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Abstract

Zero-shot cross-lingual Transfer (ZS-XLT) uti-
lizes a model trained in a source language to
make predictions in a target language. How-
ever, this method often yields performance loss
in the target language. To alleviate this loss, ad-
ditional improvements can be achieved through
subsequent fine-tuning using target demonstra-
tions. In this paper, we exploit In-Context
Tuning (ICT) for One-Shot cross-lingual trans-
fer in the classification task by introducing In-
Context Cross-lingual transfer (IC-XLT). The
novel concept involves training a model to learn
from context examples and subsequently adapt-
ing it at inference to a target language using
One-Shot context demonstrations target lan-
guage. Remarkably, this adaptation process
requires no fine-tuning for reducing the per-
formance gap with the source language. Our
results show that IC-XLT successfully lever-
ages these demonstrations to improve the cross-
lingual capabilities of the evaluated mT5 model,
outperforming prompt-based fine-tuned models
in the Zero and One-shot scenarios. Moreover,
we show that when source language data is
limited, the fine-tuning framework employed
for IC-XLT performs comparably to Prompt-
based fine-tuning with significantly more train-
ing data in the source language. Hence, we also
present a compelling alternative for One-Shot
cross-lingual transfer in scenarios where com-
putational resources or source-language data is
constrained.

1 Introduction

The recent progress in the development of multilin-
gual Language Models (LMs) has allowed for effec-
tive cross-lingual transfer (XLT) with minimal need
for architectural modifications (Pires et al., 2019;
Xue et al., 2020). By simply training a multilingual
model in a language with abundant resources its
acquired knowledge can be extended to target lan-
guages, in either zero-shot or few-shot scenarios.

XLT is a significant topic as it addresses the preva-
lent challenge of data scarcity in languages other
than widely resourced ones, such as English (Joshi
et al.,, 2020). The ability to leverage the exten-
sive linguistic resources available in high-resource
languages to languages with limited training data
enables the deployment of truly inclusive NLP sys-
tems.

Zero-shot Cross-lingual Transfer (ZS-XLT) in-
volves transferring a model trained in a source
language to a target language without any demon-
stration of target-language examples (Chen et al.,
2021; Pires et al., 2019). This approach is highly
modular, as it requires no adaptations specific to
the target language. On the other hand, Few-shot
Cross-lingual Transfer (FS-XLT) enhances target-
language accuracy by further fine-tuning a model
using labeled target data (Lauscher et al., 2020;
Zhao et al., 2021). However, this improvement
comes at the expense of additional computational
resources and reduced modularity compared to the
zero-shot approach.

Our perspective is that adapting to a target lan-
guage should prioritize resource efficiency and
modularity, where we can seamlessly deploy a sin-
gle model trained in English (or another source
language) across different languages without any
fine-tuning. In this work, we aim to improve this
aspect for the text classification task by eliciting
a multilingual model’s language-specific abilities
by prepending One-Shot text-label target language
demonstrations to the input text to predict the cor-
rect label. Specifically, we propose In-Context
Cross-lingual transfer (IC-XLT), a simple yet effec-
tive method for One-Shot Cross-Lingual Transfer
in Text Classification.

This novel approach employs In-Context Tun-
ing (ICT) (Chen et al., 2022) to train an encoder-
decoder model in the source language tasking it
to predict input texts with information derived
from context demonstrations. ICT is a meta-



learning strategy that optimizes a model’s ability
to learn from in-context examples, originally de-
signed for facilitating swift adaptation to new tasks
by prepending target-task in-context demonstra-
tions to the input during the adaptation process. To
the best of our knowledge, the first study of ICT
application in the context of cross-lingual transfer.

The proposed method is composed of a fine-
tuning and an adaptation stage. Firstly, we fine-
tune on the source language through ICT, where
the model is trained for the classification task and
also to learn from context demonstrations. Sec-
ondly, we adapt to the target language at inference
by prepending One-Shot! demonstrations. Com-
pared to other gradient-based FS-XLT techniques,
this method is modular and cost-effective at the
adaptation stage.

We evaluate IC-XLT on two multilingual text
classification datasets, spanning five target lan-
guages, with English as the source language. We
consider two distinct settings. First, we assume ac-
cess to the entire source language training dataset.
For the second setting, we deliberately constrain
the amount of source training data available. This
limitation aims to gauge the robustness of the pro-
posed approach in scenarios where the availabil-
ity of source data is restricted. We hypothesize
that leveraging context information may prove par-
ticularly beneficial in tasks where source data is
limited.

The contributions of this work are the following:

1. IC-XLT as an effective strategy for One-
Shot Cross-lingual transfer: By comparing
the reduction in the transfer gap of One-Shot
IC-XLT against ZS-XLT —a standard cross-
lingual approach— we present empirical evi-
dence that training a model in a source lan-
guage with In-Context Tuning allows it to
leverage One-Shot demostrations through In-
Context Learning to adapt to a target language.
This results in a One-Shot XLT approach that
requires no gradient update for language adap-
tation and can transfer at inference without
modifying the model weights.

2. ICT improves mTS5 finetuning, especially
when resources are limited. We observe that
for the evaluated tasks, ICT training yields bet-
ter performance compared to traditional fine-
tuning, especially when (source language)

'One-Shot per label

training data consists on few-shots per label.
In particular IC-XLT models trained on this
scenario (1) benefit from this behavior at the
adaptation and (2) leverage target language
in-context examples, achieving comparable
performance to Prompt Tuning transfer meth-
ods with significantly less source language
data.

2 Related work

2.1 Zero and Few-Shot Cross-lingual Transfer

Multilingual transformers, such as mBERT (De-
vlin et al., 2018), XLMR (Conneau et al., 2019),
and mT5 (Xue et al., 2020), have showcased no-
table ability in zero-shot cross-lingual transfer (ZS-
XLT) (Pires et al., 2019). In this paradigm, these
models are trained using abundant data in a source
language and subsequently undergo evaluation in
a target language without exposure to any train-
ing data in that specific language. However, this
methodology is susceptible to significant perfor-
mance variance (Keung et al., 2020), and the trans-
fer performance gap is contingent upon the lin-
guistic proximity between the source and target
languages (Pires et al., 2019).

Furthermore, recent studies indicate that incorpo-
rating a small number of annotated examples in the
target language can mitigate the performance gap
between the source and target languages (Lauscher
et al., 2020; Zhao et al., 2021; Schmidt et al.,
2022). This methodology, termed few-shot cross-
lingual transfer (FS-XLT), involves first fine-tuning
a model on an extensive source dataset (as in ZS-
XLT), and then subjecting it to a second fine-tuning
on the reduced target language data, facilitating its
adaptation to this target language. This approach
yields a noticeable improvement in performance at
a relatively low labeling cost across various NLP
tasks (Lauscher et al., 2020).

Yet, according to (Schmidt et al., 2022), sequen-
tial FS-XLT can also exhibit unreliability in the
few-shot scenario due to considerable variance in
performance at different checkpoints during train-
ing. To address this issue, they propose jointly
training the model using both source and target
data in the adaptation stage of the process, which
improves stability in the few-shot setting. This fine-
tuned FS-XLT approach, however, has two notable
drawbacks. Firstly, it lacks modularity, as the mod-
els are trained specifically for the selected target
language during the adaptation stage. Secondly,



there is a substantial increase in computational cost
compared to zero-shot cross-lingual transfer due to
the adaptation fine-tuning, whose cost scales with
the size of the base model.

Moreover, existing methods predominantly ad-
dress the XLT task under the assumption of abun-
dant data in the source languages. Although this is
a fair assumption for many cases, as in general it is
much more likely to find labeled datasets in high
resource languages, there are scenarios where the
source domain itself is limited.

Instances of this include highly domain-specific
tasks with a scarcity of annotated samples or tasks
related to rapidly emerging trends and language
patterns originated from social media, where la-
beled data may be scarce. In such cases, it might
be more feasible to find labelers for high-resource
languages, which can then be transferred to other
languages.

Given these considerations, we believe it is perti-
nent to investigate how the XLT performance scales
as the quantity of available source data is system-
atically reduced. The intuition behind this is that
the introduction of target-language shots may alle-
viate the performance decrease associated with a
reducing source training data.

2.2 In-Context Learning and Language
Models

LMs have demonstrated an aptitude for learning
from a small number of demonstrations through
a method known as In-Context Learning (ICL)
(Brown et al., 2020), where model is tasked with
predicting an input prepended with labeled exam-
ples. Particularly, (Winata et al., 2021) observed
that it is possible to achieve satisfactory perfor-
mance in a cross-lingual setting when evaluating
a mT5 model with a target-language input pre-
fixed with labeled English demonstrations. This
zero-shot approach, although efficient, can be sub-
optimal as it does not take fully advantage of re-
sources in the source language due to the lack of
fine-tuning.

Recent findings indicate that transformers
(Vaswani et al., 2017) can perform model selec-
tion on functions encountered during pre-training
through in-context demonstrations. Yet, they still
find challenging in generalizing effectively to out-
of-distribution classes, as highlighted by (Yad-
lowsky et al., 2023). Given that most pre-trained
LMs have not been explicitly trained for ICL, they
might exhibit sub-optimal behavior when presented

with few-shot demonstrations. In response to this
challenge, the authors of (Chen et al., 2022) intro-
duce In-Context Tuning (ICT), a meta-learning®
approach designed to train a model to effectively
learn from in-context demonstrations’. ICT meta-
trains a language model across a range of tasks,
enhancing its ability to swiftly adapt to new tasks
through ICL.

Still, In-Context Tuning has not yet been imple-
mented for language transfer, as opposed to task
transfer. We hypothesize that training a multilin-
gual model concurrently for learning from input
context and the classification task can leverage mul-
tilingual knowledge acquired during pretraining.
This, we anticipate, will result in enhanced clas-
sification performance in a target language when
provided with examples in that language. There-
fore, in this study we showcase the efficacy of this
idea for One-Shot Cross-lingual Transfer, partic-
ularly, for adapting to a target language through
one-shot demonstrations in-context. This adapta-
tion method proves effective in improving the clas-
sification performance and minimizing the transfer
gap compared to the Zero-Shot setting. Moreover,
we delve into the advantages of employing this ap-
proach in scenarios where source task data is not
abundant.

3  Ouwur proposed approach: In-Context
Cross-Lingual Transfer

Our method aims to simultaneously train a pre-
trained multilingual encoder-decoder model for (1)
a downstream text classification task, and (2) learn-
ing from context demonstrations. Then, we expect
it to be able to generate predictions in a target lan-
guage by including context demonstrations in this
language. Therefore, we reframe the ICT meta-
learning objective by focusing on the transfer be-
tween languages rather than tasks. As described
above, our proposed procedure, called In-Context
Cross-lingual Transfer (IC-XLT), is comprised of
two stages:

In-Context Tuning During the meta-training
stage, we fine-tune the base multilingual

“Meta-learning strategies aim to develop systems that
rapidly adapt to new tasks using minimal data instances. In par-
ticular, model-based meta-learning focuses on training models
to quickly learn from these demonstrations (Nooralahzadeh
et al., 2020).

3Also, ICT consistently improves performance of ICL and
is less sensitive to the shot selection when compared to raw,
pre-trained LMs. (Chen et al., 2022)



model for a specific task using data from
the source language. Let the set of pairs
Dre = {(x§7¢,yi7), . . ., (xf{)c‘, yflgc')} represent
the source-language training dataset. The objective
is to train the model to predict the label y;" for a
given text x7"¢ with the following input=-output
format:
)(S’I’C7 xfT‘C : y?’f’c

Here, X" = (@1, Y1), (@0, Y5p,)) is @
random sequence of M text-label pairs randomly
sampled from D*"¢ without replacement, which
excludes the pair ("¢, y:¢).

1 9

In-Context Learning At inference, we adapt to a
target language by prepending the samples from the
one-shot target language training dataset D9 =
(@549, . (@9, 559} to each entry 29" of
the test set to predict yfg L Consequently, the input
format mirrors the structure observed in the ICT

stage:

vtgt .tgt tgt
X9 =y

Where the sequence X' is a random permu-
tation of D! comprising the one-shot samples,
prepended to each xﬁg t entry at the inference stage.

The intuitive idea for this approach is that, af-
ter the meta-training stage, we expect the model
to understand both the classification task and the
contextual relationships relevant to it. During the
adaptation stage, the model leverages its multilin-
gual pretraining to interpret context examples in
the target language. Note that the adaptation to the
target language in this context does not involve any
gradient updates, as it occurs solely at the inference
stage.

4 Experimental Methodology

In this section, we outline the methodology em-
ployed to evaluate the proposed approach. We as-
sess IC-XLT effectiveness in adapting to a target
language for the classification task and compare its
performance in cross-lingual transfer under (1) full
training data on the source language and (2) various
source language data budgets. We conduct these
limited data experiments to assess how much IC-
XLT improves over a traditional fine-tuning method
by leveraging the One-Shot demonstrations.

4.1 Data and Evaluation Metrics

We conduct evaluations on two mutlilingual text
classification datasets. The first dataset is Aspect

Train  Test
English 2000 676
Spanish 2070 881
French 1664 668
Turkish 1232 144
Russian 3655 1209
Dutch 1722 575

Table 1: Length of the training and test partitions in the
Aspect Category Detection Dataset.

Category Detection (ACD) on Restaurant Reviews
(Pontiki et al., 2016), a multi-label dataset com-
prising 12 classes representing different aspects
mentioned in reviews. The second dataset is Do-
main Classification on assistant utterances from
the MASSIVE dataset (FitzGerald et al., 2022), a
single-label classification dataset with 18 possible
domain classes. The datasets were chosen for their
larger number of labels and their availability in
multiple languages with shared labels. MASSIVE
features parallel language splits, each comprising
11.5k samples in the training partition and 2.97k in
the test partition.

However, for the Aspect Category Detection
dataset, which is non-parallel, the sample counts
vary across languages. Detailed information on
these counts is presented in Table 1.

We select F micro as our evaluation metric, fol-
lowing (Pontiki et al., 2016). For both datasets,
our model is trained in English as the source lan-
guage, and its performance is evaluated across 5
target languages: Dutch, Turkish, Russian, French,
and Spanish for ACD, and Thai, Turkish, Russian,
French, and Spanish for MASSIVE.

To evaluate the performance of our proposed
In-Context Cross-Lingual Transfer (IC-XLT) ap-
proach in a resource-constrained source scenario,
we construct synthetically reduced datasets by sam-
pling subsets of the training datasets following
various k-shot configurations, specifically K. €
{8,16,32,64}. The objective of these evaluations
is to assess IC-XLT’s ability to leverage one-shot
target demonstrations for enhancing performance
in situations where the source language task has
limited resources.

4.2 Shot selection

Similar to (Zhao et al., 2021), with "K-shot" we
refer to selecting K examples for each of the NV
classes. The examples are randomly sampled from
the training splits of the datasets. Note that the
number of shots per label may not precisely be



K due to underrepresented classes in the training
set. This holds true for the ACD dataset, where
certain classes may have insufficient samples to
meet the per-class K value. In such cases, the
total number of shots per i-th class is determined
as min (K, |C;|), where |C;| represents the total
number of samples for the i-th class in the dataset.

Furthermore, since the ACD task involves a
multi-label dataset, multi-label examples may add
to more than one of the /N buckets simultaneously.
Hence, the total number of examples in a k-shot
dataset is < (k x |C|) where C' is the number of
classes.

4.3 Experimental Setting

As our multilingual base model, we utilize mT5
(1.2B) (Xue et al., 2020), an encoder-decoder
model pre-trained on a diverse corpus encompass-
ing over 100 languages. We employ LoRA (Hu
etal., 2021) for fine-tuning the model on the source-
language data with varying numbers of shots K.
During the inference stage, label predictions are
generated through text generation, which facilitates
multi-label inference. We adopt a greedy decoding
strategy as implemented in Wolf et al., (Wolf et al.,
2020).

We train the ICT models in the source language
with different number of context examples, especif-
ically M = 10 and M = 20.

All models are trained on an NVIDIA Titan RTX
GPU for 35 epochs employing a batch size of 8.
We assessed learning rates within the range {1 x
1073,5 x 1074,1 x 10~*} for fine-tuning mT5,
and selected 5 x 10~% as it performed adequately
for both evaluation datasets in the source language.
The LoRA (Hu et al., 2021) parameters are r =
16, a = 32, with dropout of 10%.

We conduct evaluations using two seeds for each
of the following: the fine-tuning process, K. shot
selection, and K4 shot selection. Since zero-shot
approaches do not require selecting target shots,
we run a total of 4 and 8 runs for zero-shot and
one-shot respectively. For the limited source data
training runs, we utilized seeds within {1, 2}. For
the models trained with full source-language data,
we trained 5 models with seeds within {1,...,5}
and selected the best 3 in the English validation set.

4.4 Baselines

We benchmark our proposed approach against the
following baseline methods, each exclusively uti-
lizing either the source or target data:

(1S) One-shot Prediction Leveraging mTS5’s pre-
training objective, we task the model with predict-
ing the missing span corresponding to the correct
label given an input text prepended with one-shot
demonstrations. We expect the model to deduce
label meanings from the examples without undergo-
ing source-language fine-tuning. This experiment
aims to assess the model’s proficiency in one-shot
prediction without any training, similar to the idea
introduced in (Winata et al., 2021), serving as the
lower bound when K,.. = 0.

(ZS-XLT) Zero Shot XLT The standard Zero-
Shot (K4 = 0) Cross-lingual Transfer approach,
where the model is initially trained on a source
language, and subsequent inference is conducted
on the target language without any additional tun-
ing. In this case, we train the mT5 model through
Prompt-based fine-tuning (PFT), with the input-
output form:
T = Yi

Hence, training is performed at the source and infer-
ence at target languages, with no access to source.

(1S-XLT) One Shot XLT Using the same train-
ing scheme (PFT), we continue fine-tuning on the
checkpoints from the previous baseline, training
with One-Shot per label in the target language.
The training is conducted for 50 epochs with a
learning rate of 5 x 1075, This approach is the
standard gradient-based approach for adapting to a
target language in Few-Shot Cross-Lingual Trans-
fer (Lauscher et al., 2020). Although larger values
for the number of target language shots K4 could
be considered, it is outside the scope of this work,
which is delimited to the One-shot setting.

(IC-XLTggrc) IC-XLT with source-language
context We use the same models trained for IC-
XLT, however, in this method In-Context exam-
ples are not drawn from the target language but
from the source language used for their training. In
essence, this can be considered a Zero-Shot base-
line since no target language is involved for adap-
tation. Through this baseline we aim to evaluate
the relevance of the rarget language One-Shot sam-
ples at the adaptation stage, assessing whether they
are necessary for successful transfer to that target
language.

S5 Results and analysis

IC-XLT performance at Cross-lingual transfer
For the first experiment, we compare our proposed



MASSIVE

Method ENG (SRC) TUR THA SPA FRA RUS
1S 39.4141 14 33.7440.95 33.544.15 32.0941.04 30.6449 07 26.04471
ZS-XLT 86.5741 17 64.234558  70.0949097 72.49415 74.9441 03 74.64499
1S-XLT ’ ’ 64.144506  70.084087 72.364151 7495108 74.5512.73
IC-XLTsgrco 89.45.10.31 69.3949.13 78.024058 77.5540.89 79.9641 5 82.63+0.99
IC-XLT ’ i 78321941 77887105 8063 176 83.471102 83411711
ACD

ENG (SRC) TUR NLD SPA FRA RUS
1S 37.3844.7 19.52451 20.514179 34.764594 31.844555 34.024944
ZS-XLT 76,641 15 61.724512 66.371195 65.964149 65421999 68.8817191
1S-XLT T 62.0144.7 66.691119 66.0811908 65.841 057 69.12479
IC-XLTsgrco 81.68.10.65 70.1443.97 70.054155 72.8340.98 73.574+0.74 75.67+0.62
IC-XLT i 76.831166 7T1.5415 74320932 7T74.881151 76.011702

Table 2: Average I} micro in the two evaluated datasets, trained with full data in English, the source language. Here,
=+ is the standard deviation of the different runs. The ICT Methods (IC-XLT gz and IC-XLT) are for M = 20.

approach, IC-XLT, to the baselines detailed in Sec-
tion 4.4 using the full training set in the source
language. We observed a general trend where mT5
models trained with In-Context Tuning, which em-
ploys the input-output setting X , T; = Y, CONSIis-
tently outperformed models subjected to Prompt-
based fine-tuning with x; = y; under the same
training regimes, despite both models being trained
for an equivalent number of steps and exact same
data instances. We hypothesize that this superior
performance may be attributed to the fact that the
ICT-trained models see M randomly ordered input-
output examples at each instance, even though they
are tasked with predicting only x;.

The significant increase in performance observed
in the source language benefits evaluations in the
target languages after the adaptation stage. We
present the F; micro scores across five different lan-
guages on the Aspect Category Detection (ACD)
and MASSIVE datasets in Table 2. We observe
that IC-XLT effectively outperforms the evaluated
baselines by a substantial margin in the evalu-
ated datasets, greatly improving mT5 cross-lingual
transfer performance. A crucial observation is that
for both of the evaluated datasets there is a notice-
able increase in performance from IC-XLTggc to
IC-XLT. This means that the proposed approach is
effectively taking advantage of the One-Shot tar-
get language demonstrations for adapting to it at
inference at the In-Context Learning stage.

On the other hand, the 1S-XLT approach, which
is further fine-tuned on One-Shot target samples,
did not improve over ZS-XLT by an important mar-
gin. While a small improvement is observable for
the ACD task, there is also a minor performance de-

crease for the MASSIVE dataset. This result could
be attributed to the limited number of samples avail-
able for the fine-tuning process, as only one shot
per label is employed. Since we do not observe a
noticeable improvement of 1S-XLT over ZS-XLT
in the full training data experiments, and adapting
the former requires further fine-tuning, we com-
pare IC-XLT with ZS-XLT in the limited-resource
scenario.

Performance with limited source-language data
We conduct experiments to quantify the ability
of IC-XLT to perform at scenarios with limited
source language resources. For this we evaluate
IC-XLT and ZS-XLT models trained with K. €
{8,16,32,64}. We noticed that models trained
with the ICT framework generally perform better
compared to PFT for low values of K. In Figures
1b and 1a, we illustrate the average performance per
target language in the datasets at different source-
language resource availability regimes. The plot
shows evaluations for ZS-XLT (PFT training) and
IC-XLT (ICT training). We can see that ICT makes
better use of resources than Prompt-based fine-
tuning specially at at smaller values for K, for
both datasets, although this is especially notable in
MASSIVE. Furthermore, the performance differ-
ence with the source language (English) is visibly
smaller for ICT training, more discussion on this
can be found below.

The Fi-micro averages for the target languages
are shown in Tables 3 and 4 for ACD and MAS-
SIVE respectively. We can observe that models
trained on limited data achieve competitive or su-
perior performance compared to ZS-XLT models
trained with full source datasets (See Appendix A



MASSIVE

F1 micro

~ —e— Z5XLT english
—e— ZSX(T french
—e— 25T thai
—e— Z5KIT spanish
o ZSALT turkish
—e— ZSXIT russian
—k- ICXIT english
k- |C-XIT french
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(a) MASSIVE performance with different souce data avail-

ability. IC-XLT trained with M = 10.

ACD

—e— Z5XIT english
—e— ZSX(T french
—e— 25T dutch
—e— Z5.KLT spanish
o Z5KLT turkish
70 —e— ZSXLT russian
k- ICXIT english
—- ICXLT french
- ICXLT dutch
60 = IC-XLT spanish
- IC-XLT turkish
- IC-KLT russian

F1 micro

Bshot 16shot 32shat 4shot ull
Kere

(b) ACD performance with different souce data availability.
IC-XLT trained with M = 10.

Figure 1: Comparison of IC-XLT and ZS-XLT performance at different source language data budgets. We can
observe that, in general, the IC-XLT models yield better performance compared to ZS-XLT. This is especially

notable at lower resource scenarios.

for the complete tables with results in each target
language). Given that the adaptation to each tar-
get language occurs at inference, the improvement
over ZS-XLT comes at no extra computational cost
and at a minimal data cost. This allows to achieve
good performance with limited computational and
data resources.

We find that, for models trained on full data,
M = 20 (the number of in-context demonstrations
during ICT training) performs slightly better on
the Aspect Category Detection (ACD). For models
trained with lower resources, M = 20 performs
suboptimally compared to traditional fine-tuning
and M = 10 in ACD, but achieves a better perfor-
mance in MASSIVE. We believe that since ACD
contains only 12 labels, a context length of 20 will
inevitably prepend more repeated context examples
than the MASSIVE dataset* when training with
limited data. This reduced variability may hurt the
model’s performance compared to M = 10.

Measuring the transfer gap with the source lan-
guage. By measuring the performance gap be-
tween the source language and the target language,
we aim to quantify the contribution of the ICT
training framework and One-Shot target demon-
strations for mitigating this gap. As we provide the
model with target language examples, we antici-
pate a smaller decrease in performance from the
source language when adapting to a new language,
compared to ZS-XLT. We can measure this by com-
puting the average transfer gap A%, which is the

“Which contains 18.

KST'E lS
0 28.13+7.49
IC-XLT

Z8XLT 10 M=20
8 2541502 33.341350 16.641244
16 30.8414344 48.66+366 47.0411.81
32 43561181 58914193 61i151
64 55.154134 65.641179 65.281; 07
Full 65.67423 73.44168 T4.7T11183

Table 3: Average [} micro across 5 target languages for
Aspect Category Detection. In this table, + refers to the
standard deviation of the means of different language.

average percentage decrease in performance rela-
tive to the evaluations on the test set in the source
language (English):

_ P
A%:100><E[t9“‘"‘91]

src lang

where Pyt 1ang and Pyg¢ jang represent the eval-
uation performance of the exact same model on
the target and source test sets, respectively. The
performance gap values are shown in Figures 2a
and 2b for ACD and MASSIVE respectively. We
can observe that in almost all cases and all source
language data budgets we obtain a reduced aver-
age transfer gap A% through IC-XLT compared to
ZS-XLT.

We find that A% for IC-XLT models can be re-
duced by a very significant margin especially in
target languages linguistically distant from English
such as Turkish or Thai. The obtained A% val-
ues, as well as the performance improvement from
IC-XLTgRrc to IC-XLT shown in Table 2, under-



A% in ACD vs english

french Z5-XT 4

french IC-XLT - 4

-10.0

turkish 25-X1T -12.5

turkish IC-XLT -15.0

russian Z5-¥IT - 067

-175
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(a) A% of the target languages vs English in the Aspect
Category Detection dataset.

A% in MASSIVE vs english

french Z5-X1T
french I1C-XLT < 1 5 43 -7
thai Z5-XLT
thai IC-XLT
spanish Z5-X1T
spanish |C-XLT
turkish Z5-X1T
turkish IC-XLT
russian Z5-¥1T

russian IC-XLT

1 I
Bshot loshot 32shot B4shot

(b) A% of the target languages vs English in the MAS-
SIVE domain detection dataset.

Figure 2: The average transfer gap A% of IC-XLT and ZS-XLT at different source language data budgets. (IC-XLT
M = 10). We can observe that, for most cases, IC-XLT yields a smaller drop in performance after transfering to a

target language compared to ZS-XLT.

Kre 1S
0 31.243.14
IC-XLT

Z8XLT o M =20
8 49.254914 64.66+178 68.05+1.39
16 56.464952 72.344174 75444155
32 70.651268 76.481202 78.95117s
64 69.66+338 80.54207 81.541152
Full 71.28i3_93 81.42i1_59 80~94i2.18

Table 4: Average F} micro across 5 target languages
for MASSIVE (Domain Classification). In this table, +
refers to the standard deviation of the means of different
language.

score that introducing in-context target language
examples through IC-XLT effectively mitigates the
transfer gap.

6 Conclusion

In this paper, we investigated the application of In-
Context Tuning for One-Shot Cross-lingual trans-
fer, introducing In-Context Cross-lingual Transfer
(IC-XLT). Our evaluations conducted on an mT5
model demonstrate the efficacy of the proposed
method in effectively adapting at inference to tar-
get languages using only one-shot demonstrations
in-context, all without incurring additional com-
putational expenses. Furthermore, in comparison
to ZS-XLT and 1S-XLT, IC-XLT exhibits a better
performance and smaller transfer gap.

In scenarios with limited source-language train-
ing data, we provide empirical evidence that IC-
XLT learns better the source language at the meta-

training stage and demonstrates a smaller trans-
fer gap at the adaptation stage with the one-shot
demonstration, compared to ZS-XLT. This makes
IC-XLT a valuable tool for cross-lingual transfer in
resource-limited scenarios.

To the best of our knowledge, this is the first
study on the application of In-Context Tuning to
Cross-Lingual Transfer. For future work, we aim
to explore the potential and limitations of this ap-
proach by evaluating its applicability to other ar-
chitectures, such as decoder-only or encoder-only
models, and examining the impact of training with
a greater number of examples in-context.

7 Limitations

In this study, we implement our approach using an
mT5-large encoder-decoder model. However, an
evaluation of its applicability to encoder-only or
decoder-only models remains unexplored and it is
left for future work. Furthermore, due to storage
constraints and the need to conduct experiments
across diverse seeds and training data budgets, we
opted to fine-tune the models using LoRA (Hu
et al., 2021). While some variability compared
to the fully trained model is expected with this
architectural choice, empirical evidence from (Hu
et al., 2021) suggests that its impact is minimal.
Finally, it is important to outline that due to the
maximum input length of mT5 (1024), scaling IC-
XLT is to a larget number of target language shots
(e.g Kyt € {4,8,16}) may prove difficult using
the current approach. This challenge is particularly



pronounced in scenarios with a substantial number
of labels, where input text may need to be truncated.
Consequently, there is a need to devise a strategy to
either reduce input length or integrate information
from different example batches in order to address
this limitation.
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A Appendix

A.1 Performance metrics per language on the
limited data experiments.

In this section we show the complete results of
evaluations in the different target languages with
ZS-XLT and One-shot IC-XLT. Table 5 illustrates
the cross-lingual transfer performance of the evalu-
ated models with English as the source language.
Similarly, the results on the MASSIVE dataset are
shown in Table 6, also with English as the source
language.

A.2 Evaluations in Russian and Turkish

Although the main focus of this work is to eval-
uate cross-lingual transfer with English as source
language, we include —smaller— evaluations on the
ACD dataset with Russian and Turkish as source
languages. With these evaluations we aim to fur-
ther demonstrate the effectiveness of our approach
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across languages and explore the potential for cross-
lingual transfer in various language pairs. We evalu-
ate K4 = 64 and full training data. In Table 7, we
compare their performance in the source language
with the average performance in the target lan-
guages on the Aspect Category Detection dataset.
We also observe an important improvement com-
pared to ZS-XLT and a reduction in the average
transfer gap for most of the target languages when
employing IC-XLT (See Figure 3). This reduction
in the transfer gap, particularly pronounced in the
case of K. = 64, highlights the significance of
target-shots, especially when working with limited
source data. Also, we include the evaluations in
Russian and Turkish in the ACD dataset, displayed
in Table 7.

A.3 Licences of systems and datasets

In this work, the tools utilized include an mT5
model and the transformers library (Wolf et al.,
2020), both of which use the Apache 2.0 license.
The MASSIVE dataset, on the other hand, oper-
ates under a CC by 4.0 license. As for the Aspect
Category Detection dataset, it employs a MS-NC-
No ReD license, which limits its usage strictly to
an academic scope. Since the aim of this work is
to evaluate the performance of a proposed cross-
lingual system, we adhere to all the licenses of the
utilized material.

The research presented in this paper is intended
for academic purposes, and therefore, we adhere to
the licenses governing all utilized materials.
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Target Language

Ksre ENG FRA NLD SPA TUR RUS
IC-XLT (M = 10)
Kege =8 34714733 32244416 30.621604 31.0411253 32414593 40.41735
Kegre =16 52.08+1185 49.71411104 45.861955 48.691992 4421948  5H4.8315.18
Koe=32 604518814 959.384555 955.23156  59.064506 60.661933 60.2119098
Koe =064 69.841130 67.2147149 62.32411  66.3310098 67.04d1292 65.321062
Full data 80.28:|:1.03 73.76:|:0.24 71-91:|:1.64 72.73:|:1.94 72-1:|:3.89 76.51:|:0.56
IC-XLT (M = 20)
Kse =8 23664616 171241305 151716096 13.491887 20.831132 16.58111.33
Ksre =16 41.194990 48244475 44.891613 47.261859 45.17186  49.6414.095
Koe =32 63254235 61.374249 58014144 61.744;3 61.854597 62.0541.53
Koe=064 70014177 65.864128 63.14979 65.344118 66.981266 65.1240.96
Full data 81.68:|:0,65 74.88:|:1,51 71.5:|:1,5 74.32:|:0,32 76.83:|:1,66 76.01:|:1,02
ZS-XLT
Kge=8 29491906 2614146 21194374 31.991046 1841431 29.321084
Koe =16 33.731412 32244363 28.731676 34.961448 25.271768 33.0243.99
Kge=32 49.054533 45411465 40441465 43.371a73 43.284393 45.31450
Kge=64 60.45433 55.07+9.46 53.491188 53.9434 56.964302 56.354193
Full data 76.6:&1.13 65.42:|:0.99 66.3711.25 65.96:&1.49 61.72:|:5.12 68.88:&1.21

Table 5: Average per language across the different runs for evaluations under different resource budgets for the
Aspect Category Detection dataset. In here, & refers to the standard deviation of the performance on the conducted
runs.

Target Language
Koo ENG FRA THA SPA TUR RUS
IC-XLT (M = 10)
Kye=8 73.364092 67.124142 61.814962 654137 63.794949 65.5749¢
Kge=16 80.544099 74.814181 70.484008 7T1.74497  70.72494 73.95498
Kge =32 842241062 80+0.73 74.33+1.03 76.541066 74.684097 76.83+0.94
Ky.=64 86.754029 82.994078 78.264056 80.75419 78.0240.9 82.494¢ 89
Full data 89.22:&).37 82.9311.38 79.87:|:0'9 81.34;5.33 79.48;5.15 83.4611
IC-XLT (M = 20)
Kge=8 73244071 67.264372 66.531265 67.041346 70.03+£331 69.414301
Kye=16 824137 75984183 72.554081 754415 76.18 4143 T7.1141 51
Ko =32 85034052 80.064106 76.14919 78.68419  78.4641928 81.4341.16
Koo =64 871841066 83.294079 79.3640.97 81.064133 80.754152 83.244048
Full data 89.45;@_34 83.47:|:1_02 78.87:&0,5 80.63:;:1,76 78.32:|:2,41 83.41:|:1_1
ZS-XLT
Kge=8 6293115 52114077 46.0540.15 ©51.05408 48.244099 48.841.05
Kge =16 70524794 59.714775 53.494793 58.39+7.04 53.64547  57.11763
Koe=32 81721130 73724188 0694074 72124164 66.264170 72151
Kge=64 81.7149g1 7278451 67.64501 71.834443 63.974546 72.114517
Full data 86.57:|:1.17 74.94:|:1.03 70.09:|:2.97 72.49:5‘5 64.23:|:5,58 74.64:|:2.9

Table 6: Average per language across the different runs for evaluations under different resource budgets in the
MASSIVE Domain Classification Task. In here, & refers to the standard deviation of the performance on the
conducted runs.
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Russian as source Turkish as Source
Method Kg.. Russian  Avg target Turkish ~ Avg target
ZS-XLT 64 60.664465 52.731364 62.424312 54.974173
IC-XLT 64 68.334106 65.124167 67.451755 63.69471 78
ZS-XLT full  74.554443 61.314361 63.464434 55.25411
IC-XLT full 81.74117 70.844917 80.79495 71.184991

Table 7: Average performance on the target languages on Turkish and Russian as source. For this experiments we
set M =10

A% in ACD vs russian A% in ACD vs turkish
-0.0 -0.0
english Z5-XLT english Z5-XLT 13
english ICKLT_m10 - 25 english ICXLT_m10 - 2.5
H french Z5-XLT 5.0 H french Z5-KLT 50
£ £
g french IC-XLT_m10 - g french IC-XLT_m10
E - 75 E - -75
u u
G dutch Z5-XLT G dutch Z5-XLT
g -10.0 g -10.0
2 dutch IC-XLT_m10 2 dutch IC-XIT_m10
- -
u u
¥ spanish ZSX(T -125 ¥ spanish ZSXIT -125
= 2
B spanish IC-XLT_m10 -15.0 B spanish IC-XLT_m10 -15.0
turkish Z5-X1T 175 russian Z5-xLT 175
turkish IC-XLT_m10 - russian IC-XLT_m10 -
' -20.0 T -20.0
B4shot full B4shot full
Kare Kare
(a) A% with Russian as source language. (b) A% with Turkish as source language.

Figure 3: Average transfer gaps in Turkish and Russian.
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