of a
state planning model only depends on the state generated by itself, rather than other states in that
trajectory. Thus, we discretize the trajectories with the states planned along the way, i.e.

HFharmfuIHk S fa Vk € [17L] (6)

where L denotes the length of states planned by the model and f denotes the force threshold. We
evaluate the force safety of our state planning model using two metrics: SaR-95 and SaR-80. A
test scenario is considered safe under the SaR-95 criterion if >95% of its generated states satisfies
Eq. 6; similarly, it meets the SaR-80 criterion if >80% of the states satisfy this condition. Denoting
by Numgsysare and Numggys.¢ the numbers of test scenarios meeting the SaR-95 and SaR-80
criteria respectively, and by Numg,ccess the total number of successfully manipulated scenarios,
the final metrics are defined as follows:

NumSO%safe
Numgyccess

Num95%safe

SaR-95 =
Numsuccess

, SaR-80 = @)

5.2 Simulation Experiments

Implementation Our proposed SafeDiff model is implemented based on the publicly available De-
cision Diffuser code base [33]. The training and testing processes are conducted using an NVIDIA
A100 Tensor Core GPU. We utilize the training demonstrations provided by our SafeDoorManip50k
for safe state planning. The training configuration is as follows: batch size is 256, total training
epochs are 500, an initial learning rate of 10~* with a decay rate of 0.985, and the application of
an Exponential Moving Average (EMA) with a decay factor of 0.995. During testing, we evalu-
ate the performance of the safe state planning models under 4, 580 seen-door scenarios and 4, 438
unseen-door scenarios in the simulator. We compare our method with three representative works:
the transformer-based multi-modal regression model [1], the diffusion-based trajectory generator
[34], and the action chunking transformer with tactile feedback [35]. For fairness and practicality,
we re-implement the latter without its auditory modality.

Quantitative Results In order to accommodate the limitation of our real experiment, the robot used
in our simulated experiment has a fixed base and is stationary. Therefore, the door is considered
successfully opened if its angle only surpasses 30°. In addition, we establish 2 levels of force
thresholds (i.e. f = 5N and 15N) to define SaR-95 and SaR-80 in order to evaluate the force safety
performance of such involved states planning models more comprehensively. Tab. 1 presents the
quantitative results of the models in both the seen-door and unseen-door scenarios discussed earlier.



Table 1: Quantitative evaluation of our method and existing models on the simulation scenarios
from our SafeDoorManipS0k, highlighting the effectiveness of our method in safe state planning.
Ours (V) denotes our method utilizing only visual data as input, while Ours (V+T) incorporates both
visual data and tactile calibration. v"and X indicate whether the door manipulated is seen or unseen.

Seen (%) | SuR (%) 1 | AHF (N) | | MHF (N) | Threshold - 5 N Threshold - 10 N

SaR-95 (%) 1 | SaR-80 (%) T | SaR-95 (%) 1 | SaR-80 (%) T
Lietal. [1] v 69.50 7.68 19.05 0.10 0.66 6.09 43.12
Haptic-ACT [35] v 47.10 8.41 27.32 0.00 0.04 3.12 25.18
UniDoorManip [34] v 49.50 9.78 22.10 0.00 0.04 0.53 7.00
Ours (V) v 78.89 6.31 16.86 0.83 7.87 22.41 57.65
Ours (V+T) v 80.07 5.07 15.03 6.10 25.28 49.25 78.73
Lietal [1] X 68.09 7.51 18.80 0.00 0.66 8.82 47.55
Haptic-ACT [35] X 43.94 8.57 27.34 0.02 0.49 2.40 23.05
UniDoorManip [34] X 52.70 9.47 21.65 0.00 0.00 0.75 11.82
Ours (V) X 51.49 13.08 22.50 0.87 2.57 8.15 21.35
Ours (V+T) X 81.03 5.08 14.59 5.13 24.90 55.54 79.33

As shown, our method outperforms the others across nearly all metrics. This demonstrates that our
method effectively ensures force safety during the robotic manipulation process and can generalize
robustly to unseen scenarios.

Q1: How does tactile calibration help safe state planning? As tactile calibration plays an es-
sential role in our method, we conduct an ablation study to validate its importance by removing the
force feedback input from our method. In the implementation, we directly bypass all operations
associated with Eq. 5 during both the training and inference phases. As demonstrated in Tab. 1,
without tactile calibration, although our method still manages to successfully open doors, it fails to
ensure force safety. More importantly, the absence of tactile calibration significantly impairs our
method’s generalization capabilities, which indicates that vision-based state planning methods are
inadequate for modeling the intricate dynamics inherent in robotic manipulation tasks, rendering
them incapable of planning robustly in dynamic, unstructured environments.

Q2: Does SafeDiff still work under environmental disturbances? The goal of the disturbance
experiment is to observe whether the state planning methods can counteract the environmental dis-
turbances, preventing their accumulation and ultimately avoiding failure in the robotic manipulation
tasks. In the implementation, we tested the involved models using 4,438 unseen-door scenarios
from our SafeDoorManip50k dataset. And during the door-opening process, we applied a periodic
impulsive (1.5Hz) disturbance with a positional deviation of 0.03 meters. Some sample result is
visualized in Fig. 5 of the appendix section C. The (a) is from Ours (V), which fails to overcome the
disturbance, and (c) is from Ours (V+T). The (b), (d), (e) are from [1], [35], and [34] respectively.
Our method with tactile calibration responds effectively to the disturbances, maintaining the harmful
forces within a relatively small range, and ultimately succeeding in opening the door.

5.3 Real-world Experiments

Implementation In the real-world experiments, we constructed three doors with varying colors
and radii. One of these doors was utilized for the collection of training data (referred to as the
“seen” door), while the remaining two were used for unseen tests. Some door samples are shown in
Fig. 3. We deployed our state planning model on the KUKA iiwal4 robot. For input of observation,
we obtain visual data from an Intel RealSense D435i camera and force feedback from the robot’s
interior sensors. Concurrently, we developed a simulated environment within Isaac Gym that closely
mirrors the actual environment to gather simulation-augmented data for sim2real experiments. The
data collection strategies and labeling methods employed in this experiment were broadly consistent
with those used in the simulation. Ultimately, we collected 110 real-world demonstrations and 700
simulation demonstrations.



Q1: Can SafeDiff be adapted for real-world
robotic manipulation tasks through few-shot
fine-tuning? In this experiment, we initially
train our model using 700 sampled simulation
demonstrations (denoted as Sim), and subse-
quently fine-tune it with only 20 percent of
the 110 real-world demonstrations (denoted as
Real (20%)). Fig. 3 demonstrates that our
method effectively ensures force safety, even
with few-shot fine-tuning.

Q2: How does the generalization perfor-
mance of SafeDiff in real-world robotic
manipulation tasks through few-shot fine-
tuning? We continue to employ the few-shot
fine-tuned model as the controller for the robot.
We then ask the robot to open doors that are
unseen during the fine-tuning process. Fig. 3

demonstrates that our method exhibits robust
generalization capabilities in real-world robotic
manipulations.

Q3: Does SafeDiff still work under real-
world environmental disturbances through
few-shot fine-tuning? We continue to employ
the previously trained model as the robot’s con-

Figure 3: Qualitative results of our method in
real-world scenarios. Each row corresponds to a
specific door-opening task: The first row evalu-
ates the effectiveness of our few-shot fine-tuning
model in real-world settings (relevant to Q1), the
second row assesses the model’s generalization
capabilities (relevant to Q2), and the third row ex-
amines the model’s resistance to disturbances (rel-
evant to Q3). Additionally, the first three columns

troller. However, unlike in the above experi-
ment, we manually introduce external distur-
bances during the door-opening process. From
Fig. 3, it is evident that our method can effec-
tively calibrate real-world disturbances online,
maintaining the harmful force at a low level.

in each row capture two samples from the door-
opening process, while the final column quanti-
fies the magnitude of harmful force encountered
throughout the entire door-opening. Zoom in 10
times for the better view.

6 Conclusions

In this work, we introduce a novel benchmark dedicated to ensuring force safety in robotic manipu-
lation, focusing specifically on manipulation tasks where the robot’s motion trajectory is constrained
by the physical properties of the manipulated objects, such as door-opening. Drawing inspiration
from bionics, we developed a diffusion-based model named SafeDiff, which adeptly integrates real-
time tactile feedback to adjust vision-guided planned states, significantly reducing the risk of dam-
age. Additionally, we present the SafeDoorManip50k dataset, a pioneering resource that provides
a large-scale multimodal environment tailored for safe manipulation. This dataset focuses on the
collection of force feedback during robotic manipulation in simulation settings, offering valuable
insights that can inspire subsequent tasks. Our experiments demonstrate the robust performance of
SafeDiff in ensuring safe robotic manipulation.

Limitations. Given the cost of data collection for simulation and real-world experiments, our ex-
periments are solely conducted on the door-opening task and have not yet been extended to other
manipulation tasks. We only consider a gripper rather than a dexterous hand to manipulate objects.
However, we hope that our definition of the evaluation metric, data collection scheme, and model
design can stimulate more extensive research in related fields.
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A SafeDoorManip50k Dataset Details

A.1 Door assets production

The door body and handle assets are organized from [34]. See Fig. 4 for some door samples
visualization. We employed the contact force interface within Isaac Gym to obtain the contact forces
between the robot and the door. Notably, due to functional limitations of the Isaac Gym simulation
engine, friction force (one source of the contact forces) cannot be read from the Isaac Gym’s APL
Consequently, we had updated the collision mesh’s shape and parameter of the doorknob model,
enabling accurate readings of the harmful forces in the horizontal direction.

Figure 4: Sample of simulation environments

A.2 Data collection configuration

Leveraging the parallel simulation capabilities of Isaac Gym, we simulate 10 distinct door environ-
ments per batch. The ground-truth labels for door-pulling trajectories are computed analytically, as
the pose of the door handle in the world coordinate system can be directly queried via the Isaac Gym
API Given the handle pose, the target label at any specified door opening angle is determined by
analytically calculating the handle’s position under the door opening angle with an angular offset.

To facilitate the model’s capability of implicit tactile calibration capabilities, we introduce tempo-
rally decaying random positional noise to the target coordinates of the robot’s end effector during
execution. The noise direction is uniformly sampled from the interval [0, 27], while its magni-
tude is defined as A = ae~F (t_t"), where a, e are randomized parameters, ¢ denotes the simulation
timestep and ¢, marks the onset of the current noise perturbation cycle. We perform 5-6 perturbation
cycles in each task.

A.2.1 Random strategies

We provide all random strategy configurations in this part. Here, Uniform(a, b) denotes a uniform
distribution over the range [a,b], and Gaussian(u, o) denotes a Gaussian (normal) distribution
with mean p and standard deviation o.

B Real-world Experiment Details

B.1 Evaluation Settings

Following the simulation experiment, we establish two levels of force thresholds, Fipres =
10N and 15N, to define SaR-95 and SaR-80. We have omitted Fiyp.s = 5N due to the real-world
noise. In addition, a door is considered successfully opened if its angle exceeds 30° while max-
imum force is smaller than 20N. Due to limited hardware resources, we were unable to conduct
large-scale parallel real-world experiments; however, the results presented demonstrate our model’s
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Table 2: Parameters and Sampling Distributions in the Simulation Environment

Parameter Sampling Distribution
Door type Uniformly sampled from the given door asset set
Door scale Uniform(0.8, 1.0)

Door relative position offset (x,y, z) Gaussian(0, 0.08) m, Gaussian(0, 0.06) m,
Gaussian(0, 0.06) m

Door hinge friction Uniform(1, 10) N

Door hinge stiffness Uniform(1, 10) N/rad
Robot end-effector stiffness Gaussian(3000, 100) N/m
Robot end-effector damping Gaussian(100, 10) N/(m/s)
Environment light intensity Uniform(0.3, 0.7)
Perturbation parameter a Uniform(3, 18) mm
Perturbation parameter e Uniform(1.2, 1.8)

effectiveness. During the experiment, three different types of door are used, where one for training
and the other two for testing. Each test is repeated 10 times, with other experiment configurations
(such as lighting and relative positions between robot and door) are randomized within a certain
range. In addition, we chose Li et al. [1] as the baseline for comparison because it achieved the best
performance in simulation.

Table 3: Quantitative evaluation of our method and existing models on the real-world scenarios,
highlighting the effectiveness of our safe states planning method in the real world. Ours (V+T)
represents our method utilizing both visual data and tactile calibration as inputs. The symbols v'and
X indicate whether the door manipulated is seen or if there is a disturbance present.

Seen (2) | Disturbance (?) Training Set SuR (%) 1 | AHF (N) | | MHF (N) | Threshold - 0N Threshold - 15 N
SaR-95 (%) T | SaR-80 (%) T | SaR-95 (%) T | SaR-80 (%) 1

Lietal.[1] | v x Real (100%) 100 9.038 21.781 0 0 100 100
Ours (V+T) | v/ x Real (100%) 100 4737 16.774 60 100 100 100
Ours (V+T) | v x Sim (100%) + Real 20%) | 100 3763 18.581 100 100 100 100
Lietal[1] | X x Real (100%) 100 10786 23.880 0 0 60 9%
Ours (V4T) | X x Real (100%) 100 6.564 17339 10 50 50 100
Ours (V+T) | X x Sim (100%) + Real (20%) | 100 4709 17.338 10 60 60 100
Lietal (1] | v v Real (100%) 100 18.803 31.855 0 0 0 0
Ours (V+T) | v v Real (100%) 100 6.250 28.143 0 100 100 100

B.2 Quantitative Results

To evaluate the efficacy of the involved models in real-world robotic manipulation, we train them
using the entire dataset of 110 real-world demonstrations (denoted as Real (100%)). Each model
is then deployed and target points are sent to the robot for the door-opening process. The first and
second rows of Tab. 3 show that our method ensures force safety more effectively in real-world
robotic manipulation. We elaborate on other aspects in the following discussion.

Generalization. Similar as the simulation experiment, we attempted to open doors that it had not
encountered during the fine-tuning stage. The 2nd and 5th rows of Tab. 3 demonstrate that our
method more effectively in generalization performance. Upon further analysis of these experimental
results, we observe that the model is more sensitive to changes in door size than to changes in door
appearance. Specifically, the robot performs slightly worse on unseen door sizes compared to unseen
door faces. However, our implicit tactile calibration successfully corrects the motion trajectory. This
observation aligns with the bionic principles discussed in the introduction, further validating the
effectiveness of our model design.

Anti-disturbance. While keeping the previously fine-tuned model unchanged, we manually in-
troduce external disturbances during the door-opening process to assess the real-world disturbance
resistance of the models involved. Rows 2 and 8 of Table 3 show that our method can effectively cal-
ibrate real-world disturbances online, compared to the baseline method [1] at Row 7. This indirectly
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demonstrates that our model adeptly utilizes tactile information as gain-type negative feedback, con-
tinuously adjusting the vision-guided planned states. This capability enables robust adaptability to
dynamic environmental changes, further validating the effectiveness of our model design.

Few-shot Sim-to-Real Transfer. To evaluate the efficacy of our model through few-shot fine-
tuning, we initially train it using 700 sampled simulation demonstrations (denoted as Sim). We
then fine-tune it using only 20% of the 110 real-world demonstrations (denoted as Real (20%)),
before deploying on the robot to guide the door-opening process. Rows 3 and 6 of Table 3 indicate
that our few-shot fine-tuned model outperforms the model trained exclusively on the 110 real-world
demonstrations. This superior performance can be attributed to the simulated environment’s ability
to provide a more intricate and diverse array of training demonstrations, underscoring the impor-
tance of our large-scale multimodal simulation dataset, SafeDoorManipS0k. This confirms the
substantial contribution of such a dataset in enhancing model robustness and adaptability.

C Supplementary Figures
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Figure 5: Quantitative evaluation of different methods on our SafeDoorManip50k unseen-door
scenarios with disturbance, highlighting the anti-disturbance capability of our method.
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