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Abstract

Zero-shot cross-lingual Transfer (ZS-XLT) uti-001
lizes a model trained in a source language to002
make predictions in a target language. How-003
ever, this method often yields performance loss004
in the target language. To alleviate this loss, ad-005
ditional improvements can be achieved through006
subsequent fine-tuning using target demonstra-007
tions. In this paper, we exploit In-Context008
Tuning (ICT) for One-Shot cross-lingual trans-009
fer in the classification task by introducing In-010
Context Cross-lingual transfer (IC-XLT). The011
novel concept involves training a model to learn012
from context examples and subsequently adapt-013
ing it at inference to a target language using014
One-Shot context demonstrations target lan-015
guage. Remarkably, this adaptation process016
requires no fine-tuning for reducing the per-017
formance gap with the source language. Our018
results show that IC-XLT successfully lever-019
ages these demonstrations to improve the cross-020
lingual capabilities of the evaluated mT5 model,021
outperforming prompt-based fine-tuned models022
in the Zero and One-shot scenarios. Moreover,023
we show that when source language data is024
limited, the fine-tuning framework employed025
for IC-XLT performs comparably to Prompt-026
based fine-tuning with significantly more train-027
ing data in the source language. Hence, we also028
present a compelling alternative for One-Shot029
cross-lingual transfer in scenarios where com-030
putational resources or source-language data is031
constrained.032

1 Introduction033

The recent progress in the development of multilin-034

gual Language Models (LMs) has allowed for effec-035

tive cross-lingual transfer (XLT) with minimal need036

for architectural modifications (Pires et al., 2019;037

Xue et al., 2020). By simply training a multilingual038

model in a language with abundant resources its039

acquired knowledge can be extended to target lan-040

guages, in either zero-shot or few-shot scenarios.041

XLT is a significant topic as it addresses the preva- 042

lent challenge of data scarcity in languages other 043

than widely resourced ones, such as English (Joshi 044

et al., 2020). The ability to leverage the exten- 045

sive linguistic resources available in high-resource 046

languages to languages with limited training data 047

enables the deployment of truly inclusive NLP sys- 048

tems. 049

Zero-shot Cross-lingual Transfer (ZS-XLT) in- 050

volves transferring a model trained in a source 051

language to a target language without any demon- 052

stration of target-language examples (Chen et al., 053

2021; Pires et al., 2019). This approach is highly 054

modular, as it requires no adaptations specific to 055

the target language. On the other hand, Few-shot 056

Cross-lingual Transfer (FS-XLT) enhances target- 057

language accuracy by further fine-tuning a model 058

using labeled target data (Lauscher et al., 2020; 059

Zhao et al., 2021). However, this improvement 060

comes at the expense of additional computational 061

resources and reduced modularity compared to the 062

zero-shot approach. 063

Our perspective is that adapting to a target lan- 064

guage should prioritize resource efficiency and 065

modularity, where we can seamlessly deploy a sin- 066

gle model trained in English (or another source 067

language) across different languages without any 068

fine-tuning. In this work, we aim to improve this 069

aspect for the text classification task by eliciting 070

a multilingual model’s language-specific abilities 071

by prepending One-Shot text-label target language 072

demonstrations to the input text to predict the cor- 073

rect label. Specifically, we propose In-Context 074

Cross-lingual transfer (IC-XLT), a simple yet effec- 075

tive method for One-Shot Cross-Lingual Transfer 076

in Text Classification. 077

This novel approach employs In-Context Tun- 078

ing (ICT) (Chen et al., 2022) to train an encoder- 079

decoder model in the source language tasking it 080

to predict input texts with information derived 081

from context demonstrations. ICT is a meta- 082
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learning strategy that optimizes a model’s ability083

to learn from in-context examples, originally de-084

signed for facilitating swift adaptation to new tasks085

by prepending target-task in-context demonstra-086

tions to the input during the adaptation process. To087

the best of our knowledge, the first study of ICT088

application in the context of cross-lingual transfer.089

The proposed method is composed of a fine-090

tuning and an adaptation stage. Firstly, we fine-091

tune on the source language through ICT, where092

the model is trained for the classification task and093

also to learn from context demonstrations. Sec-094

ondly, we adapt to the target language at inference095

by prepending One-Shot1 demonstrations. Com-096

pared to other gradient-based FS-XLT techniques,097

this method is modular and cost-effective at the098

adaptation stage.099

We evaluate IC-XLT on two multilingual text100

classification datasets, spanning five target lan-101

guages, with English as the source language. We102

consider two distinct settings. First, we assume ac-103

cess to the entire source language training dataset.104

For the second setting, we deliberately constrain105

the amount of source training data available. This106

limitation aims to gauge the robustness of the pro-107

posed approach in scenarios where the availabil-108

ity of source data is restricted. We hypothesize109

that leveraging context information may prove par-110

ticularly beneficial in tasks where source data is111

limited.112

The contributions of this work are the following:113

1. IC-XLT as an effective strategy for One-114

Shot Cross-lingual transfer: By comparing115

the reduction in the transfer gap of One-Shot116

IC-XLT against ZS-XLT –a standard cross-117

lingual approach– we present empirical evi-118

dence that training a model in a source lan-119

guage with In-Context Tuning allows it to120

leverage One-Shot demostrations through In-121

Context Learning to adapt to a target language.122

This results in a One-Shot XLT approach that123

requires no gradient update for language adap-124

tation and can transfer at inference without125

modifying the model weights.126

2. ICT improves mT5 finetuning, especially127

when resources are limited. We observe that128

for the evaluated tasks, ICT training yields bet-129

ter performance compared to traditional fine-130

tuning, especially when (source language)131

1One-Shot per label

training data consists on few-shots per label. 132

In particular IC-XLT models trained on this 133

scenario (1) benefit from this behavior at the 134

adaptation and (2) leverage target language 135

in-context examples, achieving comparable 136

performance to Prompt Tuning transfer meth- 137

ods with significantly less source language 138

data. 139

2 Related work 140

2.1 Zero and Few-Shot Cross-lingual Transfer 141

Multilingual transformers, such as mBERT (De- 142

vlin et al., 2018), XLMR (Conneau et al., 2019), 143

and mT5 (Xue et al., 2020), have showcased no- 144

table ability in zero-shot cross-lingual transfer (ZS- 145

XLT) (Pires et al., 2019). In this paradigm, these 146

models are trained using abundant data in a source 147

language and subsequently undergo evaluation in 148

a target language without exposure to any train- 149

ing data in that specific language. However, this 150

methodology is susceptible to significant perfor- 151

mance variance (Keung et al., 2020), and the trans- 152

fer performance gap is contingent upon the lin- 153

guistic proximity between the source and target 154

languages (Pires et al., 2019). 155

Furthermore, recent studies indicate that incorpo- 156

rating a small number of annotated examples in the 157

target language can mitigate the performance gap 158

between the source and target languages (Lauscher 159

et al., 2020; Zhao et al., 2021; Schmidt et al., 160

2022). This methodology, termed few-shot cross- 161

lingual transfer (FS-XLT), involves first fine-tuning 162

a model on an extensive source dataset (as in ZS- 163

XLT), and then subjecting it to a second fine-tuning 164

on the reduced target language data, facilitating its 165

adaptation to this target language. This approach 166

yields a noticeable improvement in performance at 167

a relatively low labeling cost across various NLP 168

tasks (Lauscher et al., 2020). 169

Yet, according to (Schmidt et al., 2022), sequen- 170

tial FS-XLT can also exhibit unreliability in the 171

few-shot scenario due to considerable variance in 172

performance at different checkpoints during train- 173

ing. To address this issue, they propose jointly 174

training the model using both source and target 175

data in the adaptation stage of the process, which 176

improves stability in the few-shot setting. This fine- 177

tuned FS-XLT approach, however, has two notable 178

drawbacks. Firstly, it lacks modularity, as the mod- 179

els are trained specifically for the selected target 180

language during the adaptation stage. Secondly, 181
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there is a substantial increase in computational cost182

compared to zero-shot cross-lingual transfer due to183

the adaptation fine-tuning, whose cost scales with184

the size of the base model.185

Moreover, existing methods predominantly ad-186

dress the XLT task under the assumption of abun-187

dant data in the source languages. Although this is188

a fair assumption for many cases, as in general it is189

much more likely to find labeled datasets in high190

resource languages, there are scenarios where the191

source domain itself is limited.192

Instances of this include highly domain-specific193

tasks with a scarcity of annotated samples or tasks194

related to rapidly emerging trends and language195

patterns originated from social media, where la-196

beled data may be scarce. In such cases, it might197

be more feasible to find labelers for high-resource198

languages, which can then be transferred to other199

languages.200

Given these considerations, we believe it is perti-201

nent to investigate how the XLT performance scales202

as the quantity of available source data is system-203

atically reduced. The intuition behind this is that204

the introduction of target-language shots may alle-205

viate the performance decrease associated with a206

reducing source training data.207

2.2 In-Context Learning and Language208

Models209

LMs have demonstrated an aptitude for learning210

from a small number of demonstrations through211

a method known as In-Context Learning (ICL)212

(Brown et al., 2020), where model is tasked with213

predicting an input prepended with labeled exam-214

ples. Particularly, (Winata et al., 2021) observed215

that it is possible to achieve satisfactory perfor-216

mance in a cross-lingual setting when evaluating217

a mT5 model with a target-language input pre-218

fixed with labeled English demonstrations. This219

zero-shot approach, although efficient, can be sub-220

optimal as it does not take fully advantage of re-221

sources in the source language due to the lack of222

fine-tuning.223

Recent findings indicate that transformers224

(Vaswani et al., 2017) can perform model selec-225

tion on functions encountered during pre-training226

through in-context demonstrations. Yet, they still227

find challenging in generalizing effectively to out-228

of-distribution classes, as highlighted by (Yad-229

lowsky et al., 2023). Given that most pre-trained230

LMs have not been explicitly trained for ICL, they231

might exhibit sub-optimal behavior when presented232

with few-shot demonstrations. In response to this 233

challenge, the authors of (Chen et al., 2022) intro- 234

duce In-Context Tuning (ICT), a meta-learning2 235

approach designed to train a model to effectively 236

learn from in-context demonstrations3. ICT meta- 237

trains a language model across a range of tasks, 238

enhancing its ability to swiftly adapt to new tasks 239

through ICL. 240

Still, In-Context Tuning has not yet been imple- 241

mented for language transfer, as opposed to task 242

transfer. We hypothesize that training a multilin- 243

gual model concurrently for learning from input 244

context and the classification task can leverage mul- 245

tilingual knowledge acquired during pretraining. 246

This, we anticipate, will result in enhanced clas- 247

sification performance in a target language when 248

provided with examples in that language. There- 249

fore, in this study we showcase the efficacy of this 250

idea for One-Shot Cross-lingual Transfer, partic- 251

ularly, for adapting to a target language through 252

one-shot demonstrations in-context. This adapta- 253

tion method proves effective in improving the clas- 254

sification performance and minimizing the transfer 255

gap compared to the Zero-Shot setting. Moreover, 256

we delve into the advantages of employing this ap- 257

proach in scenarios where source task data is not 258

abundant. 259

3 Our proposed approach: In-Context 260

Cross-Lingual Transfer 261

Our method aims to simultaneously train a pre- 262

trained multilingual encoder-decoder model for (1) 263

a downstream text classification task, and (2) learn- 264

ing from context demonstrations. Then, we expect 265

it to be able to generate predictions in a target lan- 266

guage by including context demonstrations in this 267

language. Therefore, we reframe the ICT meta- 268

learning objective by focusing on the transfer be- 269

tween languages rather than tasks. As described 270

above, our proposed procedure, called In-Context 271

Cross-lingual Transfer (IC-XLT), is comprised of 272

two stages: 273

In-Context Tuning During the meta-training
stage, we fine-tune the base multilingual

2Meta-learning strategies aim to develop systems that
rapidly adapt to new tasks using minimal data instances. In par-
ticular, model-based meta-learning focuses on training models
to quickly learn from these demonstrations (Nooralahzadeh
et al., 2020).

3Also, ICT consistently improves performance of ICL and
is less sensitive to the shot selection when compared to raw,
pre-trained LMs. (Chen et al., 2022)
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model for a specific task using data from
the source language. Let the set of pairs
Dsrc = {(xsrc1 , ysrc1 ), . . . , (xsrc|D|, y

src
|D|)} represent

the source-language training dataset. The objective
is to train the model to predict the label ysrci for a
given text xsrci with the following input⇒output
format:

Xsrc, xsrci ⇒ ysrci

Here, Xsrc = ((xj1 , yj1), . . . , (xjM , yjM )) is a274

random sequence of M text-label pairs randomly275

sampled from Dsrc without replacement, which276

excludes the pair (xsrci , ysrci ).277

In-Context Learning At inference, we adapt to a278

target language by prepending the samples from the279

one-shot target language training dataset D̃tgt =280

{(x̃tgt1 , ỹtgt1 ), . . . , (x̃tgtN , ỹtgtN )} to each entry xtgti of281

the test set to predict ytgti . Consequently, the input282

format mirrors the structure observed in the ICT283

stage:284

X̃tgt, xtgti ⇒ ytgti

Where the sequence X̃tgt is a random permu-285

tation of D̃tgt comprising the one-shot samples,286

prepended to each xtgti entry at the inference stage.287

The intuitive idea for this approach is that, af-288

ter the meta-training stage, we expect the model289

to understand both the classification task and the290

contextual relationships relevant to it. During the291

adaptation stage, the model leverages its multilin-292

gual pretraining to interpret context examples in293

the target language. Note that the adaptation to the294

target language in this context does not involve any295

gradient updates, as it occurs solely at the inference296

stage.297

4 Experimental Methodology298

In this section, we outline the methodology em-299

ployed to evaluate the proposed approach. We as-300

sess IC-XLT effectiveness in adapting to a target301

language for the classification task and compare its302

performance in cross-lingual transfer under (1) full303

training data on the source language and (2) various304

source language data budgets. We conduct these305

limited data experiments to assess how much IC-306

XLT improves over a traditional fine-tuning method307

by leveraging the One-Shot demonstrations.308

4.1 Data and Evaluation Metrics309

We conduct evaluations on two mutlilingual text310

classification datasets. The first dataset is Aspect311

Train Test
English 2000 676
Spanish 2070 881
French 1664 668
Turkish 1232 144
Russian 3655 1209
Dutch 1722 575

Table 1: Length of the training and test partitions in the
Aspect Category Detection Dataset.

Category Detection (ACD) on Restaurant Reviews 312

(Pontiki et al., 2016), a multi-label dataset com- 313

prising 12 classes representing different aspects 314

mentioned in reviews. The second dataset is Do- 315

main Classification on assistant utterances from 316

the MASSIVE dataset (FitzGerald et al., 2022), a 317

single-label classification dataset with 18 possible 318

domain classes. The datasets were chosen for their 319

larger number of labels and their availability in 320

multiple languages with shared labels. MASSIVE 321

features parallel language splits, each comprising 322

11.5k samples in the training partition and 2.97k in 323

the test partition. 324

However, for the Aspect Category Detection 325

dataset, which is non-parallel, the sample counts 326

vary across languages. Detailed information on 327

these counts is presented in Table 1. 328

We select F1 micro as our evaluation metric, fol- 329

lowing (Pontiki et al., 2016). For both datasets, 330

our model is trained in English as the source lan- 331

guage, and its performance is evaluated across 5 332

target languages: Dutch, Turkish, Russian, French, 333

and Spanish for ACD, and Thai, Turkish, Russian, 334

French, and Spanish for MASSIVE. 335

To evaluate the performance of our proposed 336

In-Context Cross-Lingual Transfer (IC-XLT) ap- 337

proach in a resource-constrained source scenario, 338

we construct synthetically reduced datasets by sam- 339

pling subsets of the training datasets following 340

various k-shot configurations, specifically Ksrc ∈ 341

{8, 16, 32, 64}. The objective of these evaluations 342

is to assess IC-XLT’s ability to leverage one-shot 343

target demonstrations for enhancing performance 344

in situations where the source language task has 345

limited resources. 346

4.2 Shot selection 347

Similar to (Zhao et al., 2021), with "K-shot" we 348

refer to selecting K examples for each of the N 349

classes. The examples are randomly sampled from 350

the training splits of the datasets. Note that the 351

number of shots per label may not precisely be 352
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K due to underrepresented classes in the training353

set. This holds true for the ACD dataset, where354

certain classes may have insufficient samples to355

meet the per-class K value. In such cases, the356

total number of shots per i-th class is determined357

as min (K, |Ci|), where |Ci| represents the total358

number of samples for the i-th class in the dataset.359

Furthermore, since the ACD task involves a360

multi-label dataset, multi-label examples may add361

to more than one of the N buckets simultaneously.362

Hence, the total number of examples in a k-shot363

dataset is ≤ (k × |C|) where C is the number of364

classes.365

4.3 Experimental Setting366

As our multilingual base model, we utilize mT5367

(1.2B) (Xue et al., 2020), an encoder-decoder368

model pre-trained on a diverse corpus encompass-369

ing over 100 languages. We employ LoRA (Hu370

et al., 2021) for fine-tuning the model on the source-371

language data with varying numbers of shots Ksrc.372

During the inference stage, label predictions are373

generated through text generation, which facilitates374

multi-label inference. We adopt a greedy decoding375

strategy as implemented in Wolf et al., (Wolf et al.,376

2020).377

We train the ICT models in the source language378

with different number of context examples, especif-379

ically M = 10 and M = 20.380

All models are trained on an NVIDIA Titan RTX381

GPU for 35 epochs employing a batch size of 8.382

We assessed learning rates within the range {1 ×383

10−3, 5 × 10−4, 1 × 10−4} for fine-tuning mT5,384

and selected 5× 10−4 as it performed adequately385

for both evaluation datasets in the source language.386

The LoRA (Hu et al., 2021) parameters are r =387

16, α = 32, with dropout of 10%.388

We conduct evaluations using two seeds for each389

of the following: the fine-tuning process, Ksrc shot390

selection, and Ktgt shot selection. Since zero-shot391

approaches do not require selecting target shots,392

we run a total of 4 and 8 runs for zero-shot and393

one-shot respectively. For the limited source data394

training runs, we utilized seeds within {1, 2}. For395

the models trained with full source-language data,396

we trained 5 models with seeds within {1, ..., 5}397

and selected the best 3 in the English validation set.398

4.4 Baselines399

We benchmark our proposed approach against the400

following baseline methods, each exclusively uti-401

lizing either the source or target data:402

(1S) One-shot Prediction Leveraging mT5’s pre- 403

training objective, we task the model with predict- 404

ing the missing span corresponding to the correct 405

label given an input text prepended with one-shot 406

demonstrations. We expect the model to deduce 407

label meanings from the examples without undergo- 408

ing source-language fine-tuning. This experiment 409

aims to assess the model’s proficiency in one-shot 410

prediction without any training, similar to the idea 411

introduced in (Winata et al., 2021), serving as the 412

lower bound when Ksrc = 0. 413

(ZS-XLT) Zero Shot XLT The standard Zero- 414

Shot (Ktgt = 0) Cross-lingual Transfer approach, 415

where the model is initially trained on a source 416

language, and subsequent inference is conducted 417

on the target language without any additional tun- 418

ing. In this case, we train the mT5 model through 419

Prompt-based fine-tuning (PFT), with the input- 420

output form: 421

xi ⇒ yi 422

Hence, training is performed at the source and infer- 423

ence at target languages, with no access to source. 424

(1S-XLT) One Shot XLT Using the same train- 425

ing scheme (PFT), we continue fine-tuning on the 426

checkpoints from the previous baseline, training 427

with One-Shot per label in the target language. 428

The training is conducted for 50 epochs with a 429

learning rate of 5 × 10−6. This approach is the 430

standard gradient-based approach for adapting to a 431

target language in Few-Shot Cross-Lingual Trans- 432

fer (Lauscher et al., 2020). Although larger values 433

for the number of target language shots Ktgt could 434

be considered, it is outside the scope of this work, 435

which is delimited to the One-shot setting. 436

(IC-XLTSRC) IC-XLT with source-language 437

context We use the same models trained for IC- 438

XLT, however, in this method In-Context exam- 439

ples are not drawn from the target language but 440

from the source language used for their training. In 441

essence, this can be considered a Zero-Shot base- 442

line since no target language is involved for adap- 443

tation. Through this baseline we aim to evaluate 444

the relevance of the target language One-Shot sam- 445

ples at the adaptation stage, assessing whether they 446

are necessary for successful transfer to that target 447

language. 448

5 Results and analysis 449

IC-XLT performance at Cross-lingual transfer 450

For the first experiment, we compare our proposed 451
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MASSIVE
Method ENG (SRC) TUR THA SPA FRA RUS
1S 39.41±1.14 33.74±0.25 33.5±4.15 32.09±1.04 30.64±2.27 26.04±7.1

ZS-XLT
86.57±1.17

64.23±5.58 70.09±2.97 72.49±1.5 74.94±1.03 74.64±2.9

1S-XLT 64.14±5.06 70.08±2.87 72.36±1.51 74.95±0.8 74.55±2.73

IC-XLTSRC 89.45±0.34
69.39±2.13 78.02±0.58 77.55±0.89 79.96±1.5 82.63±0.99

IC-XLT 78.32±2.41 78.87±0.5 80.63±1.76 83.47±1.02 83.41±1.1

ACD
ENG (SRC) TUR NLD SPA FRA RUS

1S 37.38±4.7 19.52±5.1 20.51±1.79 34.76±5.94 31.84±5.55 34.02±2.64

ZS-XLT
76.6±1.13

61.72±5.12 66.37±1.25 65.96±1.49 65.42±0.99 68.88±1.21

1S-XLT 62.01±4.7 66.69±1.19 66.08±1.28 65.84±0.57 69.12±1.0

IC-XLTSRC 81.68±0.65
70.14±3.97 70.05±1.55 72.83±0.28 73.57±0.74 75.67±0.62

IC-XLT 76.83±1.66 71.5±1.5 74.32±0.32 74.88±1.51 76.01±1.02

Table 2: Average F1 micro in the two evaluated datasets, trained with full data in English, the source language. Here,
± is the standard deviation of the different runs. The ICT Methods (IC-XLTSRC and IC-XLT) are for M = 20.

approach, IC-XLT, to the baselines detailed in Sec-452

tion 4.4 using the full training set in the source453

language. We observed a general trend where mT5454

models trained with In-Context Tuning, which em-455

ploys the input-output setting X̃, xi ⇒ yi, consis-456

tently outperformed models subjected to Prompt-457

based fine-tuning with xi ⇒ yi under the same458

training regimes, despite both models being trained459

for an equivalent number of steps and exact same460

data instances. We hypothesize that this superior461

performance may be attributed to the fact that the462

ICT-trained models see M randomly ordered input-463

output examples at each instance, even though they464

are tasked with predicting only xi.465

The significant increase in performance observed466

in the source language benefits evaluations in the467

target languages after the adaptation stage. We468

present the F1 micro scores across five different lan-469

guages on the Aspect Category Detection (ACD)470

and MASSIVE datasets in Table 2. We observe471

that IC-XLT effectively outperforms the evaluated472

baselines by a substantial margin in the evalu-473

ated datasets, greatly improving mT5 cross-lingual474

transfer performance. A crucial observation is that475

for both of the evaluated datasets there is a notice-476

able increase in performance from IC-XLTSRC to477

IC-XLT. This means that the proposed approach is478

effectively taking advantage of the One-Shot tar-479

get language demonstrations for adapting to it at480

inference at the In-Context Learning stage.481

On the other hand, the 1S-XLT approach, which482

is further fine-tuned on One-Shot target samples,483

did not improve over ZS-XLT by an important mar-484

gin. While a small improvement is observable for485

the ACD task, there is also a minor performance de-486

crease for the MASSIVE dataset. This result could 487

be attributed to the limited number of samples avail- 488

able for the fine-tuning process, as only one shot 489

per label is employed. Since we do not observe a 490

noticeable improvement of 1S-XLT over ZS-XLT 491

in the full training data experiments, and adapting 492

the former requires further fine-tuning, we com- 493

pare IC-XLT with ZS-XLT in the limited-resource 494

scenario. 495

Performance with limited source-language data 496

We conduct experiments to quantify the ability 497

of IC-XLT to perform at scenarios with limited 498

source language resources. For this we evaluate 499

IC-XLT and ZS-XLT models trained with Ksrc ∈ 500

{8, 16, 32, 64}. We noticed that models trained 501

with the ICT framework generally perform better 502

compared to PFT for low values of Ksrc. In Figures 503

1b and 1a, we illustrate the average performance per 504

target language in the datasets at different source- 505

language resource availability regimes. The plot 506

shows evaluations for ZS-XLT (PFT training) and 507

IC-XLT (ICT training). We can see that ICT makes 508

better use of resources than Prompt-based fine- 509

tuning specially at at smaller values for Ksrc for 510

both datasets, although this is especially notable in 511

MASSIVE. Furthermore, the performance differ- 512

ence with the source language (English) is visibly 513

smaller for ICT training, more discussion on this 514

can be found below. 515

The F1-micro averages for the target languages 516

are shown in Tables 3 and 4 for ACD and MAS- 517

SIVE respectively. We can observe that models 518

trained on limited data achieve competitive or su- 519

perior performance compared to ZS-XLT models 520

trained with full source datasets (See Appendix A 521
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(a) MASSIVE performance with different souce data avail-
ability. IC-XLT trained with M = 10.

(b) ACD performance with different souce data availability.
IC-XLT trained with M = 10.

Figure 1: Comparison of IC-XLT and ZS-XLT performance at different source language data budgets. We can
observe that, in general, the IC-XLT models yield better performance compared to ZS-XLT. This is especially
notable at lower resource scenarios.

for the complete tables with results in each target522

language). Given that the adaptation to each tar-523

get language occurs at inference, the improvement524

over ZS-XLT comes at no extra computational cost525

and at a minimal data cost. This allows to achieve526

good performance with limited computational and527

data resources.528

We find that, for models trained on full data,529

M = 20 (the number of in-context demonstrations530

during ICT training) performs slightly better on531

the Aspect Category Detection (ACD). For models532

trained with lower resources, M = 20 performs533

suboptimally compared to traditional fine-tuning534

and M = 10 in ACD, but achieves a better perfor-535

mance in MASSIVE. We believe that since ACD536

contains only 12 labels, a context length of 20 will537

inevitably prepend more repeated context examples538

than the MASSIVE dataset4 when training with539

limited data. This reduced variability may hurt the540

model’s performance compared to M = 10.541

Measuring the transfer gap with the source lan-542

guage. By measuring the performance gap be-543

tween the source language and the target language,544

we aim to quantify the contribution of the ICT545

training framework and One-Shot target demon-546

strations for mitigating this gap. As we provide the547

model with target language examples, we antici-548

pate a smaller decrease in performance from the549

source language when adapting to a new language,550

compared to ZS-XLT. We can measure this by com-551

puting the average transfer gap ∆̄%, which is the552

4Which contains 18.

Ksrc 1S
0 28.13±7.49

ZS-XLT
IC-XLT

M = 10 M = 20
8 25.4±5.02 33.34±3.59 16.64±2.44

16 30.84±3.44 48.66±3.66 47.04±1.81

32 43.56±1.81 58.91±1.93 61±1.51

64 55.15±1.34 65.64±1.79 65.28±1.27

Full 65.67±2.3 73.4±1.68 74.71±1.83

Table 3: Average F1 micro across 5 target languages for
Aspect Category Detection. In this table, ± refers to the
standard deviation of the means of different language.

average percentage decrease in performance rela- 553

tive to the evaluations on the test set in the source 554

language (English): 555

∆̄% = 100×E

[
Ptgt lang

Psrc lang
− 1

]
556

where Ptgt lang and Ptgt lang represent the eval- 557

uation performance of the exact same model on 558

the target and source test sets, respectively. The 559

performance gap values are shown in Figures 2a 560

and 2b for ACD and MASSIVE respectively. We 561

can observe that in almost all cases and all source 562

language data budgets we obtain a reduced aver- 563

age transfer gap ∆% through IC-XLT compared to 564

ZS-XLT. 565

We find that ∆% for IC-XLT models can be re- 566

duced by a very significant margin especially in 567

target languages linguistically distant from English 568

such as Turkish or Thai. The obtained ∆% val- 569

ues, as well as the performance improvement from 570

IC-XLTSRC to IC-XLT shown in Table 2, under- 571

7



(a) ∆̄% of the target languages vs English in the Aspect
Category Detection dataset.

(b) ∆̄% of the target languages vs English in the MAS-
SIVE domain detection dataset.

Figure 2: The average transfer gap ∆̄% of IC-XLT and ZS-XLT at different source language data budgets. (IC-XLT
M = 10). We can observe that, for most cases, IC-XLT yields a smaller drop in performance after transfering to a
target language compared to ZS-XLT.

Ksrc 1S
0 31.2±3.14

ZS-XLT
IC-XLT

M = 10 M = 20
8 49.25±2.14 64.66±1.78 68.05±1.39

16 56.46±2.52 72.34±1.74 75.44±1.55

32 70.65±2.68 76.48±2.02 78.95±1.78

64 69.66±3.38 80.5±2.07 81.54±1.52

Full 71.28±3.93 81.42±1.59 80.94±2.18

Table 4: Average F1 micro across 5 target languages
for MASSIVE (Domain Classification). In this table, ±
refers to the standard deviation of the means of different
language.

score that introducing in-context target language572

examples through IC-XLT effectively mitigates the573

transfer gap.574

6 Conclusion575

In this paper, we investigated the application of In-576

Context Tuning for One-Shot Cross-lingual trans-577

fer, introducing In-Context Cross-lingual Transfer578

(IC-XLT). Our evaluations conducted on an mT5579

model demonstrate the efficacy of the proposed580

method in effectively adapting at inference to tar-581

get languages using only one-shot demonstrations582

in-context, all without incurring additional com-583

putational expenses. Furthermore, in comparison584

to ZS-XLT and 1S-XLT, IC-XLT exhibits a better585

performance and smaller transfer gap.586

In scenarios with limited source-language train-587

ing data, we provide empirical evidence that IC-588

XLT learns better the source language at the meta-589

training stage and demonstrates a smaller trans- 590

fer gap at the adaptation stage with the one-shot 591

demonstration, compared to ZS-XLT. This makes 592

IC-XLT a valuable tool for cross-lingual transfer in 593

resource-limited scenarios. 594

To the best of our knowledge, this is the first 595

study on the application of In-Context Tuning to 596

Cross-Lingual Transfer. For future work, we aim 597

to explore the potential and limitations of this ap- 598

proach by evaluating its applicability to other ar- 599

chitectures, such as decoder-only or encoder-only 600

models, and examining the impact of training with 601

a greater number of examples in-context. 602

7 Limitations 603

In this study, we implement our approach using an 604

mT5-large encoder-decoder model. However, an 605

evaluation of its applicability to encoder-only or 606

decoder-only models remains unexplored and it is 607

left for future work. Furthermore, due to storage 608

constraints and the need to conduct experiments 609

across diverse seeds and training data budgets, we 610

opted to fine-tune the models using LoRA (Hu 611

et al., 2021). While some variability compared 612

to the fully trained model is expected with this 613

architectural choice, empirical evidence from (Hu 614

et al., 2021) suggests that its impact is minimal. 615

Finally, it is important to outline that due to the 616

maximum input length of mT5 (1024), scaling IC- 617

XLT is to a larget number of target language shots 618

(e.g Ktgt ∈ {4, 8, 16}) may prove difficult using 619

the current approach. This challenge is particularly 620

8



pronounced in scenarios with a substantial number621

of labels, where input text may need to be truncated.622

Consequently, there is a need to devise a strategy to623

either reduce input length or integrate information624

from different example batches in order to address625

this limitation.626
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A Appendix769

A.1 Performance metrics per language on the770

limited data experiments.771

In this section we show the complete results of772

evaluations in the different target languages with773

ZS-XLT and One-shot IC-XLT. Table 5 illustrates774

the cross-lingual transfer performance of the evalu-775

ated models with English as the source language.776

Similarly, the results on the MASSIVE dataset are777

shown in Table 6, also with English as the source778

language.779

A.2 Evaluations in Russian and Turkish780

Although the main focus of this work is to eval-781

uate cross-lingual transfer with English as source782

language, we include –smaller– evaluations on the783

ACD dataset with Russian and Turkish as source784

languages. With these evaluations we aim to fur-785

ther demonstrate the effectiveness of our approach786

across languages and explore the potential for cross- 787

lingual transfer in various language pairs. We evalu- 788

ate Ktgt = 64 and full training data. In Table 7, we 789

compare their performance in the source language 790

with the average performance in the target lan- 791

guages on the Aspect Category Detection dataset. 792

We also observe an important improvement com- 793

pared to ZS-XLT and a reduction in the average 794

transfer gap for most of the target languages when 795

employing IC-XLT (See Figure 3). This reduction 796

in the transfer gap, particularly pronounced in the 797

case of Ksrc = 64, highlights the significance of 798

target-shots, especially when working with limited 799

source data. Also, we include the evaluations in 800

Russian and Turkish in the ACD dataset, displayed 801

in Table 7. 802

A.3 Licences of systems and datasets 803

In this work, the tools utilized include an mT5 804

model and the transformers library (Wolf et al., 805

2020), both of which use the Apache 2.0 license. 806

The MASSIVE dataset, on the other hand, oper- 807

ates under a CC by 4.0 license. As for the Aspect 808

Category Detection dataset, it employs a MS-NC- 809

No ReD license, which limits its usage strictly to 810

an academic scope. Since the aim of this work is 811

to evaluate the performance of a proposed cross- 812

lingual system, we adhere to all the licenses of the 813

utilized material. 814

The research presented in this paper is intended 815

for academic purposes, and therefore, we adhere to 816

the licenses governing all utilized materials. 817
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Target Language
Ksrc ENG FRA NLD SPA TUR RUS

IC-XLT (M = 10)
Ksrc = 8 34.71±7.33 32.24±4.16 30.62±6.04 31.04±12.53 32.41±8.23 40.4±7.85

Ksrc = 16 52.08±11.85 49.71±11.04 45.86±9.55 48.69±9.92 44.2±9.68 54.83±5.18

Ksrc = 32 60.45±8.84 59.38±5.55 55.23±5.6 59.06±5.06 60.66±9.33 60.21±2.98

Ksrc = 64 69.84±1.32 67.2±1.49 62.32±1.1 66.33±0.98 67.04±2.92 65.32±0.62

Full data 80.28±1.03 73.76±0.24 71.91±1.64 72.73±1.94 72.1±3.89 76.51±0.56

IC-XLT (M = 20)
Ksrc = 8 23.66±6.16 17.12±13.05 15.17±6.96 13.49±8.87 20.83±13.2 16.58±11.33

Ksrc = 16 41.19±9.22 48.24±4.75 44.89±6.13 47.26±8.59 45.17±8.6 49.64±4.95

Ksrc = 32 63.25±2.36 61.37±2.49 58.01±1.44 61.74±1.3 61.85±5.97 62.05±1.53

Ksrc = 64 70.01±1.77 65.86±1.28 63.1±0.79 65.34±1.18 66.98±2.66 65.12±0.96

Full data 81.68±0.65 74.88±1.51 71.5±1.5 74.32±0.32 76.83±1.66 76.01±1.02

ZS-XLT
Ksrc = 8 29.49±2.06 26.1±1.46 21.19±3.74 31.99±2.46 18.4±4.34 29.32±2.84

Ksrc = 16 33.73±4.12 32.24±3.63 28.73±6.76 34.96±4.48 25.27±7.68 33.02±3.22

Ksrc = 32 49.05±5.33 45.41±4.68 40.44±4.68 43.37±4.73 43.28±3.93 45.31±5.9

Ksrc = 64 60.45±3.3 55.07±2.46 53.49±1.88 53.9±3.4 56.96±3.02 56.35±1.23

Full data 76.6±1.13 65.42±0.99 66.37±1.25 65.96±1.49 61.72±5.12 68.88±1.21

Table 5: Average per language across the different runs for evaluations under different resource budgets for the
Aspect Category Detection dataset. In here, ± refers to the standard deviation of the performance on the conducted
runs.

Target Language
Ksrc ENG FRA THA SPA TUR RUS

IC-XLT (M = 10)
Ksrc = 8 73.36±0.92 67.12±1.62 61.81±2.62 65±1.37 63.79±2.42 65.57±2.6

Ksrc = 16 80.54±0.99 74.81±1.81 70.48±2.28 71.74±2.7 70.72±2.4 73.95±2.8

Ksrc = 32 84.22±0.62 80±0.73 74.33±1.03 76.54±0.66 74.68±0.97 76.83±0.94

Ksrc = 64 86.75±0.29 82.99±0.78 78.26±0.56 80.75±1.2 78.02±0.9 82.49±0.89

Full data 89.22±0.37 82.93±1.38 79.87±0.9 81.34±1.33 79.48±1.15 83.46±1

IC-XLT (M = 20)
Ksrc = 8 73.24±2.71 67.26±3.72 66.53±2.65 67.04±3.46 70.03±3.31 69.41±3.01

Ksrc = 16 82±1.37 75.98±1.83 72.55±0.81 75.4±1.5 76.18±1.43 77.11±1.51

Ksrc = 32 85.03±0.52 80.06±1.06 76.1±2.19 78.68±1.2 78.46±1.28 81.43±1.16

Ksrc = 64 87.18±0.66 83.29±0.79 79.36±0.97 81.06±1.33 80.75±1.52 83.24±0.8

Full data 89.45±0.34 83.47±1.02 78.87±0.5 80.63±1.76 78.32±2.41 83.41±1.1

ZS-XLT
Ksrc = 8 62.93±1.5 52.11±0.77 46.05±0.15 51.05±0.8 48.24±0.99 48.8±1.05

Ksrc = 16 70.52±7.24 59.71±7.75 53.49±7.93 58.39±7.04 53.6±5.47 57.1±7.63

Ksrc = 32 81.72±1.39 73.72±1.88 69±2.74 72.12±1.64 66.26±1.79 72.15±2

Ksrc = 64 81.71±2.81 72.78±5.1 67.6±5.01 71.83±4.43 63.97±5.46 72.11±5.17

Full data 86.57±1.17 74.94±1.03 70.09±2.97 72.49±1.5 64.23±5.58 74.64±2.9

Table 6: Average per language across the different runs for evaluations under different resource budgets in the
MASSIVE Domain Classification Task. In here, ± refers to the standard deviation of the performance on the
conducted runs.
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Russian as source Turkish as Source
Method Ksrc Russian Avg target Turkish Avg target
ZS-XLT 64 60.66±4.65 52.73±3.64 62.42±3.12 54.97±1.73

IC-XLT 64 68.33±1.06 65.12±1.67 67.45±7.56 63.69±1.78

ZS-XLT full 74.55±4.43 61.31±3.61 63.46±4.34 55.25±1.1

IC-XLT full 81.7±1.17 70.84±2.17 80.79±2.5 71.18±2.21

Table 7: Average performance on the target languages on Turkish and Russian as source. For this experiments we
set M = 10

(a) ∆̄% with Russian as source language. (b) ∆̄% with Turkish as source language.

Figure 3: Average transfer gaps in Turkish and Russian.
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