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ABSTRACT

Reinforcement learning (RL) has emerged as a powerful post-training paradigm
for large language models (LLMs), yet its effectiveness varies significantly
across base models. While incorporating a pre-RL supervised fine-tuning (SFT)
phase can enhance RL training, key questions remain: how long should the SFT
cold-start phase last, and is the SFT objective truly aligned with the requirements
for effective RL preparation? In our analysis of cold-start dynamics, we uncover a
key limitation: the SFT checkpoint with the highest evaluation performance often
fails to maximize RL potential due to distributional forgetting—a phenomenon
where the model drifts excessively away from the base model’s distribution even
before traditional overfitting occurs. We identify diversity metrics, such as the
entropy and self-BLEU, as more reliable early-stopping criteria than the standard
performance-based checkpoint selection. Our findings show that SFT checkpoints
with peak diversity consistently lead to superior post-RL results. Building on
these insights, we introduce Adaptive Early-Stop Loss (AESL), a lightweight
and dynamic cold-start method that balances the acquisition of new patterns with
the preservation of the base model’s distribution. AESL operates at both the
token and subsequence levels, providing finer-grained control over the cold-start
process. Experimental results on mathematical reasoning benchmarks demon-
strate that diversity-based early stopping surpasses traditional performance-based
SFT, while AESL further enhances RL preparation. By steering LLMs toward
better initialization points for RL, AESL consistently achieves superior final
performance compared to existing SFT and cold-start strategies.

1 INTRODUCTION

Large Language Models (LLMs) (Team et al., 2023; Achiam et al., 2023; Grattafiori et al., 2024;
Yang et al., 2025) have demonstrated remarkable capabilities across various domains, includ-
ing natural language processing, question answering, and planning tasks Mirzadeh et al. (2025);
Valmeekam et al. (2023); Huang & Chang (2022). Their abundant prior knowledge enables them
to tackle previously unattainable challenges, particularly in fields such as mathematical reasoning
and code generation (Ahn et al., 2024; Jiang et al., 2024). The foundational capabilities and exten-
sive knowledge embedded in LLMs unlock a wide range of downstream applications, making them
indispensable tools for solving sophisticated real-world problems.

While inherently powerful, LLMs often require post-training to better align their capabilities with
downstream tasks. Post-training refines base models by strengthening specific abilities, address-
ing gaps in reasoning patterns, domain expertise, or human preferences Tie et al. (2025); Kumar
et al. (2025); Shen et al. (2023). Among various post-training paradigms, reinforcement learning
(RL) (Barto, 2021; Hu, 2025; Shao et al., 2024; Zheng et al., 2025; Guo et al., 2025) has recently
emerged as a particularly promising approach, offering significant performance improvements for
LLMs across downstream tasks. RL’s advantages are compelling: it eliminates the need of large-
scale curated demonstrations and holds the potential to achieve superhuman performance in tasks
where well-defined reward signals are available to guide optimization.

However, despite its promise, RL’s theoretical benefits often fail to fully materialize in practice.
RL algorithms are notoriously sample-inefficient, requiring extensive exploration to learn complex
reasoning patterns from scratch. Moreover, RL’s effectiveness heavily depends on the quality

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

and characteristics of the base model—models with limited reasoning capabilities may struggle
to discover appropriate reasoning patterns and fail to benefit from RL training. To address these
limitations, many post-training pipelines incorporate a supervised fine-tuning (SFT) Lambert
et al. (2024); Yang et al. (2025); Guo et al. (2025) cold-start phase that enables models to acquire
essential reasoning patterns, such as long chain-of-thought (CoT) (Wei et al., 2022) reasoning,
before RL training begins. This approach enhances sample efficiency and overall performance by
providing a stronger foundation for subsequent RL optimization.

Despite the widespread adoption of cold-start phases, fundamental questions remain unanswered.
How long should the cold-start phase last to optimally prepare base LLMs for subsequent RL
training? More critically, is the standard SFT objective of demonstration imitation well aligned
with the goal of RL preparation? These open questions highlight the need for deeper understanding
of effective cold-start design to optimize subsequent RL performance.

In this paper, we address these critical questions by investigating cold-start dynamics and proposing
methods to optimize their effectiveness of cold-start SFT for RL preparation. Through an analysis
of post-RL performance across various cold-start checkpoints, we reveals a misalignment between
standard cold-start objectives and RL preparation goals: the best-performing checkpoint after SFT
does not necessarily correspond to the optimal starting point for RL due to distribution forgetting
that occurs before traditional overfitting. To address this issue, we introduce improved criteria and
methods for cold-start design, ensuring better alignment with RL training requirements. Specifically,
our contributions are as follows:

• We demonstrate that diversity metrics, such as entropy and self-BLEU, serve as superior
early-stopping criteria compared to evaluation performance. Selecting checkpoints based on
diversity consistently yields better RL performance than relying solely on evaluation metrics.

• Building on these insights, we propose Adaptive Early-Stop Loss (AESL), a novel cold-start
method that dynamically balances new pattern acquisition with base distribution preservation at
both token and subsequence levels, providing fine-grained control over the preparation process.

• Through extensive experiments across different base models (Qwen2.5-7B-Instruct (Yang et al.,
2024a) and Qwen2.5-Math-7B (Yang et al., 2024b)) and various cold-start data settings, we
demonstrate AESL’s superior performance, establishing it as an effective solution for preparing
LLMs for successful RL training.

2 PRELIMINARIES

The goal of the post-training phase for LLMs is to refine base models by enhancing their knowledge
and capabilities in specific domains, such as instruction following and reasoning (Kumar et al.,
2025). Modern LLM post-training predominantly employs two complementary paradigms: SFT and
RL. SFT relies on high-quality demonstration datasets to align model outputs with desired responses,
while RL requires only prompt sets and reward signals from verifiers to optimize response generation
through policy learning. The RL paradigm has gained significant attention due to its potential to
achieve super-human intelligence.

2.1 RL FOR LLM POST-TRAINING

In the reinforcement learning with verifiable reward (RLVR) framework (Lambert et al., 2024), the
objective is to optimize the policy (i.e., the LLM) πθ(st|q, s<t) to maximize the expected reward
from a verifier R(st, q), where st represents the current token output, s<t represent the first t − 1
generated token and q denotes the input question. In this work, we adopt the widely-used GRPO
algorithm (Shao et al., 2024) for RL post-training, which optimizes the following objective:

LGRPO(θ) = Eq∼DRL,{si}G
i=1∼πθold (s|q)

1

G

G∑
i=1

1

|si|

|si|∑
t=1
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RL
RL Cold-start RL

(a) Qwen2.5-Math-7B achieves significant direct per-
formance gains through RL, while Qwen2.5-7B-
Instruct requires cold-start preparation for effective
subsequent RL training.
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(b) Performance before and after RL training across
different cold-start training steps. The best post-cold-
start checkpoint does not correspond to optimal post-
RL performance.

Figure 1: Motivating observations showing the necessity and optimization challenges of cold-start
training. Performance represents averages across multiple mathematical reasoning benchmarks (de-
tailed in Section B). Complete results are provided in Section C.1

.

where DRL is the question set used for RL, G is the group size in GRPO, and si denotes a complete
rollout sequence. The term πθold represents the policy before the update, while πref denotes the
reference policy. The advantage estimate is normalized within the group as Âi

t =
ri−mean(r)

std(r) , where
r = R(st, q) is the verifier that provides reward signals and ri is the reward for the i-th rollout.

2.2 RL COLD-START PHASE VIA SFT

Although RL is highly effective at optimizing task-specific performance, its success is strongly influ-
enced by the capabilities of the base model (as discussed in Section 3.1). Additionally, RL training
is sample-inefficient, making it challenging to learn complex reasoning patterns, such as long-CoT,
from scratch. To address these challenges, many post-training pipelines (Guo et al., 2025; Lambert
et al., 2024) include a cold-start phase using SFT. This phase injects essential reasoning patterns,
such as long-CoT, into the base model using a small amount of demonstration data, enabling RL
to achieve better sample efficiency and performance. Typically, the cold-start phase employs the
cross-entropy (CE) loss as the training objective:

LCE(θ) = −Eq,s∗∼DSFT [log πθ(s
∗
t |q, s<t)] , (2)

where DSFT is the demonstration dataset. The CE loss aligns the model’s predictions with the
provided demonstrations, enabling it to learn desired reasoning patterns before progressing to
RL-based post-training.

3 METHODOLOGY

In this section, we examine the post-training process holistically and propose an enhanced criterion
for early stopping and an improved loss function for the cold-start phase. These enhancements
aim to improve final performance after subsequent RL training. First, in Section 3.1, we analyze
how the cold-start phase affects the effectiveness of LLM post-training. Our analysis reveals that
the best-performing checkpoint after cold-start, as measured by evaluation metrics, often fails to
prepare the model optimally for RL training due to distribution forgetting from the base models.
We empirically demonstrate that diversity turning points during cold-start training correspond
to superior RL potential, motivating diversity-based early stopping as a more effective criterion.
Building on this insight, Section 3.2 introduces our Adaptive Early-Stop Loss (AESL) for the
cold-start phase, which adaptively balances preservation of the original distribution with adaptation
to new demonstration patterns on a token-by-token basis. Together, these contributions offer
improved flexibility and superior performance compared to traditional CE-based approaches.
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(a) Entropy dynamics during cold-start training.
Higher values indicate increased response diversity.
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(b) Self-BLEU dynamics during cold-start training.
Lower values indicate increased response diversity.

Figure 2: Diversity measurements throughout the cold-start training process corresponding to Fig-
ure 1b, revealing the relationship between diversity measurement and RL potential.

3.1 MOTIVATION: UNDERSTANDING THE COLD-START PHASE DYNAMICS

The cold-start phase is crucial for steering base models toward a promising starting point for RL
training, particularly when models lack domain-specific knowledge or reasoning capabilities (e.g.,
long-CoT patterns). To investigate its role, we first evaluate the RL performance of two base mod-
els: Qwen2.5-Math-7B (Yang et al., 2024b) and Qwen2.5-7B-Instruct (Yang et al., 2024a), and
compared their post-RL performance.

The Necessity of Cold-Start As shown in Figure 1a, Qwen2.5-Math-7B achieves significant per-
formance gains directly after RL training. In contrast, Qwen2.5-7B-Instruct shows minimal im-
provement under direct RL training. This disparity is further reflected in slower growth of average
response length (detailed in Section C.1), underscoring the need for a cold-start SFT phase to in-
ject long-CoT patterns into the base model. Following established conventions, we implement a
lightweight cold-start phase (using less than 1/10 of the data volume of the subsequent RL phase)
and observe substantially enhanced overall performance gains. This confirms that strategic cold-start
SFT can effectively steer base models toward better RL starting points. However, this also raises a
critical question: is optimizing for the best cold-start evaluation performance aligned with achieving
the optimal post-RL performance?

Misalignment Between Cold-start and RL Objectives Our investigation reveals that the objec-
tive of the cold-start phase does not necessarily align with the purpose to prepare base model for
subsequent RL training, particularly when demonstration data is limited. We examine this by vary-
ing training budgets for standard cold-start phases and subsequently applying RL training. Figure 1b
presents the performance for both post-cold-start and post-RL models: initial performance decay
followed by recovery during cold-start training, representing a shift-and-readaptation process. Cru-
cially, we observe that while evaluation performance continues improving during the readaptation
phase, corresponding post-RL performance begins declining. This indicates that the RL potential
deteriorates before overfitting to the cold-start dataset, suggesting fundamental misalignment be-
tween cold-start objectives (steering models toward better RL starting points) and standard CE loss
objectives (maximizing demonstration dataset imitation).

Diversity as Criteria for Cold-start Early-stopping: To understand this performance degrada-
tion phenomenon, we examine diversity measurements throughout the cold-start training process
(Figure 2). This pattern reflects important distribution dynamics during cold-start training. In the
early stages, the model balances acquiring new reasoning patterns from the cold-start dataset with
retaining knowledge from its original distribution, as illustrated in Figure 3. However, as training
progresses, the model begins to over-adapt to the new dataset, leading to distribution forgetting and
reduced RL potential. The diversity peak represents an optimal balance point—a ”sweet spot” (step
100 in this example) where the model successfully acquires new reasoning patterns while sufficiently
retaining distribution from base model for effective RL training. The enhanced entropy at this point
likely stems from the model maintaining dual distribution characteristics from both the original base
model and the new dataset patterns. Our analysis yields two key insights:
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• From an analytical perspective, deterioration of RL potential occurs before SFT overfitting, re-
vealing fundamental misalignment between cold-start objectives (preparing models for RL) and
CE loss objectives (maximizing demonstration imitation).

• From a practical perspective, selecting the best-performing post-cold-start checkpoint may be
suboptimal for subsequent RL training. Effective cold-start requires balancing new pattern ac-
quisition with original distribution preservation, with diversity measurements serving as valuable
indicators of this trade-off.

3.2 ADAPTIVE EARLY-STOPPING LOSS

Context 1 Response

Context 2 Response

Initialization Overfitting & Forgetting

Base Model Dataset

Figure 3: Conceptual illustration of the cold-start training
process. The model distribution gradually shifts from the
base model toward the cold-start dataset distribution. Overly
excessive training leads to overfitting and forgetting of the
base model’s original distribution, potentially reducing its
subsequent RL potential. This highlights the need to balance
learning new reasoning patterns from the dataset with pre-
serving the base model’s original distribution. Our proposed
AESL adaptively addresses this trade-off based on context.

Based on our experimental findings,
we reframe the cold-start objective
from complete demonstration imita-
tion to achieving an optimal trade-off
between learning new patterns and
preserving distribution from the
original base model, as depicted in
Figure 3. The simplest enhancement
to traditional cold-start approaches
is implementing diversity-based
early stopping. Instead of selecting
the best-performing checkpoint
after SFT cold-start, we select the
checkpoint corresponding to the
diversity measurement turning point,
which indicates the onset of base
model distribution forgetting. Based
on observations in Figure 1b, this
approach should improve subsequent
RL post-training performance, which we validate comprehensively in Section 4.

While vanilla early stopping proves effective, it lacks flexibility by applying uniform stopping crite-
ria across the entire dataset. As illustrated in Figure 3, overfitting and distribution forgetting occur
at different rates for different tokens and contexts due to varying “distance” between the base model
and cold-start dataset distributions. This heterogeneity necessitates a more flexible mechanism for
managing the preservation-adaptation trade-off. To address these limitations, we propose the Adap-
tive Early-Stop Loss (AESL), which provides fine-grained trade-off control at the token and subse-
quence level rather than dataset-level early stopping. The loss function is a weighted version of the
original CE loss:

LAda-stop(θ) = −Eq,s∗∼DSFT [p(q, s
∗
t , πθ) · log πθ(s

∗
t |q, s<t)] , (3)

where the adaptive weighting is defined as:

p(q, s∗t , πθ) = 1− softmax

[
y(s∗t |q, s<t)

−tscaling · 1
|t|

∑t
i=1 log πθ(s∗i |q, s<i)

]
, (4)

with y representing the output logits before softmax normalization, softmax[xi] =
exp(xi)∑
j exp(xj)

, and
tscaling being a hyperparameter.

At the token level, the weighting function gradually reduces the loss contribution for tokens where
the ground truth already corresponds to high probability under the current policy. This mecha-
nism slows learning when the model already assigns high probabilities to correct tokens, thereby
preserving original knowledge while still allowing adaptation to new patterns. AESL also incorpo-
rates subsequence-level considerations, recognizing that effective RL preparation requires the abil-
ity to generate diverse and plausible reasoning paths. Since sequence diversity measured by entropy
H(st|q) can be decomposed as: H(st|q) =

∑
st−1

π(st−1|q)H(st|st−1) +H(st−1|q) (detailed in
Section A), tokens following high-probability prefixes contribute more to overall diversity. Build-
ing on this insight, we scale the token-level early stopping with the average log-probability of the
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Table 1: Post-training performance (↑) with different cold-start methods. For AIME and AMC,
we report avg@64 performance due to smaller test set sizes. For other benchmarks, pass@1 is
reported. Avg. denotes the macro-average across benchmarks.

AIME24 AIME25 AMC23 MATH. Min. Olym. Avg.
Qwen2.5-7B-Instruct

Base 11.93 8.39 53.16 78.2 36.76 40.0 38.07
+RL 13.7 5.73 54.45 76.4 38.24 40.0 38.09
+SFT (CE) 12.29 15.31 44.22 74.2 39.34 35.26 36.77

+RL 15.99 15.52 53.36 78.4 37.13 40.74 40.19
+SFT (CE-ES) 9.74 12.5 43.32 71.2 31.25 31.7 33.28

+RL 18.23 15.94 54.37 80.4 37.5 42.81 41.54
+SFT (GEM) 13.02 14.37 45.47 74.2 34.56 33.93 35.93

+RL 16.2 15.83 53.83 80.6 36.4 40.3 40.53
+SFT (PSFT) 13.33 14.69 44.73 73.6 36.03 34.52 36.15

+RL 15.73 16.15 52.15 80.6 40.07 39.11 40.64
+SFT (AESL) 11.41 13.65 44.26 73.8 36.4 32.44 35.33

+RL 18.18 16.88 56.48 81.8 37.13 43.11 42.26

Qwen2.5-Math-7B

Base 16.77 9.17 55.12 64.4 32.72 34.52 35.45
+RL 22.92 13.33 63.98 82.8 39.34 45.63 44.67
+SFT (CE-(ES)) 20.26 19.11 59.61 83.6 40.07 41.93 44.1

+RL 24.11 21.3 69.38 86.6 41.18 49.04 48.6
+SFT (GEM) 17.24 20.83 58.44 81.4 41.18 43.85 43.82

+RL 26.15 21.51 68.24 87.4 41.54 51.7 49.42
+SFT (PSFT) 19.32 21.46 60.08 82.4 41.18 42.37 44.47

+RL 24.27 23.12 65.74 87.0 40.44 47.56 48.02
+SFT (AESL) 17.29 18.75 58.16 83.6 34.93 40.3 42.17

+RL 25.0 21.98 71.25 87.0 42.28 52.74 50.04
* MATH. denotes MATH-500, Min. denotes Minerva Math, and Olym. denotes OlympiadBench.
* Gray shading indicates methods for easier readability. Best performance is bolded, and second-best

is underlined.
* For Qwen2.5-Math-7B, CE and CE-ES checkpoints coincide, so results are reported together.

prefix context (denominator in Equation (4)). This encourages the model to maintain base distri-
bution when the prefix already aligns closely with the dataset distribution, balancing adaptation to
demonstrations with preservation of distribution of the base models.

4 EXPERIMENTS

In this section, we integrate the Adaptive Early-Stop Loss (AESL) cold-start method into standard
post-training pipelines and evaluate its effectiveness in preparing LLMs for RL post-training.
We first compare AESL against baseline cold-start methods, demonstrating its superior perfor-
mance across multiple base models. We then analyze the impact of dataset configurations and
hyperparameters, validating the robustness of AESL in diverse experimental settings.

4.1 SETUP

Base Models We evaluate our approach using two distinct base models: Qwen2.5-7B-Instruct
and Qwen2.5-Math-7B. Both models do not present the ability to reason through long CoT
pattern (as demonstrated in Table 11), making the cold-start phase essential for injecting long
CoT reasoning patterns. These models represent different starting points for RL post-training:
Qwen2.5-7B-Instruct excels at instruction following but may not be optimally positioned for RLVR
(as demonstrated in Figure 1a), while Qwen2.5-Math-7B, having been pre-trained on mathematical
datasets, generates more diverse responses and serves as a stronger foundation for RLVR. While
Qwen2.5-Math-7B requires less intervention during cold-start, we include it to gauge AESL’s
effectiveness in different initial conditions.
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Dataset and Algorithm Following established practices (Fu et al., 2025; Zhang et al., 2025), we
employ the Openr1-Math-46k-8192 Hugging Face (2025); Yan et al. (2025) dataset for post-training.
This dataset comprises 46k long CoT demonstrations generated by the DeepSeek-R1 model. For
SFT cold-start, we uniformly subsample 3k examples, ensuring each question corresponds to one
correct demonstration verified using Math-Verify1. For RL post-training, we utilize the complete
46k question set without demonstrations, employing the GRPO algorithm (Shao et al., 2024).

Baselines We compare AESL against five baseline approaches: (i) Direct RL: applying RL
directly to base models without cold-start preparation; (ii) CE: conducting SFT cold-start with
CE loss and selecting the best-performing checkpoint for subsequent RL; (iii) CE-ES (CE with
early-stopping): conducting SFT cold-start with CE loss and selecting the checkpoint at the
diversity turning point for subsequent RL (motivated by findings in Section 3.1); (iv) GEM (Li
et al., 2025); and (v) PSFT (Zhu et al., 2025).

Further details about experimental setups and implementation specifics are provided in Section B.

4.2 RESULTS

Table 2: Response diversity measurement after
cold-start with Qwen2.5-7B-Instruct. Higher en-
tropy and lower self-BLEU indicate greater diver-
sity.

Method Entropy(↑) Self-BLEU(↓)
CE 0.326 0.710
CE-ES 0.53 0.696
AESL 0.553 0.694

Main Results The comparative performance
of AESL and baseline methods is summarized
in Table 1. Overall, AESL achieves supe-
rior performance for both base models, con-
sistently outperforming baselines in subsequent
RL training. This highlights AESL’s ability
to effectively steer LLMs into a better starting
point for RLVR. As discussed in Section 3.2,
AESL achieves this performance boost by care-
fully balancing the need to the base model’s
core distribution while simultaneously learning
new reasoning patterns. As shown in Table 2, AESL produces the highest entropy and lowest self-
BLEU scores, indicating increased diversity in model outputs after cold-start. This aligns with the
findings in Section 3.1, where greater diversity translates to better RL potential. Moreover, BLEU
scores between pre- and post-cold-start outputs indicate that AESL maintains a closer alignment
with the base model’s original output distribution (0.140 vs. 0.135 for CE). This indicates that
AESL-trained models retain stronger base knowledge, enabling them to more effectively sample
from the base distribution during RL training. Importantly, the CE-ES method also outperforms
CE in providing a better starting point for RLVR, despite having inferior performance immediately
after the cold-start phase. This observation, coupled with AESL’s success, supports the argument in
Section 3.2 that the cold-start phase should not solely focus on intimating the demonstration dataset
or maximizing evaluation scores but should also consider preserving the base model’s existing ca-
pabilities, particularly when the dataset size for cold-start is limited. This is further supported by the
increased entropy and reduced self-BLEU scores achieved by AESL, as shown in Table 2. Extended
discussion is included in Section C.3.

To assess the robustness of AESL, we evaluate its performance under varying cold-start dataset sizes
(1k, 3k, and 6k samples) and question difficulty levels (simple and hard splits). The results, shown
in Table 3 and Table 4, demonstrate that AESL consistently outperforms traditional CE-based
cold-start methods across all dataset sizes and difficulty levels. These findings highlight AESL’s
versatility and effectiveness in diverse post-training scenarios, even under varying data availability
constraints. Additional discussions are provided in Section C.3.

Hyperparameter Analysis We examine the impact of the temperature scaling hyperparameter
tscaling, which controls the balance between learning new reasoning patterns and preserving distri-
bution from base model. Table 5 reveals that extreme values degrade performance: excessively
small tscaling prevents effective pattern learning, while excessively large values cause base distribu-
tion forgetting and reduced diversity. However, within the optimal range (3-5), AESL consistently
delivers performance improvements over all baseline methods, demonstrating robust performance
across reasonable hyperparameter settings.

1https://github.com/huggingface/Math-Verify
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Table 3: Performance(↑) comparison across different cold-start dataset sizes using Qwen2.5-
7B-Instruct as the base model.

AIME24 AIME25 AMC23 MATH. Min. Olym. Avg.
Base 11.93 8.39 53.16 78.2 36.76 40.0 38.07

+RL 13.7 5.73 54.45 76.4 38.24 40.0 38.09

1k cold-start dataset

+SFT (CE-(ES)) 11.67 13.44 44.92 72.8 37.5 33.33 35.61
+RL 16.2 14.74 52.62 80.8 39.71 40.74 40.8

+SFT (AESL) 12.4 12.24 46.13 74.0 37.13 34.52 36.07
+RL 17.14 15.36 54.02 76.8 41.18 42.37 41.14

6k cold-start dataset

+SFT (CE) 12.92 15.99 45.74 75.0 36.4 36.44 37.08
+RL 14.32 16.04 54.26 77.4 39.71 40.44 40.36

+SFT (CE-ES) 11.61 14.22 42.97 71.6 34.56 32.15 34.52
+RL 16.56 16.72 53.79 80.2 41.54 42.37 41.86

+SFT (AESL) 12.55 15.73 44.84 73.6 34.19 33.63 35.76
+RL 16.67 16.82 56.41 81.6 43.01 42.22 42.79

* For 1k dataset size, CE and CE-ES checkpoints coincide, so results are reported together.

Table 4: Performance(↑) comparison across different cold-start dataset difficulty splits using
Qwen2.5-7B-Instruct as the base model.

AIME24 AIME25 AMC23 MATH. Min. Olym. Avg.
Base 11.93 8.39 53.16 78.2 36.76 40.0 38.07
+RL 13.7 5.73 54.45 76.4 38.24 40.0 38.09

3k dataset with hard questions (filtered with the base model)

+SFT (CE) 13.49 14.95 46.48 74.0 36.4 36.15 36.91
+RL 16.93 16.35 53.91 79.2 38.24 39.26 40.65

+SFT (CE-ES) 12.81 13.91 46.48 74.0 36.76 34.22 36.36
+RL 17.03 15.78 54.14 79.4 38.24 40.0 40.77

+SFT (AESL) 13.7 16.04 46.56 75.2 33.46 33.48 36.41
+RL 17.55 17.03 54.14 80.4 40.07 40.89 41.68

3k dataset with simple questions (filtered with the base model)

+SFT (CE) 12.19 13.33 44.69 72.4 35.66 34.81 35.51
+RL 14.43 15.42 53.91 80.6 40.81 40.74 40.99

+SFT (CE-ES) 11.15 12.03 44.65 71.4 33.46 33.19 34.31
+RL 14.9 15.78 51.88 77.0 37.13 39.41 39.35

+SFT (AESL) 10.78 12.03 45.47 73.2 33.09 33.48 34.68
+RL 16.77 16.46 55.35 80.8 38.97 45.04 42.23

5 RELATED WORKS

The pretraining stage of LLMs primarily focuses on constructing a general foundation of knowledge
and capabilities, whereas the post-training stage adapts these models to specific tasks and require-
ments (Tie et al., 2025). Two widely used methodologies for post-training are: SFT Guo et al.
(2025); Lambert et al. (2024) and RL (Shao et al., 2024; Hu, 2025; Yu et al., 2025; Zheng et al.,
2025; Hu et al., 2025), which are employed to inject domain knowledge or enhance specific abilities
in LLMs. Recent studies have explored the strengths and limitations of these two paradigms. For
instance, Sun et al. (2025) and Muennighoff et al. (2025) analyzed SFT datasets, highlighting the
importance of data curation and scaling in improving model performance. In contrast, Yue et al.
(2025) argued that RLVR does not introduce new reasoning patterns but is instead constrained by the

8
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Table 5: Hyperparameter analysis for tscaling using Qwen2.5-7B-Instruct as the base model.
Results show post-RL performance with AESL cold-start.

AIME24 AIME25 AMC23 MATH-500 Minerva Olym. Avg.
base 13.7 5.73 54.45 76.4 38.24 40.0 38.09
tscaling = 1 17.45 15.21 52.7 79.8 38.24 43.11 41.09
tscaling = 3 18.23 15.57 55.78 80.4 38.97 44.89 42.31
tscaling = 5 12.18 16.88 56.48 81.8 37.13 43.11 42.26
tscaling = 7 18.44 14.84 55.16 79.4 37.87 40.89 41.1

base model’s underlying capabilities. Bridging these observations, Chu et al. (2025) demonstrated
that while RL improves generalization, SFT tends to memorize training data but helps stabilize
output formats for LLMs.

Building on this foundational understanding of SFT and RL in post-training, recent research
has proposed methods to combine the two paradigms more effectively. One promising avenue
involves enhancing SFT through evolving data strategies, where data progressively guides the base
model during training. For example, Light-R1 (Wen et al., 2025) employed curriculum learning to
gradually increase the difficulty of SFT question sets, thereby improving the learning landscape.
Similarly, REFT (Luong et al., 2024) leveraged multiple sampling of model outputs, selecting
the best trace for SFT instead of relying on single demonstration paths. Another line of research
integrates SFT with RL in a combined training stage, allowing demonstrations to better guide RL
exploration. LUFFY (Yan et al., 2025) approached this from a data perspective, mixing off-policy
demonstrations with on-policy rollouts to improve RL performance. SRFT (Fu et al., 2025) and
CHORD (Zhang et al., 2025) tackled the problem through modified objectives, reframing SFT as
an auxiliary task within the RL framework.

Our work, alongside GEM (Li et al., 2025) and the concurrent work PSFT (Zhu et al., 2025) ,
belongs to a third category of approaches that aim to refine the SFT stage by shifting the training ob-
jective beyond simple dataset imitation. GEM emphasizes promoting diversity, while PSFT focuses
on out-of-distribution generalization using abundant SFT datasets. In contrast, our proposed AESL
targets a lightweight cold-start SFT setting (using less than 1/10th the data size of RL training).
AESL addresses the challenge of preparing the base model for subsequent RLVR by striking a better
balance between learning new reasoning patterns and preserving the base model’s prior knowledge.

6 CONCLUSIONS

In this work, we addressed the critical challenge of preparing LLMs for RL training through effec-
tive cold-start SFT. Our analysis uncovered a fundamental misalignment between traditional SFT
objectives and RL preparation goals: the best-performing cold-start checkpoint, as measured by
evaluation performance, fails to maximize RL potential. This failure arises due to distribution for-
getting from the base models, which occurs before traditional overfitting. We demonstrated that
diversity metrics, such as entropy and self-BLEU, are more reliable early-stopping criteria, with
peak diversity checkpoints consistently yielding superior post-RL results. Building on this insight,
we introduced Adaptive Early-Stop Loss (AESL), a novel cold-start method that dynamically bal-
ances new pattern acquisition with the preservation of the base model’s distribution at both the token
and subsequence levels. Experimental results across mathematical reasoning benchmarks demon-
strate that AESL consistently outperforms traditional cold-start methods and competitive baselines,
achieving superior final performance in the lightweight SFT setting.

While our work addresses cold-start optimization from an objective perspective, several important
aspects warrant further investigation. From an evaluation standpoint, developing methods to predict
the upper bound of subsequent RL training could enable more informed cold-start design decisions.
From a data curation perspective, understanding how to optimally select and structure cold-start
datasets to maximize RL preparation effectiveness remains an open challenge. These directions
represent promising avenues for future research in LLM post-training.
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REPRODUCIBILITY STATEMENT

We provide comprehensive details on prompting strategies, datasets, hyperparameters used for train-
ing and evaluation, as well as the infrastructure of our experimental setups in Section B. The code-
base for this work will be made publicly available after the review process.
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A DETAILS ON DIVERSITY ANALYSIS

Following previous work (Fu et al., 2025), we formulate the LLM’s token generation process as a
Markov Decision Process (MDP). The state st is defined as the concatenation of all tokens gener-
ated so far, making the transition deterministic in this MDP. As discussed in Section 3.1, diversity
serves as an indicator of the balance between learning new reasoning patterns and preserving base
distribution. To analyze this, we examine the entropy at the sequence level and its relationship to
token-level entropy, which corresponds to next-token prediction using cross-entropy (CE) loss:

H(st|q) = −
∑
st

π(st|q) log π(st|q) (5)

= −
∑
st

π(st|st−1)π(st−1|q) log [π(st|st−1)π(st−1|q)] (6)

= −
∑
st

π(st|st−1)π(st−1|q) log π(st|st−1)−
∑
st

π(st|st−1)π(st−1|q) log π(st−1|q)

(7)

=
∑
st−1

π(st−1|q)H(st|st−1) +H(st−1|q). (8)

In online RL, where the data distribution is induced by the policy π, preserving token-level diversity
is equivalent to preserving sequence-level diversity. During the SFT cold-start stage, entropy under
different contexts contributes differently to overall sequence diversity. Therefore, we leverage this
insight to adaptively adjust the balance between learning new reasoning patterns and preserving
distribution from base model, based on prefix prediction accuracy.

B DETAILS ON EXPERIMENTAL SETUPS

B.1 PROMPTING

Following established conventions (Guo et al., 2025), we append the following context to math
problems to prompt CoT reasoning:

Please reason step by step, and put your final answer within \\boxed{}.

Additionally, we enforce that the model starts its response with <think>\n to ensure reasoning is
explicitly triggered during both training and evaluation.

B.2 TRAINING

We use the OpenRHLF framework2 (Hu et al., 2024) to conduct all the experiments with hyper-
parameters listed in Table 6 and Table 7. For AESL-specific hyperparameter, we set tscaling = 5.
For baseline GEM3 (Li et al., 2025) and PSFT4 (Zhu et al., 2025), we use the respective official
codebase with recommended hyperparameters. For RL reward function, we use the outcome based
reward with 1 for correct answers and 0 for incorrect ones.

Given the maximum sequence length for Qwen2.5-Math-7B is 4096, we increase the RoPE theta
from 10,000 to 40,000 and expand the window size to 16,384 to support longer outputs.

B.3 EVALUATION

In this work, we use the evaluation framework 5 proposed by Liu et al. (2025), with test-time param-
eters listed in Table 8.

2https://github.com/OpenRLHF/OpenRLHF.
3https://github.com/liziniu/GEM.
4https://github.com/zwhong714/PSFT.
5https://github.com/sail-sg/understand-r1-zero.
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Table 6: Common hyperparameters used for AESL and baselines during SFT cold-start.

Hyperparameter Value

Learning rate 5× 10−6

Learning rate scheduler cosine with minimal lr
β1, β2 0.9, 0.95

Learning rate warm up ratio 0.1
Weight decay 0.1

Batch size 64
Number of epochs 10

Table 7: Common hyperparameters used for AESL and baselines during RL phase.

Hyperparameter Value

Learning rate 1× 10−6

Learning rate scheduler cosine with minimal lr
β1, β2 0.9, 0.95

Learning rate warm up ratio 0.1
KL coefficient 0.001

Batch size 128
Number of samples per prompt 8

Number of episode 1
Temperature 1.0

Rollout cut-off length 8192

B.4 DATASET

Cold-start Phase For SFT cold-start, we subsample from the Openr1-Math-46k-8192 (Hugging
Face, 2025) dataset. Specifically:

• Experiments in Table 1 and Table 3: We uniformly subsample 1k, 3k, and 6k splits from the
verifiable questions, each paired with one corresponding demonstration. The same subsampled
datasets are used to conduct SFT cold-start experiments with our proposed AESL and baseline
methods.

• Experiments in Table 4: We begin by uniformly subsampling a 6k split from the original dataset.
Next, the base model (Qwen2.5-7B-Instruct) is used to rank the questions by difficulty, de-
termined by the reversed average accuracy of 8 rollouts per question. Using this ranking, we
construct two splits: (i) A hard split consisting of the top 3k most difficult questions (i.e., those
with the lowest accuracy). (ii) A simple split, comprising the remaining questions. The SFT
cold-start experiments with our proposed AESL and baseline methods are then conducted on
these two splits.

Evaluation For evaluation, the datasets used are listed in Table 9. Given the large evaluation
variance induced by the small sizes of the AIME24, AIME25, and AMC23 datasets, we report the
avg@64 metric for these datasets and pass@1 for others.

B.5 INFRASTRUCTURE

The experiments were conducted using NVIDIA H100 Tensor Core GPUs.
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Table 8: Test-time parameters used for evaluation.

Hyperparameter Value

Output length 8192
Temperature 0.6

Top-p 0.95

Table 9: Evaluation benchmarks.

Dataset Number of Questions

AIME241 30
AIME252 30
AMC233 30
MATH-5004 500
Minerva Math5 272
OlympiadBench6 675
1 https://huggingface.co/datasets/math-ai/aime24.
2 https://huggingface.co/datasets/math-ai/aime25.
3 https://huggingface.co/datasets/math-ai/amc23.
4 https://huggingface.co/datasets/HuggingFaceH4/MATH-500.
5 https://huggingface.co/datasets/math-ai/minervamath.
6 https://huggingface.co/datasets/Hothan/OlympiadBench.

C DETAILED EXPERIMENTAL RESULTS

C.1 ELABORATED RESULTS OF THE MOTIVATION EXAMPLE

Detailed Evaluation Results We present the breakdown of results from Figure 1b across different
evaluation datasets in Table 10.

Table 10: Post-training performance (↑) with different cold-start training budgets with standard
CE loss.

AIME24 AIME25 AMC23 MATH. Min. Olym. Avg.
Base 11.93 8.39 53.16 78.2 36.76 40.0 38.07

+RL 13.7 5.73 54.45 76.4 38.24 40.0 38.09
+SFT (100 step) 9.74 12.5 43.32 71.2 31.25 31.7 33.28

+RL 18.23 15.94 54.37 80.4 37.5 42.81 41.54
+SFT (200 step) 11.82 14.11 45.04 72.8 33.09 33.19 35.01

+RL 16.72 15.57 55.12 78.8 38.97 42.07 41.21
+SFT (300 step) 12.76 15.1 44.96 72.4 34.56 33.63 35.57

+RL 18.12 15.99 53.24 80.2 36.76 40.0 40.72
+SFT (1 epoch) 12.29 15.31 44.22 74.2 39.34 35.26 36.77

+RL 15.99 15.52 53.36 78.4 37.13 40.74 40.19

Response Length Analysis We provide the average response lengths before and after RL for
Qwen2.5-7B-Instruct and Qwen2.5-Math-7B in Table 11.

Overall, the average response length before RL for Qwen2.5-Math-7B is slightly longer than that
of Qwen2.5-7B-Instruct. Additionally, the post-RL growth in average length for Qwen2.5-Math-7B
is much higher. These results indicate that Qwen2.5-Math-7B demonstrates a superior ability to
scale response length and discover long-CoT patterns autonomously, whereas Qwen2.5-7B-Instruct
fails to do so through direct RL. This highlights the necessity of a pre-RL cold-start SFT phase for
Qwen2.5-7B-Instruct to inject long-CoT patterns for better RL scaling.
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Table 11: Averaged response length before and after RL.

AIME24 AIME25 AMC23 MATH. Min. Olym. Avg.
Qwen2.5-7B-Instruct 1224 1039 917 625 688 938 905

+RL 1072 1061 1046 712 721 1180 965
Qwen2.5-Math-7B 1487 1517 1016 808 691 1074 1099

+RL 2689 2317 1445 891 935 1550 1638

C.2 OTHER PERFORMANCE-BASED EVALUATION METRICS

In addition to accuracy, as discussed in Figure 1b, we evaluate the pass@8 metric during the cold-
start phase to assess its suitability as an early-stopping criterion. To ensure the robustness of the
estimated pass@8 metric, we use 16 rollouts per question, which provides a more reliable mea-
sure of model performance by reducing the variance of the metric across questions. The results,
shown in Figure 4, reveal that pass@8 follows a similar trend to evaluation accuracy, reflecting the
characteristic shift-and-readaptation process observed during cold-start training.

However, despite its alignment with evaluation accuracy, pass@8 fails to reliably predict RL po-
tential during the lightweight cold-start phase. This indicates that pass@8, like accuracy, is an
inadequate choice for guiding early stopping in this context, as it does not effectively capture the
diversity dynamics necessary for effective RL preparation.
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Figure 4: The Pass@8 metric throughout the cold-start training process, corresponding to Figure 1b.
The trend mirrors evaluation accuracy, demonstrating the shift-and-readaptation process.

C.3 EXTENDED ANALYSIS ON EXPERIMENTS

To further investigate the mechanism of AESL, we analyze the word clouds generated after the cold-
start phase using CE loss and AESL. From Figure 5, we observe that both methods learn the new
reasoning pattern effectively, as evidenced by the increased frequency of branching words (Wang
et al., 2025) (e.g., “wait” and “maybe” ) aligned with the dataset. However, the CE loss-based
cold-start exhibits more severe over-memorization of specific dataset elements, such as repeated
high-frequency numbers (e.g., “12”). In contrast, AESL mitigates this issue by striking a balance
between learning the new reasoning pattern and preserving the base model’s original distribution.

In addition to the word cloud analysis, the results in Table 3 and Table 4 demonstrate that AESL
consistently outperforms traditional CE-based cold-start methods across varying dataset sizes and
difficulty levels. By comparing the results across different cold-start dataset sizes in Table 3, it is
evident that scaling the dataset size during the cold-start phase improves performance. Furthermore,
comparing the results in Table 4 and Table 1 reveals that using a mixture of difficulty levels provides
superior RL preparation compared to relying solely on either the simple or hard splits of the dataset.

These findings suggest a promising direction for future research: optimizing the curation of cold-
start datasets to better prepare LLMs for subsequent RL training. Such dataset curation, combined
with improved loss functions like AESL, could further enhance the base model’s capacity to balance
learning new reasoning patterns while preserving its original distribution, ultimately improving its
readiness for downstream RL training.
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(a) Cold-start dataset. (b) Base model.

(c) Model after cold-start with CE loss. (d) Model after cold-start with AESL.

Figure 5: Word frequency analysis showing vocabulary patterns across different methods.

D THE USE OF LLMS

LLMs are used to polish the writing in this paper.
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