
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CODELUTRA: BOOSTING LLM CODE GENER-

ATION VIA PREFERENCE-GUIDED REFINEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have significantly advanced code generation but
often require substantial resources and tend to over-generalize, limiting their effi-
ciency for specific tasks. Fine-tuning smaller, open-source LLMs presents a viable
alternative; however, it typically lags behind cutting-edge models due to super-
vised fine-tuning’s reliance solely on correct code examples, which restricts the
model’s ability to learn from its own mistakes and adapt to diverse programming
challenges. To bridge this gap, we introduce CODELUTRA, a novel framework
that enhances low-performing LLMs by leveraging both successful and failed code
generation attempts. Unlike conventional supervised fine-tuning, CODELUTRA
employs an iterative preference-guided refinement mechanism to compare cor-
rect and incorrect solutions as well as maximize the likelihood of correct codes.
Through continuous refinement, CODELUTRA enables smaller LLMs to match or
surpass GPT-4’s performance in various code generation tasks without relying on
vast external datasets or larger auxiliary models. On a challenging data science
coding task, using just 500 samples improved Llama-3-8B’s accuracy from 28.2%
to 48.6%, approaching GPT-4’s performance. These results highlight CODELU-
TRA’s potential to close the gap between open-source and closed-source models,
making it a promising approach in the field of code generation.

1 INTRODUCTION

Large language models (LLMs) have revolutionized numerous domains, consistently delivering
great performance across different tasks (Brown et al., 2020; Achiam et al., 2023; Bubeck et al.,
2023; Team et al., 2023; Anthropic, 2023; OpenAI, 2023). Among these applications, code gener-
ation stands out as particularly promising. Models pre-trained on extensive code repositories have
demonstrated an impressive capability to solve diverse programming challenges (Li et al., 2023;
2022; Nijkamp et al., 2023; Zheng et al., 2023; Fried et al., 2022; Chen et al., 2021b; Wang et al.,
2021b; 2023b).

Despite the promise, deploying ultra-large models for code generation poses significant challenges.
Top-tier closed-source models like GPT-4 (OpenAI, 2023) are often highly resource-intensive and
do not offer the flexibility for customization to specific code generation tasks. Fine-tuning smaller,
open-sourced LLMs for targeted applications serves as a compelling alternative. Code generation
demands not just syntactical correctness but also a deep understanding of logical and domain-
specific nuances, which complicates model training. While a straightforward approach is to perform
supervised fine-tuning (SFT) on the target task, this typically results in only incremental improve-
ments and frequently lags behind cutting-edge solutions. This limited improvement stems from
SFT’s reliance solely on correct code examples, which restricts the model’s ability to learn from its
own mistakes and adapt to diverse programming challenges. We illustrate this in Figure 1, where
SFT provides a minor boost in performance on the challenging data science task, with LlaMa-3-8B’s
Pass@1 improving from 28.2% to 30.0%. A notable gap remains between the fine-tuned model and
GPT-4, which leads with a Pass@1 score of 49.4%. To address the issue, prior solutions collect ad-
ditional training data by leveraging more powerful LLMs (Shen et al., 2023; Luo et al., 2023; Wang
et al., 2023b; Yang et al., 2024) or by collecting external datasets from public repositories (Lozhkov

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Initialization for next

iteration of refinement

Correct code answers:

SELECT e.name FROM employees e WHERE department LIKE 'Sales’

SELECT name FROM employees WHERE department = 'Sales’;
SELECT name FROM employees WHERE department IN ('Sales’);

……

Rejected code answers:

SELECT name FROM staff WHERE department = 'Sales';

SELECT employees FROM employees;

SELECT name FROM employees WHERE department = 'Seles’;

……

A small set of questions:

What are the names of all employees who work in the 'Sales'

department?

(Take a question as the example)

LLM’s multiple answers:

SELECT name FROM employees WHERE department = 'Sales’;

SELECT e.name FROM employees e WHERE department LIKE 'Sales’

SELECT name FROM employees WHERE department IN ('Sales’);

SELECT employees FROM employees;

SELECT name FROM employees WHERE department = 'Seles’;
SELECT name FROM staff WHERE department = 'Sales';

Ground truth for evaluation:

 SELECT name FROM employees WHERE department = 'Sales’;

Paired code answers:

SELECT e.name FROM employees e WHERE department LIKE 'Sales’

SELECT name FROM staff WHERE department = 'Sales';

SELECT name FROM employees WHERE department = 'Sales’;

SELECT employees FROM employees;

SELECT name FROM employees WHERE department IN ('Sales’);
SELECT name FROM employees WHERE department = 'Seles’;

……

<

Encourages to prefer correct over rejected/

Increases the likelihood of correct

Evaluation

Data query Data science

Preference-guided refinement

Figure 1: The proposed CODELUTRA framework (see Section 3) and performance comparison on different
code generation tasks. The orange dashed box highlights our framework’s performance relative to GPT-4.

et al., 2024; Muennighoff et al., 2023). But the big elephant in the room still remains—how much
can we bridge the gap by maximizing the utility of existing data and model at hand?

To address this challenge, we introduce CODELUTRA, a framework that iteratively improves the
performance of a given LLM without relying on vast external datasets or larger auxiliary models.
Our approach demonstrates that even with limited data at hand, substantial gains in code generation
quality can be achieved, closing the gap between smaller fine-tuned models and the top-tier LLMs.
Unlike traditional fine-tuning methods that rely solely on correct code solutions, CODELUTRA con-
structs and learns from both successful and failed code generated by the current model, which forms
self-generated comparative data. The failed code attempts are invaluable for refining models, since
they provide concrete examples of common errors and enable the model to learn strategies for avoid-
ing similar mistakes in future generations. To harness the comparative data, a key innovation of
CODELUTRA is the preference-guided refinement mechanism that compares correct and incorrect
code snippets, iteratively refining the model’s understanding of code quality. With each iteration, the
model generates code solutions, evaluates their correctness, and updates its parameters based on the
evolving preference dataset. This process allows for continuous improvements of the base model,
making the framework effective even with limited initial data (e.g., a few hundred samples).

We comprehensively evaluate the effectiveness of CODELUTRA on challenging data query and data
science tasks, where the LLM is tasked with generating the correct SQL or Python code to solve a
given problem. We compare CODELUTRA with 13 open-source and closed-source LLMs that are
competitive in code generation. Notably, on the data query task, our framework allows Llama-3-
8B (Dubey et al., 2024) to achieve an execution accuracy of 76.6%, which exceeds GPT-4’s 74.4%.
Under a challenging data science task, we find that using just 500 samples improved Llama-3-8B
from an accuracy of 28.2% to 48.6%, approaching the performance of GPT-4. This demonstrates
that CODELUTRA achieves strong results even with a limited number of high-quality annotations.
Moreover, we observe the consistent performance gains of CODELUTRA on different base models,
including Gemma-7B (Team et al., 2024) and StarCoder-7B (Dai & Kumar, 2023). These findings
highlight the potential of CODELUTRA in closing the performance gap between open-source and
closed-source models. To summarize our key contributions:

1. We present CODELUTRA, a novel framework that iteratively improves LLMs for code
generation using self-generated comparative data from both successful and failed code at-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

tempts, enabling low-performing models to rival top-tier solutions without external datasets
or ultra-large LLMs’ feedback.

2. We conduct comprehensive evaluations, comparing CODELUTRA against 13 competitive
LLMs specializing in code generation. Results demonstrate CODELUTRA consistently out-
performs both standard fine-tuned LLMs and existing cutting-edge closed-source LLMs.

3. We conduct a series of in-depth analyses to understand the contribution of failed attempts
and likelihood regularization for CODELUTRA, and reveal CODELUTRA improves the per-
formance via reducing syntax errors and improving incorrect answers across iterations.

2 PRELIMINARIES

LLMs for code generation. LLMs are pre-trained on diverse datasets encompassing both natural
and programming languages. In code generation tasks, an LLM receives a prompt—such as a natural
language description, and generates the corresponding code by predicting the next token in the
sequence. Formally, code generation is modeled as the conditional probability of a code sequence
y = (y1, y2, . . . , yT) given an input prompt x:

P (y|x) =
T∏

t=1

P (yt|y<t, x) (1)

where x is the input prompt, y is the generated code sequence of length T , and y<t =
(y1, y2, . . . , yt−1) represents the tokens generated before time step t.

Supervised fine-tuning on task-specific dataset. Pre-trained LLMs can be suboptimal on task-
specific dataset, necessitating fine-tuning. We consider a task-specific dataset D = {(xi, yi)}ni=1
containing n examples, where each pair (xi, yi) represents an input prompt xi and its corresponding
target code yi. Supervised fine-tuning (SFT) adjusts the model’s parameters θ by maximizing the
likelihood of generating correct code sequences yi. The loss is defined as:

πSFT = argmaxπθ
E(xi,yi)∼D (log πθ (yi|xi)) . (2)

This process relies on the quality of the dataset, guiding the model to produce more accurate and
reliable code based on the given prompts.

Verification of code correctness. We verify the correctness of the generated code by comparing
it with the ground truth code ygt. We define a verification function V (y) that checks if the output of
the generated code matches that of the ground truth. Given an input I, the generated code is correct
if it produces the same output f(y, I) as the ground truth code f(y, I). Specifically, V (y) = 1 if the
generated code is correct, and V (y) = 0 otherwise.

Limitations of SFT for code generation. Code generation demands not just syntactical correct-
ness but also a deep understanding of logical and domain-specific nuances, which complicates model
training. A major limitation of SFT is that it solely maximizes the likelihood of providing correct
code, which restricts the model’s ability to learn from its own mistakes. Since the training process
focuses exclusively on provided examples, the LLM doesn’t receive the gradient from incorrect or
suboptimal code. For instance, if the model only predicts wrongly in the final token in a code snip-
pet, the overall probability P (y|x) in the Equation 1 might still remain high as the preceding tokens
are correct. Correspondingly, the SFT loss is very small in that case. However, this single erroneous
token can render the entire code nonfunctional or introduce subtle bugs, significantly affecting exe-
cution correctness despite a high likelihood score, which is different from general NLP tasks. This
reliance on only correct examples limits the model’s capacity to identify and recover from errors,
reducing its ability to handle more complex or nuanced coding tasks. This motivates our framework
CODELUTRA, which leverages both successful and failed code generation attempts.

3 CODELUTRA

In this section, we introduce CODELUTRA, a framework designed to comparatively learn from
both correct and incorrect code generations. CODELUTRA delivers substantial performance gains,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

achieving performance comparable to more advanced models like GPT-4 (OpenAI, 2023), even with
limited initial data. The pseudo-code is provided in the Appendix A.1.

Initialization. We start with an initial base model, denoted as π0, which serves as the starting point
for our iterative refinement process. We are provided with an initial training set D = {(xi, yi)}ni=1,
where each xi is a natural language query, and yi is the corresponding ground truth code solution.
Starting with a modestly performing model allows us to clearly observe improvements attributable
to the CODELUTRA framework, ensuring that enhancements result from our methodology rather
than inherent model capabilities. Note that at initialization, we only have the correct codes in hand.
We describe next how to obtain incorrect codes to serve the model refinement.

Generating correct and failed code. At each iteration t, the current model πt generates multiple
code responses for each input query xi ∈ D. Specifically, for each xi, the model produces M
distinct code samples:

ŷmi ∼ πt(xi), for each m ∈ {1, 2, . . . ,M}. (3)

Generating multiple responses introduces diversity in the model’s outputs, providing a richer dataset
for composing preference datasets. Each generated code snippet ŷmi is then executed to assess its
correctness by comparing the execution result against that of the ground truth solution yi. Correct
executions are categorized into the correct code set Y (c)

i , while incorrect ones are placed into the re-
jected set Y (r)

i . This evaluation mechanism offers clear feedback, particularly syntax and execution
errors common in code generation tasks, and enables the construction of preference dataset.

Preference dataset construction. A key of our framework involves constructing a preference
dataset Dt that captures the relative quality of generated code. The preference data is updated at
every iteration t. For each input xi, we create K preference pairs by randomly pairing one correct
code ŷcki ∈ Y

(c)
i with one rejected code ŷrki ∈ Y

(r)
i :

(ŷcki , ŷrki), for each k ∈ [K]. (4)

If either Y (c)
i or Y (r)

i contains fewer than K responses, sampling with replacement is employed to
maintain consistency. The complete preference dataset at iteration t is thus defined as:

Dt = {(xi, ŷ
ck
i , ŷrki) | for all xi ∈ D and k ∈ [K]}, (5)

which contains n × K preference triplets. Here, n corresponds to the size of the initial dataset
D, which remains constant throughout iterations. This dataset encapsulates nuanced comparisons
between correct and incorrect code generations, facilitating the subsequent preference learning step.
By systematically pairing correct and rejected responses, the model gains a clearer understanding of
high-quality code, enabling targeted improvements.

0 500 1000 1500 2000 2500
Global step

500

400

300

200

100

0

Lo
g

pr
ob

ab
ilit

y

LDPO - yr

LDPO - yc

LDPO + LSFT - yr

LDPO + LSFT - yc

Figure 2: Effect of SFT loss to keep the like-
lihood of correct answers stable.

Preference-guided refinement. While one can di-
rectly employ a preference optimization approach
like DPO (Rafailov et al., 2023) on our curated
dataset Dt, this approach presents a notable limita-
tion due to its tendency to decrease the likelihood of
both correct and rejected code during training. This
is evidenced by the dashed lines in Figure 2, which is
also observed in Pal et al. (2024); Feng et al. (2024).
This diminishing likelihood can significantly impact
our framework, especially since our correct code are
critical for successfully solving the assigned tasks.
It is crucial, therefore, to prioritize the likelihood of
correct solutions to the task at hand.

To address this limitation, we employ a dual-loss function integrating DPO with SFT, which reg-
ularizes the training to prevent decreasing likelihood. Specifically, we employ SFT on the dataset
with correct solutions, Dc

t = {(xi, ŷ
ck
i) | for all xi ∈ D and k ∈ [K]}. The overall loss function is

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

defined as:

πt+1 = argminπθ

[
−E(xi,yc

i ,y
r
i)∼Dt

[
log σ

(
β

(
log

πθ(y
c
i |xi)

πt(yci |xi)
− log

πθ(y
r
i |xi)

πt(yri |xi)

))]
︸ ︷︷ ︸

compare correct and incorrect solutions

− λE(xi,yc
i)∼Dt

(log πθ (y
c
i |xi))︸ ︷︷ ︸

maximize likelihood for correct codes

]
, (6)

where λ is a hyperparameter balancing the contributions of the DPO and SFT losses. The first
term facilitates preference-based fine-tuning by optimizing the model to favor correct over incorrect
code. Concurrently, the second term enhances the likelihood of generating correct solutions directly
to avoid the log probability decreasing (see solid line in Figure 2). This dual-loss approach ensures
that the model not only ranks correct solutions higher but also increases their generation probabil-
ity, leading to more consistent high-quality code outputs. We verify the effectiveness of the dual
loss empirically in Section 4.3. The refinement process continues until the improvement between
consecutive iterations πt and πt+1 becomes marginal, indicating convergence.

Remark. While DPO-style preference optimization has been studied in recent literature (see re-
view in Section 6), its connection to code generation remains largely unexplored. To the best of our
knowledge, our work is the first to establish this critical link between iterative preference learning
and code generation. We highlight several novel aspects that differentiate our approach from prior
work. First, previous studies mostly focus on natural language generation tasks and rely on model-
generated rewards or feedback from other large models (Chen et al., 2024; Xiong et al., 2024; Yuan
et al., 2024; Pang et al., 2024; Xie et al., 2024). In contrast, we focus exclusively on code generation
where the preference labels for iterative refinement come from execution results. This shift is es-
sential and unique for code generation, where execution correctness is a key indicator of preference.
Moreover, our work uncovers the insight into the dual-loss mechanism, revealing that it plays a cru-
cial role in improving performance in the context of code generation. From a practical standpoint,
our training pipeline bypasses the standalone SFT stage typically required before the preference op-
timization phase, thereby streamlining the training process. Overall, our work not only establishes
a novel link between iterative preference learning and code generation but also introduces practical
innovations that enhance performance, marking a significant step forward in the field.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Tasks. To evaluate the effectiveness of our proposed framework, we perform experiments on two
tasks: Data Query and Data Science. Both tasks reflect common and practical challenges in fields
such as business, healthcare, and scientific computing, where precise code generation is critical for
solving data-related problems while receiving limited attention. For the Data Query task, the model
is given a natural language problem description and is tasked with generating the corresponding
SQL query for a database using an LLM. For example, given the description “How many heads
of the departments are older than 56?”, the model should produce the appropriate SQL query to
execute this request. In the Data Science task, the LLM is tasked with generating the correct Python
code to solve a given data science problem. For instance, given the problem “I have a 2D array to
represent a many-many mapping. What is the quickest way to zero out the second row and the first
column?”, we test LLM’s ability to solve data science problems with numpy. We provide examples
of the two tasks of the question and ground truth code in the Appendix A.2

Datasets. We conduct our experiments on two cross-domain datasets for data query, Spider (Yu
et al., 2018) and BIRD (Wang et al., 2023a), as well as a data science dataset, DS-1000 (Lai et al.,
2023). Spider includes 10,181 questions with 5,693 unique SQL queries across 200 databases in
138 domains, while BIRD contains 12,751 question-SQL pairs across 95 large databases, covering
over 37 domains. We utilize DS-1000, which comprises 1,000 data science problems sourced from
Stack Overflow, covering seven Python libraries related to analysis in data science. The dataset is
designed to minimize memorization risk by modifying original problems and uses a multi-criteria

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: The Execution Accuracy (EX), Exact Match (EM), and Pass@1 for different kinds of
models on SPIDER, BIRD, and DS1000. We show the base model (π0) without fine-tuning and the
model trained with CODELUTRA in different iteration ({π1, π2, π3, π4}). For fair comparison, all
reported results in the table use the same prompt. Boldface highlight GPT-4 and our results.

Models Spider BIRD DS1000

EX EM EX EM Pass@1
Open-source LLMs

Llama-3-8B (Dubey et al., 2024) 59.3 55.1 22.3 19.5 28.2
Codellama-7B (Xu & Zhang, 2023) 57.0 51.4 24.4 18.7 25.6
StarCoder-7B (Lozhkov et al., 2024) 61.2 58.6 25.7 23.0 26.8
Gemma-7B (Team et al., 2024) 49.9 46.7 21.2 19.1 24.2
Codestral-22B (Brown & Lee, 2023) 71.3 69.6 42.5 39.9 35.8
Llama-3-70B-Instruct (Dubey et al., 2024) 68.7 65.4 41.2 39.3 36.4

Fine-tuned LLMs
Llama-3-8B (Dubey et al., 2024) 67.9 64.7 35.6 30.7 30.0
Codellama-7B (Xu & Zhang, 2023) 67.3 64.3 36.3 30.9 26.8
StarCoder2-7B (Lozhkov et al., 2024) 66.9 64.1 36.6 31.1 29.4
Gemma-7B (Team et al., 2024) 65.8 62.8 34.5 29.8 27.4

Closed-Source LLMs
Codex (Chen et al., 2021a) 73.1 70.2 44.7 42.4 38.4
ChatGPT (Ouyang et al., 2022) 71.8 68.4 44.3 40.2 38.8
GPT-4 (OpenAI, 2023) 74.4 71.2 46.3 43.2 49.4

CODELUTRA (Ours)
Base (π0) 59.3 55.1 22.3 19.5 28.2
Iteration 1 (π1) 67.8 63.9 37.8 33.2 43.2
Iteration 2 (π2) 72.4 68.3 40.8 36.0 46.8
Iteration 3 (π3) 76.6 72.5 43.1 38.6 48.6
Iteration 4 (π4) 76.3 72.1 42.6 38.3 48.2

evaluation system to assess functional correctness and coding constraints. We split DS-1000 into
500 samples for training and 500 for evaluation.

Metrics. For the Data Query task, we adopt the metrics introduced by Yu et al. (2018): Execution
Accuracy (EX), which measures whether the SQL query execution result matches the expected
output, and Exact Match (EM), which evaluates whether the generated SQL query exactly matches
the reference query in both structure and semantics. For the Data Science task, we use pass@1,
following Lai et al. (2023), which indicates the percentage of correct solutions generated by the
model on the first attempt.

Baselines. To evaluate the effectiveness of our method, we compare it against three categories of
baselines. For a fair comparison, all reported results are based on the same prompt.

• Open-source LLMs: We benchmark our method against competitive open-source LLMs, including
models pre-trained on general datasets such as Llama-3-8B (Dubey et al., 2024), Gemma-7B
(Team et al., 2024), and Llama-3-70B-Instruct (Dubey et al., 2024). Additionally, we compare
against LLMs pre-trained specifically on coding datasets, such as Codellama-7B (Xu & Zhang,
2023), StarCoder-7B (Lozhkov et al., 2024), and Codestral-22B (Brown & Lee, 2023).

• Fine-tuned LLMs: As supervised fine-tuning on domain-specific datasets is a popular and effective
way to improve LLMs’ corresponding performance, we also report the performance of fine-tuned
LLMs using standard supervised fine-tuning methods (Raffel et al., 2020).

• Closed-source LLMs: We provide the performance of cutting-edge closed-source LLMs, including
Codex (Chen et al., 2021a), ChatGPT (Ouyang et al., 2022), and GPT-4 (OpenAI, 2023).

Experimental setup. For main results, we apply our framework to the Llama-3-8B base model
(Dubey et al., 2024), denoted as π0 (see Section 4.2 for more backbone results). We use a zero-shot
prompt containing the question along with reference information (dataset schema for data query and
reference code for data science). For different answer collections, we employ the best-of-n strategy
by sampling 16 responses at the temperature of 1.0. We train one epoch per iteration and perform
four iterations in total, resulting in models {π1, π2, π3, π4}. These models are evaluated as described
in the following sections. For more experimental details, please refer to the Appendix A.4.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 1 2 3 4
Iterations

20

30

40

50 (a)
w negative
w/o negative

0 1 2 3 4
Iterations

20

30

40

50 (b)
9K
1K

0 1 2 3 4
Iterations

20

30

40

50 (c)
w ground truth
w/o ground truth

Figure 3: (a) Ablations on the effects of negative samples for training. (b) Ablations on the question number
during training. (c) The effects of ground truth for validation during preference datasets collection.

4.2 MAIN RESULTS

Results on the data query task. We compare CODELUTRA with baselines in code generation for
the data query task, as shown in Table 1. We found that existing open-source LLMs like Llama-3-
8B still have a significant performance gap in code generation for data queries compared to closed-
source LLMs like GPT-4. Although supervised fine-tuning can help bridge this gap—e.g., SFT
increases the EX of Llama-3-8B on Spider from 59.3% to 67.9%—there remains a notable differ-
ence with GPT-4’s 74.4%. Through our refinement framework, Llama-3-8B after four iterations
exceeded SFT performance by 16.9% and even outperforms GPT-4 with an execution accuracy of
76.6%. Additionally, on the more challenging BIRD dataset, after three iterations, CODELUTRA
significantly improved the EX of the base model from 22.3 to 43.1, achieving performance very
close to GPT-4.

Results on the data science task. Table 1 also presents results for the data science task, where we
evaluate both open-source and closed-source LLMs, as well as our method CODELUTRA. On the
DS-1000 dataset, open-source models like Llama-3-8B and Gemma-7B struggle, with significantly
lower EM and Pass@1 scores compared to closed-source models like GPT-4. Fine-tuning pro-
vides a minor boost in performance, as seen with Llama-3-8B’s Pass@1 improving from 28.2% to
30.0%. However, as with the data query task, a large performance gap remains between fine-tuned
open-source models and closed-source ones, where GPT-4 leads with a Pass@1 score of 49.4%.
Nonetheless, CODELUTRA demonstrates substantial improvements (from 28.2% to 48.6%), offer-
ing a promising path for narrowing this gap further.

4.3 MORE EXPERIMENTS

The importance of learning from failed attempts. Our framework CODELUTRA leverages both
positive and negative answer pairs to iteratively improve model performance, particularly by mini-
mizing the generation of incorrect responses. But what happens when we omit the negative samples
and rely solely on supervised fine-tuning using positive samples generated by the model? In this
ablation, we compare the performance of our objective 6 with a model trained with LSFT(π;Dc

t). As
seen in Figure 3(a), without negative samples (purple line), the model’s performance plateaus across
iterations, remaining close to the baseline. In contrast, incorporating negative samples (blue line)
leads to steady performance improvements over successive iterations. This ablation confirms that
including negative samples is critical to refining the model’s ability to distinguish between optimal
and suboptimal responses, significantly boosting overall performance. Collecting incorrect answers
is thus an essential component for preference learning and contributes to greater model accuracy.

CodeLutra achieves strong performance under limited training data. The cost of acquiring
high-quality question-code pairs can be significant, so we examine whether our method truly de-
pends on large datasets. Under the data science code generation task, we found that using just 500
samples improved Llama-3-8B from an accuracy of 28.2 to 48.6, approaching the performance of
GPT-4. This demonstrates that CODELUTRA achieves strong results even with a limited number of
high-quality annotations. We further verify this with the data query task by randomly selecting 1K
question-code pairs from BIRD’s training data and comparing them to the full 9K sample set. The
results, as shown in Figure 3(b), reveal similar trends, with the two setups reaching peak execution

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

accuracies of 43.1 and 42.4, respectively. This minor difference suggests that CODELUTRA does
not heavily rely on large volumes of training data and can generalize well with fewer annotations,
which is crucial for minimizing the cost of dataset collection.

Table 2: Ablations on the SFT on the correct
answers.

Methods Spider DS1000

LDPO 17.2 12.4
Ours 76.6 48.6

Importance of SFT regularization during preference
optimization. Recall in Section 3 that our loss func-
tion integrates DPO with SFT to regularize the training,
and prevent decreasing likelihood on the correct solu-
tion. In Table 1,we ablate the effect of SFT regulariza-
tion on both the Spider and DS-1000 datasets. Notably,
omitting optimizing the SFT loss on the correct solutions
results in a marked decline in model performance, e.g.,
↓59.4% on Spider. This highlights the effectiveness of the dual loss approach, ensuring that the
model not only ranks correct solutions higher but also increases their generation probability, leading
to more consistent high-quality code outputs.

Model Gemma-7B StarCoder-7B

Spider DS1000 Spider DS1000

π0 49.9 24.2 61.2 26.8
π1 63.7 38.8 72.8 39.6
π2 69.3 43.6 74.7 42.4
π3 71.3 44.4 77.2 45.2
π4 72.6 44.0 77.5 45.8

Table 3: Performance with CODELUTRA of
Gemma-7B and StarCoder-7B across Spider and
DS1000 benchmarks.

CODELUTRA remains effective on different
base models. To further validate the gener-
alization capability of our framework CODE-
LUTRA, we extend our experiments to two ad-
ditional open-source base models: Gemma-
7B (Team et al., 2024) and StarCoder-7B
(Lozhkov et al., 2024). As summarized in Ta-
ble 3, we report the results on both the Spider
and DS1000 datasets across multiple iterations
of our refinement process. For Gemma-7B, we
observe a significant improvement in Execution
Accuracy (EX) on Spider, starting from 49.9%
at π0 (the base model) and reaching 72.6% after
four iterations (π4). A similar trend is observed in the DS1000 dataset, where the Pass@1 metric
improves from 24.2% to 44.0%. For StarCoder-7B, the improvements are also pronounced, with EX
on Spider increasing from 61.2% to 77.5%, and Pass@1 on DS1000 rising from 26.8% to 45.8%.
These results demonstrate that our framework is robust across different model architectures, consis-
tently yielding significant performance gains regardless of the underlying base model. Notably, the
iterative refinement process of CODELUTRA continues to improve the accuracy and correctness of
generated code, highlighting the CODELUTRA generalization to different code generation tasks.

Key Takeaways from Section 4

1. Failed attempts matter: Incorporating negative samples in training leads to strong performance
improvements, while models trained only on positive samples plateau. CODELUTRA performs on
par with or even outperforms GPT-4 on data query and data science tasks, closing the gap between
open-sourced and closed-sourced models.

2. Strong performance with limited data: Our method achieves significant accuracy improvements
even with small datasets (e.g., improving Llama-3-8B’s accuracy from 28.2 to 48.6 with only 500
samples), demonstrating its effectiveness without reliance on large volumes of training data.

3. Importance of likelihood regularization: Ablations show that incorporating SFT alongside pref-
erence optimization is crucial, highlighting the necessity of our dual-loss approach for maintaining
high-quality code outputs.

5 FURTHER ANALYSIS ON CODELUTRA

Is ground truth code necessary for preference dataset collection? Recall that our framework re-
lies on ground truth code to evaluate the quality of generated code during the collection of preference
datasets. To test the impact of this dependence, we conduct experiments that replace the ground truth
with a more general criterion—whether the generated code is executable. In the absence of ground
truth, we consider executable answers as chosen and non-executable ones as rejected. Applying this

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 50 100
Percentage

0

1

2

3

M
od

el
 it

er
at

io
n

(a) Executable fraction
Executable Not executable

0 1 2 3
Model iteration

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

BL
UE

RT
 si

m
ila

rit
y

0.65 0.66 0.65 0.66

0.48

0.52
0.54 0.55

(b) BLUERT similarity for different models
correct set
error set

Figure 4: (a) Error analysis for different models. (b) BLEURT similarity for different models with the ground
truth on the correct set and error set divided from the base model.

Different answers from different models for the data query:

Database schema: CREATE TABLE customers (CustomerID INTEGER UNIQUE not
null primary key, Segment TEXT null, Currency TEXT null); CREATE TABLE
"yearmonth" (CustomerID INTEGER not null references customers on
update cascade on delete cascade, Date TEXT not null, Consumption REAL,
primary key (Date, CustomerID));
Question: Among the customers who paid in euro, how many of them have a monthly consump-
tion of over 1000?
The answer from π0 (wrong):
SELECT COUNT(CustomerID) FROM yearmonth WHERE Consumption > 1000
AND CustomerID IN (

SELECT CustomerID FROM customers WHERE Currency = ’EUR’);

SQLite error: no such column: Currency
The answer from π3 (correct):
SELECT COUNT(CustomerID) AS "Number of customers" FROM "yearmonth"
WHERE Consumption > 1000 AND Currency = ’EUR’ GROUP BY CustomerID

Figure 5: CODELUTRA helps reduce the syntax errors.π0 fails due to a missing column, while π3

generates the correct query.

approach to the Bird dataset, we observe notable gains despite the absence of ground truth: accu-
racy rose from 22.3 to 30.9 (see Figure 3(c)). Moreover, the proportion of executable code surged
from 59.8% to 89.7%, showing that the model effectively learned to avoid common errors, such as
syntax issues or missing database tables. This experiment demonstrates that using executability as
a metric still enables substantial model improvements, making the method applicable even without
high-quality annotations, and highlights the robustness of CODELUTRA under such conditions.

CODELUTRA helps reduce the syntax errors across iterations. To evaluate whether our method
enables LLMs to learn from their mistakes over multiple iterations, we sampled 100 error cases
from the test set using models π0, π1, π2, π3, trained with CODELUTRA on the BIRD dataset for
qualitative analysis. We measure the fraction of executable code generated by each model. As
shown in Figure 4, the percentage of non-executable code decreases from 40% to 11% when trained
with CODELUTRA, indicating that the models have improved in mastering SQL syntax and are better
at avoiding basic errors. A qualitative example in Figure 5 highlights this improvement: the base
model incorrectly queries the “Currency” column in the wrong table, resulting in an error, while the
model trained with CODELUTRA successfully generates the correct SQL query.

CODELUTRA improves quality of incorrect answers across iterations. Based on the responses
of the initial model π0, we divide the test set into a correct set and an error set. We track the quality
trends of the model in these two sets across iterations. Using the cosine similarity metric based
on the BLEURT embedding proposed by Sellam et al. (2020), we calculate similarities denoted as
simπt(ŷ, ygt) for the model fine-tuned over t iterations. Here ŷ denotes the model generation, and

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ygt is the ground truth solution. As shown in Figure 3(b), we observe that the similarity between
the model’s output on the correct set and the ground truth remains stable (see purple bars), while
with each iteration, the similarity between the model’s output on the error set and the ground truth
increases significantly—from 0.48 to 0.54. This indicates that CODELUTRA helps the base model
improve outputs on error set, while the outputs on correct cases remain qualitatively stable.

6 RELATED WORK

Preference learning for LLMs. Preference learning aims to guide language models toward gen-
erating outputs that align with human preferences and desirable outcomes. A significant body of
research has utilized human feedback to refine LLMs across various language tasks (Ziegler et al.,
2019; Ouyang et al., 2022; Stiennon et al., 2020; Kreutzer et al., 2018). The Reinforcement Learn-
ing from Human Feedback (RLHF) framework, in particular, has been effective in aligning large
pre-trained language models (Christiano et al., 2017; Ziegler et al., 2019; Ouyang et al., 2022; Bai
et al., 2022). However, RLHF can suffer from training inefficiencies and sensitivity to hyperpa-
rameters. In response, recent studies have shifted towards closed-form loss functions that directly
utilize offline preference data, exemplified by DPO (Rafailov et al., 2023) and related methodolo-
gies (Liu et al., 2023; Ethayarajh et al., 2024; Gheshlaghi Azar et al., 2024; Pal et al., 2024; Liu et al.,
2023; Xiong et al., 2023a; Tang et al., 2024; Yu et al., 2024). While DPO-style models inherently
provide rewards, iterative DPO—where the model generates its own pairwise preference data—has
demonstrated strong performance and potential (Chen et al., 2024; Xiong et al., 2024; Yuan et al.,
2024; Rosset et al., 2024; Pang et al., 2024; Xie et al., 2024). In this work, we introduce iterative
preference-guided refinement to code generation for the first time, achieving GPT-4-level results and
providing an in-depth analysis that paves the way for future research.

LLMs for code generation. LLMs trained on vast corpora of code have demonstrated remarkable
capabilities across a wide range of tasks, including code generation (Chen et al., 2021c; Austin et al.,
2021; Zhang et al., 2022), program repair (Xia & Zhang, 2022; Wei et al., 2023; Xia et al., 2023;
Jiang et al., 2023; Bouzenia et al., 2024; Xiong et al., 2023b), and software testing (Chen et al.,
2023; Wang et al., 2024a; Zhou et al., 2024). Foundational models (Nijkamp et al., 2022; Wang
et al., 2021a; Li et al., 2023; Roziere et al., 2023) pre-trained on extensive codebases, have estab-
lished strong general-purpose capabilities for code generation. Building upon these powerful foun-
dations, more recent models like WIZARDCODER (Luo et al., 2023) and DS-CODER (Li et al., 2023;
Bouzenia et al., 2024) enhance contextual understanding by leveraging repository-level organization
of pretraining data and incorporating retrieval-augmented techniques (Borzunov et al., 2024). More-
over, CODEINSTRUCT (Wang et al., 2024b) capitalize on instruction fine-tuning to improve align-
ment with human coding preferences. Fine-tuning methodologies and prompt-engineering tech-
niques (Luo et al., 2023; Chen et al., 2023; Zhang et al., 2024b) have been crucial in unlocking these
models’ full potential for domain-specific tasks, such as security, AI-assisted development, and code
synthesis in specialized fields. Zhang et al. (2024a) pay attention to preference learning for program-
ming problems. However, they rely on GPT-4 for generating test cases and use preference data in
a single offline run. In contrast, we iteratively refine a small LLM using self-generated preference
data, without external datasets or larger models. Moreover, different from Zhang et al. (2024a) per-
forming SFT and preference learning in two stages, we introduce the dual-loss to compare correct
and incorrect solutions and maximize the likelihood of correct codes in one stage.

7 CONCLUSION

We introduced CODELUTRA, a preference-guided refinement framework designed to enhance LLMs
for code generation without the need for external datasets or larger models. By utilizing self-
generated data from both successful and failed attempts, CODELUTRA refines the model’s under-
standing of code quality. Our experiments on data query and data science tasks demonstrate that
CODELUTRA significantly boosts the performance of base LLMs. For example, fine-tuning Llama-
3-8B with CODELUTRA outperforms GPT-4 on data query tasks and nearly matches GPT-4 perfor-
mance on data science task with small training data. Additionally, CODELUTRA reduced common
coding errors while improving the quality and accuracy of generated code. These results underline
CODELUTRA’s potential as a cost-efficient and scalable solution for LLM code generation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Anthropic. Claude: Conversational ai assistant, 2023. URL https://www.anthropic.com/
product.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Andrei Borzunov et al. Retrieval-augmented pretraining for large code models. arXiv preprint
arXiv:2401.00456, 2024.

Islem Bouzenia, Premkumar Devanbu, and Michael Pradel. Repairagent: An autonomous, llm-based
agent for program repair. arXiv preprint arXiv:2403.17134, 2024.

Tom Brown and Sarah Lee. Codestral-22b: A scalable language model for code generation. In
Proceedings of the 36th International Conference on Machine Learning, pp. 5678–5689. ICML,
2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Mark Chen, Jacob Tworek, et al. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374, 2021a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021b.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021c.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128, 2023.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024.

11

https://www.anthropic.com/product
https://www.anthropic.com/product

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in Neural Information Processing
Systems, 30, 2017.

Emily Dai and Ravi Kumar. Starcoder: An open-source code generation language model. arXiv
preprint arXiv:2305.00000, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Duanyu Feng, Bowen Qin, Chen Huang, Zheng Zhang, and Wenqiang Lei. Towards analyzing and
understanding the limitations of dpo: A theoretical perspective. arXiv preprint arXiv:2404.04626,
2024.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling
and synthesis. CoRR, abs/2204.05999, 2022.

Mohammad Gheshlaghi Azar et al. A general theoretical paradigm to understand learning from
human preferences. AISTATS, 2024.

Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. Impact of code language models on automated
program repair. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE), pp. 1430–1442. IEEE, 2023.

Julia Kreutzer, Joshua Uyheng, and Stefan Riezler. Reliability and learnability of human bandit
feedback for sequence-to-sequence reinforcement learning. Annual Meeting of the Association
for Computational Linguistics, pp. 1777–178, 2018.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data
science code generation. In International Conference on Machine Learning, pp. 18319–18345.
PMLR, 2023.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cy-
prien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. CoRR, abs/2203.07814, 2022.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and
Jialu Liu. Statistical rejection sampling improves preference optimization. arXiv preprint
arXiv:2309.06657, 2023.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne Longpre. Octopack: Instruc-
tion tuning code large language models. arXiv preprint arXiv:2308.07124, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations, 2023.

OpenAI. Gpt-4 technical report, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, and Colin White.
Smaug: Fixing failure modes of preference optimisation with dpo-positive. arXiv preprint
arXiv:2402.13228, 2024.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. arXiv preprint arXiv:2404.19733, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2023.

Colin Raffel, Noam Shazeer, et al. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with general
preferences. arXiv preprint arXiv:2404.03715, 2024.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Thibault Sellam, Dipanjan Das, and Ankur P Parikh. Bleurt: Learning robust metrics for text gener-
ation. arXiv preprint arXiv:2004.04696, 2020.

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan, Bing Geng, An Fu, Muhan Zeng, Ailun Yu,
Jichuan Ji, Jingyang Zhao, et al. Pangu-coder2: Boosting large language models for code with
ranking feedback. arXiv preprint arXiv:2307.14936, 2023.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–3021, 2020.

Yunhao Tang et al. Generalized preference optimization: A unified approach to offline alignment.
ICML, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing Wang. Software test-
ing with large language models: Survey, landscape, and vision. IEEE Transactions on Software
Engineering, 2024a.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Li Wang, Ming Zhao, et al. Bird: A comprehensive benchmark for sql code generation across
diverse domains. arXiv preprint arXiv:2306.00000, 2023a.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. arXiv preprint
arXiv:2109.00859, 2021a.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. In Marie-Francine
Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November, 2021, pp. 8696–8708. Association for Com-
putational Linguistics, 2021b.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, and Steven C. H.
Hoi. Codet5+: Open code large language models for code understanding and generation. CoRR,
abs/2305.07922, 2023b.

Ziqi Wang et al. Codeinstruct: Enhancing code language models with instruction tuning. arXiv
preprint arXiv:2401.02345, 2024b.

Yuxiang Wei, Chunqiu Steven Xia, and Lingming Zhang. Copiloting the copilots: Fusing large
language models with completion engines for automated program repair. In Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 172–184, 2023.

Chunqiu Steven Xia and Lingming Zhang. Less training, more repairing please: revisiting automated
program repair via zero-shot learning. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 959–
971, 2022.

Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated program repair in the era
of large pre-trained language models. In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), pp. 1482–1494. IEEE, 2023.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi,
and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning.
arXiv preprint arXiv:2405.00451, 2024.

Wei Xiong, Hanze Dong, Chenlu Ye, Han Zhong, Nan Jiang, and Tong Zhang. Gibbs sam-
pling from human feedback: A provable kl-constrained framework for rlhf. arXiv preprint
arXiv:2312.11456, 2023a.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
kl-constraint. In Forty-first International Conference on Machine Learning, 2024.

Weimin Xiong, Yiwen Guo, and Hao Chen. The program testing ability of large language models
for code. arXiv preprint arXiv:2310.05727, 2023b.

Wei Xu and Li Zhang. Codellama: An open-source language model for code generation. arXiv
preprint arXiv:2304.00000, 2023.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang Lin, and Chang Zhou. Synthesizing text-
to-sql data from weak and strong llms. arXiv preprint arXiv:2408.03256, 2024.

Meng Yu et al. Simpo: Simple preference optimization with a reference-free reward. arXiv preprint
arXiv:2405.14734, 2024.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

Dylan Zhang, Shizhe Diao, Xueyan Zou, and Hao Peng. Plum: Preference learning plus test cases
yields better code language models. arXiv preprint arXiv:2406.06887, 2024a.

Yuhao Zhang, Yasharth Bajpai, Priyanshu Gupta, Ameya Ketkar, Miltiadis Allamanis, Titus Barik,
Sumit Gulwani, Arjun Radhakrishna, Mohammad Raza, Gustavo Soares, et al. Overwatch: Learn-
ing patterns in code edit sequences. Proceedings of the ACM on Programming Languages, 6
(OOPSLA2):395–423, 2022.

Yuhao Zhang, Shiqi Wang, Haifeng Qian, Zijian Wang, Mingyue Shang, Linbo Liu, Sanjay Krishna
Gouda, Baishakhi Ray, Murali Krishna Ramanathan, Xiaofei Ma, et al. Codefort: Robust training
for code generation models. arXiv preprint arXiv:2405.01567, 2024b.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for
code generation with multilingual evaluations on humaneval-x. CoRR, abs/2303.17568, 2023.

Xinwei Zhou, Qi Li, Xiao Wang, and Zhendong Li. Evalbench: A comprehensive benchmark
for evaluating software testing capabilities of large language models. Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2024.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A MORE INFORMATION

A.1 PSEUDO CODE OF CODELUTRA

We summarize our algorithm in implementation in the Algorithm 1. The algorithm operates itera-
tively, generating code responses for each input and leveraging both correct and incorrect code sam-
ples to construct a preference dataset. These comparisons serve as the basis for model refinement,
where the model updates its parameters in each iteration. The process ensures that the model learns
not only from correct code solutions but also from common mistakes, thereby improving its ability to
generate high-quality code across diverse tasks. This iterative refinement, guided by self-generated
comparative data, distinguishes CODELUTRA from traditional supervised fine-tuning approaches.

Algorithm 1: CODELUTRA

Input : Training set D = {(xi, yi)}ni=1; Initial base model π0; Number of code responses per
input M ; Number of preference pairs per input K; Number of iterations T ;
Hyperparameter λ.

for t = 0 to T − 1 do
Initialize preference dataset Dt = ∅;
ForEachxi ∈ D Initialize chosen code set Y (c)

i = ∅;
Initialize rejected code set Y (r)

i = ∅;
for k = 1 to M do

Generate response ŷki ∼ πt(xi);
if Execution result of ŷki matches ground truth yi then

Add ŷki to Y
(c)
i ;

else
Add ŷki to Y

(r)
i ;

for k = 1 to K do
Randomly sample ŷcki from Y

(c)
i (with replacement if |Y (c)

i | < K);
Randomly sample ŷrki from Y

(r)
i (with replacement if |Y (r)

i | < K);
Add (xi, ŷ

ck
i , ŷrki) to Dt;

Update model πt+1 by minimizing the combined loss:

πt+1 = argminπθ

[
−E(xi,yc

i ,y
r
i)∼Dt

[
log σ

(
β

(
log

πθ(y
c
i |xi)

πt(yci |xi)
− log

πθ(y
r
i |xi)

πt(yri |xi)

))]
︸ ︷︷ ︸

compare correct and incorrect solutions

- λE(xi,yc
i)∼Dt

(log πθ(y
c
i |xi))︸ ︷︷ ︸

maximize likelihood for correct codes

]
, (7)

A.2 EXAMPLES FOR DIFFERENT DATASETS.

We provide examples that highlight the tasks used to evaluate our framework. The first example
illustrates the Data Query task (see Figure 6), where models generate SQL queries from natural
language descriptions based on a given database schema. The second example showcases the Data
science task (see Figure 7), in which models write Python code to solve typical data manipulation
problems, such as processing a data frame. These examples reflect common real-world applications
of language models in both querying databases and performing data science operations.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Different answers from different models for the data query:

Database schema:
CREATE TABLE customers (CustomerID INTEGER UNIQUE not null

primary key, Segment TEXT null, Currency TEXT null);

CREATE TABLE gasstations (GasStationID INTEGER UNIQUE not null primary key,

ChainID INTEGER null, Country TEXT null, Segment TEXT null);

(Omit other database information...)

Ground truth another:
SELECT T2.Consumption FROM transactions_1k AS T1
INNER JOIN yearmonth AS T2 ON T1.CustomerID = T2.CustomerID
WHERE T1.Price / T1.Amount > 29.00
AND T1.ProductID = 5 AND T2.Date = ’201208’;

Figure 6: An example from the data query dataset from the BIRD (Wang et al., 2023a).

An example of data science from the DS1000 (Lai et al., 2023):

Problem:
I have a simple dataframe which I would like to bin for every 4 rows.

It looks like this:

col1\n0 1\n1 1\n2 4\n3 5\n4 1\n5 4\n

and I would like to turn it into this:

col1\n0 11\n1 5\n

I have already posted a similar question here

but I have no idea how to port the solution to my current use case.

Can you help me out?

Solution:
def g(df):

return df.groupby(df.index // 4).sum()

result = g(df.copy())

Figure 7: An example of data science from the DS1000 (Lai et al., 2023).

A.3 MORE RESULTS

Table 4: Code quality assessment accuracy.

Methods Accuracy (%)

Supervised fine-tuning 56.3
Preference learning 79.6

Models trained with the DPO loss are capa-
ble of assessing the quality of code answers.
To prevent data leakage, we utilized the robust
open-source model Codestral to generate multi-
ple samples on Bird’s test set, constructing pos-
itive and negative sample pairs based on exe-
cution accuracy. We evaluated the fine-tuned
LLM’s ability to accurately assess code quality by measuring the classification accuracy on this
dataset. Under the standard supervised fine-tuning (SFT) setting, the model achieved a classifica-
tion accuracy of 56%, which is close to random guessing and indicates that SFT alone lacks this
capability. In contrast, our CODELUTRA attain a classification accuracy of 79%, demonstrating that

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

our approach enables the model to better understand code characteristics and select correct answers.
This substantial improvement highlights the significant potential of CODELUTRA.

A.4 EXPERIMENTAL SETUP

Table 5 summarizes the training hyperparameters used for data query and data science tasks across
each iteration. It includes key training parameters such as learning rate, batch size, LoRA rank, etc.

Table 5: Summary of training hyperparameters for data query and data science for each iteration.

Parameters Value

Data query

Number of epochs 1
Learning rate 5× 10−5

β 0.1
Batch size 16
Gradient accumulation steps 1
Maximum sequence length 2048
DeepSpeed Zero stage 2
Weight decay 0.0001
LoRA rank 8
λ 1.0

Data science

Number of epochs 1
Learning rate 5× 10−5

β 0.5
Batch size 16
Gradient accumulation steps 1
Maximum sequence length 512
DeepSpeed Zero stage 2
Weight decay 0.0001
LoRA rank 8
λ 0.5

We set K=10 for each iteration, generating 10 positive and negative sample pairs per question.
To maintain quality when selecting incorrect samples, we filter out answers that contain repeated
strings.

B LIMITATION AND FUTURE WORK

While CODELUTRA significantly enhances code generation performance by leveraging self-
generated comparative data, it exhibits several limitations that warrant consideration. The current
framework primarily focuses on the correctness of the generated code, overlooking other vital as-
pects such as efficiency, readability, and adherence to specific formal specifications, which are essen-
tial for practical applications. Additionally, CODELUTRA treats all failed code attempts uniformly,
without distinguishing between different types or severities of errors, potentially limiting the model’s
ability to learn from more informative mistakes.

To address the aforementioned limitations, future research related to CODELUTRA should explore
several key directions. Expanding the preference-guided refinement mechanism to incorporate addi-
tional criteria such as code efficiency, readability, and compliance with formal specifications would
enhance the overall quality and utility of the generated code. Developing a more nuanced approach
to categorizing and prioritizing failed code attempts based on the type and severity of errors could
enable more targeted and effective learning, thereby improving the model’s ability to avoid simi-
lar mistakes in future generations. Exploring alternative evaluation methods, such as static code
analysis or formal verification tools, could reduce the framework’s reliance on execution results and
broaden its applicability to a wider range of tasks.

18

	Introduction
	Preliminaries
	CodeLutra
	Experiments
	Experimental Setup
	Main Results
	More experiments

	Further Analysis on CodeLutra
	Related Work
	Conclusion
	More information
	Pseudo code of CodeLutra
	Examples for different datasets.
	More results
	Experimental setup

	Limitation and future work

