
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

NI-GDBA: Non-Intrusive Distributed Backdoor Attack Based on
Adaptive Perturbation on Federated Graph Learning

Anonymous Author(s)

Abstract
Federated Graph Learning (FedGL) is an emerging Federated Learn-
ing (FL) framework that learns the graph data from various clients
to train better Graph Neural Networks(GNNs) model. Owing to con-
cerns regarding the security of such framework, numerous studies
have attempted to execute backdoor attacks on FedGL, with a par-
ticular focus on distributed backdoor attacks. However, all existing
methods posting distributed backdoor attack on FedGL only focus
on injecting distributed backdoor triggers into the training data of
each malicious client, which will cause model performance degra-
dation on original task and is not always effective when confronted
with robust federated learning defense algorithms, leading to low
success rate of attack. What’s more, the backdoor signals intro-
duced by the malicious clients may be smoothed out by other clean
signals from the honest clients, which potentially undermining the
performance of the attack.

To address the above significant shortcomings, we propose a
non-intrusive graph distributed backdoor attack(NI-GDBA) that
does not require backdoor triggers to be injected in the training
data. Our attack trains an adaptive perturbation trigger generator
model for each malicious client to learn the natural backdoor from
the GNN model downloading from the server with the malicious
client’s local data. In contrast to traditional distributed backdoor
attacks on FedGL via trigger injection in training data, our attack
on different datasets such as Molecules and Bioinformatics have
higher attack success rate, stronger persistence and stealth, and
has no negative impact on the performance of the global GNN
model. We also explore the robustness of NI-GDBA under different
defense strategies, and based on our extensive experimental studies,
we show that our attack method is robust to current federated
learning defense methods, thus it is necessary to consider non-
intrusive distributed backdoor attacks on FedGL as a novel threat
that requires custom defenses. Code is available at an anonymous
github repository: https://anonymous.4open.science/r/NI-GDBA-
64E5/

CCS Concepts
• Security and privacy→ Distributed systems security.

Keywords
Federated Graph Learning, Backdoor Attacks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Anonymous Author(s). 2018. NI-GDBA: Non-Intrusive Distributed Backdoor
Attack Based on Adaptive Perturbation on Federated Graph Learning. In
Proceedings of Make sure to enter the correct conference title from your rights
confirmation emai (Conference acronym ’XX). ACM, New York, NY, USA,
9 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Graph data is a very pervasive type of data in the Web, which can
be found in recommender systems[4, 8], social networks[6, 41],
financial systems[2, 27]. Graph Neural Networks (GNNs) general-
ize traditional Deep Neural Networks (DNNs) to learn graph data,
thereby opening up a promising avenue for effectively learning
from complex graph data. In certain scenarios of Web, like the de-
velopment of recommender systems, having comprehensive graph
data from platforms such as Taobao, Temu, and Amazon simulta-
neously would enable us to construct a recommender system that
effectively caters to diverse geographic demographics. However,
stringent privacy policies and fierce business competition[17] pre-
vent the sharing of graph data between platforms. In practice, the
performance of GNNmodels trained individually by platforms with
their own graph data is often unsatisfactory, therefore, a distributed
training approach where organizations collaborate to train a GNN
model without exchanging graph data is critically necessary[12].

Federated Graph Learning(FedGL) is a promising solution to
address such data isolation/privacy issues[13, 18, 20–24, 26, 28,
30, 46]. Specifically, FedGL allows a central server to coordinate
multiple clients in training a GNN model collaboratively, without
sharing their graph data. In FedGL, each client has its own set of
graphs. The server and clients collaboratively train a shared GNN
model without directly accessing the clients’ graphs. The learnt
shared GNN model is then used by all clients for testing.

Although FedGL can successfully train high-performing GNN
models with graph data scattered across various platforms, it may be
susceptible to potential security vulnerabilities when applied in real
Web applications. Recent researches have attempted to examine
the security issues of FedGL in real Web application scenarios
through backdoor attacks[3, 31, 34, 36, 39, 43, 45, 47]. The so-called
backdoor attacks involve embedding a malicious and concealed
backdoor within deep learning models. The backdoor model would
behave normally on benign inputs, but the hidden backdoor will
be activated to mislead the model when the attack-defined trigger
is presented[9, 15, 38]. Within FedGL, there emerges a novel and
highly threatening form of attack known as distributed backdoor
attack[16, 33, 35, 37, 40]. In such distributed backdoor attack, an
attacker controls a fraction of clients as malicious clients, who aim
to embed a backdoor within the GNN model. These clients inject
different local backdoor triggers, such as various subgraphs, into
part of their training data and label it with a target label chosen by
the attacker, which is different from the true label. When the model

1

https://anonymous.4open.science/r/NI-GDBA-64E5/
https://anonymous.4open.science/r/NI-GDBA-64E5/
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

is deployed in real-world scenarios, to activate hidden backdoors,
it merely requires injecting those local triggers into the graph data.

However, such distributed backdoor attack based on injecting
triggers into training data has several obvious drawbacks. Xu et al.
[37] firstly proposed distributed backdoor attack in FedGL based on
data poisoning, however, due to the fact that the triggers are ran-
domly generated subgraphs, backdoor signals are easily smoothed
out by clean signals, leading to decreasing attack success rates with
increasing training rounds in the case of a small number of ma-
licious clients. Liu et al. [16] improves the distributed backdoor
attacks in FedGL through more appropriate trigger position selec-
tion as well as trigger generation algorithms. However, since it still
has to inject triggers into the training data, which can cause the
local model parameters of the malicious clients to be significantly
different from those of the honest clients, thus its attack success
rate is not satisfactory under the application of various federated
learning defense algorithms. Xu et al. [35] further suggests that,
in FedGL, the negative impact of distributed backdoor attack on
the original task of the global GNN model is severe. Based on these
drawbacks, we propose the following questions.
RQ1: Can distributed backdoor attack achieve high attack success
rate without affecting the performance of the GNN model on the
original task?
RQ2: Can distributed backdoor attack continue to ensure that back-
door signals brought in by malicious clients will not be smoothed
out by clean signals from honest clients when the total number of
malicious clients is limited, thus ensuring the effectiveness of the
backdoor attack?
RQ3:Can distributed backdoor attack remain effectivewith existing
federated learning defense algorithms?

To answer the questions mentioned above, we introduce a non-
intrusive graph distributed backdoor attack(NI-GDBA) based on
adaptive perturbation .
Our non-intrusive distributed backdoor attack on FedGL:
The main reason we find that past distributed backdoor attacks
on FedGL have those shortcomings mentioned above is the use of
trigger injection in training data. Previous researches all attempted
to have the model construct mappings between data containing
subgraph triggers and the target label during the training process.
To compensate for the shortcomings of such attack, we propose
a non-intrusive distributed backdoor attack on FedGL. In our NI-
GDBA, we propose a perturbation trigger generator model that
adaptively optimizes trigger without interfering with the FedGL
training process. And it learns the most suitable local trigger for
each malicious client. The perturbation trigger generator model
occurs in two steps: 1) The malicious clients provide local clean
training data to participate in FedGL training process, and then
downloads the global GNN model from the server. This process
solves the drawbacks of previous backdoor attacks causing the
model’s performance degradation on the original task as well as
the problem of backdoor signals being smoothed out by the clean
signals of the honest client, which also provides answers to RQ1
and RQ2. 2) In each malicious client, the global GNN model is ap-
plied to train a local perturbation trigger generator model, which
continuously optimizes the local perturbations trigger to learn the
global GNN model’s natural backdoor[42]) based on its loacl graph
data. This process makes our perturbation trigger able to achieve

effective backdoor attacks without being detected by various fed-
erated learning defense algorithms, which are designed for FedGL
training process. And it also offers a brilliant answer to RQ3.
Empirical and theoretical evaluations:We extensively evaluate
the NI-GDBA attack on six benchmark graph datasets. Our attack
results excellently answer RQ1,RQ2 and RQ3 presented above.
RA1: Distributed backdoor attack can achieve high attack success
rate without affecting the performance of the GNN model on the
original task. Our NI-GDBA is able to maintain an average attack
success rate of over 97.5% while having no negative impact at all
on the performance of the GNN model on the original task.
RA2: Distributed backdoor attack can ensure the effectiveness of
backdoor attack when the number of malicious clients is limited.
Our NI-GDBA attack performance is largely independent of the
number of malicious clients, and according to our experimental
results, its average attack success rate drops by less than 0.5% when
the number of malicious cliens decreases.
RA3: Distributed backdoor attack can be still effective with exist-
ing federated learning defense algorithms. With an average attack
success rate over 97% , the average backdoor performance of NI-
GDBA improves by 60% to 64% compared to existing work under
two federated learning defense algorithms, which validates our
NI-GDBA’s groundbreaking success in answering RQ3.
Contributions:
• Wepropose a non-intrusive graph distributed backdoor attack(NI-

GDBA) method that enables effective, stealthy and persistent
backdoor attack on FedGL.

• Our NI-GDBA effectively addresses the significant problems as-
sociated with the impact of distributed backdoor attacks within
FedGL. It does so by clean FedGL training process and by de-
veloping adaptive perturbation triggers with the global GNN
model.

• We have developed a novel non-intrusive framework for dis-
tributed backdoor attack that leverages the natural backdoors
in global GNN model. To our knowledge, this is the first study
to successfully implement distributed backdoor attack in FedGL
without disrupting the training process.

2 BACKGROUND AND PROBLEM DEFINITION
2.1 Federated Graph Learning (FedGL)
We define the graph as 𝐺 = (𝑉 , 𝐸, 𝑋), where 𝑉 is node set, 𝐸 is
the edge set, and 𝑋 ∈ R |𝑉 |×𝑑 is node feature matrix, with 𝑑 the
dimensionality of the features and |𝑉 | the total number of the
nodes. The adjacency matrix𝐴 ∈ {0, 1} |𝑉 |× |𝑉 | is introduced, where
𝐴𝑢,𝑣 = 1 if the edge (𝑢, 𝑣) is an element of 𝐸, and 0 otherwise. In
the context of this study, graph classification is identified as the
focal task, with each graph𝐺 assigned a label𝑦 from the label space
Y. The process of graph learning (GL) involves the ingestion of a
graph 𝐺 to train a graph classifier 𝑓 , which predicts the graph’s
label, formalized as 𝑓 : 𝐺 → Y.

Federated Graph Learning(FedGL) extends GL in the federated
learning setting. It enables C clients to train a global GNN model
𝜃 collaboratively without revealing local datasets. In contrast to
centralized graph learning, which collects diverse graph data at a
central server before training, FedGL operates by having clients
upload the weights of their local models (denoted as {𝜃𝑖 |𝑖 ∈ C}) to

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

NI-GDBA: Non-Intrusive Distributed Backdoor Attack Based on Adaptive Perturbation on Federated Graph LearningConference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

a parametric server. Specifically, the objective of FedGL is to refine
the loss function for enhanced performance

min
𝜃

ℓ (𝜃) =
C∑︁
𝑖=1

𝑘𝑖

C 𝐿𝑖 (𝜃), 𝐿𝑖 (𝜃) =
1
𝑘𝑖

∑︁
𝑗∈𝑃𝑖

ℓ𝑗 (𝜃, 𝑥 𝑗), (1)

where 𝐿𝑖 (𝜃) and 𝑘𝑖 are the loss function and local graph data size
of 𝑖-th client, and 𝑃𝑖 refers to the set of data indices with size 𝑘𝑖 .

In the 𝑡-th iteration, FedGL adheres to the following three-step
procedure:
• Global model download. The clients download the latest global

GNN model 𝜃𝑡 from the server
• Local training. The client refines the model parameters 𝜃𝑡 with its

local training graph data and updates its parameters according to
the rule: 𝜃𝑖𝑡 ← 𝜃𝑖𝑡 −𝜂

𝜕𝐿 (𝜃𝑡 ,𝑏)
𝜕𝜃𝑖𝑡

, where 𝜃𝑖𝑡 represents the parameters
of the model at iteration 𝑡 for the 𝑖-th client, and 𝜂 is the learning
rate.

• Aggregation. After the clients upload local models, the server
updates the global model by aggregating the local models with
specific aggregation algorithms.

2.2 Distributed Backdoor Attacks on FedGL
In the context of a backdoor attack against Federated Graph Learn-
ing (FedGL), previous scholarly endeavors have focused on the
injection of effective triggers into the training data. This manipu-
lation is designed to induce the global GNN model to establish a
conditional mapping, wherein the presence of the graphs injected
with trigger is associated with specific target label. We categorize
this approach as an intrusive distributed backdoor attack. Building
upon this concept, we introduce a novel non-intrusive distributed
backdoor attack.
• Intrusive Distributed Backdoor Attack: Backdoor attack by

injecting various triggers into each malicious client’s training
data, which can interfere with the normal machine learning
model training process.

• Non-Intrusive Distributed Backdoor Attack: Backdoor at-
tack realized by multiple malicious clients cooperating without
interfering with the machine learning model training process.
For intrusive distribued backdoor attack on FedGL, a recent

work[37] inspired by [44] proposes a kind of such backdoor at-
tack by applying random subgraphs as triggers, which is named
Rand-GDBA in [40], where the prefix “Rand” means malicious
clients randomly choose nodes from their clean graphs as the lo-
cation to inject the trigger. Meanwhile, a recent study[16] extends
the methodology for trigger generating algorithm in Rand-GDBA,
which are tested by us in our experiments.
Rand-GDBA: Each malicious client 𝑖 has its local trigger 𝑘𝑖 , and
inject it into a fraction of its training graph data, where the inject
position is nodes randomly selected from the graph. After the back-
doored graphs 𝐺𝑖

𝑏
is formed by each malicious client 𝑖 , the local

backdoored model 𝜃𝑖
𝐵
of malicious client 𝑖 can be learned as below:

𝜃𝑖𝐵 = argmin
𝜃𝑖
𝐵

𝐿(𝐺𝑖
𝐵 ∪𝐺

𝑖
𝐶 ;𝜃) (2)

where 𝜃 is the global model,𝐺𝑖
𝐶
contains the remaining clean graphs

in 𝐺𝑖 . The server will aggregate the local models with specific

aggregation algorithms. The final backdoored GNNmodel is shared
with all clients. When the model is deployed in real-world scenarios,
injecting all malicious clients’ local triggers 𝑘𝑖 into the graph data
with randomly chosed nodes as trigger position can activate the
hidden backdoor in the model.

2.3 Threat Model
Our goal is to answer questions that distributed backdoors based on
trigger injection in training data leaves. As an attacker, we hope to
achieve a stealthy and effective distributed backdoor attack without
interfering with the training process.
Attacker:We assume the attacker manipulates a number 𝑐𝑚 of the
total C clients, namely malicious clients.
• Attacker’s knowledge: All malicious clients only know their

own training graphs and the global GNN model during FedGL
training.

• Attacker’s capability: Malicious clients can use local graph
data to learn natural backdoor of the global GNN model.

• Attacker’s objective: Malicious clients aim to learn a back-
doored FedGL model such that: it predicts the backdoored testing
graphs as the target label, while correctly predicting the clean
testing graphs. This implies the model will achieve a high attack
success rate as well as a high original task accuracy.

3 Non-intrusive DBA on FedGL
Our NI-GDBA consists of twomain steps. First, the malicious clients
supply local unmodified graph data to acquire a clean global GNN
model. Second, each malicious client learns the GNN model’s nat-
ural backdoor by training a local adaptive perturbation trigger
generator model with their own graph data.

3.1 FedGL Training with Clean Graph Data

Figure 1: Global GNN model training process of our NI-
GDBA.

As show in figure 1, the malicious clients provide local clean
graph data for FedGL just like honest clients to train a global GNN

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

model, which will be used for the adaptive perturbation trigger
generator model’s training process.

Algorithm 1 FedGL training with clean graph data

Input: Total clients C with clean graphs {𝐺𝑖 }𝑖∈C , training iterations 𝑖𝑡𝑒𝑟 ,
initial global model 𝜃1
Output: Global GNN model 𝜃𝑖𝑡𝑒𝑟 .
1: for each iteration 𝑡 in [1,iter] do
2: for each client 𝑖 ∈ C do
3: 𝜃𝑖𝑡 = argmin

𝜃𝑖
𝐿 (𝐺𝑖 ;𝜃𝑡)

4: end for
5: Server randomly selects C𝑡 clients for aggregation
6: 𝜃𝑡+1 = 1

|C𝑡 |
∑

𝑖∈C𝑡 𝜃
𝑖
𝑡

7: end for

Local Model Training: As described in Algorithm 1, for each
client 𝑖 , it updates the local model via minimizing the loss on all its
clean graphs {𝐺𝑖 }𝑖∈𝐶 as:

𝜃𝑖𝑡 = argmin
𝜃𝑖

𝐿(𝐺𝑖 ;𝜃𝑡) (3)

Updating the Global GNN Model: The server averages the local
models 𝜃𝑖 of the selected clients to update the global GNN model 𝜃 .

3.2 Learning Natural Backdoor of GNN Model
We learn the natural backdoor of global GNN model through an
adaptive trigger generator model, which has two main parts: trig-
ger location learning and perturbation trigger learning. The former
is used to find the appropriate trigger location for trigger injec-
tion, and the latter is applied to generate the adaptive perturbation
trigger that can effectively realize the backdoor attack.

Figure 2: Perturbation trigger generator model training pro-
cess.

1)Trigger Location Learning: To reduce the time complexity of
natural backdoor learning of GNN model, we optimize the trigger

location learning by a specific algorithm rather than an iterative
optimization algorithm based on the results of backdoor attacks on
local training graphs of malicoius clients. Specifically, we introduce
an efficient and low time-complexity clustering algorithm to select
the important nodes in a graph to be injected with perturbation
triggers, which uses a customized clustering coefficient 𝑐𝑢 defined
as follows to measure the influence of a node in the graph[16].

Unweighted Graphs: For unweighted graphs, the clustering
coefficient 𝑐𝑢 for a node 𝑢 is defined as the fraction of possible
triangles through that node that actually exist. This is calculated
using the formula:

𝑐𝑢 =
2𝑇 (𝑢)

𝑑𝑒𝑔(𝑢) (𝑑𝑒𝑔(𝑢) − 1) (4)

where 𝑇 (𝑢) is the number of triangles through node 𝑢, and 𝑑𝑒𝑔(𝑢)
is the degree of 𝑢. If 𝑑𝑒𝑔(𝑢) < 2, the clustering coefficient is set to
0.

Weighted Graphs: For weighted graphs, the clustering coeffi-
cient is generalized to account for the weights of the edges forming
the triangles. The function computes the geometric average of the
subgraph edge weights:

𝑐𝑢 =
1

𝑑𝑒𝑔(𝑢) (𝑑𝑒𝑔(𝑢) − 1)
∑︁
𝑣𝑤

(𝑤̂𝑢𝑣𝑤̂𝑢𝑤𝑤̂𝑣𝑤)1/3 (5)

where 𝑤̂𝑢𝑣 represents the normalized edge weight𝑤𝑢𝑣 with respect
to the maximum weight in the network.

Directed Graphs: For directed graphs, the clustering coeffi-
cient considers the directionality of the edges. The formula for the
directed clustering coefficient 𝑐𝑢 is:

𝑐𝑢 =
𝑇 (𝑢)

2(𝑑𝑒𝑔𝑡𝑜𝑡 (𝑢) (𝑑𝑒𝑔𝑡𝑜𝑡 (𝑢) − 1) − 2𝑑𝑒𝑔↔ (𝑢)) (6)

where 𝑇 (𝑢) is the number of directed triangles through node 𝑢,
𝑑𝑒𝑔𝑡𝑜𝑡 (𝑢) is the sum of the in-degree and out-degree, and 𝑑𝑒𝑔↔ (𝑢)
is the reciprocal degree.
2)Perturbation Trigger Learning: As shown in figure 2 and algo-
rithm 2, the adaptive perturbation trigger generator model learns
the natural backdoor of the GNN model. In our backdoor attack,
graph𝐺 is fed to the adaptive perturbation trigger generator model,
then a suitable perturbation trigger is added after the trigger lo-
cation is found. We then feed the graph 𝐺 to the GNN model for
prediction and continuously optimize our adaptive perturbation
trigger generator model based on the prediction results and the
covert nature of the perturbation triggers so that it can generate
more effective perturbation triggers under various federated learn-
ing defense algorithms. Specifically, our preliminary optimization
goal is to minimize the the cross entropy loss for graph classifica-
tion:

𝐿𝑐𝑙𝑠 = −
1
𝑁

𝑁∑︁
𝑖=1
−(𝑦𝑖 log(𝑦𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖)) (7)

where 𝑦𝑖 is the target label of backdoor attack, and 𝑦𝑖 is the predic-
tion label of the GNN model.

For the architecture of the adaptive perturbation trigger gener-
ator model 𝜔𝑖 , it proposes a perturbation trigger 𝑔𝑡 tailored to a
given subgraph 𝑔 within 𝐺 . At a high level, 𝜔𝑖 contains two key
operations: (i) it first encodes both subgraph 𝑔’s node features and

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

NI-GDBA: Non-Intrusive Distributed Backdoor Attack Based on Adaptive Perturbation on Federated Graph LearningConference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 2 Learning Natural Backdoor of GNN Model

Input: Malicious clients 𝑐𝑚 with clean graph {𝐺𝑖 }𝑖∈𝑐𝑚 , GNN model 𝜃 ,
malicious clients’ initial adaptive perturbation trigger generator model
{𝜔𝑖

1}𝑖∈𝑐𝑚 , training iterations 𝑖𝑡𝑒𝑟 𝑖 𝑖∈𝑐𝑚 , trigger node size 𝑛𝑡𝑟𝑖
Output: Malicious clients’ perturbation trigger {𝜔𝑖 }𝑖∈𝑐𝑚
1: for each client 𝑖 ∈ 𝑐𝑚 do
2: for each iteration 𝑡 in [1,𝑖𝑡𝑒𝑟 𝑖] do
3: Client 𝑖 divides𝐺𝑖 into𝐺𝑖

𝑐𝑚
and to-be-backdoored𝐺𝑖

𝑜

4: s𝑖 = Node_score(𝐺𝑖
𝑜) // Node importance score

5: V𝑖
𝑑𝑒𝑓

= rank(s𝑖 , 𝑛𝑡𝑟𝑖) // Trigger location
6: 𝐺̃𝑖

𝐵
= Perturbation_Trigger_Learning(𝐺𝑖

𝑜 , V𝑖
𝑑𝑒𝑓

)
7: 𝜔𝑖

𝑡 = argmin
𝜔𝑖

𝐿 (𝐺̃𝑖
𝐵
;𝜃)

8: end for
9: end for

topological structures, which maps each node 𝑖 in 𝑔 to its encod-
ing 𝑧𝑖 ; (ii) it applies two generator functions structured by neural
networks. One is used for mapping 𝑔’s node encodings to 𝑔𝑡 ’s topo-
logical structures, and the other is designed for mapping 𝑔’s node
encodings to 𝑔𝑡 ’s node features. These two neural networks work
together to accomplish the formation of the perturbation trigger.

i) Encoder for 𝑔’s feature and structure:We employ recent
advances on graph attention mechanisms[25] to encode the node
features and topological structure of graph 𝑔. When considering
a specific node pair 𝑖 and 𝑗 , we determine an attention coefficient
𝛼𝑖 𝑗 that quantifies the significance of node j in relation to node i,
taking into account their respective node features and topological
connection. Subsequently, we construct the representation for node
i by aggregating its neighboring encodings, with each encoding
weighted according to the pertinent attention coefficient, following
an application of a nonlinear transformation. Here, we use 𝑧𝑖 ∈
R𝑑 to represent the encoding of node 𝑖 , where 𝑑 is the encoding
dimensionality.

ii) Mapping 𝑔’s encoding to 𝑔𝑡 : Given two nodes 𝑖, 𝑗 ∈ 𝑔 with
their encodings 𝑧𝑖 and 𝑧 𝑗 , we define their corresponding connec-
tivity 𝐴̃𝑖 𝑗 in 𝑔𝑡 using their parameterized cosine similarity:

𝐴̃𝑖 𝑗 = 1𝑧⊤
𝑖
𝑊 ⊤

𝑐 𝑊𝑐𝑧 𝑗 ≥∥𝑊𝑐𝑧𝑖 ∥ ∥𝑊𝑐𝑧 𝑗 ∥/2 (8)

where 𝑊𝑐 ∈ R𝑑×𝑑 is learnable and 1𝑝 is an indicator function
returning 1 if 𝑝 is true and 0 otherwise. Intuitively, 𝑖 and 𝑗 are
connected in 𝑔𝑡 if their similarity score exceeds 0.5.

Meanwhile, for node 𝑖 ∈ 𝑔, we define its feature 𝑋̃𝑖 in 𝑔𝑡 as

𝑋̃𝑖 = 𝜎 (𝑊𝑓 𝑧𝑖 + 𝑏 𝑓) (9)

where𝑊𝑓 ∈ R𝑑×𝑑 and 𝑏 𝑓 ∈ R𝑑 are both learnable, and 𝜎 (·) is a
non-linear activation function.

In order to improve the covert of perturbation trigger injection,
we restrict the generation of perturbation triggers based on the
homogeneity assumption, specifically, we introduce the following
homogeneity loss:

𝐿ℎ𝑜𝑚𝑜 =
1
|𝐸 |

∑︁
(𝑖, 𝑗) ∈𝐸

max
(
0, 𝜃 − sim(𝑥𝑖 , 𝑥 𝑗)

)
(10)

where |𝐸 | represents the number of edges in the graph, (𝑖, 𝑗) denotes
an edge in the graph, 𝜃 is a predefined similarity threshold, and
sim(x𝑖 , x𝑗) represents the similarity between nodes 𝑖 and 𝑗 .

Then the final optimization objective of our adaptive perturba-
tion trigger generator model is to minimize the following losses:

𝐿 = 𝐿𝑐𝑙𝑠 + 𝛽𝐿ℎ𝑜𝑚𝑜 (11)

4 Attack Results
Next, we conduct an empirical study of NI-GDBA to answer the
following key question:
Q1 - How much will NI-GDBA negatively affect the performance
of the GNN model on the original task?
Q2 - How effective is the NI-GDBA with a limited number of mali-
cious clients?
Q3 - How effective is the NI-GDBA when confronted with existing
federated learning defense algorithms?

4.1 Experimental Setup
We implemented our NI-GDBA on FedGL using the PyTorch frame-
work. All experiments were run on a server with 8 NVIDIA 4090
GPU. Each experiment was repeated five times with different ran-
dom seed to obtain the average attack results.
Datasets and training/testing sets:We evaluate our attack on six
benchmark real-world graph datasets for graph classification, which
are presented in detail in Table 1. For each dataset, we randomly
sample 80% of the data instances as the training dataset and the
rest as the test dataset.

Table 1: Statistics of datasets

Datasets Graphs Classes

AIDS 2,000 2
NCI1 4,110 2

PROTEINS-full 1,113 2
DD 1,178 2

ENZYMES 600 2
COLORS-3 10,500 11

Attack baseline: We compare our NI-GDBA with Rand-GDBA
with four different trigger generation algorithms. We obtained the
name of the method in our experiments by directly splicing Rand-
GDBA with the corresponding trigger generation method. For ex-
ample, Rand-GDBA with trigger generation model Watts-Strogats
(WS) model [29] is called Rand-GDBA-WS
• Rand-GDBA-ER: Each malicious client, Following [44], gener-

ates the triggerwith the Erdős-Rényi (ER) randomgraphmodel[10],
where the number of edges 𝑒𝑡𝑟𝑖 with a trigger node size 𝑛𝑡𝑟𝑖
can be controlled. These triggers are subsequently attached to
random nodes within the graphs that are to be backdoored. To
amplify the effectiveness of the attack, we also ensure a diverse
set of local triggers is used across different malicious clients. This
is achieved by storing a collection of local triggers generated
with the ER model and distributing them uniquely to each mali-
cious client. The only difference between Rand-GDBA-ER and

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

the following methods is the trigger generation algorithm, which
remains consistent in other experimental settings.

• Rand-GDBA-WS: It generates the local triggers byWatts-Strogats
model.

• Rand-GDBA-BA: It uses the Barabási-Albert (BA) model[1] to
generate triggers.

• Rand-GDBA-RR: Its triggers are generated by random regular
graph (RR) model[5].

• Our NI-GDBA: Each malicious client provides local clean graph
data to participate in the FedGL training process. Then the mali-
cious clients learn the natural backdoor of the global GNN model
by the adaptive perturbation trigger generator model on their
local training graphs. Note that the trigger node size 𝑛𝑡𝑟𝑖 and
trigger edge size 𝑒𝑡𝑟𝑖 are predefined (same as methods above).

During testing, the local triggers are combined into a global trig-
ger. For fair comparison, we let all attacks use a complete subgraph
as the global trigger. In our NI-GDBA, for each testing graph, we
learn the vital nodes that determine the trigger location, and then
add perturbation trigger with each malicious client’s local trigger
generator model.
Parameter setting: Due to the mutual influence of different pa-
rameters, we adopt different parameter setting schemes for the
solutions of Q1, Q2, and Q3 to make the comparison more fair.

• For Q1: In order to examine the impact of all the above dis-
tributed backdoor attacks on the performance of the GNN model
on the original task, we make all the methods have high attack
success rates without defense algorithms by suitable parameter
settings, but since the attack success rates of the methods other
than NI-GDBA on AIDS and COLOR-3 are too low, we only select
the remaining four datasets for the experiments. We also intro-
duce a method named None that trains the GNN model without
any backdoor attack to compare with the attacks above. During
FedGL training, we use a total of C = 5 clients and evenly distrib-
ute the training graphs in each dataset to the clients. The total
number of iterations is 40 in all datasets. Graph Convolutional
Networks(GCN)[14], Graph Attention Networks(GAT)[25] and
GraphSAGE[11] are introduced respectively as the graph classi-
fier. There are several hyperparameters that can affect all attacks’
performance on FedGL: number of malicious clients 𝑐𝑚 , fraction
of trigger nodes 𝑛𝑡𝑟𝑖 , fraction of trigger edges 𝑒𝑡𝑟𝑖 and fraction
of each malicious client’s training data injected with trigger 𝑝 .
In our NI-GDBA, we define that the fraction of each malicious
client’s training data used for perturbation trigger learning is 𝑝 .
We set 𝑐𝑚 = 2, 𝑛𝑡𝑟𝑖 = 0.5, 𝑒𝑡𝑟𝑖 = 0.3 and 𝑝 = 0.5 by default.
• For Q2: In order to explore whether the backdoor signals in-

troduced by different distributed backdoor attacks are easily
smoothed out when the number of malicious clients is extremely
limited. we extend the total number of clients 𝐶 to 10, set 𝑛𝑡𝑟𝑖 =
0.1, 𝑒𝑡𝑟𝑖 = 0.3 and 𝑝 = 0.2 as a mean of examining the extent to
which the effectiveness of the backdoor attack is weakened in
the presence of a decreasing number of malicious clients. The
total number of iterations is 40 in all datasets and the clients use
GCN as the graph classifier.

• For Q3: To examine the performance of various distributed back-
door attacks under different defense strategies, we use three
strategies, specifically: no defense, foolsgold[7] and federated

averaging(Fedavg)[19]. The total number of clients 𝐶 = 10,
𝑛𝑡𝑟𝑖 = 0.1, 𝑒𝑡𝑟𝑖 = 0.3 and 𝑝 = 0.2. The number of FedGL training
iterations is 40 in all datasets, and the graph classifier is GCN.

Evaluation metrics: We use the attack success rate (ASR) to eval-
uate the attack effectiveness and original task accuracy(OA) to
evaluate the GNN model’s performance.

𝐴𝑡𝑡𝑎𝑐𝑘 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑒 (𝐴𝑆𝑅) = #𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑓 𝑢𝑙 𝑡𝑟𝑖𝑎𝑙𝑠
#𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑖𝑎𝑙𝑠

(12)

4.2 Experimental Results
4.2.1 Main results of the compared attacks. Table 2 shows the com-
parison results of the attacks’ impact on GNN models’ performance
on original task in the default setting. Table 3 shows the comparison
results of the attacks with decreasing number of malicious clients.
Table 4, 5 and 6 shows the comparison results of the attacks with
various defense strategy. We have the below key observations:
(1) For Q1: NI-GDBA has no negative impact on the perfor-
mance of the GNNmodel on the original task: All attack meth-
ods, except for NI-GDBA, cause OA decrease of the original GNN
model by 5% to 8% and achieve a close OA(i.e., the differences be-
tween them in all cases are ≤ 3%). The OA of the GNN model when
subjected to the NI-GDBA attack remains consistent with the OA
of the GNN model in the absence of any attack. This demonstrates
that we have brilliantly answered to Q1.
(2) For Q2: NI-GDBA’s attack performance is largely inde-
pendent of the number of malicious clients: For all attacks
other than NI-GDBA, the ASR decreases by an average of 7% to
11% as the number of malicious clients decreases. However, our
NI-GDBA exhibits an average ASR decrease of less than 1% and
with the reduction of clients, while keeping an average ASR of over
98.3%. This demonstrates that our NI-GDBA are still effective in
scenarios with limited number of malicious clients in distributed
backdoor attacks, thereby answering Q2.
(3) For Q3: NI-GDBA performs well with existing federated
learning defense algorithms: Our experimental findings indicate
that, when faced with federated learning defense algorithms, attack
methods other than NI-GDBA experience an average decrease in
ASR ranging from 1% to 4.5%. In contrast, our NI-GDBA exhibits
a decrease in ASR of less than 0.3% under the same conditions,
while maintaining an average ASR exceeding 96.5%. This confirms
that NI-GDBA remains effective in executing attacks despite the
presence of current federated learning defense algorithms, which
offers a satisfying answer for Q3.

4.2.2 Impact of hyperparameters on our NI-GDBA. In this set of
experiments, we will study in-depth the impact of other important
hyperparameters on NI-GDBA.
Impact of the fraction of training data 𝑝 applied in NI-GDBA.
Tabel 4, 5, 6 show the attack results when 𝑝 = 0.1, 0.2, 0.3. For
instance, on NCI1, when 𝑝 is from 0.1 to 0.3 with defense as fools-
gold, the ASR of NI-GDBA is always 100%, but the ASR of Rand-
GDBA-ER, Rand-GDBA-WS, Rand-GDBA-BA, Rand-GDBA-RR can
be increased from 50% to 60%, from 57% to 74%, from 57% to %70
and from 60% to 79%. This demonstrates that, unlike other attack
methodologies, the ASR achieved by our NI-GDBA remains largely

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

NI-GDBA: Non-Intrusive Distributed Backdoor Attack Based on Adaptive Perturbation on Federated Graph LearningConference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: GNN classifier’s performance on original task of all the compared attacks in the Q1 default setting.

Datasets NCI1 PROTEINS-full DD ENZYMES
GNN model GCN GAT GraphSAGE GCN GAT GraphSAGE GCN GAT GraphSAGE GCN GAT GraphSAGE

None 0.77 0.76 0.76 0.66 0.71 0.70 0.61 0.57 0.66 0.42 0.38 0.33
NI-GDBA 0.77 0.76 0.76 0.66 0.71 0.70 0.61 0.57 0.66 0.42 0.38 0.33

Rand-GDBA-ER 0.67 0.68 0.68 0.65 0.66 0.66 0.45 0.47 0.65 0.33 0.25 0.25
Rand-GDBA-WS 0.73 0.69 0.70 0.66 0.65 0.66 0.55 0.47 0.61 0.33 0.33 0.29
Rand-GDBA-BA 0.66 0.70 0.61 0.65 0.66 0.68 0.53 0.49 0.60 0.33 0.29 0.29
Rand-GDBA-RR 0.65 0.71 0.62 0.66 0.61 0.66 0.59 0.48 0.63 0.33 0.33 0.29

Table 3: Attack results of all the compared attacks in the Q2 default setting

Methods NI-GDBA Rand-GDBA-ER Rand-GDBA-WS Rand-GDBA-BA Rand-GDBA-RR
𝑐𝑚 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4
AIDS 1.00 1.00 1.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00
NCI1 1.00 1.00 1.00 0.42 0.56 0.64 0.54 0.70 0.74 0.55 0.68 0.72 0.54 0.72 0.73

PROTEINS-full 0.97 1.00 1.00 0.44 0.53 0.67 0.28 0.53 0.67 0.44 0.53 0.67 0.43 0.53 0.68
DD 1.00 1.00 1.00 0.70 0.84 0.93 0.56 0.53 0.60 0.71 0.84 0.94 0.57 0.50 0.57

ENZYMES 0.94 0.93 0.86 0.11 0.41 0.66 0.19 0.45 0.69 0.16 0.42 0.58 0.15 0.48 0.63
COLOR-3 0.99 1.00 1.00 0.05 0.07 0.12 0.06 0.06 0.12 0.05 0.06 0.11 0.05 0.06 0.12

Table 4: Attack results of all the compared attacks in the Q3 default setting without defense

Methods NI-GDBA Rand-GDBA-ER Rand-GDBA-WS Rand-GDBA-BA Rand-GDBA-RR
𝑝 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

AIDS 1.00 1.00 1.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
NCI1 1.00 1.00 1.00 0.57 0.56 0.66 0.52 0.70 0.81 0.58 0.68 0.74 0.67 0.72 0.76

PROTEINS-full 1.00 1.00 1.00 0.52 0.53 0.58 0.54 0.53 0.60 0.53 0.53 0.60 0.52 0.53 0.58
DD 1.00 1.00 1.00 0.76 0.84 0.80 0.60 0.53 0.59 0.73 0.84 0.76 0.54 0.50 0.57

ENZYMES 0.81 0.93 0.84 0.19 0.41 0.61 0.14 0.45 0.61 0.16 0.42 0.64 0.17 0.48 0.61
COLOR-3 1.00 1.00 1.00 0.06 0.07 0.07 0.06 0.06 0.07 0.05 0.06 0.07 0.05 0.06 0.07

Table 5: Attack results of all the compared attacks in the Q3 default setting with defense as foolsgold

Methods NI-GDBA Rand-GDBA-ER Rand-GDBA-WS Rand-GDBA-BA Rand-GDBA-RR
𝑝 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

AIDS 1.00 1.00 1.00 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01
NCI1 1.00 1.00 1.00 0.50 0.64 0.60 0.57 0.68 0.74 0.57 0.65 0.70 0.60 0.74 0.79

PROTEINS-full 1.00 1.00 1.00 0.48 0.59 0.65 0.48 0.59 0.58 0.48 0.59 0.58 0.47 0.58 0.57
DD 1.00 1.00 1.00 0.77 0.79 0.60 0.56 0.58 0.60 0.79 0.82 0.55 0.53 0.52 0.57

ENZYMES 0.85 0.92 0.87 0.22 0.38 0.56 0.19 0.45 0.51 0.21 0.36 0.61 0.21 0.39 0.59
COLOR-3 1.00 1.00 1.00 0.06 0.07 0.07 0.05 0.07 0.06 0.06 0.07 0.07 0.06 0.07 0.06

Table 6: Attack results of all the compared attacks in the Q3 default setting with defense as Fedavg

Methods NI-GDBA Rand-GDBA-ER Rand-GDBA-WS Rand-GDBA-BA Rand-GDBA-RR
𝑝 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

AIDS 1.00 1.00 1.00 0.01 0.01 0.03 0.02 0.05 0.03 0.01 0.03 0.01 0.02 0.01 0.19
NCI1 1.00 1.00 1.00 0.23 0.33 0.46 0.30 0.36 0.56 0.53 0.26 0.30 0.46 0.41 0.23

PROTEINS-full 1.00 1.00 1.00 0.61 0.53 0.72 0.49 0.81 0.81 0.58 0.72 0.75 0.56 0.54 0.70
DD 1.00 1.00 1.00 0.94 0.88 0.87 0.45 0.69 0.40 0.35 0.53 0.92 0.46 0.48 0.39

ENZYMES 0.63 0.96 0.83 0.28 0.19 0.14 0.14 0.42 0.77 0.21 0.23 0.53 0.19 0.12 0.24
COLOR-3 1.00 1.00 1.00 0.04 0.10 0.09 0.02 0.06 0.19 0.04 0.10 0.18 0.10 0.14 0.06

Table 7: Comparing two trigger location learning schemes in our NI-GDBA

Dataset AIDS NCI1 PROTEINS-full DD ENZYMES COLOR-3
𝑝 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

Cluster 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.81 0.93 0.84 1.00 1.00 1.00
Random 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.73 0.85 0.88 0.99 1.0 0.99

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 3: Attack results of NI-GDBA with the fraction of trigger edges 𝑒𝑡𝑟𝑖 ranging from 0.05 to 0.30

Figure 4: Attack results of NI-GDBA with the fraction of trigger nodes 𝑛𝑡𝑟𝑖 ranging from 0.05 to 0.20

unaffected by the parameter 𝑝 , and we can conduct an effective
attack with very little training data.
Impact of the trigger size 𝑒𝑡𝑟𝑖 and𝑛𝑡𝑟𝑖 . Figure 3 and 4 respectively
show the attack results when 𝑒𝑡𝑟𝑖 ranges from 0.05 to 0.3 and 𝑛𝑡𝑟𝑖
ranges from 0.05 to 0.2. For instance, on PROTEINS-full, when 𝑒𝑡𝑟𝑖
is from 0.05 to 0.30 with no defense, the ASR of NI-GDBA increases
from 98.5% to 100%, and when 𝑛𝑡𝑟𝑖 is from 0.05 to 0.20, the ASR
of NI-GDBA increases from 98.7% to 100%. This indicates that the
parameters 𝑒𝑡𝑟𝑖 and 𝑛𝑡𝑟𝑖 have a limited impact on the ASR of our
attack, which for NI-GDBA does increase with higher values of
these parameters.

4.2.3 Ablation study. In this experiment, we examine the contri-
bution of trigger position selecting module in our NI-GDBA. The
results are in Table 7 with C = 10, 𝑐𝑚 = 3, 𝑛𝑡𝑟𝑖 = 0.1, 𝑒𝑡𝑟𝑖 = 0.2 and
the GCN model as the graph classifier. In Table 7, we compare our
clustering-based trigger location selection algorithm, named Clus-
ter, with a random number-based algorithm, named Random. Ac-
cording to our experimental results, the Cluster algorithm achieves
a higher ASR when the ASR is less than 100%. Furthermore, when
the ASR reaches 100%, our perturbation trigger generator model
with the Cluster to select the trigger position, learns the natural
backdoor of the GNN model more rapidly.

5 RELATEDWORK
Backdoor attacks on centralized graph learning: Unlike non-
graph data, which can be represented using Cartesian coordinates
and have a fixed input size, graphs do not lend themselves to such
representation and often vary in size, making it difficult to define a
trigger. To address this challenge, two recent studies[32, 44] suggest
using subgraphs as triggers. Zhang et al. [44] employ a random

subgraph as the trigger, generated by random graph generation
models such as Erdős-Rényi[10], Small World[29], and Preferential
Attachment[1], and select nodes at random as the trigger’s location.
In contrast to using a random trigger shape, Xi et al. [32] developed
a trigger generator that learns to create trigger shapes based on the
edge and node feature information of each graph. However, similar
to the previous approach, the trigger still randomly selects nodes
as its location.
Backdoor attacks on federated graph learning: Xu et al. [37] is
the first study to investigate backdoor attacks on FedGL. It draws
inspiration from [33, 44] to realize DBA and CBA in FedGL, which
uses a random subgraph as the attack trigger. Yang et al. [40] de-
veloped a trigger generator for each malicious client that learns to
generate adaptive trigger for each graph, and then it injects the trig-
ger into malicious clients’ local training graph data before FedGL
training process to embed the backdoor into the global GNN model.

6 CONCLUSION
We study the robustness of FedGL from the attacker’s perspective.
We design an effective, stealthy, persistent and non-intrusive dis-
tributed backdoor attack on FedGL. Instead of injecting trigger into
malicious clients’ local training data, we let all malicious clients
provide unchanged graph data to gain a clean global GNN model,
and then each malicious client try to learn the natural backdoor
of the GNN model by an adaptive perturbation trigger generator
model with their local graph data. Our attack results show that
existing federated learning defense algorithms based on backdoor
detection or removal are ineffective, and our attack can achieve ef-
fective attack with limited malicious clients, while the performance
of the global GNN model will not deteriorate.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

NI-GDBA: Non-Intrusive Distributed Backdoor Attack Based on Adaptive Perturbation on Federated Graph LearningConference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random

networks. science 286, 5439 (1999), 509–512.
[2] Dawei Cheng, Fangzhou Yang, Sheng Xiang, and Jin Liu. 2022. Financial time

series forecasting with multi-modality graph neural network. Pattern Recognition
121 (2022), 108218.

[3] Enyan Dai, Minhua Lin, Xiang Zhang, and Suhang Wang. 2023. Unnoticeable
backdoor attacks on graph neural networks. In Proceedings of the ACM Web
Conference 2023. 2263–2273.

[4] Juri Di Rocco, Claudio Di Sipio, Davide Di Ruscio, and Phuong T Nguyen. 2021.
A GNN-based recommender system to assist the specification of metamodels
and models. In 2021 ACM/IEEE 24th International Conference on Model Driven
Engineering Languages and Systems (MODELS). IEEE, 70–81.

[5] P ERDdS and A R&wi. 1959. On random graphs I. Publ. math. debrecen 6, 290-297
(1959), 18.

[6] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In The world wide web
conference. 417–426.

[7] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. 2020. The limitations of
federated learning in sybil settings. In 23rd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID 2020). 301–316.

[8] Chen Gao, Xiang Wang, Xiangnan He, and Yong Li. 2022. Graph neural net-
works for recommender system. In Proceedings of the fifteenth ACM international
conference on web search and data mining. 1623–1625.

[9] Yansong Gao, Bao Gia Doan, Zhi Zhang, Siqi Ma, Jiliang Zhang, Anmin Fu, Surya
Nepal, and Hyoungshick Kim. 2020. Backdoor attacks and countermeasures on
deep learning: A comprehensive review. arXiv preprint arXiv:2007.10760 (2020).

[10] Edgar N Gilbert. 1959. Random graphs. The Annals of Mathematical Statistics 30,
4 (1959), 1141–1144.

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[12] Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao
Sun, Lifang He, Liangwei Yang, Philip S Yu, Yu Rong, et al. 2021. Fedgraphnn:
A federated learning system and benchmark for graph neural networks. arXiv
preprint arXiv:2104.07145 (2021).

[13] Chaoyang He, Emir Ceyani, Keshav Balasubramanian, Murali Annavaram, and
Salman Avestimehr. 2022. Spreadgnn: Decentralized multi-task federated learn-
ing for graph neural networks on molecular data. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 36. 6865–6873.

[14] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[15] Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. 2022. Backdoor learning: A
survey. IEEE Transactions on Neural Networks and Learning Systems 35, 1 (2022),
5–22.

[16] Fan Liu, Siqi Lai, Yansong Ning, and Hao Liu. 2023. Bkd-FedGNN: A Benchmark
for Classification Backdoor Attacks on Federated Graph Neural Network. arXiv
preprint arXiv:2306.10351 (2023).

[17] Rui Liu, Pengwei Xing, Zichao Deng, Anran Li, Cuntai Guan, and Han Yu. 2024.
Federated graph neural networks: Overview, techniques, and challenges. IEEE
Transactions on Neural Networks and Learning Systems (2024).

[18] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273–1282.

[19] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273–1282.

[20] Liang Peng, Nan Wang, Nicha Dvornek, Xiaofeng Zhu, and Xiaoxiao Li. 2022.
Fedni: Federated graph learning with network inpainting for population-based
disease prediction. IEEE Transactions on Medical Imaging 42, 7 (2022), 2032–2043.

[21] Bastian Pfeifer, Hryhorii Chereda, Roman Martin, Anna Saranti, Sandra Clemens,
Anne-Christin Hauschild, Tim Beißbarth, Andreas Holzinger, and Dominik Hei-
der. 2023. Ensemble-GNN: federated ensemble learning with graph neural net-
works for disease module discovery and classification. Bioinformatics 39, 11
(2023), btad703.

[22] Sina Sajadmanesh and Daniel Gatica-Perez. 2021. Locally private graph neural
networks. In Proceedings of the 2021 ACM SIGSAC conference on computer and
communications security. 2130–2145.

[23] Toyotaro Suzumura, Yi Zhou, Natahalie Baracaldo, Guangnan Ye, Keith Houck,
Ryo Kawahara, Ali Anwar, Lucia Larise Stavarache, Yuji Watanabe, Pablo Loyola,
et al. 2019. Towards federated graph learning for collaborative financial crimes
detection. arXiv preprint arXiv:1909.12946 (2019).

[24] Yue Tan, Yixin Liu, Guodong Long, Jing Jiang, Qinghua Lu, and Chengqi Zhang.
2023. Federated learning on non-iid graphs via structural knowledge sharing. In
Proceedings of the AAAI conference on artificial intelligence, Vol. 37. 9953–9961.

[25] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[26] Binghui Wang, Ang Li, Meng Pang, Hai Li, and Yiran Chen. 2022. Graphfl: A
federated learning framework for semi-supervised node classification on graphs.
In 2022 IEEE International Conference on Data Mining (ICDM). IEEE, 498–507.

[27] Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang,
Quan Yu, Jun Zhou, Shuang Yang, and Yuan Qi. 2019. A semi-supervised graph
attentive network for financial fraud detection. In 2019 IEEE international confer-
ence on data mining (ICDM). IEEE, 598–607.

[28] Zhen Wang, Weirui Kuang, Yuexiang Xie, Liuyi Yao, Yaliang Li, Bolin Ding, and
Jingren Zhou. 2022. Federatedscope-gnn: Towards a unified, comprehensive and
efficient package for federated graph learning. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 4110–4120.

[29] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-
world’networks. nature 393, 6684 (1998), 440–442.

[30] Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Tao Qi, Yongfeng Huang, and Xing
Xie. 2022. A federated graph neural network framework for privacy-preserving
personalization. Nature Communications 13, 1 (2022), 3091.

[31] Jiahao Wu, Ning Lu, Zeiyu Dai, Wenqi Fan, Shengcai Liu, Qing Li, and Ke Tang.
2024. Backdoor Graph Condensation. arXiv preprint arXiv:2407.11025 (2024).

[32] Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. 2021. Graph backdoor. In
30th USENIX Security Symposium (USENIX Security 21). 1523–1540.

[33] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. 2019. Dba: Distributed back-
door attacks against federated learning. In International conference on learning
representations.

[34] Jing Xu, Gorka Abad, and Stjepan Picek. 2023. Rethinking the trigger-injecting
position in graph backdoor attack. In 2023 International Joint Conference on
Neural Networks (IJCNN). IEEE, 1–8.

[35] Jing Xu, Stefanos Koffas, and Stjepan Picek. 2024. Unveiling the Threat: Investi-
gating Distributed and Centralized Backdoor Attacks in Federated Graph Neural
Networks. Digital Threats: Research and Practice 5, 2 (2024), 1–29.

[36] Jing Xu and Stjepan Picek. 2022. Poster: clean-label backdoor attack on graph
neural networks. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security. 3491–3493.

[37] Jing Xu, Rui Wang, Stefanos Koffas, Kaitai Liang, and Stjepan Picek. 2022. More
is better (mostly): On the backdoor attacks in federated graph neural networks.
In Proceedings of the 38th Annual Computer Security Applications Conference.
684–698.

[38] Shuiqiao Yang, Bao Gia Doan, Paul Montague, Olivier De Vel, Tamas Abraham,
Seyit Camtepe, Damith C Ranasinghe, and Salil S Kanhere. 2022. Transferable
graph backdoor attack. In Proceedings of the 25th international symposium on
research in attacks, intrusions and defenses. 321–332.

[39] Xiao Yang, Gaolei Li, and Jianhua Li. 2024. Graph Neural Backdoor: Funda-
mentals, Methodologies, Applications, and Future Directions. arXiv preprint
arXiv:2406.10573 (2024).

[40] Yuxin Yang, Qiang Li, Jinyuan Jia, Yuan Hong, and Binghui Wang. 2024. Dis-
tributed Backdoor Attacks on Federated Graph Learning and Certified Defenses.
arXiv preprint arXiv:2407.08935 (2024).

[41] Xiaoyan Yin, Wanyu Lin, Kexin Sun, Chun Wei, and Yanjiao Chen. 2022. A 2 S
2-GNN: Rigging GNN-based social status by adversarial attacks in signed social
networks. IEEE Transactions on Information Forensics and Security 18 (2022),
206–220.

[42] Hangfan Zhang, Jinghui Chen, Lu Lin, Jinyuan Jia, and DinghaoWu. 2023. Graph
contrastive backdoor attacks. In International Conference on Machine Learning.
PMLR, 40888–40910.

[43] Jiale Zhang, Chengcheng Zhu, Bosen Rao, Hao Sui, Xiaobing Sun, Bing Chen,
Chunyi Zhou, and Shouling Ji. 2024. " No Matter What You Do!": Mitigating
Backdoor Attacks in Graph Neural Networks. arXiv preprint arXiv:2410.01272
(2024).

[44] Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. 2021. Back-
door attacks to graph neural networks. In Proceedings of the 26th ACM Symposium
on Access Control Models and Technologies. 15–26.

[45] Zhiwei Zhang, Minhua Lin, Enyan Dai, and Suhang Wang. 2024. Rethinking
graph backdoor attacks: A distribution-preserving perspective. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
4386–4397.

[46] Wei Zhu, Jiebo Luo, and Andrew DWhite. 2022. Federated learning of molecular
properties with graph neural networks in a heterogeneous setting. Patterns 3, 6
(2022).

[47] Yuxuan Zhu, Michael Mandulak, Kerui Wu, George Slota, Yuseok Jeon, Ka-Ho
Chow, and Lei Yu. 2024. On the Robustness of Graph Reduction Against GNN
Backdoor. arXiv preprint arXiv:2407.02431 (2024).

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

9

	Abstract
	1 Introduction
	2 BACKGROUND AND PROBLEM DEFINITION
	2.1 Federated Graph Learning (FedGL)
	2.2 Distributed Backdoor Attacks on FedGL
	2.3 Threat Model

	3 Non-intrusive DBA on FedGL
	3.1 FedGL Training with Clean Graph Data
	3.2 Learning Natural Backdoor of GNN Model

	4 Attack Results
	4.1 Experimental Setup
	4.2 Experimental Results

	5 RELATED WORK
	6 CONCLUSION
	References

