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Abstract

Pruning at Initialization (PaI) makes training overparameterized neural networks more ef-
ficient by reducing the overall computational cost from training to inference. Recent PaI
studies showed that random pruning is more effective than ranking-based pruning, which
learns connectivity. However, the effectiveness of each pruning method depends on the ex-
istence of skip connections and the compression ratio (the before-after pruning parameter
ratio). While random pruning performs better than ranking-based pruning on architectures
with skip connections, the superiority without skip connections is reversed in the high com-
pression range. This paper proposes Minimum Connection Assurance (MiCA) that achieves
higher accuracy than conventional PaI methods for architectures with and without skip
connections, regardless of the compression ratio. MiCA preserves the random connection
between the layers and maintains the performance at high compression ratios without the
costly connection learning that ranking-based pruning requires. Experiments on image clas-
sification using CIFAR-10 and CIFAR-100 and node classification using OGBN-ArXiv show
that MiCA enhances the compression ratio and accuracy trade-offs compared to existing
PaI methods. In VGG-16 with CIFAR-10, MiCA improves the accuracy of random pruning
by 27.0% at 104.7× compression ratio. Furthermore, experimental analysis reveals that in-
creasing the utilization of the nodes through which information flows from the first layer is
essential for maintaining high performance at a high compression ratio.
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1 Introduction

Although deep neural networks (DNNs) have high generalization capability, both their training and inference
are computationally expensive (Arora et al., 2019; Zhang et al., 2019; 2021; Neyshabur et al., 2019; Wen et al.,
2022). These high costs arise because their computation depends on a large amount of parameters (Shoeybi
et al., 2019; Brown et al., 2020; Dosovitskiy et al., 2021; Woo et al., 2023).

Network pruning achieves high generalization capability despite fewer parameters and can solve this problem.
There are various types of pruning, including methods that train while sparsifying the network gradually
by penalty terms (Chauvin, 1988; Weigend et al., 1990; Ishikawa, 1996), prune the network after training
and then finetune it (LeCun et al., 1989; Hassibi et al., 1993; Lee et al., 2021), and prune and learn itera-
tively (Frankle & Carbin, 2019; Frankle et al., 2019; Renda et al., 2020). However, these aim to reduce the
inference computational cost and need to train the dense model. By contrast, dynamic sparse training (Mo-
canu et al., 2018; Evci et al., 2020; Jayakumar et al., 2020) and pruning at initialization (PaI) train with
sparse networks, thus reducing training computational costs and hence the learning speed can be faster.
In particular, PaI has the lowest training computational cost among pruning methods because the network
structure is fixed (Price & Tanner, 2021).

Basically, PaI calculates a criterion to determine which parameters are essential and selects the parameters
to be pruned based on it. This type of PaI called ranking-based pruning at initialization (RbPI) (Lee et al.,
2019; Wang et al., 2020; Tanaka et al., 2020) can learn the network connections explicitly but needs to
calculate the criterion using an expensive process such as backpropagation. On the other hand, another
type of PaI called random pruning at initialization (RPI) has a negligibly small additional cost because it
only prunes a network randomly without calculating a criterion. At first glance, RbPI seems to perform
better than RPI since it learns connections, but some works suggested that RPI could construct subnetworks
with similar or better performance obtained by RbPI. Frankle et al. (2021) revealed that RPI and RbPI
had comparable accuracy at 1–102× compression ratios when applying the same sparsity set separately for
each layer (i.e., the sparsity distribution). Similarly, the work by Su et al. (2020) showed that RPI with
ad-hoc sparsity distribution improved the trade-off between parameter ratio of dense to sparse network—
compression ratio—and accuracy than RbPI. Furthermore, randomly pruned networks outperform dense
networks in aspects such as out-of-distribution detection and adversarial robustness (Liu et al., 2022). Thus,
RPI seems to combine simple pruning processing with high performance among PaI methods.

On the other hand, a recent thread of PaI research (Vysogorets & Kempe, 2023) showed a curious phenomenon
of RPI: its efficiency at high compression ratios depends on skip connections in the DNN. At more than 102×
compression ratios, randomly pruned models without skip connections are less accurate than RbPI. It differs
from the result in low compression ratio by Frankle et al. (2021) and implicates that highly sparse networks
need to learn connection. However, whether connection learning is essential in the high compression range is
debatable. For instance, the work by Gadhikar et al. (2023) improved the performance of skip connection-
free architecture by adding parameters (i.e., edges) to non-functional neurons in a randomly pruned network
at 10–103× compression ratios. It indicates that even random pruning can improve performance if the
connections between layers are preserved. However, this approach is not essential for higher compression
ratios because the additional edges inhibit compression. Therefore, there is a need for more essential solutions
to improve performance in skip connection-free architecture.

In order to address this problem, this paper introduces a novel PaI algorithm for high compression range:
Minimum Connection Assurance (MiCA). Specifically, it preserves top-to-bottom information propagation
among randomly pruned layers by building a random connection—minimum connection—using some of
the pre-allocated edges. The minimum connection is constructed by pre-determining and connecting the
neurons that the subnetwork uses, and the subnetwork with the connection maintains the pre-defined sparsity
distribution even when connecting its neurons randomly. Thus, all allocated edges can be functional even in
a high compression range. Since MiCA has this small constraint on the placement of the edges while keeping
the connection random, it stands as restricted RPI algorithm in the field of PaI algorithms. We evaluate
MiCA on image classification using CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), ImageNet (Russakovsky
et al., 2015) and on node classification using OGBN-ArXiv (Hu et al., 2020). In each evaluation, we employ
VGG (Simonyan & Zisserman, 2014) and ResNet (He et al., 2016) architectures for the former and graph
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Figure 1: Some edges and nodes stop affecting the output (dashed line) as the network becomes sparser by
pruning dotted lines.

convolutional network (GCN) (Kipf & Welling, 2017) and graph isomorphism network (GIN) (Xu et al., 2019)
architectures for the latter. MiCA enhances the performance for not only skip connection-free architectures
such as VGG but also architectures with skip connections such as ResNet. Furthermore, despite the random
connection, MiCA improves the trade-off between compression ratio and inference accuracy compared to
RPI and RbPI methods. In other words, MiCA shows that the connections learned by RbPI can be replaced
by random connections even in the high-compression range.

The rest of the paper is organized as follows. Section 2 outlines existing PaI methods and describes how to
calculate a compression ratio that correctly compares them with MiCA. Then, Section 3 proposes MiCA,
and Section 4 compares MiCA with the RPI and RbPI methods. Finally, Section 6 concludes this paper.

2 Related Work

PaI algorithms can be categorized into two groups: 1) those that learn the criterion of pruning before training
weights (i.e., RbPI); and 2) those that prune randomly (i.e., RPI). The methods included in these groups can
be compared by using the compression ratio obtained by eliminating unused edges (Vysogorets & Kempe,
2023). This section recapitulates the method for calculating the corrected compression ratio and outlines
the literature on RPI and RbPI.

Calculation of Corrected Compression Ratios. Recently, Vysogorets & Kempe (2023) found that PaI
algorithms produce significant amounts of redundant parameters that can be removed without affecting the
output. Figure 1 illustrates this phenomenon. A pruned network has 10 edges, but the 4 dashed edges do
not affect the output. Thus, the apparent compression ratio is 21/10 = 2.1, but it can also be regarded
as 21/(10 − 4) = 3.5. Correcting the compression ratio calculation by removing them results in a fairer
comparison between subnetworks. Subsequent sections use this compression ratio calculation.

Random Pruning at Initialization (RPI). RPI prunes each layer randomly based on a pre-defined
sparsity distribution calculated by a pre-defined compression ratio. To date, various sparsity distribution
design methods have been proposed. For example, Erdős-Rényi-Kernel (ERK) (Evci et al., 2020), which
was devised in the context of random graphs, determines the density of l-th layer to be proportional to
the scale (C(l)

in + C
(l)
out + k

(l)
h + k

(l)
w )/(C(l)

in × C
(l)
out × k

(l)
h × k

(l)
w ), where C

(l)
in , C

(l)
out, k

(l)
h , and k

(l)
w denote input

channels, output channels, kernel height, and kernel width of the l-th layer, respectively. Ideal Gas Quotas
(IGQ) (Vysogorets & Kempe, 2023) focuses on the fact that traditional global pruning methods (Lee et al.,
2019; 2021; Tanaka et al., 2020) intensively remove parameter-heavy layers. It determines the constant F

based on the target compression ratio and calculates the density of l-th layer as
(
Fe(l) + 1

)−1, where e(l) is
the number of edges in the l-th layer. The subnetworks to be pruned based on these sparsity distributions
achieve comparable or better performance against RbPI and RPI using other distributions (Vysogorets &
Kempe, 2023). However, those with skip connection-free architectures cannot achieve such performance as
the compression ratio increases. Although some solutions, such as adding edges and resampling (Gadhikar
et al., 2023), are proposed to address this RPI weakness, they are impossible at higher compression ratios
or inefficient. Unlike these methods, our approach is efficient and works at higher compression ratios.
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Figure 2: In cases 1 and 2, randomly pruning the network can make some edges non-functional. On the
other hand, MiCA keeps all edges functional while allowing randomness in the connections.
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Block

Block
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Block

Figure 3: Edge placement procedures to construct a minimum connection. First, an input node of each block
is connected to an output node, and then the remaining unconnected nodes are connected.

It constructs a subnetwork with only pre-allocated edges, except that pre-defined sparsity distributions
invariably cause non-functional neurons (i.e., nodes). Moreover, our approach does not require the iterative
pruning operation.

Ranking-Based Pruning at Initialization (RbPI). RbPI determines the pruning priorities based on
the initial state of a network and a dataset. For example, SNIP (Lee et al., 2019) uses the magnitude of
the backpropagation gradient after one iteration as a parameter’s pruning priority. GraSP (Wang et al.,
2020) prunes the edges that do not reduce the gradient flow of a subnetwork for a dataset preferentially.
SynFlow (Tanaka et al., 2020) updates a parameter’s pruning priority by using the l1-path norm of a
network (Neyshabur et al., 2015) as a loss and prunes iteratively without dataset. Unlike other RbPI
methods, it can avoid layer-collapse (Hayou et al., 2020) at high compression ratios. As seen from these,
RbPI takes into account the information flow of the initialized network for the pruning criteria. Hence, its
sparse sub-networks tend to connect layers to each other. On the other hand, RbPI requires pre-training to
calculate priorities, which is prohibitively expensive. RPI and our approach have a lower cost because they
do not need to calculate priorities.

3 MiCA: Minimum Connection Assurance

As demonstrated by Gadhikar et al. (2023), maintaining connections in each layer can improve the sparse
network’s accuracy after training, especially when the compression ratio is high. This section proposes
MiCA, a method to make all pre-allocated edges as functional as possible with a few operations based on
the fact that the connections at each layer are guaranteed if all pre-allocated edges are functional. MiCA
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Algorithm 1 Number of Output Nodes Analysis

Require: Pre-defined maximum number of output nodes n
(L)
out, number of edges e(1), e(2), ..., e(L), maximum

block size b(1), b(2), ..., b(L).
1: procedure NodeAnalysis(n(L)

out, e(1), e(2), ..., e(L), b(1), b(2), ..., b(L))
2: n

(L)
out,ideal ← min

(
n

(L)
out, e(L)

)
3: for l = L to 2 do
4: if b(l) ≥ n

(l)
out,ideal then

5: n
(l−1)
out,ideal ← x ∈

{
x ∈ N

∣∣∣ (
e(l)/n

(l)
out,ideal

)
≤ x ≤

(
e(l)/b(l))}

6: else
7: n

(l−1)
out,ideal ←

⌈
e(l)/n

(l)
out,ideal

⌉
8: end if
9: end for

10: return n
(1)
out,ideal, n

(2)
out,ideal, ..., n

(L)
out,ideal

11: end procedure

first constructs a random connection named minimum connection from the input to the output layer using
some pre-allocated edges. Then, it builds a subnetwork by randomly connecting the nodes involved in the
connection. The presence of minimum connection ensures that randomly placed edges become functional. In
order to construct the minimum connection, it is necessary to determine how many nodes should be used at
each layer to ensure that all placed edges are functional. Therefore, we first introduce an analytical method
for determining the ideal number of nodes and then describe how to construct the minimum connection.

The ideal number of nodes analysis: A layer has non-functional edges if and only if the number of
nodes used in the adjacent layers is too large or too small relative to the number of edges pre-assigned to
that layer. Figure 2 exemplifies the two situations: in case 1, the edges of l-th layer connect to all nodes of
(l +1)-th layer. It causes some non-functional edges at l-th layer if the number of edges of the (l +1)-th layer
is low; in case 2, all edges connect to a few nodes of the next layer. It causes some non-functional edges at
(l + 1)-th layer if the number of edges of the (l + 1)-th layer is high. Thus, based on a pre-defined sparsity
distribution and each layer architecture, we pre-determine which nodes to use to avoid these situations.

We consider pruning a neural network constructed with L layers. We first define the maximum number
of input and output nodes pre-defined as a network structure of l-th layer as n

(l)
in and n

(l)
out, respectively.

For instance, in a convolutional layer with input channels C
(l)
in , output channels C

(l)
out, kernel height k

(l)
h , and

kernel width k
(l)
w , n

(l)
in and n

(l)
out are C

(l)
in ×k

(l)
h ×k

(l)
w and C

(l)
out, respectively. Similarly, in a fully-connected layer

with input features f
(l)
in and output features f

(l)
out, n

(l)
in and n

(l)
out are f

(l)
in and f

(l)
out, respectively. Furthermore,

we denote the number of input and output nodes of the pruned l-th layer as V
(l)

in ⊆ {1, 2, ..., n
(l)
in } and

V
(l)

out ⊆ {1, 2, ..., n
(l)
out}, respectively. Additionally, we define a block Vblk,i ⊆ V

(l)
in in the l-th layer as the input

nodes corresponding to an output node in the (l − 1)-th layer. There are
∣∣∣V (l−1)

out

∣∣∣ blocks in l-th layer, and
each size of block ranges from 1 to b(l), where b(l) is defined as follows:

b(l) :=


n

(l)
in /n

(l−1)
out (l > 1)

k
(1)
h × k

(1)
w (l = 1 and first layer is a convolutional layer)

1 (otherwise)
(1)

For example, if both the (l−1)-th and l-th layers are convolutional layers, the maximum size b(l) is k
(l)
h ×k

(l)
h ,

and it is 1 if the (l − 1)-th layer is a fully-connected layer. As a particular case, we also define a block with
a maximum size b(1) in the first layer. If the first layer is a convolutional layer, we consider a kernel as a
block; otherwise, we consider a single neuron as a block.

The pruned l-th layer can be regarded as a bipartite graph connecting nodes in V
(l)

in and V
(l)

out. To ensure
that all edges of l-th layer and adjacent layers become functional, the number of edges e(l) in the l-th layer
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Algorithm 2 Step 1 of Minimum Connection Construction at l-th layer

Require: Network N , input nodes V
(l)

in , pre-defined number of edges e(l), the ideal number of output nodes
n

(l)
out,ideal pre-calculated by Algorithm 1.

1: procedure Step1(N, V
(l)

in , e(l), n
(l)
out,ideal)

2: Vused ← {}
3: iout ← 1
4: V

(l)
out ← {}

5: for V
(l)

blk,i in blocks of l-th layer do
6: v

(l)
in ← x ∈ V

(l)
blk,i

7: Vused ← Vused ∪
{

v
(l)
in

}
8: if iout ≤ n

(l)
out,ideal then

9: v
(l)
out ← iout

10: iout ← iout + 1
11: else
12: v

(l)
out ← x ∈

{
x ∈ N

∣∣∣ 1 ≤ x ≤ n
(l)
out,ideal

}
13: end if
14: Connect v

(l)
in and v

(l)
out in N

15: V
(l)

out ← V
(l)

out ∪
{

v
(l)
out

}
16: e(l) ← e(l) − 1
17: if e(l) ≤ 0 then
18: break
19: end if
20: end for
21: return N, e(l), Vused, iout, V

(l)
out

22: end procedure

must satisfy max
(∣∣∣V (l)

in

∣∣∣ ,
∣∣∣V (l)

out

∣∣∣) ≤ e(l) ≤
∣∣∣V (l)

in

∣∣∣ ∣∣∣V (l)
out

∣∣∣. Solving this inequality for
∣∣∣V (l)

in

∣∣∣ leads to

e(l)∣∣∣V (l)
out

∣∣∣ ≤
∣∣∣V (l)

in

∣∣∣ ≤ e(l). (2)

Additionally, considering that up to b(l) input nodes of the l-th layer connect to an output node of the
(l − 1)-th layer for 1 < l ≤ L,

∣∣∣V (l)
in

∣∣∣ satisfies the inequality∣∣∣V (l−1)
out

∣∣∣ ≤ ∣∣∣V (l)
in

∣∣∣ ≤ ∣∣∣V (l−1)
out

∣∣∣× b(l). (3)

From these two inequalities, we need to satisfy

e(l)∣∣∣V (l)
out

∣∣∣ ≤
∣∣∣V (l−1)

out

∣∣∣ ≤ e(l)

b(l) (4)

for 1 < l ≤ L so that all edges in the network become functional.

We sequentially analyze the ideal number of output nodes n
(l)
out,ideal from the output layer to the input layer.

We select n
(l)
out,ideal randomly from the range e(l)

n
(l)
out,ideal

≤ n
(l−1)
out,ideal ≤

e(l)

b(l) based on Equation 4. Note that

we define n
(L)
out,ideal := min

(
n

(L)
out, e(L)

)
. If n

(l)
out,ideal < b(l), we set n

(l−1)
out,ideal as

⌈
e(l)

n
(l)
out,ideal

⌉
to minimize the

loss of input nodes. In cases where the network features a branching structure, such as residual connections,
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Algorithm 3 Step 2 of Minimum Connection Construction at l-th layer

Require: Network N , input nodes V
(l)

in , pre-defined number of edges e(l), the number of output nodes
n

(l)
out,ideal pre-calculated by Algorithm 1.

1: procedure Step2(N, V
(l)

in , e(l), n
(l)
out,ideal)

2: N, e(l), Vused, iout, V
(l)

out ← Step1(N, V
(l)

in , e(l), n
(l)
out,ideal)

3: while e(l) > 0 and
(
|Vused| <

∣∣∣V (l)
in

∣∣∣ or iout ≤ n
(l)
out,ideal

)
do

4: if |Vused| <
∣∣∣V (l)

in

∣∣∣ then

5: v
(l)
in ← x ∈ V

(l)
in \ Vused

6: Vused ← Vused ∪
{

v
(l)
in

}
7: else
8: v

(l)
in ← x ∈ V

(l)
in

9: end if
10: if iout ≤ n

(l)
out,ideal then

11: v
(l)
out ← iout

12: iout ← iout + 1
13: else
14: v

(l)
out ← x ∈

{
x ∈ N

∣∣∣ 1 ≤ x ≤ n
(l)
out,ideal

}
15: end if
16: Connect v

(l)
in and v

(l)
out in N

17: V
(l)

out ← V
(l)

out ∪
{

v
(l)
out

}
18: e(l) ← e(l) − 1
19: end while
20: return N, e(l), V

(l)
out

21: end procedure

we choose the larger n
(l−1)
ideal obtained at each branch to maintain connections across all input nodes. The

computational cost of this analysis, as depicted in Algorithm 1, is negligibly small as it relies solely on simple
operations with pre-defined constants.

Minimum connection construction: Upon determining the ideal number of output nodes used in each
layer, the minimum connection construction is finalized through edge placement so that it is satisfied that∣∣∣V (l)

out

∣∣∣ = n
(l)
ideal. We establish a minimum connection in two steps, outlined in Figure 3:

1. Select an input node from a block V
(l)

blk,i and connect it to an unconnected output node. This process
is iterated for all blocks (for the detailed procedure, see Algorithm 2).

2. Connect the remaining unconnected nodes. If the minimum degree of input or output nodes is
already 1, we connect the unconnected nodes randomly to other nodes (for the detailed procedure,
see Algorithm 3).

These steps are executed sequentially from the input to the output layer. Finally, MiCA places the remaining
edges randomly within the nodes of the minimum connection, as depicted in Algorithm 4. These edges are
functional regardless of placement, owing to the minimum connection.

4 Experiments and Results

This section evaluates MiCA using the experimental setup described in Section 4.2. It shows that MiCA
performs better than conventional RPI and RbPI methods, especially in the high compression range and
regardless of whether skip connections exist.
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Algorithm 4 Minimum Connection Assurance

Require: Network N , the maximum number of input nodes n
(1)
in , the maximum number of output nodes

n
(L)
out, pre-defined number of edges e(1), e(2), ..., e(L), maximum block size b(1), b(2), ..., b(L).

1: n
(1)
out,ideal, n

(2)
out,ideal, ..., n

(L)
out,ideal ← NodeAnalysis(n(L)

out, e(1), e(2), ..., e(L), b(1), b(2), ..., b(L))
2: V

(1)
in ←

{
1, 2, ..., n

(1)
in

}
3: for l = 1 to L do
4: N, e(l), Vused, iout, V

(l)
out ← Step2(N, V

(l)
in , e(l), n

(l)
out,ideal)

5: while e(l) > 0 do
6: v

(l)
in ← x ∈ V

(l)
in

7: v
(l)
out ← x ∈ V

(l)
out

8: Connect v
(l)
in and v

(l)
out in N

9: e(l) ← e(l) − 1
10: end while
11: if l < L then
12: V

(l+1)
in ← (l + 1)-th layer input nodes connected to V

(l)
out

13: end if
14: end for

4.1 Notation of Methods

We briefly introduce the notation of the methods compared in the subsequent experiments in advance.
RPI uses a pre-defined sparsity distribution for ERK, IGQ, SNIP, GraSP, and SynFlow. Here, we consider
the sparsity distribution of the network pruned by SNIP, GraSP, and SynFlow, which are RbP, as a pre-
defined sparsity distribution. RPI methods with these distributions are denoted RPI-ERK, RPI-IGQ,
RPI-SNIP, RPI-GraSP, and RPI-SynFlow, respectively. Similarly, MiCA using these distributions are
denoted MiCA-ERK, MiCA-IGQ, MiCA-SNIP, MiCA-GraSP, and MiCA-SynFlow, respectively.
For the RbPI experiments, SNIP, GraSP, and SynFlow are chosen as RbPI methods, and these are specified
as RbPI-SNIP, RbPI-GraSP, RbPI-SynFlow, respectively. For more detail on each RPI and RbPI
method, see Section 2.

4.2 Experimental Settings

This paper evaluates MiCA on two classification tasks: image classification and node classification. The
latter is one of the major tasks for graph neural networks (GNN), and this paper covers it to investigate the
versatility of our approach for general tasks that do not use convolutional architectures.

We employ the CIFAR-10, CIFAR-100, and ImageNet datasets in image classification. For CIFAR-10 and
CIFAR-100, 40,000 images are used as training data and 10,000 as validation data, while we use the default set
split for ImageNet. The architectures used in the image classification experiments are VGG-16, ResNet-20,
and ResNet-50, and each implementation is based on the code provided by Tanaka et al. (2020). In particular,
VGG-16 includes a batch normalization layer and removes the bias of the convolutional layer. All experiments
for this task use stochastic gradient descent (SGD) applying Nesterov’s acceleration method (Nesterov, 1983)
with a momentum of 0.9. CIFAR-10 and CIFAR-100 experiments are run five times with a batch size 128
for 160 epochs, and the ImageNet experiment is run once with a batch size 256 for 90 epochs. For VGG-16,
the weight decay is set to 0.0001, and the learning rate is started at 0.1 and multiplied by 0.1 after 60 and
120 epochs. For ResNet-20, the weight decay is set to 0.0005, and the learning rate is started at 0.01 and
multiplied by 0.2 after 60 and 120 epochs. For ResNet-50, the weight decay is set to 0.0001, and the learning
rate is started at 0.1 and multiplied by 0.1 after 30, 60, and 80 epochs.

On the other hand, in node classification, we experiment with the OGBN-ArXiv dataset split by default
proportion. We employ the GCN and GIN architectures, which are variants of GNN, with four layers and
implement each architecture based on the codes provided by Wang et al. (2019); Huang et al. (2022). We
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Figure 4: Comparison of the ratio of functional edges between RPI and MiCA with ERK and IGQ for
pre-defined compression ratios. Unlike other RPI methods, MICA makes all edges functional, even at a high
compression ratio.

use Adam (Kingma & Ba, 2014) and cosine learning rate decay for the node classification. Each architecture
is set to an initial learning rate of 0.001 and is trained for 400 epochs. Also, these experiments are run five
times.

For all experiments, we use values 100.5, 101, ..., 105.5, and 106 as pre-defined compression ratios. Note that
results are not plotted if all edges are non-functional after compression. SNIP and GraSP use 10× the
training data amount relative to the dataset’s number of classes and a batch size of 128. SynFlow prunes
the initialized network for 100 iterations.

4.3 Pre-Defined Sparsity Distribution Maintenance of MiCA

This section shows how much MiCA and RPI leave functional edges for each pre-defined compression ratio.
The result is plotted in Figure 4. The ratios of functional edges for RPI-ERK and RPI-IGQ begin to decrease
around 103× compression ratio for VGG-16 and 102× for ResNet-20. On the other hand, MiCA continues to
use all the pre-allocated edges as much as possible and maintains the sparsity distribution even in the high
compression range. MiCA-ERK and MiCA-IGQ have almost all functional edges even at 105× compression
ratio for VGG-16 and 103.5× compression ratio for ResNet-20. However, all edges can be non-functional at
high compression ratios, as seen in MiCA-ERK for VGG-16 at 105.5× compression ratio. This phenomenon
is caused by the way the pre-defined sparsity distribution is designed. Some pre-defined sparsity distributions
allocate no edges to a few layers when the pre-defined compression ratio is exceptionally high. As a result,
all edges are non-functional, regardless of how they are placed.

4.4 MiCA vs. Random Pruning

Figure 5 compares MiCA and RPI with ERK, IGQ, SNIP, GraSP, and SynFlow. First, we focus on the ERK
and IGQ experiments of the two left columns. In the VGG-16 experiment (first column), RPI-ERK and
RPI-IGQ have a sharp performance drop for ≥ 103× compression ratios for both CIFAR-10 and CIFAR-100.
These with a pre-defined compression ratio of 103.5× have an actual compression ratio of > 104×, and those
with a pre-defined compression ratio of 104×, 104.5×, ..., 105×, and 106× cannot be plotted as all edges are
non-functional (i.e., the corrected compression ratio is infinite). On the other hand, MiCA-ERK and MiCA-
IGQ maintain the same compression ratio as the pre-defined compression ratio and suffer less performance
degradation. Note that MiCA-ERK is not plotted for 105.5× and 106× compression ratios. This phenomenon
is due to ERK’s design, as mentioned in Section 4.3, and the same occurs in other sparsity distributions
(e.g., IGQ) and other experiments. As shown in Figure 5 (a), MiCA-IGQ achieves an accuracy of 44.4%
for 104.5× compression ratio, significantly higher than RPI-IGQ’s accuracy of 12.6% for 104.3× compression
ratio. This result suggests that the minimum connection supports learning in the high compression range.
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(a) CIFAR-10 experiments.

(b) CIFAR-100 experiments.

Figure 5: Comparison of accuracy between RPI and MiCA on CIFAR-10 and CIFAR-100. In VGG-16, MiCA
reduces performance degradation in the high compression range and improves the accuracy and compression
ratio trade-off. It also shows slight performance improvement for the sparsity distributions such as IGQ
and SynFlow in ResNet-20 experiments using CIFAR-10. Note that some plots are not plotted because the
corrected compression ratio is infinite.

In the ResNet-20 experiment (second column), the performance difference between MiCA and RPI is less
drastic than in the VGG-16 experiment. In particular, CIFAR-100 experiments (Figure 5 (b)) show little
difference. However, it is hardly surprising considering that skip connections help randomly pruned net-
works learn in the high compression range (Hoang et al., 2023). For CIFAR-10 experiments (Figure 5 (a)),
MiCA-ERK slightly improves the trade-off between compression ratio and accuracy against RPI-ERK in the
compression range of 102–103×. ResNet-20 has several layers that do not have skip connections, and it is
therefore considered that the minimum connection supports learning in those layers.

Then, we state the results of the right two columns in Figure 5. In the VGG-16 experiment (third column),
MiCA-SNIP, MiCA-GraSP, and MiCA-SynFlow significantly improve the trade-off between accuracy and
compression ratio as in the ERK and IGQ experiments. It is particularly evident in the CIFAR-100 experi-
ment (Figure 5 (b)). Thus, MICA overcomes the performance degradation at a high compression range for
skip connection-free architectures, regardless of the pre-defined sparsity distribution. However, the perfor-
mance improvements in the ResNet-20 (fourth column) are still minute. This result seems regrettable but
highlights the importance of skip connections to RPI.
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(a) CIFAR-10 experiments.
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(b) CIFAR-100 experiments.

Figure 6: Comparison of accuracy between RbPI and MiCA. MiCA improves the accuracy and compres-
sion ratio trade-off more than RbPI in ResNet-20. MiCA also performs as well as RbPI in the VGG-16
experiments. Interestingly, MiCA outperforms RbPI in both VGG-16 and ResNet-20 experiments using
CIFAR-100.

Figure 7: Comparison of accuracy between RPI-IGQ and MiCA-IGQ using ResNet-50 on ImageNet. MiCA
improves the accuracy and compression ratio trade-off slightly.

4.5 MiCA vs. Ranking-Based Pruning

Figure 6 compares the compression ratio and accuracy between RbPI and MiCA on CIFAR-10 (left two
columns) and CIFAR-100 (right two columns). We employ SNIP, GraSP, and SynFlow as RbPI methods.
Despite random connections, MiCA achieves comparable performance to RbPI in VGG-16. Although it has
already been observed that randomly pruned networks achieve performance comparable to RbPI (Frankle
et al., 2021), to the best of our knowledge, this is the first time that the same result is reported in the high
compression range. In other words, this result shows that RbPI only learns layer-to-layer connections, not
high-performance subnetworks, regardless of the compression ratio. Interestingly, the ResNet-20 experiments
show a more pronounced performance difference than the RPI result in Figure 5. It suggests that MiCA’s
RPI aspect helps it to maintain higher performance than RbPI in ResNet-20 because MiCA connects each
layer randomly. Also, RbPI may have significant variations in compression ratio in the high compression
range. On the other hand, MiCA is robust regarding compression ratio and can achieve the pre-defined
compression ratio.
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(a) CIFAR-10 experiments.

(b) CIFAR-100 experiments.

Figure 8: Comparison of RPI and MiCA with the same corrected sparsity distribution on CIFAR-10 and
CIFAR-100. When the number of parameters used in each layer is matched, MiCA performs better than
other PaI methods when the compression ratio is high.

4.6 ImageNet Experiments

Figure 7 compares the compression ratio and accuracy between RPI-IGQ and MiCA-IGQ on ImageNet in
the high compression range. MiCA-IGQ improves the accuracy and compression ratio trade-off slightly
over RPI-IGQ. As in the CIFAR-10/100 experiments, the accuracy improves even in the architecture with
skip connections, suggesting the importance of the connection relationships between layers. RPI-IGQ has
the same accuracy as a random network at a pre-defined compression ratio of 104×. However, MiCA-IGQ
maintains higher accuracy than a random network even at a pre-defined compression ratio of 104.5×. Thus,
maintaining the layer-wise connections enables one to learn from the data, even in the case of an extremely
high compression ratio.

4.7 Performance Comparison for the Same Sparsity Distribution

Previous sections match the pre-defined sparsity distribution of MICA and other PaI methods and compare
each method. In contrast, this section evaluates the corrected sparsity distribution of RPI and RbPI as the
pre-defined sparsity distribution of MiCA. Then, we show that the network structure constructed by MiCA

12



Published in Transactions on Machine Learning Research (5/2024)

Figure 9: Comparison of the compression ratio with the ratio of functional nodes among the nodes flowing
information from the first layer. MiCA maintains a high functional node ratio even in a high compression
range compared to other PaI methods. Exceptions are RbPI-SynFlow, which retains a higher ratio than
MiCA at high compression ratios.

Block
(Kernel)

𝑙-th Layer

(𝑙 + 1)-th Layer

Block
(Kernel)

Figure 10: In the l-th convolutional layer, each output node has connections with up to b(l+1) = k
(l+1)
h ×k

(l+1)
w

input nodes in the (l + 1)-th convolutional layer. These connections, formed during the convolution process,
may persist even after pruning, making input nodes of (l+1)-th layer non-functional.

achieves higher performance against other PaI methods, even when the number of edges at each layer is
matched.

Figure 8 compares RPI, RbPI, and MiCA for the same sparsity distribution. The two columns on the left
show RPI experiments, while the two on the right show RbPI experiments. Even when using the same
sparsity distribution, MiCA improves the accuracy more than RPI (left two columns). The results in VGG-
16 on CIFAR-10 are remarkable: MiCA-ERK achieves 27.0% higher accuracy than RPI-ERK with 104.7×
compression ratio. Performance improvements of MiCA can also be seen in ResNet-20 at a high compression
ratio. Both RPI and MiCA ought to make similar networks due to the random connection in this situation,
but the performance difference is more noticeable when the compression ratio is high. In addition, the
subnetworks built by RbPI suffer more performance degradation than those built by MiCA, regardless
of compression ratio and architecture (right two columns). However, in the VGG-16 experiments (third
column), RbPI-SynFlow is more accurate than MiCA in the compression range above 105×. At 105.5×
compression ratio in CIFAR-10 experiments, MiCA-SynFlow achieves 10.0%, which is not different from
the random performance, while RbPI-SynFlow achieves 20.3%. Furthermore, these accuracies are almost
identical for CIFAR-100 experiments. In other words, RbPI-SynFlow is superior to MiCA only when the
compression ratio is extremely high and the architecture does not have skip connections.
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Figure 11: Comparison of the accuracy between RPI, RbPI, and MiCA on OGBN-ArXiv with same pre-
defined sparsity distribution.

Figure 12: Comparison of RPI, RbPI, and MiCA accuracy on OGBN-ArXiv with the same corrected sparsity
distribution.

4.8 Top-to-Bottom Information Propagation

This section shows that MiCA propagates information without loss compared to other PaI methods. As
in the previous section, the pre-defined sparsity distribution of MICA is matched to the corrected sparsity
distribution of each method.
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Figure 9 compares the ratio of functional nodes to all nodes that information flows from the first layer for each
compression ratio. While RPI and RbPI methods reduce the ratio of functional nodes as the compression
ratio increases, MiCA maintains the high ratio of functional nodes. In particular, RPI-ERK and RPI-IGQ
have almost 3/4 of the nodes non-functional in VGG-16 at 103× compression ratio, whereas MiCA-ERK
and MiCA-IGQ keep all nodes functional. Interestingly, RbPI-SynFlow keeps the ratio of functional nodes
relatively higher than other PaI methods without MiCA, even in the high compression range. In contrast,
RbPI methods make nodes non-functional even in the low compression range. At the compression ratio of
> 104× in VGG-16 and > 102× in ResNet-20, RbPI has a higher ratio of functional nodes than MiCA.
Given that RbPI-SynFlow achieves comparable or higher accuracy than MiCA at ≥ 105× compression ratio
in VGG-16 (Figure 8) and that RbPI builds a specific network at the skip connection-free architecture (Hoang
et al., 2023), it suggests that sparse networks with a high ratio of functional nodes maintain accuracy at
a high compression ratio. MiCA makes nodes non-functional in a high compression range, but the ratio is
lower than in other methods. At 104.7× compression ratio in VGG-16, MiCA-ERK keeps nearly 50% of the
nodes functional, whereas RPI-ERK keeps most of the nodes non-functional. In the ResNet-20 experiments,
MiCA also has a higher ratio of functional nodes than other methods, but the difference is lower than in
VGG-16. It shows that information from the first layer flows to the subsequent layers even after pruning
due to skip connections. In other words, the top-to-bottom information flow is narrowed by pruning, but
skip connections allow it to flow to the subsequent layers.

Why do some nodes become non-functional even after recalculating the compression ratio? This is because
the convolution process produces non-functional nodes. The convolution process connects one input node in
l-th convolutional layer with several output nodes in (l + 1)-th convolutional layer, as shown in Figure 10.
This connection does not use network parameters; hence, it is preserved after recalculating the compression
ratio. Consequently, nodes can be non-functional if the number of remaining edges in (l+1)-th layer is small.

4.9 Experiments with Non-Convolutional Networks on Node Classification

Through the preceding experiments, we have observed that MiCA is effective in convolutional structures.
However, what about for other architectures? This section examines the effectiveness of MiCA using archi-
tectures for other tasks that do not involve convolutional networks. Specifically, we experiment with node
classification using GCN and GIN, both of which are MLP-based architectures. Note that while GCN seems
to have the convolutional layers from the name, the network structure that processes the features is an MLP.

Figure 11 and 12 compare the accuracy between RPI, RbPI, and MiCA on OGBN-ArXiv with the same pre-
defined and corrected sparsity distribution, respectively. Similar to the convolutional network experiments,
MiCA maintains high accuracy, comparable to RPI, in the low compression range and enables training
similar to RbPI in the high compression range. In other words, MiCA demonstrates the effects of restricted
RPI, which lies between RPI and RbPI, even in non-convolutional networks.

5 Limitations and Implications of This Work

This section discusses the limitations of this work and the implications of the proposed MiCA.

Limitations: Our work has several limitations: 1) As shown in the ImageNet experiment with ResNet-50,
the impact of applying MiCA in the context of large-scale datasets is minimal. We have also conducted
experiments with other settings using ImageNet, but results beyond the ResNet-50 experiment have not yet
been verified. Thus, there is potential for further enhancement in handling large-scale datasets. 2) While
the average accuracy improves, some variation in accuracy must be tolerated due to the random selection
of non-pruned edges. Further analysis and refinement are necessary to minimize the accuracy variance by
tightening the restrictions in the pruning procedure. 3) Since our work focuses on high compression ranges,
accuracy is inevitably lower than in low compression cases. Thus, we must explore whether MiCA has
advantages in the trade-off between accuracy and computational complexity, particularly considering sparse
matrix operations.
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Implications: Our proposed method MiCA has several implications: 1) Our work offers new insights into
the underlying mechanisms governing the functionality of a network pruned by the PaI method under ultra-
sparse conditions. The field of PaI is still insufficiently researched under such circumstances, and our work
implies an investigation into uncharted territory within the field. 2) The accuracy improvement achieved
with MiCA in the high compression range highlights the significance of focusing on layer-wise connectivity
for enhanced performance in ultra-sparse networks. Our work demonstrates that accuracy enhancement can
be attained solely through simple node connectivity without relying on data or other costly information
(e.g., gradients). Although this paper has not demonstrated practical-level accuracy in the high compression
range, this empirical finding by MiCA within the field of PaI holds significance, particularly considering the
recent trend of over-parameterization and the potential importance of sparse network architectures in the
future.

6 Conclusion and Future Work

This paper introduces Minimum Connection Assurance, a novel approach to PaI methods. It addresses
the critical issue of achieving higher compression ratios while preserving model accuracy, particularly in
the high compression range. MiCA enhances the accuracy and compression ratio trade-off, surpassing the
performance limitations encountered by RPI on skip connection-free architectures.

Our experiments not only validate the efficacy of MiCA in achieving high compression ratios but also shed
light on the underlying factors that govern accuracy after training, which are present within the network
created by PaI. Notably, MiCA demonstrates the ability of random connections to substitute for those
learned by RbPI, especially in the high compression range. That is a phenomenon previously observed only
in the low compression range. In other words, this paper first reveals that learned connections are less than
or equivalent to random connections at any compression ratio. Furthermore, our analysis suggests that it is
necessary to make all nodes from which information flows functional to improve accuracy.

Our finding has potential for future applications in the area of large-scale models such as foundation mod-
els (Bommasani et al., 2021) and large language models (Brown et al., 2020). As the size of state-of-the-art
models grows, the associated training and inference costs become increasingly prohibitive. In order to re-
duce these costs, model compression needs to be sufficiently higher before training than the present. In this
respect, our finding in the high compression range can be expected to be important in the future. More-
over, it also has the potential contribution in areas such as fine-tuning large models to downstream tasks by
pruning (Jiang et al., 2022).

A promising avenue for future work lies in exploring the appropriate setting method of pre-defined sparsity
distributions depending on the minimum connection. While MiCA demonstrates superior performance to
conventional PaI methods, the accuracy is contingent upon the pre-defined sparsity distribution. Investi-
gating novel sparsity distributions based on the minimum connection while maintaining critical connections
could unveil further optimizations in model compression.
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