Under review as a conference paper at ICLR 2025

CODELUTRA: BOOSTING LLM CODE GENER-

ATION VIA PREFERENCE-GUIDED REFINEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have significantly advanced code generation but
often require substantial resources and tend to over-generalize, limiting their effi-
ciency for specific tasks. Fine-tuning smaller, open-source LLMs presents a viable
alternative; however, it typically lags behind cutting-edge models due to super-
vised fine-tuning’s reliance solely on correct code examples, which restricts the
model’s ability to learn from its own mistakes and adapt to diverse programming
challenges. To bridge this gap, we introduce CODELUTRA, a novel framework
that enhances low-performing LLMs by leveraging both successful and failed code
generation attempts. Unlike conventional supervised fine-tuning, CODELUTRA
employs an iterative preference-guided refinement mechanism to compare cor-
rect and incorrect solutions as well as maximize the likelihood of correct codes.
Through continuous refinement, CODELUTRA enables smaller LLMs to match or
surpass GPT-4’s performance in various code generation tasks without relying on
vast external datasets or larger auxiliary models. On a challenging data science
coding task, using just 500 samples improved Llama-3-8B’s accuracy from 28.2%
to 48.6%, approaching GPT-4’s performance. These results highlight CODELU-
TRA’s potential to close the gap between open-source and closed-source models,
making it a promising approach in the field of code generation.

1 INTRODUCTION

Large language models (LLMs) have revolutionized numerous domains, consistently delivering
great performance across different tasks (Brown et al., 2020; Achiam et al., 2023; Bubeck et al.,
2023; Team et al., 2023; Anthropic, 2023; OpenAl, 2023). Among these applications, code gener-
ation stands out as particularly promising. Models pre-trained on extensive code repositories have
demonstrated an impressive capability to solve diverse programming challenges (Li et al., 2023;
2022; Nijkamp et al., 2023; Zheng et al., 2023; Fried et al., 2022; Chen et al., 2021b; Wang et al.,
2021b; 2023b).

Despite the promise, deploying ultra-large models for code generation poses significant challenges.
Top-tier closed-source models like GPT-4 (OpenAl, 2023) are often highly resource-intensive and
do not offer the flexibility for customization to specific code generation tasks. Fine-tuning smaller,
open-sourced LLMs for targeted applications serves as a compelling alternative. Code generation
demands not just syntactical correctness but also a deep understanding of logical and domain-
specific nuances, which complicates model training. While a straightforward approach is to perform
supervised fine-tuning (SFT) on the target task, this typically results in only incremental improve-
ments and frequently lags behind cutting-edge solutions. This limited improvement stems from
SFT’s reliance solely on correct code examples, which restricts the model’s ability to learn from its
own mistakes and adapt to diverse programming challenges. We illustrate this in Figure 1, where
SFT provides a minor boost in performance on the challenging data science task, with LlaMa-3-8B’s
Pass@1 improving from 28.2% to 30.0%. A notable gap remains between the fine-tuned model and
GPT-4, which leads with a Pass@]1 score of 49.4%. To address the issue, prior solutions collect ad-
ditional training data by leveraging more powerful LLMs (Shen et al., 2023; Luo et al., 2023; Wang
etal., 2023b; Yang et al., 2024) or by collecting external datasets from public repositories (Lozhkov

Under review as a conference paper at ICLR 2025

LLM’s multiple answers: /I. Correct code answers: \

SELECT name FROM employees WHERE deparment = Sales'
SELECT e name FROM employees e WHERE department LIKE ‘Sales' SELECT e.name FROM employees ¢ WHERE depa
SELECT name FROM employees WHERE depariment IN (Sales’); i SELECT name FROM employees WHERE departmer Sales;

cre Evaluation | e e O e PR ceporomom I o)

t LIKE 'Sales’

* SELECT name FROM employees WHE RE department = ‘Seles;
SELECT name FROM siall WHERE deparment = Sales’
T @ Ground truth for evaluation:
t
SELECT name FROM employees WHERE department = 'Sales’; K /
Initialization for next ‘
iteration of refinement . .
| > Paired code answers:
Preference-guided refinement [S[L[CrrmvaROMrvmp\nwnvaHEREﬂopamvrvaKE'sa\vc
{sascr name FROM employees WHERE department = 'Sales
Ti+1 Encourages to prefer correct over rejected/ [SELECT rame FROM empiyes WHERE deparmnt N k)
Increases the likelihood of correct

)

80-
Data query i

Data science
73.1

S

3
o
N
©

59.3

a
g
Pass@1 (%)

Execution accuracy (%)

30.0

w
3
N
*®
Y

40 20
£ O g QO
o O o O oY
\,\'o‘“ ,o,‘b"’ \,\@@ a’q’% a’%%\

K
SR NS

Figure 1: The proposed CODELUTRA framework (see Section 3) and performance comparison on different
code generation tasks. The orange dashed box highlights our framework’s performance relative to GPT-4.

et al., 2024; Muennighoff et al., 2023). But the big elephant in the room still remains—how much
can we bridge the gap by maximizing the utility of existing data and model at hand?

To address this challenge, we introduce CODELUTRA, a framework that iteratively improves the
performance of a given LLM without relying on vast external datasets or larger auxiliary models.
Our approach demonstrates that even with limited data at hand, substantial gains in code generation
quality can be achieved, closing the gap between smaller fine-tuned models and the top-tier LLMs.
Unlike traditional fine-tuning methods that rely solely on correct code solutions, CODELUTRA con-
structs and learns from both successful and failed code generated by the current model, which forms
self-generated comparative data. The failed code attempts are invaluable for refining models, since
they provide concrete examples of common errors and enable the model to learn strategies for avoid-
ing similar mistakes in future generations. To harness the comparative data, a key innovation of
CODELUTRA is the preference-guided refinement mechanism that compares correct and incorrect
code snippets, iteratively refining the model’s understanding of code quality. With each iteration, the
model generates code solutions, evaluates their correctness, and updates its parameters based on the
evolving preference dataset. This process allows for continuous improvements of the base model,
making the framework effective even with limited initial data (e.g., a few hundred samples).

We comprehensively evaluate the effectiveness of CODELUTRA on challenging data query and data
science tasks, where the LLM is tasked with generating the correct SQL or Python code to solve a
given problem. We compare CODELUTRA with 13 open-source and closed-source LLMs that are
competitive in code generation. Notably, on the data query task, our framework allows Llama-3-
8B (Dubey et al., 2024) to achieve an execution accuracy of 76.6%, which exceeds GPT-4’s 74.4%.
Under a challenging data science task, we find that using just 500 samples improved Llama-3-8B
from an accuracy of 28.2% to 48.6%, approaching the performance of GPT-4. This demonstrates
that CODELUTRA achieves strong results even with a limited number of high-quality annotations.
Moreover, we observe the consistent performance gains of CODELUTRA on different base models,
including Gemma-7B (Team et al., 2024) and StarCoder-7B (Dai & Kumar, 2023). These findings
highlight the potential of CODELUTRA in closing the performance gap between open-source and
closed-source models. To summarize our key contributions:

1. We present CODELUTRA, a novel framework that iteratively improves LLMs for code
generation using self-generated comparative data from both successful and failed code at-

Under review as a conference paper at ICLR 2025

tempts, enabling low-performing models to rival top-tier solutions without external datasets
or ultra-large LLMs’ feedback.

2. We conduct comprehensive evaluations, comparing CODELUTRA against 13 competitive
LLMs specializing in code generation. Results demonstrate CODELUTRA consistently out-
performs both standard fine-tuned LLMs and existing cutting-edge closed-source LLMs.

3. We conduct a series of in-depth analyses to understand the contribution of failed attempts
and likelihood regularization for CODELUTRA, and reveal CODELUTRA improves the per-
formance via reducing syntax errors and improving incorrect answers across iterations.

2 PRELIMINARIES

LLMs for code generation. LLMs are pre-trained on diverse datasets encompassing both natural
and programming languages. In code generation tasks, an LLM receives a prompt—such as a natural
language description, and generates the corresponding code by predicting the next token in the
sequence. Formally, code generation is modeled as the conditional probability of a code sequence

y = (y1,Y2,.-.,yr) given an input prompt z:

T
P(ylz) = [Pwily<s, @))
t=1

where x is the input prompt, y is the generated code sequence of length T, and y.; =
(y1, 92, - .., yi—1) represents the tokens generated before time step ¢.

Supervised fine-tuning on task-specific dataset. Pre-trained LLMs can be suboptimal on task-
specific dataset, necessitating fine-tuning. We consider a task-specific dataset D = {(x;,y;)}"
containing n examples, where each pair (z;, y;) represents an input prompt z; and its corresponding
target code y;. Supervised fine-tuning (SFT) adjusts the model’s parameters # by maximizing the
likelihood of generating correct code sequences y;. The loss is defined as:

mser = argmax,, Ko, o)~ (log T (yilxi)) . 2)

This process relies on the quality of the dataset, guiding the model to produce more accurate and
reliable code based on the given prompts.

Verification of code correctness. We verify the correctness of the generated code by comparing
it with the ground truth code y,,. We define a verification function V' (y) that checks if the output of
the generated code matches that of the ground truth. Given an input I, the generated code is correct
if it produces the same output f(y, I) as the ground truth code f(y, I). Specifically, V(y) = 1 if the
generated code is correct, and V (y) = 0 otherwise.

Limitations of SFT for code generation. Code generation demands not just syntactical correct-
ness but also a deep understanding of logical and domain-specific nuances, which complicates model
training. A major limitation of SFT is that it solely maximizes the likelihood of providing correct
code, which restricts the model’s ability to learn from its own mistakes. Since the training process
focuses exclusively on provided examples, the LLM doesn’t receive the gradient from incorrect or
suboptimal code. For instance, if the model only predicts wrongly in the final token in a code snip-
pet, the overall probability P(y|z) in the Equation 1 might still remain high as the preceding tokens
are correct. Correspondingly, the SFT loss is very small in that case. However, this single erroneous
token can render the entire code nonfunctional or introduce subtle bugs, significantly affecting exe-
cution correctness despite a high likelihood score, which is different from general NLP tasks. This
reliance on only correct examples limits the model’s capacity to identify and recover from errors,
reducing its ability to handle more complex or nuanced coding tasks. This motivates our framework
CODELUTRA, which leverages both successful and failed code generation attempts.

3 CODELUTRA

In this section, we introduce CODELUTRA, a framework designed to comparatively learn from
both correct and incorrect code generations. CODELUTRA delivers substantial performance gains,

Under review as a conference paper at ICLR 2025

achieving performance comparable to more advanced models like GPT-4 (OpenAl, 2023), even with
limited initial data. The pseudo-code is provided in the Appendix A.1.

Initialization. We start with an initial base model, denoted as 7, which serves as the starting point
for our iterative refinement process. We are provided with an initial training set D = {(z;, y;) }71,
where each z; is a natural language query, and y; is the corresponding ground truth code solution.
Starting with a modestly performing model allows us to clearly observe improvements attributable
to the CODELUTRA framework, ensuring that enhancements result from our methodology rather
than inherent model capabilities. Note that at initialization, we only have the correct codes in hand.
We describe next how to obtain incorrect codes to serve the model refinement.

Generating correct and failed code. At each iteration ¢, the current model 7; generates multiple
code responses for each input query x; € D. Specifically, for each z;, the model produces M
distinct code samples:

o9 ~ m(z;), foreachm € {1,2,..., M}. 3)

Generating multiple responses introduces diversity in the model’s outputs, providing a richer dataset
for composing preference datasets. Each generated code snippet ¢ is then executed to assess its
correctness by comparing the execution result against that of the ground truth solution y;. Correct

executions are categorized into the correct code set Yi(c), while incorrect ones are placed into the re-

jected set Y;(T). This evaluation mechanism offers clear feedback, particularly syntax and execution
errors common in code generation tasks, and enables the construction of preference dataset.

Preference dataset construction. A key of our framework involves constructing a preference
dataset D, that captures the relative quality of generated code. The preference data is updated at
every iteration ¢t. For each input z;, we create K preference pairs by randomly pairing one correct
code 7 € Y, with one rejected code g+ € Y,\"

(gs*,9;*), foreachk € [K]. 4)

If either Yi(c) or Yi(r) contains fewer than K responses, sampling with replacement is employed to
maintain consistency. The complete preference dataset at iteration ¢ is thus defined as:

Dy = {(xi, g;*,9;*) | forallz; € Dand k € [K]}, 5)

which contains n x K preference triplets. Here, n corresponds to the size of the initial dataset
D, which remains constant throughout iterations. This dataset encapsulates nuanced comparisons
between correct and incorrect code generations, facilitating the subsequent preference learning step.
By systematically pairing correct and rejected responses, the model gains a clearer understanding of
high-quality code, enabling targeted improvements.

Preference-guided refinement. While one can di- 0
rectly employ a preference optimization approach

like DPO (Rafailov et al., 2023) on our curated ~100
dataset Dy, this approach presents a notable limita-
tion due to its tendency to decrease the likelihood of
both correct and rejected code during training. This

-200

-300

Log probability

is evidenced by the dashed lines in Figure 2, which is S)

also observed in Pal et al. (2024); Feng et al. (2024). [R R VN /~~’"“«'\"/\/‘""" oy r
This diminishing likelihood can significantly impact gl >~ ¥
our framework, especially since our correct code are Global step

critical for successfully solving the assigned tasks.
It is crucial, therefore, to prioritize the likelihood of Figure 2: Effect of SFT loss to keep the like-
correct solutions to the task at hand. lihood of correct answers stable.

To address this limitation, we employ a dual-loss function integrating DPO with SFT, which reg-
ularizes the training to prevent decreasing likelihood. Specifically, we employ SFT on the dataset
with correct solutions, Df = {(z;,¢;*) | forall z; € D and k € [K]}. The overall loss function is

Under review as a conference paper at ICLR 2025

defined as:

Ti41 = argmin,,

_E(wi,yf,l/f)NDt |:10g0' (ﬁ <10g w _ IOg 779(y1|l'b))>:|
t

(y§lzi) (Y |Ti)

compare correct and incorrect solutions

= AE (s, y5)~p, (log o (i |2:))] : (6)

maximize likelihood for correct codes

where A is a hyperparameter balancing the contributions of the DPO and SFT losses. The first
term facilitates preference-based fine-tuning by optimizing the model to favor correct over incorrect
code. Concurrently, the second term enhances the likelihood of generating correct solutions directly
to avoid the log probability decreasing (see solid line in Figure 2). This dual-loss approach ensures
that the model not only ranks correct solutions higher but also increases their generation probabil-
ity, leading to more consistent high-quality code outputs. We verify the effectiveness of the dual
loss empirically in Section 4.3. The refinement process continues until the improvement between
consecutive iterations 7; and 7,1 becomes marginal, indicating convergence.

Remark. While DPO-style preference optimization has been studied in recent literature (see re-
view in Section 6), its connection to code generation remains largely unexplored. To the best of our
knowledge, our work is the first to establish this critical link between iterative preference learning
and code generation. We highlight several novel aspects that differentiate our approach from prior
work. First, previous studies mostly focus on natural language generation tasks and rely on model-
generated rewards or feedback from other large models (Chen et al., 2024; Xiong et al., 2024; Yuan
etal., 2024; Pang et al., 2024; Xie et al., 2024). In contrast, we focus exclusively on code generation
where the preference labels for iterative refinement come from execution results. This shift is es-
sential and unique for code generation, where execution correctness is a key indicator of preference.
Moreover, our work uncovers the insight into the dual-loss mechanism, revealing that it plays a cru-
cial role in improving performance in the context of code generation. From a practical standpoint,
our training pipeline bypasses the standalone SFT stage typically required before the preference op-
timization phase, thereby streamlining the training process. Overall, our work not only establishes
a novel link between iterative preference learning and code generation but also introduces practical
innovations that enhance performance, marking a significant step forward in the field.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Tasks. To evaluate the effectiveness of our proposed framework, we perform experiments on two
tasks: Data Query and Data Science. Both tasks reflect common and practical challenges in fields
such as business, healthcare, and scientific computing, where precise code generation is critical for
solving data-related problems while receiving limited attention. For the Data Query task, the model
is given a natural language problem description and is tasked with generating the corresponding
SQL query for a database using an LLM. For example, given the description “How many heads
of the departments are older than 562, the model should produce the appropriate SQL query to
execute this request. In the Data Science task, the LLM is tasked with generating the correct Python
code to solve a given data science problem. For instance, given the problem “I have a 2D array to
represent a many-many mapping. What is the quickest way to zero out the second row and the first
column?”, we test LLM’s ability to solve data science problems with numpy. We provide examples
of the two tasks of the question and ground truth code in the Appendix A.2

Datasets. We conduct our experiments on two cross-domain datasets for data query, Spider (Yu
et al., 2018) and BIRD (Wang et al., 2023a), as well as a data science dataset, DS-71000 (Lai et al.,
2023). Spider includes 10,181 questions with 5,693 unique SQL queries across 200 databases in
138 domains, while BIRD contains 12,751 question-SQL pairs across 95 large databases, covering
over 37 domains. We utilize DS-1000, which comprises 1,000 data science problems sourced from
Stack Overflow, covering seven Python libraries related to analysis in data science. The dataset is
designed to minimize memorization risk by modifying original problems and uses a multi-criteria

Under review as a conference paper at ICLR 2025

Table 1: The Execution Accuracy (EX), Exact Match (EM), and Pass@1 for different kinds of
models on SPIDER, BIRD, and DS1000. We show the base model (7() without fine-tuning and the
model trained with CODELUTRA in different iteration ({71, w2, 73, 74 }). For fair comparison, all
reported results in the table use the same prompt. Boldface highlight GPT-4 and our results.

Models Spider BIRD DS1000
EX EM EX EM Pass@1
Open-source LLMs
Llama-3-8B (Dubey et al., 2024) 59.3 55.1 22.3 19.5 28.2
Codellama-7B (Xu & Zhang, 2023) 57.0 514 24.4 18.7 25.6
StarCoder-7B (Lozhkov et al., 2024) 61.2 58.6 25.7 23.0 26.8
Gemma-7B (Team et al., 2024) 49.9 46.7 21.2 19.1 24.2
Codestral-22B (Brown & Lee, 2023) 71.3 69.6 42.5 39.9 35.8
Llama-3-70B-Instruct (Dubey et al., 2024) 68.7 65.4 41.2 39.3 36.4
Fine-tuned LLMs
Llama-3-8B (Dubey et al., 2024) 67.9 64.7 35.6 30.7 30.0
Codellama-7B (Xu & Zhang, 2023) 67.3 64.3 36.3 30.9 26.8
StarCoder2-7B (Lozhkov et al., 2024) 66.9 64.1 36.6 31.1 294
Gemma-7B (Team et al., 2024) 65.8 62.8 34.5 29.8 27.4
Closed-Source LLMs
Codex (Chen et al., 2021a) 73.1 70.2 44.7 424 38.4
ChatGPT (Ouyang et al., 2022) 71.8 68.4 44.3 40.2 38.8
GPT-4 (OpenAl, 2023) 74.4 71.2 46.3 43.2 494
CODELUTRA (Ours)
Base (7o) 59.3 55.1 22.3 19.5 28.2
Iteration 1 (71) 67.8 63.9 37.8 332 43.2
Iteration 2 (72) 72.4 68.3 40.8 36.0 46.8
Iteration 3 (73) 76.6 72.5 43.1 38.6 48.6
Iteration 4 (74) 76.3 72.1 42.6 38.3 48.2

evaluation system to assess functional correctness and coding constraints. We split DS-1000 into
500 samples for training and 500 for evaluation.

Metrics. For the Data Query task, we adopt the metrics introduced by Yu et al. (2018): Execution
Accuracy (EX), which measures whether the SQL query execution result matches the expected
output, and Exact Match (EM), which evaluates whether the generated SQL query exactly matches
the reference query in both structure and semantics. For the Data Science task, we use pass@1,
following Lai et al. (2023), which indicates the percentage of correct solutions generated by the
model on the first attempt.

Baselines. To evaluate the effectiveness of our method, we compare it against three categories of
baselines. For a fair comparison, all reported results are based on the same prompt.

* Open-source LLMs: We benchmark our method against competitive open-source LLMs, including
models pre-trained on general datasets such as Llama-3-8B (Dubey et al., 2024), Gemma-7B
(Team et al., 2024), and Llama-3-70B-Instruct (Dubey et al., 2024). Additionally, we compare
against LLMs pre-trained specifically on coding datasets, such as Codellama-7B (Xu & Zhang,
2023), StarCoder-7B (LLozhkov et al., 2024), and Codestral-22B (Brown & Lee, 2023).

 Fine-tuned LLMs: As supervised fine-tuning on domain-specific datasets is a popular and effective
way to improve LLMs’ corresponding performance, we also report the performance of fine-tuned
LLMs using standard supervised fine-tuning methods (Raffel et al., 2020).

* Closed-source LLMs: We provide the performance of cutting-edge closed-source LLMs, including
Codex (Chen et al., 2021a), ChatGPT (Ouyang et al., 2022), and GPT-4 (OpenAl, 2023).

Experimental setup. For main results, we apply our framework to the Llama-3-8B base model
(Dubey et al., 2024), denoted as 7 (see Section 4.2 for more backbone results). We use a zero-shot
prompt containing the question along with reference information (dataset schema for data query and
reference code for data science). For different answer collections, we employ the best-of-n strategy
by sampling 16 responses at the temperature of 1.0. We train one epoch per iteration and perform
four iterations in total, resulting in models {71, w2, 73, 74 }. These models are evaluated as described
in the following sections. For more experimental details, please refer to the Appendix A.4.

Under review as a conference paper at ICLR 2025

50 (@) 50 (b) 50 (©)
W negative 9K w ground truth
—e— Ww/0 negative —o— 1K —e— w/o ground truth
40 40 40
30 30 30 //\./‘
20 0 1 2 3 4 20 0 1 2 3 4 20 0 1 2 3 4
Iterations Iterations Iterations

Figure 3: (a) Ablations on the effects of negative samples for training. (b) Ablations on the question number
during training. (¢) The effects of ground truth for validation during preference datasets collection.

4.2 MAIN RESULTS

Results on the data query task. We compare CODELUTRA with baselines in code generation for
the data query task, as shown in Table 1. We found that existing open-source LLMs like Llama-3-
8B still have a significant performance gap in code generation for data queries compared to closed-
source LLMs like GPT-4. Although supervised fine-tuning can help bridge this gap—e.g., SFT
increases the EX of Llama-3-8B on Spider from 59.3% to 67.9%—there remains a notable differ-
ence with GPT-4’s 74.4%. Through our refinement framework, Llama-3-8B after four iterations
exceeded SFT performance by 16.9% and even outperforms GPT-4 with an execution accuracy of
76.6%. Additionally, on the more challenging BIRD dataset, after three iterations, CODELUTRA
significantly improved the EX of the base model from 22.3 to 43.1, achieving performance very
close to GPT-4.

Results on the data science task. Table 1 also presents results for the data science task, where we
evaluate both open-source and closed-source LL.Ms, as well as our method CODELUTRA. On the
DS-1000 dataset, open-source models like Llama-3-8B and Gemma-7B struggle, with significantly
lower EM and Pass@1 scores compared to closed-source models like GPT-4. Fine-tuning pro-
vides a minor boost in performance, as seen with Llama-3-8B’s Pass@1 improving from 28.2% to
30.0%. However, as with the data query task, a large performance gap remains between fine-tuned
open-source models and closed-source ones, where GPT-4 leads with a Pass@]1 score of 49.4%.
Nonetheless, CODELUTRA demonstrates substantial improvements (from 28.2% to 48.6 %), offer-
ing a promising path for narrowing this gap further.

4.3 MORE EXPERIMENTS

The importance of learning from failed attempts. Our framework CODELUTRA leverages both
positive and negative answer pairs to iteratively improve model performance, particularly by mini-
mizing the generation of incorrect responses. But what happens when we omit the negative samples
and rely solely on supervised fine-tuning using positive samples generated by the model? In this
ablation, we compare the performance of our objective 6 with a model trained with Lgpr(7; D). As
seen in Figure 3(a), without negative samples (purple line), the model’s performance plateaus across
iterations, remaining close to the baseline. In contrast, incorporating negative samples (blue line)
leads to steady performance improvements over successive iterations. This ablation confirms that
including negative samples is critical to refining the model’s ability to distinguish between optimal
and suboptimal responses, significantly boosting overall performance. Collecting incorrect answers
is thus an essential component for preference learning and contributes to greater model accuracy.

CodeLutra achieves strong performance under limited training data. The cost of acquiring
high-quality question-code pairs can be significant, so we examine whether our method truly de-
pends on large datasets. Under the data science code generation task, we found that using just 500
samples improved Llama-3-8B from an accuracy of 28.2 to 48.6, approaching the performance of
GPT-4. This demonstrates that CODELUTRA achieves strong results even with a limited number of
high-quality annotations. We further verify this with the data query task by randomly selecting 1K
question-code pairs from BIRD’s training data and comparing them to the full 9K sample set. The
results, as shown in Figure 3(b), reveal similar trends, with the two setups reaching peak execution

Under review as a conference paper at ICLR 2025

accuracies of 43.1 and 42.4, respectively. This minor difference suggests that CODELUTRA does
not heavily rely on large volumes of training data and can generalize well with fewer annotations,
which is crucial for minimizing the cost of dataset collection.

Importance of SFT regularization during preference)
optimization. Recall in Section 3 that our loss func- Table 2: Ablations on the SFT on the correct
tion integrates DPO with SFT to regularize the training, ~3MSWers.

and prevent decreasing likelihood on the correct solu- Methods ~ Spider DS1000
tion. In Table 1,we ablate the effect of SFT regulariza- Lbro 17.2 12.4
tion on both the Spider and DS-1000 datasets. Notably, Ours 76.6 48.6

omitting optimizing the SFT loss on the correct solutions
results in a marked decline in model performance, e.g.,
159.4% on Spider. This highlights the effectiveness of the dual loss approach, ensuring that the
model not only ranks correct solutions higher but also increases their generation probability, leading
to more consistent high-quality code outputs.

CODELUTRA remains effective on different Gemma-7B StarCoder-7B
base models. To further validate the gener- Model - -
alization capability of our framework CODE- Spider DS1000 Spider DS1000

LUTRA, we extend our experiments to two ad- 7, 49.9 242 61.2 26.8
ditional open-source base models: Gemma- 63.7 38.8 72.8 39.6
7B (Team et al, 2024) and StarCoder-7B 1, 69.3 43.6 74.7 42 4
(Lozhkov et al., 2024). As summarized in Ta- 3 71.3 44 .4 77.2 452
ble 3, we report the results on both the Spider 7, 72.6 44.0 77.5 45.8

and DS1000 datasets across multiple iterations

of our refinement process. For Gemma-7B, we Typle 3. Performance with CODELUTRA of

observe a significant improvement in Execution Gemma-7B and StarCoder-7B across Spider and
Accuracy (EX) on Spider, starting from 49.9% ps1000 benchmarks.

at m((the base model) and reaching 72.6% after

four iterations (74). A similar trend is observed in the DS1000 dataset, where the Pass@1 metric
improves from 24.2% to 44.0%. For StarCoder-7B, the improvements are also pronounced, with EX
on Spider increasing from 61.2% to 77.5%, and Pass@1 on DS1000 rising from 26.8% to 45.8%.
These results demonstrate that our framework is robust across different model architectures, consis-
tently yielding significant performance gains regardless of the underlying base model. Notably, the
iterative refinement process of CODELUTRA continues to improve the accuracy and correctness of
generated code, highlighting the CODELUTRA generalization to different code generation tasks.

Key Takeaways from Section 4

1. Failed attempts matter: Incorporating negative samples in training leads to strong performance
improvements, while models trained only on positive samples plateau. CODELUTRA performs on
par with or even outperforms GPT-4 on data query and data science tasks, closing the gap between
open-sourced and closed-sourced models.

2. Strong performance with limited data: Our method achieves significant accuracy improvements
even with small datasets (e.g., improving Llama-3-8B’s accuracy from 28.2 to 48.6 with only 500
samples), demonstrating its effectiveness without reliance on large volumes of training data.

3. Importance of likelihood regularization: Ablations show that incorporating SFT alongside pref-
erence optimization is crucial, highlighting the necessity of our dual-loss approach for maintaining
high-quality code outputs.

5 FURTHER ANALYSIS ON CODELUTRA

Is ground truth code necessary for preference dataset collection? Recall that our framework re-
lies on ground truth code to evaluate the quality of generated code during the collection of preference
datasets. To test the impact of this dependence, we conduct experiments that replace the ground truth
with a more general criterion—whether the generated code is executable. In the absence of ground
truth, we consider executable answers as chosen and non-executable ones as rejected. Applying this

Under review as a conference paper at ICLR 2025

(a) Executable fraction

m Executable Not executable (b) BLUERT similarity for different models

BN correct set
error set

0.65 0.co 0.65 0.6
0.54 0.55
0.52
0.48
0 50 160 0 1 2 3

Percentage Model iteration

Figure 4: (a) Error analysis for different models. (b) BLEURT similarity for different models with the ground
truth on the correct set and error set divided from the base model.

o o
~ ~
=} o

o
o
v

N)
o
o
t=}

Model iteration
o
o
@

BLUERT similarity

1

o
1%
k=)

I
>
G

0.40

Different answers from different models for the data query:

Database schema: CREATE TABLE customers (CustomerID INTEGER UNIQUE not
null primary key, Segment TEXT null, Currency TEXT null); CREATE TABLE
"yearmonth" (CustomerID INTEGER not null references customers on
update cascade on delete cascade, Date TEXT not null, Consumption REAL,
primary key (Date, CustomerID));

Question: Among the customers who paid in euro, how many of them have a monthly consump-
tion of over 1000?

The answer from 7y (wrong):

SELECT COUNT (CustomerID) FROM yearmonth WHERE Consumption > 1000
AND CustomerID IN (
SELECT CustomerID FROM customers WHERE Currency = 'EUR’) ;

SQLite error: no such column: Currency
The answer from 73 (correct):

SELECT COUNT (CustomerID) AS "Number of customers" FROM "yearmonth"
WHERE Consumption > 1000 AND Currency = 'EUR’ GROUP BY CustomerID

Figure 5: CODELUTRA helps reduce the syntax errors.m fails due to a missing column, while 73
generates the correct query.

approach to the Bird dataset, we observe notable gains despite the absence of ground truth: accu-
racy rose from 22.3 to 30.9 (see Figure 3(c)). Moreover, the proportion of executable code surged
from 59.8% to 89.7%, showing that the model effectively learned to avoid common errors, such as
syntax issues or missing database tables. This experiment demonstrates that using executability as
a metric still enables substantial model improvements, making the method applicable even without
high-quality annotations, and highlights the robustness of CODELUTRA under such conditions.

CODELUTRA helps reduce the syntax errors across iterations. To evaluate whether our method
enables LLMs to learn from their mistakes over multiple iterations, we sampled 100 error cases
from the test set using models 7, 71, 72, 73, trained with CODELUTRA on the BIRD dataset for
qualitative analysis. We measure the fraction of executable code generated by each model. As
shown in Figure 4, the percentage of non-executable code decreases from 40% to 11% when trained
with CODELUTRA, indicating that the models have improved in mastering SQL syntax and are better
at avoiding basic errors. A qualitative example in Figure 5 highlights this improvement: the base
model incorrectly queries the “Currency” column in the wrong table, resulting in an error, while the
model trained with CODELUTRA successfully generates the correct SQL query.

CODELUTRA improves quality of incorrect answers across iterations. Based on the responses
of the initial model 7y, we divide the test set into a correct set and an error set. We track the quality
trends of the model in these two sets across iterations. Using the cosine similarity metric based
on the BLEURT embedding proposed by Sellam et al. (2020), we calculate similarities denoted as
sim (7, ygt) for the model fine-tuned over ¢ iterations. Here 3 denotes the model generation, and

Under review as a conference paper at ICLR 2025

gt 18 the ground truth solution. As shown in Figure 3(b), we observe that the similarity between
the model’s output on the correct set and the ground truth remains stable (see purple bars), while
with each iteration, the similarity between the model’s output on the error set and the ground truth
increases significantly—from 0.48 to 0.54. This indicates that CODELUTRA helps the base model
improve outputs on error set, while the outputs on correct cases remain qualitatively stable.

6 RELATED WORK

Preference learning for LLMs. Preference learning aims to guide language models toward gen-
erating outputs that align with human preferences and desirable outcomes. A significant body of
research has utilized human feedback to refine LLMs across various language tasks (Ziegler et al.,
2019; Ouyang et al., 2022; Stiennon et al., 2020; Kreutzer et al., 2018). The Reinforcement Learn-
ing from Human Feedback (RLHF) framework, in particular, has been effective in aligning large
pre-trained language models (Christiano et al., 2017; Ziegler et al., 2019; Ouyang et al., 2022; Bai
et al., 2022). However, RLHF can suffer from training inefficiencies and sensitivity to hyperpa-
rameters. In response, recent studies have shifted towards closed-form loss functions that directly
utilize offline preference data, exemplified by DPO (Rafailov et al., 2023) and related methodolo-
gies (Liu et al., 2023; Ethayarajh et al., 2024; Gheshlaghi Azar et al., 2024; Pal et al., 2024; Liu et al.,
2023; Xiong et al., 2023a; Tang et al., 2024; Yu et al., 2024). While DPO-style models inherently
provide rewards, iterative DPO—where the model generates its own pairwise preference data—has
demonstrated strong performance and potential (Chen et al., 2024; Xiong et al., 2024; Yuan et al.,
2024; Rosset et al., 2024; Pang et al., 2024; Xie et al., 2024). In this work, we introduce iterative
preference-guided refinement to code generation for the first time, achieving GPT-4-level results and
providing an in-depth analysis that paves the way for future research.

LLM:s for code generation. LLMs trained on vast corpora of code have demonstrated remarkable
capabilities across a wide range of tasks, including code generation (Chen et al., 202 1c; Austin et al.,
2021; Zhang et al., 2022), program repair (Xia & Zhang, 2022; Wei et al., 2023; Xia et al., 2023;
Jiang et al., 2023; Bouzenia et al., 2024; Xiong et al., 2023b), and software testing (Chen et al.,
2023; Wang et al., 2024a; Zhou et al., 2024). Foundational models (Nijkamp et al., 2022; Wang
et al.,, 2021a; Li et al., 2023; Roziere et al., 2023) pre-trained on extensive codebases, have estab-
lished strong general-purpose capabilities for code generation. Building upon these powerful foun-
dations, more recent models like WIZARDCODER (Luo et al., 2023) and DS-CODER (Li et al., 2023;
Bouzenia et al., 2024) enhance contextual understanding by leveraging repository-level organization
of pretraining data and incorporating retrieval-augmented techniques (Borzunov et al., 2024). More-
over, CODEINSTRUCT (Wang et al., 2024b) capitalize on instruction fine-tuning to improve align-
ment with human coding preferences. Fine-tuning methodologies and prompt-engineering tech-
niques (Luo et al., 2023; Chen et al., 2023; Zhang et al., 2024b) have been crucial in unlocking these
models’ full potential for domain-specific tasks, such as security, Al-assisted development, and code
synthesis in specialized fields. Zhang et al. (2024a) pay attention to preference learning for program-
ming problems. However, they rely on GPT-4 for generating test cases and use preference data in
a single offline run. In contrast, we iteratively refine a small LLM using self-generated preference
data, without external datasets or larger models. Moreover, different from Zhang et al. (2024a) per-
forming SFT and preference learning in two stages, we introduce the dual-loss to compare correct
and incorrect solutions and maximize the likelihood of correct codes in one stage.

7 CONCLUSION

We introduced CODELUTRA, a preference-guided refinement framework designed to enhance LLMs
for code generation without the need for external datasets or larger models. By utilizing self-
generated data from both successful and failed attempts, CODELUTRA refines the model’s under-
standing of code quality. Our experiments on data query and data science tasks demonstrate that
CODELUTRA significantly boosts the performance of base LLMs. For example, fine-tuning Llama-
3-8B with CODELUTRA outperforms GPT-4 on data query tasks and nearly matches GPT-4 perfor-
mance on data science task with small training data. Additionally, CODELUTRA reduced common
coding errors while improving the quality and accuracy of generated code. These results underline
CODELUTRA'’s potential as a cost-efficient and scalable solution for LLM code generation.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Anthropic. Claude: Conversational ai assistant, 2023. URL https://www.anthropic.com/
product.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Andrei Borzunov et al. Retrieval-augmented pretraining for large code models. arXiv preprint
arXiv:2401.00456, 2024.

Islem Bouzenia, Premkumar Devanbu, and Michael Pradel. Repairagent: An autonomous, llm-based
agent for program repair. arXiv preprint arXiv:2403.17134, 2024.

Tom Brown and Sarah Lee. Codestral-22b: A scalable language model for code generation. In
Proceedings of the 36th International Conference on Machine Learning, pp. 5678-5689. ICML,
2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877-1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Mark Chen, Jacob Tworek, et al. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374, 2021a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021b.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021c.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and Denny Zhou. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128, 2023.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning

converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024.

11

https://www.anthropic.com/product
https://www.anthropic.com/product

Under review as a conference paper at ICLR 2025

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in Neural Information Processing
Systems, 30, 2017.

Emily Dai and Ravi Kumar. Starcoder: An open-source code generation language model. arXiv
preprint arXiv:2305.00000, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Duanyu Feng, Bowen Qin, Chen Huang, Zheng Zhang, and Wenqiang Lei. Towards analyzing and
understanding the limitations of dpo: A theoretical perspective. arXiv preprint arXiv:2404.04626,
2024.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling
and synthesis. CoRR, abs/2204.05999, 2022.

Mohammad Gheshlaghi Azar et al. A general theoretical paradigm to understand learning from
human preferences. AISTATS, 2024.

Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. Impact of code language models on automated
program repair. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE), pp. 1430-1442. IEEE, 2023.

Julia Kreutzer, Joshua Uyheng, and Stefan Riezler. Reliability and learnability of human bandit
feedback for sequence-to-sequence reinforcement learning. Annual Meeting of the Association
for Computational Linguistics, pp. 1777-178, 2018.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data
science code generation. In International Conference on Machine Learning, pp. 18319-18345.
PMLR, 2023.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cy-
prien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. CoRR, abs/2203.07814, 2022.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and
Jialu Liu. Statistical rejection sampling improves preference optimization. arXiv preprint
arXiv:2309.06657, 2023.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne Longpre. Octopack: Instruc-
tion tuning code large language models. arXiv preprint arXiv:2308.07124, 2023.

12

Under review as a conference paper at ICLR 2025

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations, 2023.

OpenAl. Gpt-4 technical report, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730-27744, 2022.

Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, and Colin White.
Smaug: Fixing failure modes of preference optimisation with dpo-positive. arXiv preprint
arXiv:2402.13228, 2024.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. arXiv preprint arXiv:2404.19733, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2023.

Colin Raffel, Noam Shazeer, et al. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1-67, 2020.

Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with general
preferences. arXiv preprint arXiv:2404.03715, 2024.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Thibault Sellam, Dipanjan Das, and Ankur P Parikh. Bleurt: Learning robust metrics for text gener-
ation. arXiv preprint arXiv:2004.04696, 2020.

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan, Bing Geng, An Fu, Muhan Zeng, Ailun Yu,
Jichuan Ji, Jingyang Zhao, et al. Pangu-coder2: Boosting large language models for code with
ranking feedback. arXiv preprint arXiv:2307.14936, 2023.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008-3021, 2020.

Yunhao Tang et al. Generalized preference optimization: A unified approach to offline alignment.
ICML, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing Wang. Software test-

ing with large language models: Survey, landscape, and vision. IEEE Transactions on Software
Engineering, 2024a.

13

Under review as a conference paper at ICLR 2025

Li Wang, Ming Zhao, et al. Bird: A comprehensive benchmark for sql code generation across
diverse domains. arXiv preprint arXiv:2306.00000, 2023a.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. arXiv preprint
arXiv:2109.00859, 2021a.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. In Marie-Francine
Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November, 2021, pp. 8696—8708. Association for Com-
putational Linguistics, 2021b.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, and Steven C. H.
Hoi. Codet5+: Open code large language models for code understanding and generation. CoRR,
abs/2305.07922, 2023b.

Ziqi Wang et al. Codeinstruct: Enhancing code language models with instruction tuning. arXiv
preprint arXiv:2401.02345, 2024b.

Yuxiang Wei, Chungiu Steven Xia, and Lingming Zhang. Copiloting the copilots: Fusing large
language models with completion engines for automated program repair. In Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 172-184, 2023.

Chungiu Steven Xia and Lingming Zhang. Less training, more repairing please: revisiting automated
program repair via zero-shot learning. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 959—
971, 2022.

Chungiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated program repair in the era
of large pre-trained language models. In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), pp. 1482—-1494. IEEE, 2023.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi,
and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning.
arXiv preprint arXiv:2405.00451, 2024.

Wei Xiong, Hanze Dong, Chenlu Ye, Han Zhong, Nan Jiang, and Tong Zhang. Gibbs sam-
pling from human feedback: A provable kl-constrained framework for rlhf. arXiv preprint
arXiv:2312.11456, 2023a.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
kl-constraint. In Forty-first International Conference on Machine Learning, 2024.

Weimin Xiong, Yiwen Guo, and Hao Chen. The program testing ability of large language models
for code. arXiv preprint arXiv:2310.05727, 2023b.

Wei Xu and Li Zhang. Codellama: An open-source language model for code generation. arXiv
preprint arXiv:2304.00000, 2023.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang Lin, and Chang Zhou. Synthesizing text-
to-sql data from weak and strong llms. arXiv preprint arXiv:2408.03256, 2024.

Meng Yu et al. Simpo: Simple preference optimization with a reference-free reward. arXiv preprint
arXiv:2405.14734, 2024.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,

Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

14

Under review as a conference paper at ICLR 2025

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

Dylan Zhang, Shizhe Diao, Xueyan Zou, and Hao Peng. Plum: Preference learning plus test cases
yields better code language models. arXiv preprint arXiv:2406.06887, 2024a.

Yuhao Zhang, Yasharth Bajpai, Priyanshu Gupta, Ameya Ketkar, Miltiadis Allamanis, Titus Barik,
Sumit Gulwani, Arjun Radhakrishna, Mohammad Raza, Gustavo Soares, et al. Overwatch: Learn-
ing patterns in code edit sequences. Proceedings of the ACM on Programming Languages, 6
(OOPSLA2):395-423, 2022.

Yuhao Zhang, Shiqi Wang, Haifeng Qian, Zijian Wang, Mingyue Shang, Linbo Liu, Sanjay Krishna
Gouda, Baishakhi Ray, Murali Krishna Ramanathan, Xiaofei Ma, et al. Codefort: Robust training
for code generation models. arXiv preprint arXiv:2405.01567, 2024b.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for
code generation with multilingual evaluations on humaneval-x. CoRR, abs/2303.17568, 2023.

Xinwei Zhou, Qi Li, Xiao Wang, and Zhendong Li. Evalbench: A comprehensive benchmark
for evaluating software testing capabilities of large language models. Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2024.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

15

Under review as a conference paper at ICLR 2025

A MORE INFORMATION

A.1 PSEUDO CODE OF CODELUTRA

We summarize our algorithm in implementation in the Algorithm 1. The algorithm operates itera-
tively, generating code responses for each input and leveraging both correct and incorrect code sam-
ples to construct a preference dataset. These comparisons serve as the basis for model refinement,
where the model updates its parameters in each iteration. The process ensures that the model learns
not only from correct code solutions but also from common mistakes, thereby improving its ability to
generate high-quality code across diverse tasks. This iterative refinement, guided by self-generated
comparative data, distinguishes CODELUTRA from traditional supervised fine-tuning approaches.

Algorithm 1: CODELUTRA

Input : Training set D = {(z;,¥;)}"_; Initial base model 7p; Number of code responses per
input M ; Number of preference pairs per input K ; Number of iterations 7';
Hyperparameter \.

fort=0to7 — 1do

Initialize preference dataset Dy = (;

ForEachz; € D Initialize chosen code set YZ-(C) =0,

Initialize rejected code set Yl-(r) =0,
for k =1to M do
Generate response 5 ~ m(x;);
if Execution result of §¥ matches ground truth y; then
| Add g oY
else
| Add 9" o V",
for k =1to K do
Randomly sample §5* from V) (with replacement if |Y;()| < K);

Randomly sample §7* from Y," (with replacement if |Y,")| < K);
L Add (xw glck’ Q:k) to Dt»
Update model 7,4, by minimizing the combined loss:

Tyl = argming

7o (Y5 |i) We(y/"|xi))>}
~E(a, ye.yr)~D, |l0g0 ﬂ(b o o L
(wisyfy7) D/[& (gwt(yﬂxi) e (yf |7)

compare correct and incorrect solutions

-)‘E(zi,yf)NDt (IOg Uy (yzcmz))‘|) (7)

maximize likelihood for correct codes

A.2 EXAMPLES FOR DIFFERENT DATASETS.

We provide examples that highlight the tasks used to evaluate our framework. The first example
illustrates the Data Query task (see Figure 6), where models generate SQL queries from natural
language descriptions based on a given database schema. The second example showcases the Data
science task (see Figure 7), in which models write Python code to solve typical data manipulation
problems, such as processing a data frame. These examples reflect common real-world applications
of language models in both querying databases and performing data science operations.

16

Under review as a conference paper at ICLR 2025

Different answers from different models for the data query:

Database schema:
CREATE TABLE customers (CustomerID INTEGER UNIQUE not null

primary key, Segment TEXT null, Currency TEXT null);
CREATE TABLE gasstations (GasStationID INTEGER UNIQUE not null primary key
ChainID INTEGER null, Country TEXT null, Segment TEXT null);

(Omit other database information...)
Ground truth another:

SELECT T2.Consumption FROM transactions_1lk AS T1

INNER JOIN yearmonth AS T2 ON T1.CustomerID = T2.CustomerID
WHERE T1.Price / Tl.Amount > 29.00

AND T1.ProductID =5 AND T2.Date ="201208";

Figure 6: An example from the data query dataset from the BIRD (Wang et al., 2023a).

An example of data science from the DS1000 (I.ai et al., 2023):

Problem:

I have a simple dataframe which I would like to bin for every 4 rows.
It looks like this:

coll\n0 1\nl 1\n2 4\n3 5\n4 1\n5 4\n

and I would like to turn it into this:

coll\n0 11\nl 5\n

I have already posted a similar question here

but I have no idea how to port the solution to my current use case.

Can you help me out?
Solution:

def g (df) :
return df .groupby (df .index // 4) .sum()

result = g(df.copy())

Figure 7: An example of data science from the DS1000 (Lai et al., 2023).
A.3 MORE RESULTS

Models trained with the DPO loss are capa-

ble of assessing the quality of code answers. Table 4: Code quality assessment accuracy.
To prevent data leakage, we utilized the robust Methods Accuracy (%)
open-source model Codestral to generate multi- Supervised fine-tunin 563
ple samples on Bird’s test set, constructing pos- Pré)ference learning & 79' 6

itive and negative sample pairs based on exe-
cution accuracy. We evaluated the fine-tuned
LLM’s ability to accurately assess code quality by measuring the classification accuracy on this
dataset. Under the standard supervised fine-tuning (SFT) setting, the model achieved a classifica-
tion accuracy of 56%, which is close to random guessing and indicates that SFT alone lacks this
capability. In contrast, our CODELUTRA attain a classification accuracy of 79%, demonstrating that

17

Under review as a conference paper at ICLR 2025

our approach enables the model to better understand code characteristics and select correct answers.
This substantial improvement highlights the significant potential of CODELUTRA.

A.4 EXPERIMENTAL SETUP

Table 5 summarizes the training hyperparameters used for data query and data science tasks across
each iteration. It includes key training parameters such as learning rate, batch size, LoRA rank, etc.

Table 5: Summary of training hyperparameters for data query and data science for each iteration.

Parameters Value
Number of epochs 1
Learning rate 5x107°
B 0.1
Batch size 16

Data quer . .
query Gradient accumulation steps 1

Maximum sequence length 2048

DeepSpeed Zero stage 2

Weight decay 0.0001
LoRA rank 8

A 1.0
Number of epochs 1
Learning rate 5x107°
B 0.5
Batch size 16

Data science . .
Gradient accumulation steps 1

Maximum sequence length 512

DeepSpeed Zero stage 2
Weight decay 0.0001
LoRA rank 8

A 0.5

We set K=10 for each iteration, generating 10 positive and negative sample pairs per question.
To maintain quality when selecting incorrect samples, we filter out answers that contain repeated
strings.

B LIMITATION AND FUTURE WORK

While CODELUTRA significantly enhances code generation performance by leveraging self-
generated comparative data, it exhibits several limitations that warrant consideration. The current
framework primarily focuses on the correctness of the generated code, overlooking other vital as-
pects such as efficiency, readability, and adherence to specific formal specifications, which are essen-
tial for practical applications. Additionally, CODELUTRA treats all failed code attempts uniformly,
without distinguishing between different types or severities of errors, potentially limiting the model’s
ability to learn from more informative mistakes.

To address the aforementioned limitations, future research related to CODELUTRA should explore
several key directions. Expanding the preference-guided refinement mechanism to incorporate addi-
tional criteria such as code efficiency, readability, and compliance with formal specifications would
enhance the overall quality and utility of the generated code. Developing a more nuanced approach
to categorizing and prioritizing failed code attempts based on the type and severity of errors could
enable more targeted and effective learning, thereby improving the model’s ability to avoid simi-
lar mistakes in future generations. Exploring alternative evaluation methods, such as static code
analysis or formal verification tools, could reduce the framework’s reliance on execution results and
broaden its applicability to a wider range of tasks.

18

	Introduction
	Preliminaries
	CodeLutra
	Experiments
	Experimental Setup
	Main Results
	More experiments

	Further Analysis on CodeLutra
	Related Work
	Conclusion
	More information
	Pseudo code of CodeLutra
	Examples for different datasets.
	More results
	Experimental setup

	Limitation and future work

