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Abstract

We consider sampling problems with possibly non-smooth potentials (negative log-densities).
In particular, we study two specific settings of sampling where the convex potential is either
semi-smooth or in composite form as the sum of a smooth component and a semi-smooth com-
ponent. To overcome the challenges caused by the non-smoothness, we propose a Markov chain
Monte Carlo algorithm that resembles proximal methods in optimization for these sampling
tasks. The key component of our method is a sampling scheme for a quadratically regularized
target potential. This scheme relies on rejection sampling with a carefully designed Gaussian
proposal whose center is an approximate minimizer of the regularized potential. We develop a
novel technique (a modified Gaussian integral) to bound the complexity of this rejection sam-
pling scheme in spite of the non-smoothness in the potentials. We then combine this scheme
with the alternating sampling framework (ASF), which uses Gibbs sampling on an augmented
distribution, to accomplish the two settings of sampling tasks we consider. Furthermore, by
combining the complexity bound of the rejection sampling we develop and the remarkable con-
vergence properties of ASF discovered recently, we are able to establish several non-asymptotic
complexity bounds for our algorithm, in terms of the total number of queries of subgradient of
the target potential. Our algorithm achieves state-of-the-art complexity bounds compared with
all existing methods in the same settings.

Key words. High-dimensional sampling, non-smooth potential, semi-smooth potential,
composite potential, complexity analysis, alternating sampling framework, rejection sampling,
proximal bundle method, restricted Gaussian oracle

1 Introduction

Read Lin Xiao’s “Dual Averaging Methods for Regularized Stochastic Learning and Online Opti-
mization” and John Duchi’s “Adaptive Subgradient Methods for Online Learning and Stochastic
Optimization” when revising this paper and discussing the application in online learning

Drawing samples from a given (often unnormalized) probability density plays a crucial role in
many scientific and engineering problems that face uncertainty (either physically or algorithmi-
cally). Sampling algorithms are widely used in many areas such as statistical inference/estimation,
operations research, physics, biology, and machine learning, etc [3, 14, 16, 19, 22, 23, 24, 48]. For
instance, in Bayesian inference, one draws samples from the posterior distribution to infer its mean,
covariance, or other important statistics. Sampling is also heavily used in molecular dynamics to
discover new molecular structures.
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Over the past decades, many algorithms have been developed for sampling [1, 8, 16, 25, 26, 34,
46]. A widely used framework for sampling from complex distributions is the Markov chain Monte
Carlo (MCMC) algorithm [7, 9, 10, 13, 14]. In MCMC, a Markov chain is constructed so that
its invariant distribution is the given target distribution we want to sample from. Several widely
used MCMC methods include Langevin Monte Carlo (LMC) [12, 21, 40, 43], Metropolis-adjusted
Langevin algorithm (MALA) [4, 42, 43], and Hamiltonian Monte Carlo (HMC) [37]. All these
three algorithms use gradient information of the potential (negative log-density) to construct the
Markov chain. Recently, many theoretical results (see [8, 12, 13, 15, 25, 27, 41, 43] and references
therein) have been established to understand the complexities of these MCMC algorithms. A typical
assumption in most of these theoretical results is that the target potential is smooth [12, 25, 51],
i.e., its gradient is Lipschitz continuous.

In this work we consider sampling problems where the target potential is not smooth. Many
applications of sampling involve potentials that lack smoothness. For instance, in Bayesian infer-
ence, the prior is naturally non-smooth when its support is constrained. Many problems in deep
learning are also non-smooth, not only due to non-smooth activation functions like ReLU used in
the neural networks, but also due to intrinsic scaling symmetries. Nevertheless, the study of such
sampling problems without smoothness is nascent, compared with that for smooth potentials.

This work is along the recent line of researches that lie in the interface of sampling and optimiza-
tion [13, 45]. Indeed, sampling is closely related to optimization. On the one hand, optimization
can be viewed as the limit of sampling when the temperature parameter, or equivalently the ran-
domness in the problem, goes to 0. On the other hand, sampling can be viewed as an optimization
over the manifold of probability distributions [51, 53]. The popular gradient-based MCMC methods
such as LMC, MALA, and HMC resemble the gradient-based algorithms in optimization and can
be viewed as the sampling counterparts of them. However, in sharp contrast to optimization where
a plethora of algorithms, e.g., subgradient method, proximal algorithm, bundle method have been
developed for non-smooth optimization [29, 30, 32, 33, 35, 44, 52], the sampling problem without
smoothness remains largely unexplored, compared with its smooth counterpart.

The goal of this paper is to develop an efficient algorithm to draw samples from potentials
that lack smoothness. We consider two specific settings where the convex potential is either semi-
smooth (i.e., the (sub)gradient of the potential is Hölder-continuous with exponent α ∈ [0, 1]) or
composite with a semi-smooth component. This is a non-trivial extension of our previous work
[31] where the target potential is assumed to be convex and Lipschitz continuous. The core of our
algorithm is a scheme to sample from a quadratically regularized version of the target potential.
Our scheme is based on rejection sampling with a carefully designed Gaussian proposal whose center
is an approximate minimizer of the regularized potential. We develop a novel technique to bound
the complexity of our sampling scheme by estimating a modified Gaussian integral. Moreover, we
establish an iteration-complexity bound for the proximal bundle optimization algorithm we use to
compute an approximate minimizer of the regularized potential so that total complexity of our
sampling scheme is properly bounded.

To sample from the original target distribution, we utilize the alternative sampling framework
(ASF) [25]. The latter is an application of Gibbs sampling over a specially designed distribution
that augments the target one. The ASF has shown to exhibit remarkable convergence properties
under mild assumptions [6]. In particular, smoothness of the target potential is not required to
ensure global convergence. To use ASF in practice, one needs to realize, in each iteration, a step
known as the restricted Gaussian oracle (RGO) [25]. However, except for some very special cases
e.g., the target potential is decomposable along each dimension, it was not clear how to implement
RGO efficiently. It turns out that the sampling scheme we developed to sample from a quadratically
regularized potential of the target potential is exactly an RGO for the target distribution. Thus,
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by combining ASF and the sampling scheme we developed, we establish an efficient algorithm to
sample from any convex semi-smooth potential and any composite potential with a semi-smooth
component. Moreover, the complexity of the resulting algorithm can be bounded by combining
that of our sampling scheme and that of the ASF. We summarize our contributions as follows.

i) We develop an efficient scheme to sample from a quadratically regularized potential that lacks
smoothness and establish novel techniques to bound its complexity.

ii) We combine our sampling scheme and the ASF to form a general sampling algorithm for
convex semi-smooth potentials as well as composite potentials with semi-smooth components.
The complexity of our algorithm is better than all existing results under the same assumptions.

iii) Though these are not the focus of this work, we establish complexity bounds of the proxi-
mal bundle subroutine for convex semi-smooth functions and composite functions with semi-
smooth components. These results can be readily used to bound the iteration-complexity of
the proximal bundle algorithm in optimization for these functions.

Related Works: Several new algorithms and theoretical results in sampling with semi-smooth
and composite potentials have been established over the last few years. We begin with the literature
on sampling from semi-smooth potentials or non-smooth potentials. In [28], the author developed
the projected LMC algorithm and analyzed its complexity for non-smooth potentials. In [13], the
authors presented an optimization approach to analyze the complexity of sampling and established
a complexity result for sampling with non-smooth potentials. In [5], the authors proposed an
LMC type algorithm for sampling from semi-smooth potentials based on Gaussian smoothing. In
[11, 17], the authors analyzed LMC under functional inequalities and semi-smoothness (except the
non-smooth case) and established corresponding complexity results.

Next we consider sampling algorithms for composite potentials of the form exp(−f1−f2), where
f1 is convex and smooth, and f2 is convex and non-smooth/semi-smooth. In [36], the authors
developed an algorithm that needs an oracle to sample from the target potential regularized by a
large isotropic quadratic term and to compute the corresponding partition function, akin to the
RGO used in ASF [47]. In [14], the authors introduced an algorithm by running LMC on the Moreau
envelope of the potential. In [13], the authors proposed an algorithm embedding the proximal map
of f2 into LMC and analyzed the convergence of the average of distributions over iterates. In [18],
the authors improved the results in [13] for the cases where f2 is an isotropic quadratic term. The
paper [45] provided a primal-dual interpretation of the algorithm proposed in [13], and established
a slightly improved complexity result when the smooth part f1 is also strongly convex. In [2], the
authors also examined the problem from an optimization perspective and established a complexity
bound in the cases where f1 is strongly convex. Another approach for sampling from the composite
density exp(−f1 − f2) is to apply LMC on the Gaussian smoothing of the potentials. In [5], the
authors proposed this algorithm for sampling from composite densities. Following this paper, [38]
further developed algorithms based on generalized Gaussian smoothing and obtained improved
results when f1 is strongly convex.

We compare these existing complexity bounds with our results in Tables 1 and 2. We highlight
only the dependence of the complexity on the dimension d, the accuracy ε, the level of smoothness
α and the semi-smoothness coefficient Lα, the smoothness coefficient L1 of f1, and the strong
convexity coefficient λ of f1 if it is positive. To this end, we make the following simplifications.
The initial distance (either in KL/Rényi or in W 2

2 ) to the target distribution is set to be Õ(d). The
forth order momentM4 = O(d2). We also omit the dependence of the Poincaré coefficient if there
is any. We make the following remarks regarding these complexity bounds. Complexity results
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established in [13] is for the average of distributions over iterates, while other results presented in
Tables 1 and 2 are for the distributions over the last iterates. The non-smooth case (i.e., α = 0) is
not covered in complexity results of [11] and [17] in Table 1, and the result of [38] in Table 2, as
these bounds blow up as α→ 0. Papers [2, 5, 13, 14, 45] rely on the composite form f1 + f2 of the
composite potentials and the proximal map of f2. In contrast, our algorithm does not depend the
decomposition of the potential and does not necessarily require the proximal map of f2.

Source Complexity Assumption Metric

[5] Õ
(
L
6/(1+α)
α d8−3α

ε(10+4α)/(1+α)

)
semi-smooth TV

[13] O
(
L2
0d
ε2

)
non-smooth KL

[28] Õ
(
L2
0d

2

ε2

)
non-smooth W 2

1

[11] Õ
(
L
2/α
α d2+1/α

ε1/α

)
semi-smooth Rényi

[17] Õ
(
L
2/α
α d2+3/α

ε1/α

)
semi-smooth KL

this paper
(Thm. ??)

Õ
(
L
2/(1+α)
α d2

ε

)
semi-smooth TV

this paper
(Thm. 5.7)

Õ
(
L

2/(1+α)
α d2

)
semi-smooth Rényi

Table 1: Complexity bounds for sampling from semi-smooth/non-smooth potentials.
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Source Complexity Assumption Metric

[5] Õ
(
L
6/(1+α)
α d5−3α

λ3ε(7+α)/(1+α)

)
smooth+semi-

smooth
TV

[14] Õ
(
L2
0d

5

ε2

)
smooth+non-

smooth
TV

[13] O
(
L1d2+L2

0d
ε2

)
smooth+non-

smooth
KL

[45] Õ
(
L2
0+L1d
λ2ε

)
smooth+non-

smooth
W 2

2

[38] Õ
(

(Lα∨L1)2/αd1/α

λ1+1/αε1/α

)
smooth+semi-

smooth
KL

[2] Õ
(
L2
0d
λε4

)
smooth+non-

smooth
W2

this paper
(Thm.
5.10)

Õ
(

(L
2/(α+1)
α ∨L1)d2

ε

)
smooth+semi-

smooth
TV

this paper
(Thm.
5.10)

Õ
(

(L
2/(α+1)
α ∨ L1)d2

)
smooth+semi-

smooth
Rényi

this paper
(Thm. ??)

Õ
(

(L
2/(α+1)
α ∨L1)d

λ

)
smooth+semi-

smooth
Rényi

Table 2: Complexity bounds for sampling from composite potentials.

2 Background, Proximal operator and motivating examples

motivation, significance, challenges
We are interested in sampling problems associated with convex potentials that are not nec-

essarily smooth. In particular, we consider two specific scenarios of sampling tasks with target
distribution

ν ∝ exp(−f(x)) (1)

in Rd. In the first setting, the potential f is assumed to be convex and semi-smooth, i.e.,

‖f ′(u)− f ′(v)‖ ≤ Lα‖u− v‖α, ∀u, v ∈ Rd (2)

for some α ∈ [0, 1] and coefficient Lα > 0, where f ′ denotes a subgradient of f . Clearly, when
α = 0, (2) reduces to a Lipschitz continuous condition, and when α = 1, it reduces to a smoothness
condition. In the second setting, the potential is assumed to be composite as f(x) = f1(x) + f2(x)
with f1 being convex and smooth and f2 being convex and semi-smooth.

Most existing gradient-based sampling algorithms are not applicable to these problems due to
the lack of smoothness. In this work, we develop a proximal algorithm for sampling from
semi-smooth potentials and composite potentials. Our method is based on the alternating
sampling framework (ASF) introduced in [25], which is a generic framework for sampling from
a distribution πX(x) ∝ exp(−g(x)). Starting from a point x0 ∈ Rd, the alternating sampling
framework with stepsize η > 0 repeats the two steps as in Algorithm 1.
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Algorithm 1 Alternating Sampling Framework [25]

1. Sample yk ∼ πY |X(y | xk) ∝ exp[− 1
2η‖xk − y‖

2]

2. Sample xk+1 ∼ πX|Y (x | yk) ∝ exp[−g(x)− 1
2η‖x− yk‖

2]

Apparently, the ASF is a special case of Gibbs sampling [20] of the joint distribution

π(x, y) ∝ exp(−f(x)− 1

2η
‖x− y‖2). (3)

In Algorithm 1, sampling yk given xk in step 1 can be easily done since πY |X(y | xk) = N (xk, ηI)
is a simple Gaussian distribution. Sampling xk+1 given yk in step 2 is however a nontrivial task; it
corresponds to the so-called restricted Gaussian oracle for g introduced in [25], which is defined as
follows.

Definition 2.1. Given a point y ∈ Rd and stepsize η > 0, the restricted Gaussian oracle (RGO)
for f : Rd → R is a sampling oracle that returns a random sample from a distribution proportional
to exp(−f(·)− ‖ · −y‖2/(2η)).

The RGO is an analogy of the proximal map

Proxηg(y) := argmin x[g(x) +
1

2η
‖x− y‖2]

in optimization, which is widely used in proximal algorithms for optimization [39]. To use the
ASF in practice, one needs to efficiently implement the RGO. Some examples of g that admits a
computationally efficient RGO have been presented in [36, 47]. These instances of g have simple
structures such as coordinate-separable regularizers, `1-norm, and group Lasso. For general g,
especially non-smooth ones considered in this work, it was not clear how to realize the RGO
efficiently.

3 Proximal operator algorithms and complexities

3.1 A proximal bundle method subroutine for semi-smooth optimization

We consider the optimization problem

fηy (x∗) = min

{
fηy (x) = f(x) +

1

2η
‖x− y‖2 : x ∈ Rd

}
, (4)

and we aim at obtaining a δ-solution, i.e., a point x̄ such that

fηy (x̄)− fηy (x∗) ≤ δ. (5)

To achieve this goal, we borrow ideas from the proximal bundle method [32, 33], which is an
efficient algorithm for solving convex non-smooth optimization problems. The proximal bundle
method solves a non-smooth optimization via sequentially solving a sequence of sub-problems of
the form (4) approximately. We adopt this subroutine in the proximal bundle method to obtain a
δ-solution to (4). This is summarized in Algorithm 2.

We remark that though Algorithm 2 is widely used in the proximal bundle method and is not
new, the complexity analysis (Theorem 3.5) of it associated with a semi-smooth function f is novel.

6



To our best knowledge, Theorem 3.5 is the first iteration-complexity result for the optimization of
the form (4) for semi-smooth functions. This result can be readily used for complexity analysis of
the proximal bundle method for semi-smooth functions (This is not the focus of this paper and will
not be explored here).

Algorithm 2 Proximal Bundle Method Subroutine

1. Let y ∈ Rd, η > 0, and δ > 0 be given, and set x0 = x̃0 = y, and j = 1
2. Update fj(x) = max {f(xi) + 〈f ′(xi), x− xi〉 : 0 ≤ i ≤ j − 1}
3. Compute

xj = argmin
u∈Rd

{
fηj (x) := fj(x) +

1

2η
‖x− y‖2

}
, (6)

x̃j ∈ Argmin
{
fηy (x) : x ∈ {xj , x̃j−1}

}
(7)

4. If fηy (x̃j)− fηj (xj) ≤ δ, then stop and return J = j, xJ , x̃J ; else, go to step 5
5. Set j ← j + 1 and go to step 2.

The basic idea of Algorithm 2 is to approximate the non-smooth part of the objective function fηy
with piece-wise affine functions constructed by a collection of cutting-planes and solve the resulting
simplified problem. As the approximation becomes more and more accurate, the solutions to the
approximated problems converge to that of (4). We make several remarks regarding Algorithm
2. First, fj is the standard cutting-plane model and {fj} is a sequence of increasing functions
underneath f . Second, (50) can be reformulated into convex quadratic programming with j affine
constraints.

We next show Algorithm 2 can compute a δ-solution to (4) within a reasonable number of
iterations. To this end, we present a technical lemma for Algorithm 2. This lemma is also useful
in the complexity analysis in Section ?? for sampling.

Lemma 3.1. Assume f is convex and Lα-semi-smooth. Let J, xJ , x̃J be the outputs of Algorithm
2, then the following statements hold:

a) fj(x) ≤ fj+1(x) and fj(x) ≤ f(x) for ∀x ∈ Rd and ∀j;

b) fηj (xj) + ‖x− xj‖2/(2η) ≤ fηj (x) for ∀x ∈ Rd and ∀j;

c) fηy (x̃J)− fηJ (xJ) ≤ δ;

d) f(x̃J)− f(u) ≤ δ + 1
2η‖u− y‖

2 − 1
2η‖xJ − u‖

2;

e) − 1
η (x∗ − y) ∈ ∂f(x∗) where ∂f denotes the subdifferential of f .

Proof: a) The first inequality follows from the definition of fj in step 2 of ALgorithm 2. The
second inequality directly follows from the definition of fj and the convexity of f .

b) This statement follows from (50) and the fact that fηj is (1/η)-strongly convex.
c) This statement immediately follows from step 4 of Algorithm 2.
d)

f(x̃J)− f(x) +
1

2η
‖xJ − x‖2 ≤ f(ỹJ)− fJ(x) +

1

2η
‖xJ − x‖2

(b)

≤ f(x̃J)− fηJ (xJ) +
1

2η
‖x− y‖2

(c)

≤ δ +
1

2η
‖x− y‖2
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e) This statement directly follows from the optimality condition of (4).
Clearly, when Algorithm 2 terminates, the output x̃J is a δ-solution to (4). To see this, note

that, following Lemma 3.1(c), (50), and the fact fηJ ≤ f
η
y ,

fηy (x̃J) ≤ δ + fηJ (xJ) ≤ δ + fηJ (x∗) ≤ δ + fηy (x∗).

In the remaining part of this subsection, we establish the iteration-complexity of Algorithm
2 for solving the proximal semi-smooth optimization problem (4). The following lemma provides
basic recursive formulas and is the starting point of the analysis of Algorithm 2.

Lemma 3.2. Define
tj := fηy (x̃j)− fηj (xj). (8)

Then, for every j ≥ 1, the following statements hold:

a) tj+1 + 1
2η‖xj+1 − xj‖2 ≤ tj;

b) tj ≤ Lα
α+1‖xj − xj−1‖α+1;

c) tj+1 + 1
2η

(
α+1
Lα

tj+1

) 2
α+1 ≤ tj.

Proof: a) Using the first inequality in Lemma 3.1(a) and Lemma 3.1(b) with x = xj+1, we obtain

fηj+1(xj+1) ≥ fηj (xj+1) ≥ fηj (xj) +
1

2η
‖xj+1 − xj‖2.

It follows from the above inequality, the definition of x̃j in (7), and the definition of tj in (8), that

tj+1 = fηy (x̃j+1)− fηj+1(xj+1) ≤ fηy (x̃j)− fηj (xj)−
1

2η
‖xj+1 − xj‖2 = tj −

1

2η
‖xj+1 − xj‖2.

b) It follows from the definition of tj in (8) and the definition of x̃j in (7) that

tj ≤ fηy (xj)− fηj (xj) = f(xj)− fj(xj)
≤ f(xj)− f(xj−1)− 〈f ′(xj−1), xj − xj−1〉

≤ Lα
α+ 1

‖xj − xj−1‖α+1,

where the second inequality is due to the definition of fj in the step 2 of Algorithm 2, and the third
inequality is due to (60) with (u, v) = (xj , xj−1).

c) This statement directly follows from a) and b).
It is easy to observe from Lemma 3.2 that {tj} is non-increasing. The next proposition gives a

bound on j so that tj ≤ δ, i.e., the termination criterion in step 4 of Algorithm 2 is satisfied.

Proposition 3.3. Define

β :=
1

2η

(
α+ 1

Lα

) 2
α+1

δ
1−α
α+1 , j0 = 1 +

⌈
1 + β

β
log

(
t1
δ

)⌉
. (9)

Then, the following statements hold:

a) if tj > δ, then (1 + β)tj ≤ tj−1;
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b) tj ≤ δ for every j ≥ j0. J ≤ j0

Proof: a) Using the definition of β in (9), the assumption that tj > δ, and Lemma 3.2(c), we
obtain

(1 + β)tj = tj +
1

2η

(
α+ 1

Lα

) 2
α+1

δ
1−α
α+1 tj ≤ tj +

1

2η

(
α+ 1

Lα
tj

) 2
α+1

≤ tj−1.

b) Since {tj} is non-increasing, it suffices to prove that tj0 ≤ δ We prove this statement by
contradiction. Suppose that tj0 > δ, then we have tj > δ for j ≤ j0. Hence, statement (a) holds for
j ≤ j0. Using this conclusion repeatedly and the fact that τ ≤ exp(τ − 1) with τ = 1/(1 + β), we
have

tj0 ≤
1

(1 + β)j0−1
t1 ≤

1

exp
(

β
1+β (j0 − 1)

) t1 ≤ δ,
where the last inequality is due to the definition of j0 in (9). This contradicts with the assumption
that tj0 > δ, and hence we prove this statement.

The following result shows that t1 is bounded from above, and hence the bound in Proposition
3.3 is meaningful.

Lemma 3.4. We have

t1 ≤
Lαη

α+1

α+ 1
‖f ′(x0)‖α+1.

Proof: Following the optimality condition of (50) with j = 1, we have x0 − x1 = ηf ′(x0). This
identity and Lemma 3.2(b) with j = 1 then imply the lemma.

We conclude this subsection by presenting the iteration-complexity bound for Algorithm 2.

Theorem 3.5. Algorithm 2 takes Õ
(
ηL

2
α+1
α

(
1
δ

) 1−α
α+1 + 1

)
iterations to terminate.

Proof: It follows directly from Proposition 3.3 and Lemma 3.4.

3.2 A proximal bundle method subroutine for composite optimization

The main goal of this subsection is to study Algorithm 2 for solving the proximal optimization
problem (4) under the assumption that f is convex and (L1, Lα)-smooth-semi-smooth.

Lemma 3.6. Let tj be as in (8). For δ > 0, define

M = L1 +
L

2
α+1
α

[(α+ 1)δ]
1−α
α+1

. (10)

Then, for every j ≥ 1, the following statements hold:

a) tj+1 + 1
2η‖xj+1 − xj‖2 ≤ tj;

b) tj ≤ M
2 ‖xj+1 − xj‖2 + (1−α)δ

2 ;

c)
(

1 + 1
ηM

)(
tj+1 − (1−α)δ

2

)
≤ tj − (1−α)δ

2 .
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Proof: a) This statement follows from the same argument as in the proof of Lemma 3.2(a).
b) Following a similar argument as in the proof of Lemma 3.2(b) with (60) replaced by (59),

we have

tj ≤
Lα
α+ 1

‖xj − xj−1‖α+1 +
L1

2
‖xj − xj−1‖2. (11)

Using the Young’s inequality ab ≤ ap/p+ bq/q with

a =
Lα

(α+ 1)δ
1−α
2

‖xj+1 − xj‖α+1, b = δ
1−α
2 , p =

2

α+ 1
, q =

2

1− α
,

we obtain

Lα
α+ 1

‖xj+1 − xj‖α+1 ≤ L
2

α+1
α

2[(α+ 1)δ]
1−α
α+1

‖xj+1 − xj‖2 +
(1− α)δ

2
.

Combining the above inequality and (11), and using the definition of M in (10), we prove the
statement.

c) It immediately follows from (a) and (b) that

tj+1 +
1

ηM

(
tj+1 −

(1− α)δ

2

)
≤ tj+1 +

1

2η
‖xj+1 − xj‖2 ≤ tj ,

and hence the statement follows.
The following lemma gives an upper bound on t1 similar to Lemma 3.4.

Lemma 3.7. We have

t1 ≤
Lαη

α+1

α+ 1
‖f ′(x0)‖α+1 +

L1η
2

2
‖f ′(x0)‖2.

Proof: This lemma follows from a similar argument as in the proof of Lemma 3.4.
The following proposition is the key result in establishing the iteration-complexity of Algo-

rithm 2.

Proposition 3.8. We have tj ≤ δ, for every j such that

j ≥

1 + η

L1 +
L

2
α+1
α

[(α+ 1)δ]
1−α
α+1

 log

(
2t1
δ

)
. (12)

Proof: Let

τ =
ηM

1 + ηM
, (13)

then Lemma 3.6(c) becomes

tj+1 −
(1− α)δ

2
≤ τ

(
tj −

(1− α)δ

2

)
.

Using the above inequality and the fact that τ ≤ exp(τ − 1), we have for every j ≥ 1,

tj −
(1− α)δ

2
≤ τ j−1

(
t1 −

(1− α)δ

2

)
≤ τ j−1t1 ≤ exp{(τ − 1)(j − 1)}t1.

Hence, it is easy to see that tj ≤ δ if j ≥ 1
1−τ log

(
2t1
δ

)
. Using the definition of τ in (54), we have if

j is as in (12), then tj ≤ δ.

Theorem 3.9. Algorithm 2 takes Õ
(
ηL1 + ηL

2
α+1
α

(
1
δ

) 1−α
α+1 + 1

)
iterations to terminate.

Proof: It follows directly from Proposition 3.8 and Lemma 3.7.
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4 Adaptive proximal bundle method

The proximal bundle method we studied in Section 3 is parameter-free since it does not require
problem-dependent parameters such as α and Lα. However, in order to implement the method, we
still need to choose a stepsize η, which dictates the practical performance of many proximal-type
algorithms. In general, it is not easy to select a constant stepsize η to be a good one in practice.

In this section, we develop an adaptive proximal bundle method that automatically searches
for suitable stepsizes. From practical observations, the proximal bundle method works well when
the number of inner iterations stays as a constant much larger than 1 (i.e., that of the subgradient

method), say 10. Recall from Theorem 3.5 that inner complexity is Õ
(
ηL

2
α+1
α

(
1
δ

) 1−α
α+1 + 1

)
. Since

we do not know α and Lα, we cannot choose a constant stepsize η so that the number of inner
iterations is close to a desired number such as 10. Hence, an adaptive stepsize rule is indeed needed.

By carefully examining Proposition 3.3 and Theorem 3.5, we find that the inner complexity is
Õ(β−1 + 1) where β is as in (9). Suppose we want to prescribe the number of inner iterations to
be close to β−1

0 for some β0 ∈ (0, 1], if β0 ≤ β, then by Proposition 3.3(a), we have

(1 + β0)tj ≤ tj−1. (14)

Hence, it suffices to begin with a relatively large η, check (14) to determine whether the η is small
enough (i.e., β is large enough), and adjust η (if necessary) by progressively halving it.

The following adaptive proximal bundle method is a formal statement based on the above
intuition.

Algorithm 3 Adaptive Proximal Bundle Method

1. Let y0 ∈ Rd, η0 > 0, β0 ∈ (0, 1], and ε > 0 be given, and set k = 1
2. Call Algorithm 2 with (y, η, δ) = (yk−1, ηk−1, ε/2) and output (yk, ỹk) = (xJ , x̃J)
3. In the execution of Algorithm 2, if (14) is always true, then set ηk = ηk−1; otherwise, set
ηk = ηk−1/2
4. Set k ← k + 1 and go to step 2.

Lemma 4.1. The following statements hold for APBM:

a) for every k ≥ 1 and u ∈ Rd, we have

2ηk−1[f(ỹk)− f(u)] ≤ ‖yk−1 − u‖2 − ‖yk − u‖2 + ηk−1ε; (15)

b) for every k ≥ 1, if

ηk−1 ≤
1

2β0

(
α+ 1

Lα

) 2
α+1 (ε

2

) 1−α
α+1

, (16)

then (15) holds with ηk = ηk−1;

c) {ηk} is a non-increasing sequence;

d) for every k ≥ 0,

ηk ≥ η := min

{
1

4β0

(
α+ 1

Lα

) 2
α+1 (ε

2

) 1−α
α+1

, η0

}
. (17)
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Proof: a) This statement directly follows from Lemma 3.1(d) and the fact (η, y, xJ , x̃J) = (ηk−1, yk−1, yk, ỹk)
(see step 2 of Algorithm 3).

b) Since (16) implies that (14) with

β =
1

2ηk−1

(
α+ 1

Lα

) 2
α+1 (ε

2

) 1−α
α+1

always holds in the execution of Algorithm 2, it follows from step 3 of Algorithm 3 that ηk = ηk−1.
c) This statement clearly follows from step 3 of Algorithm 3.
d) This statement immediately follows from b) and step 3 of Algorithm 3.

Theorem 4.2. For some η̃ > 0 such that

η̃ = O
(
‖y0 − x∗‖2

ε

)
, η̃ = Ω

(
ε

1−α
α+1

L
2

α+1
α

)
, (18)

if ηk ≡ η̃ for k ≥ k0, then the iteration complexity to obtain an ε-solution to (??) is given by

Õ

L 2
α+1
α ‖y0 − x∗‖2

ε
2

α+1

+ η0L
2

α+1
α

(
1

ε

) 1−α
α+1

log

(
η0

η

)
+ 1

 (19)

where η is as in (17).

Proof: Summing (15) from k = 1 to n, we have

2

n∑
k=1

ηk−1

(
min

1≤k≤n
f(ỹk)− f(u)

)
≤ 2

n∑
k=1

ηk−1[f(ỹk)− f(u)] ≤ ‖y0 − u‖2 + ε

n∑
k=1

ηk−1.

The above inequality and the assumption that ηk ≡ η̃ for k ≥ k0 imply that

min
1≤k≤n

f(ỹk)− f∗ ≤
‖y0 − x∗‖2

2
∑n

k=1 ηk−1
+
ε

2
≤ ‖y0 − x∗‖2

2(n− k0)η̃
+
ε

2
.

In order to have min1≤k≤n f(ỹk)− f∗ ≤ ε, we need

n− k0 = O
(
‖y0 − x∗‖2

η̃ε
+ 1

)
. (20)

Moreover, it follows from the way ηk is updated in step 3 and Lemma 4.1(d) that

k0 = O
(

log

(
η0

η

)
+ 1

)
. (21)

Using Theorem 3.5, we have the iteration complexity of every call to Algorithm 2 is bounded by

Õ

(
η̃L

2
α+1
α

(
1

ε

) 1−α
α+1

+ 1

)
(22)

for every cycle k ≥ k0 and by

Õ

(
η0L

2
α+1
α

(
1

ε

) 1−α
α+1

+ 1

)
(23)

12



for every cycle k ≤ k0 − 1. Hence, combining (20) and (22) and using (18), we obtain the iteration
complexity

Õ

L 2
α+1
α ‖y0 − x∗‖2

ε
2

α+1

+ 1


for cycles k ≥ k0, and combining (21) and (23), we obtain the iteration complexity

Õ

(
η0L

2
α+1
α

(
1

ε

) 1−α
α+1

log

(
η0

η

)
+ 1

)

for cycles k ≤ k0 − 1. Finally, the total iteration complexity clearly follows from the above two
bounds.

————-
universal method is essentially the same as A-CS
the complexity is

O

L 2
α+1
α ‖y0 − x∗‖2

ε
2

α+1


universal method (A-CS) is different from APBM
universal method is adaptive subgradient method and the nature of subgradient method is that

its convergence relies on small enough stepsize, so it enforces η to be small
if f(x)− `f (x;xj)− ‖x− xj‖2/(2λ) > ε̄/2, it sets λ = λ/2
bundle method converges with any constant stepsize η, it guarantees tJ ≤ ε/2 by the cutting-

plane approach but not by small η, so it halves η when necessary. The goal in the adaptive method
is to regulate the inner complexity to a desired number, say 10. It is beyond convergence but a
desired convergence.

Even the total complexity has been covered by bundle smooth (see (40)), this paper has two
advantages: 1) the complexity for solving the proximal oracle which is the crux for sampling and
online learning as well; 2) the adaptive approach for the proximal point framework

5 Proximal Sampling algorithm

Assuming the RGO in the ASF can be realized, the ASF exhibits remarkable convergence properties.
In [25] it was shown that Algorithm 1 converges linearly when f is strongly convex. This convergence
result is recently improved in [6] under various weaker assumptions on the target distribution
πX ∝ exp(−f). Below we present several convergence results established in [6] that will be used
in this paper, under the assumptions that πX is log-concave, or satisfies the log-Sobolev inequality
(LSI) or Poincaré inequality (PI). Recall that a probability distribution ν satisfies PI with constant
λ > 0 (λ-PI) if for any smooth bounded function ψ : Rd → R,

Eν [(ψ − Eν(ψ))2] ≤ 1

λ
Eν [‖∇ψ‖2] . (24)

To this end, for two probability distributions ρ� ν, we denote by

Hν(ρ) :=

∫
ρ log

ρ

ν
, χ2

ν(ρ) :=

∫
ρ2

ν
− 1, Rq,ν(ρ) :=

1

q − 1
log

∫
ρq

νq−1

13



the KL divergence, the Chi-squared divergence, and the Rényi divergence, respectively. Note that
R2,ν = log(1 + χ2

ν), R1,ν = Hν , and Rq,ν ≤ Rq′,ν for any 1 ≤ q ≤ q′ < ∞. We denote by W2 the
Wasserstein-2 distance defined by [49]

W 2
2 (ν, ρ) := min

γ∈Π(ν,ρ)

∫
‖x− y‖2dγ,

where Π(ν, ρ) represents the set of all couplings between ν and ρ.

Theorem 5.1 ([6, Theorem 2]). Assume that πX ∝ exp(−f) is log-concave (i.e., f is convex). For
any initial distribution ρX0 , the k-th iterate ρXk of Algorithm 1 satisfies

HπX (ρXk ) ≤ W 2
2 (ρX0 , π

X)

kη
.

Theorem 5.2 ([6, Theorem 4]). Assume πX ∝ exp(−f) satisfies λ-PI. For any initial distribution
ρX0 , the k-th iterate ρXk of Algorithm 1 with step size η > 0 satisfies

χ2
πX (ρXk ) ≤

χ2
πX

(ρX0 )

(1 + λη)2k
. (25)

Furthermore, for all q ≥ 2,

Rq,πX (ρXk ) ≤

{
Rq,πX (ρX0 )− 2k log(1+λη)

q , if k ≤ q
2 log(1+λη) (Rq,πX (ρX0 )− 1) ,

1/(1 + λη)2(k−k0)/q , if k ≥ k0 := d q
2 log(1+λη) (Rq,πX (ρX0 )− 1)e .

(26)

As discussed earlier, to use ASF in sampling problems, we need to realize the RGO with efficient
implementations. In the rest of this section, we develop efficient algorithms for RGO associated
with the two scenarios of sampling we are interested in, and then combine them with the ASF
to establish a proximal algorithm for sampling. The complexity of the proximal algorithm can
be obtained by combining the above convergence results for ASF and the complexity results we
develop for RGO. The rest of the section is organized as follows. In Section 5.1 we develop an
efficient algorithm for RGO associated with semi-smooth potentials via rejection sampling. This
is combined with ASF to obtain an efficient sampling algorithm from semi-smooth potentials in
Section 5.2. In Section 5.3, we further extend the algorithm and results to the second setting we
are interested in which involves composite potentials (smooth + semi-smooth).

5.1 The restricted Gaussian oracle for semi-smooth potentials

The bottleneck of using the ASF (Algorithm 1) in sampling tasks with general distributions is the
availability of RGO implementations. In this section, we address this issue for convex semi-smooth
potentials by developing an efficient algorithm for the corresponding RGO.

Our algorithm of RGO for f is based on rejection sampling. We use a special proposal which
is a Gaussian distribution centered at the approximate minimizer of

fηy (x) := f(x) +
1

2η
‖x− y‖2 (27)

for a given y. With this proposal and a sufficiently small η > 0, the expected number of rejection
sampling steps to obtain one effective sample turns out to be bounded from above by a dimension-
free constant. To bound the complexity of the rejection sampling, we develop a novel technique
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to estimate a modified Gaussian integral (see Proposition 5.4). In Section 3.1 we use the proximal
bundle subroutine Algorithm 2 to optimize fηy (x) to certain precision and establish the iteration-
complexity for it. This is achieved by choosing a proper precision for the approximate minimizer
of fηy that balances the complexity of optimization and the efficiency of rejection sampling.

In this section we consider the RGO for f , namely, the sampling task from exp(−fηy (x)) when
the minimizer of fηy (x) is not available. We use the optimization algorithm (Algorithm 2) developed
in Section 3.1 to compute a δ-solution to (4). Based on this δ-solution, we modify Algorithm ?? so
that the expected number of runs for the rejection sampling is still properly bounded.

To this end, let J, x̃J , xJ be the outputs of Algorithm 2 and define

h1 :=
1

2η
‖ · −xJ‖2 + fηy (x̃J)− δ, (28a)

h2 :=
1

2η
‖ · −x∗‖2 +

Lα
α+ 1

‖ · −x∗‖α+1 + fηy (x∗). (28b)

Note that h2 is only used for analysis and thus the fact it depends on x∗ is not an issue.
Algorithm 4 describes the implementation of RGO for f based on Algorithm 2 and rejection

sampling.

Algorithm 4 Rejection Sampling without Proximal Map

1. Run Algorithm 2 to compute xJ and x̃J
2. Generate X ∼ exp(−h1(x))
3. Generate U ∼ U [0, 1]
4. If

U ≤ exp(−fηy (X))

exp(−h1(X))
,

then accept/return X; otherwise, reject X and go to step 2.

Lemma 5.3. Assume f is convex and Lα-semi-smooth and let fηy be as in (27). Then, for every
x ∈ Rd,

h1(x) ≤ fηy (x) ≤ h2(x) (29)

where h1 and h2 are as in (28).

Proof: Using Lemma 3.1(a)-(b) and the definition of fηj , we have

f(x̃J)− f(x) +
1

2η
‖x− xJ‖2 ≤ f(x̃J)− fJ(x) +

1

2η
‖x− xJ‖2

≤ f(x̃J)− fηJ (xJ) +
1

2η
‖x− y‖2 ≤ δ − 1

2η
‖x̃J − y‖2 +

1

2η
‖x− y‖2.

The first inequality in (29) holds in view of the definition of h1 in (28a). By the definition of fηy in
(27) we get

fηy (x)− fηy (x∗) =f(x)− f(x∗) +
1

2η
‖x− y‖2 − 1

2η
‖x∗ − y‖2

=f(x)− f(x∗) +
1

2η
‖x− x∗‖2 +

1

η
〈x− x∗, x∗ − y〉. (30)
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It follows from Lemma 3.1(d) and (60) with (u, v) = (x, x∗) that

f(x)− f(x∗) +
1

η
〈x∗ − y, x− x∗〉 ≤ Lα

α+ 1
‖x− x∗‖α+1,

which together with (30) implies that

fηy (x)− fηy (x∗) ≤ Lα
α+ 1

‖x− x∗‖α+1 +
1

2η
‖x− x∗‖2.

Using the above inequality and the definition of h2 in (28b), we conclude that the second inequality
in (29) holds.

From the expression of h1 in (28a), it is clear the proposal distribution is a Gaussian centered
at xJ . To achieve a tight bound on the expected runs of the rejection sampling, we use a function
h2 which is not quadratic; the standard choice of quadratic function does not give as tight results
due to the lack of smoothness. To use this h2 in the complexity analysis, we need to estimate the
integral

∫
exp(−h2), which turns out to be a highly nontrivial task. Below we establish a technical

result on a modified Gaussian integral, which will be used later to bound the integral
∫

exp(−h2)
and hence the complexity of the RGO rejection sampling in Algorithm 4.

Proposition 5.4. Let α ∈ [0, 1], η > 0, a ≥ 0 and d ≥ 1. If

2a(ηd)(α+1)/2 ≤ 1, (31)

then ∫
Rd

exp

(
− 1

2η
‖x‖2 − a‖x‖α+1

)
dx ≥ (2πη)d/2

2
. (32)

Proof: Denote r = ‖x‖, then
dx = rd−1drdSd−1,

where dSd−1 is the surface area of the (d− 1)-dimensional unit sphere. It follows that∫
Rd

exp

(
− 1

2η
‖x‖2 − a‖x‖α+1

)
dx =

∫ ∞
0

∫
exp

(
− 1

2η
r2 − arα+1

)
rd−1drdSd−1

=
2πd/2

Γ
(
d
2

) ∫ ∞
0

exp

(
− 1

2η
r2 − arα+1

)
rd−1dr. (33)

In the above equation, we have used the fact that the total surface area of a (d − 1)-dimensional
unit sphere is 2πd/2/Γ

(
d
2

)
where Γ(·) is the gamma function, i.e.,

Γ(z) =

∫ ∞
0

tz−1e−tdt. (34)

Defining

Fd,η(a) :=

∫ ∞
0

exp

(
− 1

2η
r2 − arα+1

)
rddr, (35)

to establish (32), it suffices to bound Fd−1,η(a) from below.
It follows directly from the definition of Fd,η in (35) that

dFd−1,η(a)

da
=

∫ ∞
0

exp

(
− 1

2η
r2 − arα+1

)
(−rα+1)rd−1dr = −Fd+α,η(a).
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This implies Fd,η is monotonically decreasing and thus Fd+α,η(a) ≤ Fd+α,η(0). As a result,

dFd−1,η(a)

da
≥ −Fd+α,η(0)

and therefore,
Fd−1,η(a) ≥ Fd−1,η(0)− aFd+α,η(0). (36)

Setting t = r2/(2η), we can write

Fd,η(0) =

∫ ∞
0

exp

(
− 1

2η
r2

)
rddr =

∫ ∞
0

e−t(2ηt)
d−1
2 ηdt

= 2
d−1
2 η

d+1
2

∫ ∞
0

e−tt
d−1
2 dt. (37)

In view of the definition of the gamma function (34), we obtain

Fd,η(0) = 2
d−1
2 η

d+1
2 Γ

(
d+ 1

2

)
. (38)

Applying the Wendel’s double inequality (58) yields

Γ
(
d+α+1

2

)
Γ
(
d
2

) ≤
(
d

2

)α+1
2

.

Using (36), (38), the above inequality and the assumption (31), we have

Fd−1,η(a) ≥ Fd−1,η(0)− aFd+α,η(0)

= 2
d
2
−1η

d
2 Γ

(
d

2

)
− a2

d+α−1
2 η

d+α+1
2 Γ

(
d+ α+ 1

2

)
= 2

d
2
−1η

d
2 Γ

(
d

2

)(
1− a2

α+1
2 η

α+1
2

Γ
(
d+α+1

2

)
Γ
(
d
2

) )

≥ 2
d
2
−1η

d
2 Γ

(
d

2

)(
1− a(ηd)

α+1
2

)
≥ 1

4
(2η)

d
2 Γ

(
d

2

)
.

The result (32) then follows from the above inequality and (33).
We finally show that the number of rejections in Algorithm 4 is bounded from above by a small

constant when δ is properly chosen. In particular, as shown in Proposition 5.5, it only gets worse by
a factor of exp(δ) and the factor does not depend on the dimension d. Hence, the implementation
of RGO for f is computationally efficient in practice.

Proposition 5.5. Assume f is convex and Lα-semi-smooth and let fηy be as in (27). If in addition

η ≤ (α+ 1)
2

α+1

(2Lα)
2

α+1d
, (39)

then the expected number of iterations in the rejection sampling of Algorithm 4 is at most 2 exp(δ).
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Proof: It is a well-known result for rejection sampling that X ∼ πX|Y (x | y) and the probability
that X is accepted is

P
(
U ≤ exp(−fηy (X))

exp(−h1(X))

)
=

∫
Rd exp(−fηy (x))dx∫
Rd exp(−h1(x))dx

. (40)

If follows directly from the definition of h2 in (28b) that∫
Rd

exp(−h2(x))dx = exp(−fηy (x∗))

∫
Rd

exp

(
− 1

2η
‖x− x∗‖2 − Lα

α+ 1
‖x− x∗‖α+1

)
dx

Applying Proposition 5.4 to the above yields∫
Rd

exp(−h2(x))dx ≥ exp(−fηy (x∗))
(2πη)d/2

2
.

Note that the condition (31) in Proposition 5.4 holds thanks to (39). By Lemma 5.3, the above
inequality leads to∫

Rd
exp(−fηy (x))dx ≥

∫
Rd

exp(−h2(x))dx ≥ exp(−fηy (x∗))
(2πη)d/2

2
. (41)

Using the definition of h1 in (28a) and Lemma A.1, we have∫
Rd

exp(−h1(x))dx = exp
(
−fηy (x̃J) + δ

)
(2πη)d/2. (42)

Using (40), (41) and the above identity, we conclude that

P
(
U ≤ exp(−fηy (X))

exp(−h1(X))

)
≥ 1

2
exp(−fηy (x∗) + fηy (x̃J)− δ) ≥ 1

2
exp(−δ),

and the expected number of the iterations is

1

P
(
U ≤ exp(−fηy (X))

exp(−h1(X))

) ≤ 2 exp(δ).

5.2 Sampling from semi-smooth potentials

We now proceed to bound the total complexity to sample from a log-concave distribution ν in (1)
with a semi-smooth potential f . We combine our efficient algorithm (Algorithm 4) of RGO for
semi-smooth potentials in Section 5.1 and the convergent results for ASF, namely Theorems 5.1
and 5.2, to achieve this goal.

First, using Theorem 5.1 we establish the following result.

Theorem 5.6. Assume f is convex and Lα-semi-smooth, then Algorithm 1, initialized with ρX0

and stepsize η � 1/(L
2

α+1
α d), using Algorithm 4 as an RGO has the iteration-complexity bound

O

L 2
α+1
α dW 2

2 (ρX0 , ν)

ε

 (43)

to achieve ε error to the target ν ∝ exp(−f) in terms of KL divergence.
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Proof: The result follows directly from Theorem 5.1, Theorem 3.5 and Proposition 5.5 with the

choice of stepsize η � 1/(L
2

α+1
α d).

Next, using Theorem 5.2 we establish the following result.

Theorem 5.7. Assume f is convex and Lα-semi-smooth and πX ∝ exp(−f) satisfies CPI-PI, then

Algorithm 1, initialized with ρX0 and stepsize η � 1/(L
2

α+1
α d), using Algorithm 4 as an RGO has the

iteration-complexity bound

Õ
(
CPIL

2
α+1
α d

)
(44)

to achieve ε error to the target ν ∝ exp(−f) in terms of Chi-squared divergence, and

Õ
(
CPIL

2
α+1
α qdRq,ν(ρX0 )

)
(45)

to achieve ε error in terms of Rényi divergence Rq,ν (q ≥ 2).

Proof: The result is a direct consequence of Theorem 5.2, Theorem 3.5 and Proposition 5.5 with

the choice of stepsize η � 1/(L
2

α+1
α d).

5.3 Sampling from composite potentials

In this section, we consider sampling from a log-concave distribution ν ∝ exp(−f(x)) associated
with a composite potential f . In particular, we consider the setting where f = f1 + f2, and f1, f2

are convex, L1-smooth and convex, Lα-semi-smooth, respectively. Clearly, such a f satisfies that,
for every u, v ∈ Rd,

‖f ′(u)− f ′(v)‖ ≤ Lα‖u− v‖α + L1‖u− v‖. (46)

We shall call such a potential (L1, Lα)-smooth-semi-smooth. Note that all the results in this section
apply to any convex and (L1, Lα)-smooth-semi-smooth potentials. These potentials do not have to
be a composite one as above and our algorithms do not rely on the decomposition of the potential.

This setting is a generalization of the semi-smooth setting studied in the previous sections since
it reduces to the latter when L1 = 0. It turns out that both Algorithm 1 and the implementation
for RGO, Algorithm 4, developed for semi-smooth sampling can be applied directly to this new
setting with properly chosen step sizes. Below we extend the analysis in Sections 5.1 and 5.2 to
this more general setting and establish corresponding iteration-complexity results.

Before presenting the results, we make some observations of the (L1, Lα)-smooth-semi-smooth
assumption (46). If Lα = 0, then (46) becomes to ‖∇f(u) −∇f(v)‖ ≤ L1‖u − v‖, and hence f is
L1-smooth. If L1 = 0, then (46) reduces to (2), and hence f is Lα-semi-smooth.

To bound the expected number of runs in Algorithm 4, we need to construct a different h2 to
bound fηy ; the one in (28b) no longer works in the setting with composite potentials. Based on
the property of (L1, Lα)-smooth-semi-smooth potentials, we construct h2 as follows. The proof is
postponed to Appendix B.1.

Lemma 5.8. Assume f is convex and (L1, Lα)-smooth-semi-smooth and let fηy be as in (27). Define

h2(x) :=
Lα
α+ 1

‖x− x∗‖α+1 +
1

2ηL1

‖x− x∗‖2 + fηy (x∗) (47)

where
ηL1 :=

η

1 + ηL1
(48)

Then, h2(x) ≥ fηy (x) for ∀x ∈ Rd.
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With Lemma 5.8 in hand, we can bound the complexity of Algorithm 4 as follows. The proof
is postponed to Appendix B.1.

Proposition 5.9. If

η ≤ min

{
(α+ 1)

2
α+1

(2Lα)
2

α+1d
,

1

L1d

}
, (49)

then the expected number of iterations of Algorithm 4 in rejection sampling is at most 2 exp(1/2+δ).

Through the above arguments, we show that our algorithm of the RGO designed for semi-smooth
potentials is equally effective for (L1, Lα)-smooth-semi-smooth potentials. Combining Lemma 5.8
and Theorem 3.9 with the convergence results for ASF we obtain the following iteration-complexity
bounds for sampling from (L1, Lα)-smooth-semi-smooth potentials. The proof is similar to that in
Section 5.2 and is thus omitted.

Theorem 5.10. Assume f is a convex and (L1, Lα)-smooth-semi-smooth potential. Consider Al-

gorithm 1, initialized with ρX0 and stepsize η � min{1/(L
2

α+1
α d), 1/(L1d)}, using Algorithm 4 as a

RGO.
1. Applying Theorem 5.1, the total complexity is

O

(L
2

α+1
α ∨ L1)dW 2

2 (ρX0 , ν)

ε


to achieve ε error in terms of KL divergence.
2. If in addition, ν satisfies (1/CPI)-PI, applying Theorem 5.2, the total complexity is

Õ
(

(L
2

α+1
α ∨ L1)dCPI

)
to achieve ε error in terms of Chi-squared divergence, and

Õ
(

(L
2

α+1
α ∨ L1)qdCPIRq,ν(ρX0 )

)
to achieve ε error in terms of Rényi divergence Rq,ν (q ≥ 2).
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6 Proximal methods for online learning

Algorithm 5 Online Bundle Method(x0, λ1, δ1, λ2, δ2, . . .)

0. Compute τ1 = 4λ1M
2/(4λ1M

2 + δ1), and set xc0 = x0, x̃0 = x0, Γ0 = γ0, u0 = f0(x0) and
j = 1;
1. Set functions Γj = τΓj−1 + (1− τ)γj , solve the subproblem

xj := argmin
u∈X

{
Γλj (u) := Γj(u) +

1

2λ
V (u, xcj−1)

}
, (50)

and compute the optimal value mj := Γλj (xj). Compute

x̃j = τ x̃j−1 + (1− τ)xj (51)

uj = τuj−1 + (1− τ)fj(xj); (52)

2. If
tj := uj −mj ≤ δj , (53)

2.a) then perform a serious iteration, i.e., set xcj ← xj , Γj ← γj and Fj ← fj , choose λj+1 > 0
and δj+1 > 0, and compute

τj+1 =
4λj+1M

2

4λj+1M2 + δj+1
; (54)

2.b) else perform a null iteration, i.e., set xcj ← xcj−1, λj+1 ← λj , δj+1 ← δj and τj+1 ← τj ;

3. Set j ← j + 1 and go to step 1.

Lemma 6.1. Let `1 be as in Proposition 3.8. For j = `0, `0 + 1, . . . , `1 − 1, we have tj+1 ≤
τtj + (1− τ)δ/2.

Proof: Using (50) and Lemma ?? with ψ = 2λΓj , a = xj , b = xcj−1 and u = xj+1, we have

Γj(xj) +
1

2λ
V (xj , x

c
j−1) +

1

2λ
V (xj+1, xj) ≤ Γj(xj+1) +

1

2λ
V (xj+1, x

c
j−1).

It follows from the definition of mj in step 1 of OBM, the fact that Γj = τjΓj−1 + (1− τj)γj−1 and
the inequality above that

mj+1 = Γλj+1(xj+1) = τΓλj (xj+1) + (1− τ)γλj (xj+1)

≥ τmj + (1− τ)γj(xj+1) +
τ

2λ
V (xj+1, xj)

≥ τmj + (1− τ)γj(xj+1) +
τ

2λ
‖xj+1 − xj‖2,

where the last inequality is due to the fact that V (x, y) ≥ ‖x − y‖2. The above inequality, (??)
with x = xj+1 and (??) imply that

mj+1 ≥ τmj + (1− τ)

fj(xj+1) +
L

2
α+1
α

2[(α+ 1)δ]
1−α
α+1

‖xj+1 − xj‖2 −
Lα
α+ 1

‖xj+1 − xj‖α+1

 ,
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which together with the definition of tj in (53) yields that

mj+1 ≥ τuj+(1−τ)fj(xj+1)−τtj+(1−τ)

 L
2

α+1
α

2[(α+ 1)δ]
1−α
α+1

‖xj+1 − xj‖2 −
Lα
α+ 1

‖xj+1 − xj‖α+1

 .

Using the Young’s inequality ab ≤ ap/p+ bq/q with

a =
Lα

(α+ 1)δ
1−α
2

‖xj+1 − xj‖α+1, b = δ
1−α
2 , p =

2

α+ 1
, q =

2

1− α
,

we obtain

Lα
α+ 1

‖xj+1 − xj‖α+1 ≤ L
2

α+1
α

2[(α+ 1)δ]
1−α
α+1

‖xj+1 − xj‖2 +
(1− α)δ

2
.

Plugging the above inequality into (??), we have

mj+1 ≥ uj+1 − τtj − (1− τ)
(1− α)δ

2
,

which, in view of (8), implies that

tj+1 ≤ τtj + (1− τ)
(1− α)δ

2
.

Therefore, the lemma directly follows.

6.1 Regret Bound Analysis

In this section we present the proof of Theorem ?? which we present formally in the following result.
Throughout the section, we assume the existence of an oracle for finding x̃j in OBM. Examples of
such an oracle are provided in Section ?? (see Lemma ??).

Theorem 6.2. For any distance generating function ω : X → R and sequence of convex functions
f1, . . . , fT , OBM guarantees:

• For λk = D
M
√
T

and δk = cMD√
T

, we have RegretT ≤
(
c+ 1

2

) (
MD
√
T
)

.

• For λk = D
M and δk = cMD

k , we have RegretT ≤MD
(

1
2 + c(lnT + 1)

)
.

Here c is an absolute constant that allow us to tune oracle (51). The proof of Theorem 6.2 relies
on a general result that bounds the regret of OBM (Lemma 6.3). Consider the sequences {Γj},
{γj}, {Fj}, {fj}, {xj} and {x̃j} constructed by OBM, and let {jk : k ≥ 0} denotes the sequence
of serious iteration indices generated by OBM. Note that j0 = 0, and λk and δk correspond to the
input of OBM. Define z0 := x0, z̃0 := x0 and, for every k ≥ 1,

zk := xjk , z̃k := x̃jk , f̃k := fjk , F̃k := Fjk , γ̃k := γjk , Γ̃k := Γjk . (55)

Lemma 6.3. For every T ≥ 1 and z ∈ X, we have

RegretT =
T∑
k=1

F̃k(z̃k)− F̃k(z) ≤
T∑
k=1

δk +
1

2

T∑
k=2

(
1

λk
− 1

λk−1

)
V (z, zk−1) +

1

2λ1
V (z, z0).
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Before proving the lemma, let us show how to conclude Theorem 6.2. We present all the choices
of (λk, δk) and derive their corresponding regret bounds.

A1. For a general function ω (and hence a general Bregman divergence V ) and a fixed T , let
D2 := maxz∈X V (z, z0) and λk = D

M
√
T

, δk = cMD√
T

for some c > 0. It follows from Lemma 6.3 that

RegretT ≤
T∑
k=1

δk +
V (z, z0)

2λ1
≤
(
c+

1

2

)
MD
√
T = O(

√
T ).

A2. For a general Bregman divergence, let λk = D
M , δk = cMD

k for some c > 0, then it follows from
Lemma 6.3 that

RegretT ≤
T∑
k=1

δk +
V (z, z0)

2λ1
≤

T∑
k=1

cMD

k
+
MD

2
≤
[
(lnT + 1)c+

1

2

]
MD = O(log T ).

In addition to the previous choices of (λk, δk) we also have the standard subgradient method
regret guarantee:

A3. Suppose ω(x) = ‖x‖2, and let DX be the diameter of X and λk = DX
M
√
k
, δk = cMDX√

k
, for

some c > 0. It follows from Lemma 6.3 that

RegretT ≤
T∑
k=1

δk +
D2
X

2

[
T∑
k=2

(
1

λk
− 1

λk−1

)
+

1

λ1

]
=

T∑
k=1

δk +
D2
X

2λT

≤
T∑
k=1

cMDX√
k

+
MDX

√
T

2
≤
(
c+

1

2

)
MDX

√
T = O(

√
T ).

Proof: [of Lemma 6.3] Recall that tj = uj −mj = uj − Γ
λj
j (xj), so the termination criterion of

null iterations (53) is equivalent to uk − Γ̃λkk (zk) ≤ δk, i.e.,

uk − Γ̃k(zk)−
1

2λk
V (zk, zk−1) ≤ δk. (56)

It is easy to see from (50) and (55) that zk = argmin
{

Γ̃k(u) + 1
2λk

V (u, zk−1) : u ∈ X
}

. Using the

above inequality and Lemma ?? with ψ = 2λkΓ̃k, a = zk and b = zk−1, we have for every k ≥ 1
and z ∈ X,

Γ̃k(zk) +
1

2λk
V (zk, zk−1) ≤ Γ̃k(z) +

1

2λk
V (z, zk−1)− 1

2λk
V (z, zk),

and hence that

uk − Γ̃k(z) ≤ uk − Γ̃k(zk)−
1

2λk
V (zk, zk−1) +

1

2λk
V (z, zk−1)− 1

2λk
V (z, zk).

It follows from (56) that

F̃k(z̃k)− Γ̃k(z) ≤ uk − Γ̃k(z) ≤ δk +
1

2λk
(V (z, zk−1)− V (z, zk)) . (57)

Summing the above inequality from k = 1 to T , we have

T∑
k=1

(
F̃k(z̃k)− Γ̃k(z)

)
≤

T∑
k=1

δk +
T∑
k=1

1

2λk
(V (z, zk−1)− V (z, zk))

≤
T∑
k=1

δk +
1

2

T∑
k=2

(
1

λk
− 1

λk−1

)
V (z, zk−1) +

1

2λ1
V (z, z0).

We conclude from the fact that F̃k ≥ Γ̃k and the above inequality that the lemma holds.
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7 Conclusion

In this paper we presented a novel sampling algorithm from convex semi-smooth potentials or
convex composite potentials with semi-smooth components. Our algorithm is based on the recent
ASF which utilizes Gibbs sampling over an augmented distribution. In each iteration of the ASF,
one needs to sample from a quadratically regularized version of the target potential, which is itself
a challenging task due to the non-smoothness of the problem. In this work we presented a rejection
sampling based scheme with a tailored proposal to sample from the regularized version of the target
potential. Moreover, we developed a novel technique to bound the complexity of this scheme. By
combining our scheme with the ASF we established a sampling algorithm for convex semi-smooth
potentials or convex composite potentials with semi-smooth components, with better complexity
than all the existing methods. In the future, we plan to investigate the sampling settings where the
potential is semi-smooth or composite with a semi-smooth component, but not necessarily convex.
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[34] László Lovász and Santosh Vempala. Fast algorithms for logconcave functions: Sampling,
rounding, integration and optimization. In 2006 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’06), pages 57–68. IEEE, 2006.

[35] Robert Mifflin. A modification and an extension of Lemaréchal’s algorithm for nonsmooth
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A Technical results

Lemma A.1 (Gaussian integral). For any η > 0,∫
Rd

exp

(
− 1

2η
‖x‖2

)
dx = (2πη)d/2.

The following lemma provides both lower and upper bounds on the ratio of gamma functions.
Its proof can be found in [50].

Lemma A.2 (Wendel’s double inequality). For 0 < s < 1 and t > 0, the gamma function defined
as in (34) satisfies (

t

t+ s

)1−s
≤ Γ(t+ s)

tsΓ(t)
≤ 1,

or equivalently,

t1−s ≤ Γ(t+ 1)

Γ(t+ s)
≤ (t+ s)1−s. (58)

The following lemma states a basic property for convex and (L1, Lα)-smooth-semi-smooth func-
tions satisfying (46).

Lemma A.3. Assume f is convex and (L1, Lα)-smooth-semi-smooth. Then, for every u, v ∈ Rd,
we have

f(u)− f(v)− 〈f ′(v), u− v〉 ≤ Lα
α+ 1

‖u− v‖α+1 +
L1

2
‖u− v‖2. (59)

As a consequence, if f is convex and Lα-semi-smooth, then for every u, v ∈ Rd, we have

f(u)− f(v)− 〈f ′(v), u− v〉 ≤ Lα
α+ 1

‖u− v‖α+1. (60)

Proof: We first consider the case when f is convex and (L1, Lα)-smooth-semi-smooth. It is easy
to see that

f(u) = f(v) +

∫ 1

0
〈f ′(v + τ(v − u)), u− v〉dτ

= f(v) + 〈f ′(v), u− v〉+

∫ 1

0
〈f ′(v + τ(v − u))− f ′(v), u− v〉dτ.

Using the above identity, the Cauchy-Schwarz inequality, and (46), we have

f(u)− f(v)− 〈f ′(v), u− v〉 =

∫ 1

0
〈f ′(v + τ(v − u))− f ′(v), u− v〉dτ

≤
∫ 1

0

∥∥f ′(v + τ(v − u))− f ′(v)
∥∥ ‖u− v‖dτ

≤
∫ 1

0
(L1τ‖u− v‖+ Lατ

α‖u− v‖α) ‖u− v‖dτ

=

∫ 1

0

(
L1τ‖u− v‖2 + Lατ

α‖u− v‖α+1
)

dτ

=
L1

2
‖u− v‖2 +

Lα
α+ 1

‖u− v‖α+1.

Moreover, if f is convex and Lα-semi-smooth, we easily obtain (60) by setting L1 = 0 in (59).
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B Missing proofs

B.1 Missing proofs in Section 5.3

Proof of Lemma 5.8: It follows from the same argument as in the proof of Lemma 5.3 that (30)
holds. Using (30), Lemma 3.1(d), and (59) with (u, v) = (x, x∗), we conclude that

fηy (x)− fηy (x∗) ≤ Lα
α+ 1

‖x− x∗‖α+1 +
L1

2
‖x− x∗‖2 +

1

2η
‖x− x∗‖2.

The lemma immediately follows from the above inequality, and the definitions of h2 and ηL1 in (47)
and (48), respectively.

Proof of Proposition 5.9: It follows from (49) that (39) holds and hence that ηL1 satisfies (39)
in view of the definition of ηL1 in (48). If follows directly from the definition of h2 in (47) that∫

Rd
exp(−h2(x))dx = exp(−fηy (x∗))

∫
Rd

exp

(
− 1

2ηL1

‖x− x∗‖2 − Lα
α+ 1

‖x− x∗‖α+1

)
dx.

Using a similar argument as in the proof of Proposition 5.5, we have (40) holds and∫
Rd

exp(−fηy (x))dx ≥
∫
Rd

exp(−h2(x))dx ≥ exp(−fηy (x∗))
(2πηL1)d/2

2
.

Moreover, it follows from the same argument as in the proof of Proposition 5.5 that (42) holds.
Using (40), (42), the above inequality, and the definition of ηL1 in (48), we have

P
(
U ≤ exp(−fηy (X))

exp(−h1(X))

)
≥ 1

2
exp

(
fηy (x̃J)− fηy (x∗)− δ

)(ηL1

η

)d/2
≥ 1

2
exp(−δ)

(
1

1 + ηL1

)d/2
.

The above inequality and (49) imply that

1

P
(
U ≤ exp(−fηy (X))

exp(−h1(X))

) ≤ 2 exp(δ)(1 + ηL1)d/2 ≤ 2 exp(δ)

(
1 +

1

d

)d/2
≤ 2 exp(1/2 + δ),

where the last inequality is due to the fact that (1 + 1/d)d ≤ e.
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