
Published at NeurIPS 2024 Workshop SafeGenAi

CODEUNLEARN: AMORTIZED ZERO-SHOT MACHINE
UNLEARNING IN LANGUAGE MODELS USING DIS-
CRETE CONCEPT

YuXuan Wu1, Bonaventure F. P. Dossou2,3, Dianbo Liu1

1 National University of Singapore, Singapore, Singapore
2 McGill University, Montreal, Canada
3 Mila Quebec AI Institute, Montreal, Canada

ABSTRACT

Large Language Models (LLMs) offer extensive knowledge across various do-
mains, but they may inadvertently memorize sensitive, unauthorized, or malicious
data, such as personal information in the medical and financial sectors. Machine
unlearning methods aim to remove specific information from models after train-
ing to address this. However, current approaches require additional model training
or struggle to effectively erase particular data points and their associated context
due to LLMs’ complex, dense, and continuous nature. In this study, we propose
a novel amortized unlearning approach using codebook features and Sparse Au-
toencoders (SAEs). By leveraging a bottleneck to decompose the activation space
and regulate information flow, our method efficiently unlearns targeted informa-
tion while preserving the model’s performance on unrelated data. To the best of
our knowledge, this is the first work that successfully enables unlearning specific
topics with contextual relevance in an LLM, marking a significant step towards
real-world applications of machine unlearning.

1 INTRODUCTION

Large language Models (LLMs) have been widely used in various applications, generating text re-
sponses that attempt to create the equivalent of human conversations OpenAI et al. (2024). These
models leverage vast scientific literature to facilitate and accelerate interdisciplinary research Taylor
et al. (2022) while drawing upon large datasets of human-generated content to provide professional
advice. However, in many cases, such data is a double-edged sword. Including personal informa-
tion or sensitive scientific knowledge can be beneficial or, conversely, harmful. For instance, Soice
et al. (2023) discusses how LLMs, when used by non-experts, can enable the creation of biological
agents, posing both potential benefits and significant risks.

In response to these concerns, machine unlearning has emerged as a promising research area focused
on selectively removing specific data points or information from a trained model. This approach
helps mitigate the misuse of sensitive data and addresses privacy concerns. Existing solutions, such
as Sharded, Isolated, Sliced, and Aggregated (SISA) training Bourtoule et al. (2020), primarily in-
volve partitioning the training data into disjoint shards and retraining models on these individual
shards. Although effective in certain scenarios, these methods are often time-consuming, resource-
intensive, and lack scalability when applied to large models like LLMs. Moreover, traditional ap-
proaches typically require specialized data structures or full retraining, making them impractical for
dynamic or complex tasks.

Given these limitations, there is an increasing demand for zero-shot unlearning methods, which aim
to remove specific information without retraining or specialized data structures. Unlike traditional
unlearning techniques that rely on retraining portions of the model, zero-shot unlearning seeks to
directly eliminate the influence of specific data points or pieces of information from the model’s
learned representation—without additional computational steps or parameter adjustments. More-
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over, zero-shot unlearning is inherently more scalable, especially for large models like LLMs, as it
avoids the inefficiencies associated with data partitioning and retraining.

Our approach builds upon using discrete representations as the latent space for unlearning. Discrete
representations, generated through Vector Quantization (VQ) van den Oord et al. (2018), offer a
natural structure for organizing the latent space to enable selective information removal. Discrete
representations can be seen as a form of disentanglement, a concept rooted in classical research
Bengio et al. (2014), which emphasizes learning representations that disentangle the various factors
of variation in data. This allows for the separation of different explanatory sources within the data.

Additionally, Elhage et al. (2022) explores how neurons in models can represent multiple super-
posed features, introducing the concept of using dictionaries to disentangle these superpositions.
Building on this notion, we propose employing discrete representations to disentangle the model’s
internal structure, thereby enabling selective unlearning. By tracking and modifying discrete codes
within the latent space, we aim to achieve efficient and targeted removal of sensitive or unwanted
information.

Our contributions are as follows:

• we propose a novel zero-shot unlearning method based on discrete latent representations.

• we demonstrate how Vector Quantization (VQ) can structure the latent space, facilitating
the selective removal of information in an amortized manner.

• we extend our method beyond traditional machine unlearning techniques, primarily de-
signed for classification tasks, to handle complex language tasks associated with language
models, addressing a broader scope of applications.

• Our approach provides a baseline for unlearning in language models and validates the ef-
fectiveness of our method.

2 RELATED WORK

Machine unlearning methodologies have been developed to tackle the challenges of efficiently re-
moving data from trained models. Among the early influential frameworks is the Sharded, Isolated,
Sliced, and Aggregated (SISA) approach Bourtoule et al. (2020),which partitions data into inde-
pendent shards. By retraining only the specific shards containing the data to be unlearned, SISA
reduces the computational burden. Extensions of this approach include Ginart et al. (2019), which
applies partitioning to linear models, and Brophy & Lowd (2021), which adapts it for random forests.
Schelter et al. (2021) further extended the concept to decision trees, minimizing retraining through
hierarchical partitioning. In the graph learning domain, Chen et al. (2022b) developed methods to
forget specific nodes or edges, while Chen et al. (2022a) focused on removing sensitive user data
from recommendation systems.

While these methods are effective for structured models, they struggle to scale to large, complex
models like Language Models. Additionally, the retraining costs, though reduced, remain signifi-
cant, and the reliance on specific architectures limits their generalizability to more dynamic tasks.

In a different direction, Kurmanji et al. (2023) introduced SCRUB, which treats the original model as
a teacher and trains a student model to mimic it on retained data while ’forgetting’ specific informa-
tion. Warnecke et al. (2023) proposed unlearning entire groups of features and labels using influence
functions, providing closed-form updates to model parameters for more efficient data removal.

Influence functions Guo et al. (2023); Sekhari et al. (2021); Mehta et al. (2022) also offer an al-
ternative by measuring the effect of individual data points on a model’s predictions and adjusting
parameters accordingly, providing more direct methods for unlearning.

Recently, zero-shot unlearning methods have emerged, focusing on removing information without
retraining, making them highly efficient for large models. Shah et al. (2024) introduced a method
for editing model computations to ’forget’ specific information. While this is effective for tasks
like token classification, it may struggle with the more complex context and semantics in LLMs,
underscoring the need for scalable, adaptable unlearning techniques tailored to these models.
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3 METHODOLOGY

To address the challenges of zero-shot machine unlearning, we propose a novel approach that lever-
ages codebook features to bottleneck latent representations within a language model, enabling the
targeted unlearning of specific knowledge by altering related codebook embeddings. Initially intro-
duced by Tamkin et al. (2023), codebook features efficiently compress the activation space of neural
networks by introducing a sparse discrete bottleneck. This bottleneck can be further optimized to
isolate the codes most relevant to specific topics in the input, offering deeper insight and control over
the model’s response and interpretation. By utilizing this discrete latent representation, we can more
effectively identify and remove the specific information encoded in the codebook corresponding to
the input’s targeted knowledge.

The following section details our approach to employing codebook features to efficiently identify
and unlearn specific areas of related information in a zero-shot manner. This process ensures that
the model can no longer effectively handle prompts that contain the target information to unlearn.

Figure 1: CodeUnlearn—Our Amortized Zero-Shot Machine Unlearning for Language Models.
Left: Discrete latent bottlenecking in the transformer architecture. After applying the residual con-
nection, the multi-head attention output is discretized using a discrete embedding vocabulary, re-
ferred to as the codebook. This approach prevents information leakage via the residual connection,
ensuring that the codebook effectively regulates and interprets the network’s behavior. Right: Zero-
shot machine unlearning is achieved by removing the discrete codes in the codebook that correspond
to the targeted information.

3.1 CODEBOOK FEATURES

The core concept behind employing codebook features is to transform the original activations from
a hidden layer into a representation regulated by a codebook. Let a ∈ RF represent the activation
vector from a hidden layer, where F denotes the dimensionality of the activations. We use a code-
book C = {ck}Kk=1 ∈ RK×F , where K represents the number of code vectors. The codebook offers
a compressed, discrete representation of the original activations. To perform this transformation, we
calculate the cosine similarity between the activation a and each code vector ck in the codebook:

cosineSim(a, ck) =
a · ck

∥a∥∥ck∥
, (1)

for each code vector ck in the codebook. We then identify the top S (where S ≥ 1) most similar code
vectors corresponding to the activation a. The index set Ω of these top S code vectors is defined as:

Ω = TopS ({k | k ∈ {1, . . . ,K}, cosineSim(a, ck)}) . (2)
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The output of the codebook transformation is given by:

â =
∑
k∈Ω

ck, (3)

where Ω is the index set of the S most similar code vectors, selected based on the highest cosine
similarity scores. In the unlearning procedure, the activated codes corresponding to a are identified
as the targets for removal.

3.2 CODEBOOK SETTINGS

Multiple Codebooks In prior work Tamkin et al. (2023), multiple codebooks were applied to each
attention head, with the outputs concatenated across heads. Each attention head operates with its own
codebook, selecting codes independently. The chosen codes from each head are then concatenated to
produce the final output for that attention layer, effectively allowing the model to represent a broader
set of features through the combination of different codebooks. Using multiple codebooks across at-
tention heads can lead to a superposition effect, as described by Elhage et al. (2022). Superposition
refers to the phenomenon where linear representations can encode more features than the dimen-
sions, effectively allowing the neural network to simulate more extensive networks. In this case,
combining multiple codebooks across attention heads allows for a significantly more comprehen-
sive set of activations to be represented, even when using only the top S = 1 codebooks. However,
tracking which individual codebooks contribute to specific activation patterns becomes challenging.
Rather than relying on the output of a single codebook, the overall representation emerges from the
combined outputs of all the codebooks.

Single Codebook As shown in Section 3, to maintain interpretability, we focus on using a single
codebook, positioning it after the multi-head attention layer and residual connection to prevent in-
formation leakage. However, in a single codebook setup, selecting only S = 1 leads to a significant
drop in model performance, as a single codebook feature is insufficient to capture the complexity of
the activation space. In Cai (2024), the author rigorously demonstrates that treating word vectors as
mappings allows a finite vocabulary to achieve infinite approximation through composition. Based
on this insight, we employ S > 1 in our approach. While this may slightly affect code discretization
and information clarity, it strikes a balance between model performance and interpretability.

3.3 CODEBOOK WITH SPARSE AUTOENCODERS

Our goal is to decompose the activation space into sparse, interpretable features rather than recon-
structing the original input. To accomplish this, we incorporate the Sparse Autoencoder (SAE) con-
cept. The SAE applies a linear transformation encoder with a ReLU activation function to project
the activations into a higher-dimensional space, effectively decomposing features. A linear transfor-
mation decoder is employed used to reconstruct the activations.

In line with the SAE structure, we introduce a linear transformation encoder with ReLU before
the codebook and a linear transformation decoder after the codebook. This setup provides two
significant benefits for machine unlearning:

• Security through ReLU: The ReLU activation function ensures that the extracted features
are non-linear and sparse, making it more difficult to recover or reconstruct the original
input from the features. This acts as a safeguard, reducing the likelihood of information
leakage. By enforcing sparsity and non-linearity, ReLU provides greater control over fea-
ture representation, allowing us to obscure specific activations and protect data integrity
during machine-unlearning processes.

• Decentralization of Information: Sparsity promotes the decentralization of encoded in-
formation, which helps isolate and unlearn specific patterns or features without disrupting
the rest of the model. This targeted approach allows for more precise unlearning of sensi-
tive or undesired information.

Encoder The encoder is responsible for projecting the activation vector a ∈ Rd into a higher-
dimensional space. This is achieved using a weight matrix WE ∈ Rd×F and a bias vector bE ∈ Rd.
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A ReLU activation function follows the projection to introduce non-linearity:

henc = ReLU(Wenca+ benc). (4)

Codebook After encoding, the sparse representation henc is transformed using the codebook. The
cosine similarity between henc and each code vector ck ∈ {c1, c2, . . . , cK} is calculated as:

cosineSim(henc, ck) =
henc · ck

∥henc∥∥ck∥
. (5)

The top S most similar code vectors are selected:

Ω = TopS ({k | k ∈ {1, . . . ,K}, cosineSim(henc, ck)}) . (6)

The output of the codebook transformation is then:

ĥenc =
∑
k∈Ω

ck. (7)

Decoder The decoder then maps ĥenc back to the original activation space using a weight matrix
Wdec ∈ RF×d and a bias vector bdec ∈ RF :

â = Wdecĥenc + bdec. (8)

3.4 TRAINING THE CODEBOOK

Reconstruction Loss As with the Sparse Autoencoder (SAE) and codebook models, we utilize
the Mean Squared Error (MSE) loss as the primary loss function. The MSE loss can be expressed
as:

LMSE =
1

N

N∑
i=1

∥ai − âi∥22, (9)

where N is the number of samples, ai is the original activation, and âi is the reconstructed activation
obtained from the decoder.

Additionally, to promote sparsity and enforce more distinct and sparse internal feature representa-
tions within each codebook vector, we introduce an L1 penalty term on the codebook activations.
This encourages the model to represent each code with sparser and more well-separated internal
features. The overall loss function incorporating this sparsity constraint is defined as:

LCodebook =
1

N

N∑
i=1

∥ai − âi∥22 + λ
∑
k∈Ω

F∑
f=1

|cfk |, (10)

where Ω represents the set of indices for the top S most similar code vectors, ck refers to the k-
th codebook vector, F denotes the dimensionality of the code vectors, and λ is a regularization
coefficient that controls the strength of the L1 penalty term. In our experiments, we set λ to 1×10−6

to balance sparsity with reconstruction accuracy.

Joint Training for Machine Unlearning Both the SAE and codebook features are used to re-
construct the input a, but this presents a critical issue in the context of machine unlearning: one
could easily remove the codebook layer, reverting the model to its original state, which negates the
unlearning process. To address this, it is vital to ensure that the model is trained so that the down-
stream components are entirely dependent on the output of the codebook. At the same time, the
upstream layers must learn to generate activations that conform to the codebook’s representations.
This joint training approach ensures that the entire model relies on the codebook’s representation,
making it harder to bypass or remove without degrading performance. The joint loss function for
this training process is defined as:

Ljoint = LCodebook + LCE, (11)

where LCodebook refers to the reconstruction loss for the codebook, and LCE represents the Cross-
Entropy loss for the original language modeling or task-specific objective.

5



Published at NeurIPS 2024 Workshop SafeGenAi

Figure 2: Unlearning a Target Topic in a Language Model. The zero-shot unlearning process
begins by identifying codes enriched in data subsets with the target topic (DT ) as opposed to the
subset without it (DT̃ ). Codes with p-values less than 0.05 are removed from the codebook. After
this removal, the model exhibits significantly decreased performance on target information inputs.

3.5 CODE RETRIEVAL

As shown in Figure 2, after training, the codebook encodes a set of representative codes C =
{ck}Kk=1 ∈ RK×F that are sparse and represent different features. To perform unlearning, we
retrieve the codes activated for specific inputs and identify which codes are enriched for a particular
topic. The model can effectively unlearn the associated information by deleting the corresponding
enriched codes from the codebook. The key steps involve retrieving these relevant codes for each
input and determining their relationship to the target topic.

Because of the nature of the attention mechanism, the activation of these codes also depends on the
surrounding context. This means we are not just identifying individual words that activate specific
codes but retrieving codes that represent the broader topic within the input context. To unlearn a
specific topic T , consider a dataset DT with samples related to topic T , alongside with the remaining
irrelevant data set DR. We create a control dataset DT̃ by replacing words associated with T in DT

with unrelated words, ensuring the context remains consistent. By comparing the code activations
between DT and DT̃ , we can identify and search for the codes linked to topic T .

For each code ck activated in the dataset, we compute its frequency in both datasets by considering
the top S′ activated codes:

fk(DT ) =
1

NT

NT∑
i=1

I(k ∈ ΩT (ai)), (12)

fk(DT̃ ) =
1

NT̃

NT̃∑
j=1

I(k ∈ ΩT̃ (aj)), (13)

where ΩT (ai) represents the set of indices of the top S′ activated codes for activation ai in dataset
DT , and ΩT̃ (aj) is similarly defined for DT̃ . NT and NT̃ denote the sample sizes of DT and DT̃ ,
respectively. I is the indicator function that checks whether code k is in the set of activated codes.
The hyperparameter S′ controls the number of top activated codes considered, thereby influencing
the number of codes to be removed.

To quantify the enrichment of code ck for topic T , we use the following formula:

R(ck, T ) = log2

(
fk(DT ) + ϵ

fk(DT̃ ) + ϵ

)
, (14)

where ϵ is a small constant added to avoid division by zero. When R(ck, T ) is positive, it indicates
that the code ck is enriched in dataset DT relative to DT̃ . However, if the frequency of ck in DT̃
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is zero and its frequency in DT is very low, such codes should not be removed, as they are likely
accidental activations. Removing these codes could lead to unintended side effects, as they may not
be strongly related to the topic T despite being present in the dataset.

Therefore, we used a chi-squared test to calculate the p-value of R(ck, T ) to determine if the code
ck is enriched for topic T . For those codes with p-values smaller than 0.05, we regard them as
enriched codes in DT and remove them from the codebook. We define the set of enriched codes as
ΩR>0,p<0.05 = {ck | R(ck, T ) > 0 and p ≤ 0.05}.

3.6 METRICS

In our work, we not solely assess the absolute drop in performance within the topic or non-topic
datasets but also need to compare the relative decline between them. Instead, to fairly compare
the models and the datasets, we used normalized percentage improvement to evaluate the perfor-
mance of the unlearning procedure. The performance improvement percentage is set to 0 for the
zero-shot model and 1 for the codebook model, which is the upper bound. In contrast, the per-
formance drop percentage is set to 1 for the zero-shot model and 0 for the codebook model. We
use four evaluation metrics to assess the effectiveness of the unlearning procedure and the overall
quality of the remaining information in the output. These metrics include: We use four evaluation
metrics to assess the impact of the unlearning procedure on translation quality and semantic preser-
vation: BLEUPapineni et al. (2002), METEORBanerjee & Lavie (2005), BERTScoreZhang et al.
(2020), and Bart-ScoreYuan et al. (2021). BLEU offers a general accuracy measure, and METEOR
builds on BLEU by considering synonymy and word order, often providing a more sensitive quality
assessment. BERTScore leverages contextual embeddings to evaluate semantic similarity, crucial
for detecting whether unlearning procedures change the sentence’s meaning. Bart-Score evaluates
fluency and informativeness using pre-trained BART models, with scores reflecting log-likelihood,
so close to zero indicates better quality. BERTScore and Bart-Score offer insight into more subtle
changes, and percentage change trends are prioritized for a comprehensive analysis.

Table 1: Examples of unlearning on topic ’love’

Content

English She had made efforts to love him, and she had repented with tears for
having yielded to another!

Ground Truth Elle avait fait des efforts pour l’aimer, et elle s’était repentie en pleurant
d’avoir cédé à un autre.

Codebook Model Elle avait fait des efforts pour l’aimer, et elle avait repris des larmes
pour avoir renoncé à un autre!

S′ = 8, delete 16 codes Elle avait fait des efforts pour l’aimer, et elle avait repris des larmes
pour l’avoir acquitté d’un autre!

S′ = 24, delete 52 codes Elle avait fait des efforts pour le recevoir, et elle avaitrepris des larmes
pour avoir renoncé à un autre.

S′ = 72, delete 133 codes Elle avait fait des efforts pour le mettre en état, et elle avait repris des
larmes pour s’en rendre à un autre.

4 EXPERIMENTS AND RESULTS

We applied the codebook features combined with SAE on a large language model(LLM) and trained
it on tasks that exhibit clear distinctions between correct and incorrect answers. After training, we
unlearned the model on several specific topics to measure the degradation in performance on the
unlearned issues while ensuring minimal impact on the other topics. An example of the unlearning
effect on the topic of ’love’ is shown in Table 1. The results illustrate that as more codes related
to the target topic were deleted, the model’s translation became less accurate in representing the
original meaning. For instance:

The translation introduces minor inaccuracies in the case of S′ = 8 (16 codes deleted). As the num-
ber of deleted codes increases to S′ = 72 (133 codes deleted), the translation significantly deviates
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from the original meaning, showing the model’s inability to maintain accuracy on the target topic.
This demonstrates that the model successfully forgets the ’love’ concept and the wrong meaning can
even interfere with the rest of the sentences.

Table 2: Unlearning Results for Different Topics

Topic(N) Dataset
Score (Normalized Improvement Drop(%))

BLEU↓ METEOR↓ BERT − P↓ BART↓

Love(207)
D′

T 0.16 (-112.52) 0.39 (-117.76) 0.80 (-118.88) -4.80 (-143.96)

DR 0.18 (-37.80) 0.42 (-57.82) 0.81 (-58.25) -5.71 (-35.06)

Julien(255)
D′

T 0.19 (-113.12) 0.42 (-138.47) 0.80 (-134.60) -5.15 (-164.68)

DR 0.16 (-65.70) 0.39 (-64.38) 0.80 (-94.63) -6.10 (-94.60)

Captain(137)
D′

T 0.20 (-72.10) 0.47 (-140.71) 0.83 (-84.44) -5.16 (-87.90)

DR 0.19 (-9.72) 0.44 (-9.04) 0.82 (-9.66) -5.97 (-0.53)

Poor(151)
D′

T 0.18 (-70.61) 0.43 (-70.78) 0.81 (-60.84) -5.03 (-79.81)

DR 0.20 (-26.64) 0.47 (-12.48) 0.83 (-14.20) -5.81 (-36.01)

Wish(217)
D′

T 0.15 (-144.83) 0.33 (-249.51) 0.78 (-182.02) -4.95 (-309.34)

DR 0.16 (-87.65) 0.39 (-94.51) 0.81 (-74.16) -6.02 (-133.35)

White(179)
D′

T 0.12 (-157.45) 0.38 (-218.04) 0.80 (-403.04) -4.85 (-119.99)

DR 0.16 (-10.09) 0.49 (-22.99) 0.83 (-47.65) -6.12 (-27.15)

Black(190)
D′

T 0.16 (-85.16) 0.40 (-138.04) 0.80 (-115.56) -4.70 (-62.91)

DR 0.19 (-16.12) 0.47 (-2.15) 0.83 (-3.01) -5.78 (-97.36)

Figure 3: Performance Drop after Unlearning on the Topic ’Love’. Performance Drop after
Unlearning on the Topic ’Love’. The X-axis shows the model variations, with the first column as the
original model. Columns 2 to 8 represent increasing levels of unlearning, with the number indicating
the top S codes used and removed. The Y-axis represents the percentage change in various metrics
compared to the original model. As more codes are deleted, the model’s performance on the target
topic declines rapidly, while performance on non-topic content remains more stable.
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Dataset Building The dataset comprises three parts: (1) training, (2) validation, and (3) test
datasets. The training dataset is used for both training and unlearning, while the validation and
test datasets assess the performance of the unlearned model. For the unlearning procedure, we fil-
tered prompts containing target words, sampling 500 instances for DT and then generated DT̃ . All
relevant prompts from the test and validation datasets were used to create the dataset D′

T , while ir-
relevant prompts were used to construct the dataset DR for evaluation. We trained a T5-small model
Raffel et al. (2023) with codebook features on the opus books/en-fr dataset. A codebook with 25k
codes and 512 dimensions was applied at the third layer of the encoder, as this layer likely captures
more abstract, high-level features, ideal for our approach Templeton et al. (2024).

After training, we identified specific topics within the training dataset and performed the unlearning
procedure. We tested seven values for S′ ranging from 8(1× S) to 104(13× S), each resulting in a
different number of deleted codes. This led to a deletion of approximately 0.064% to 0.828% of the
total codes in the codebook.

As shown in Figure 3, as the number of searched and deleted codes increases, the performance
on the topic deteriorates rapidly. Although performance on non-topic deteriorates simultaneously,
it is far better than the topic. For instance, in the case of the ’love’ topic, when S′ = 104(13 ×
S), which corresponds to searching for the top 104 most similar codes in the codebook for each
activation, about 0.828% of the codes were deleted. The improvement score for the target topic
became negative, which means the unlearned model is worse than the zero-shot model. In contrast,
the model’s performance on non-topic is far better than the topic, demonstrating effective unlearning
of the specific target while maintaining reasonable performance on unrelated information.

Figure 4: Performance Drop after Unlearning on the Topic ’Julien’. Similar to the ’love’ topic,
we tested the unlearning procedure on the name ’Julien’.

Beyond conceptual topics like ’love,’ we also applied the unlearning procedure to the frequently oc-
curring name ’Julien’ in the dataset. Names carry specific semantic significance in language models,
much like critical topics, making ’Julien’ an ideal test case to assess the method’s effectiveness in
removing personal information, such as names, while preserving performance on unrelated content.
As shown in Figure 4, the unlearning process led to a noticeable performance decline for ’Julien’
as the number of removed codes increased. Similar to the ’love’ topic, the model’s performance
on non-target content remained relatively stable. This further illustrates the versatility of the pro-
posed approach in effectively unlearning targeted information, whether it is conceptual (like ’love’)
or personal (like ’Julien’), while maintaining accuracy on non-topic content. Following unlearning,
the model attempts to rely on other similar codes; however, the meanings of these codes are signif-
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icantly different. As a result, the unlearned target topic interferes, hindering the model’s ability to
comprehend the entire sentence fully.

In addition to the ’love’ and ’Julien’ topics, we performed unlearning on several other topics such as
’Captain,’ ’Poor,’ ’Wish,’ ’White,’ and ’Black.’ Table 2, shows the performance degradation across
various topics after applying the unlearning procedure, with the number of deleted codes indicated in
parentheses next to each topic. The values represent actual scores and the normalized improvement
drop in performance, calculated relative to the zero-shot and baseline models before unlearning. A
negative value indicates a performance decline. As S′ increases (for instance, S′ = 13 × 8 here),
the performance gap between D′

T and DR widens, demonstrating effective unlearning of the target
topic with minimal impact on irrelevant information. To further assess the unlearning performance,

Figure 5: Metrics after unlearning topic ’love’ and test on ’like’, The model unlearned the ’love’
topic but also deteriorated the performance on the ’like’ topic, which suggests that the unlearning
procedure removes not only the specific target information but also the relevant context.

we also evaluate the synonymy of the target word, such as ’like’ in place of ’love’ shown in Fig-
ure 5. Ideally, the model’s performance on the ’like’ topic should also worsen, suggesting that the
unlearning procedure removes the specific target information and the broader context related to that
concept. Our approach diverges from traditional data-point-unlearning tasks by removing the codes
close to the activation space, which is essential in unlearning conceptual or contextual knowledge
rather than isolated instances.

5 CONCLUSION

In this work, we introduced CodeUnlearn, a novel framework for zero-shot machine unlearning in
Large Language Models (LLMs). Leveraging codebook features and Sparse Autoencoders (SAEs),
we devised a method that effectively isolates and removes specific knowledge, ensuring that the
targeted data and its contextual associations are erased from the model. Unlike previous methods,
which required retraining or were limited to classification tasks, CodeUnlearn operates amortized
and zero-shot, providing an efficient and scalable solution for unlearning in complex, generative
models like LLMs. Our approach uses a discrete concept representation to regulate the flow of
information in a language model, enabling the unlearning of specific topics while preserving overall
model performance on unrelated tasks. The results show that CodeUnlearn successfully mitigates
the model’s ability to reproduce the unlearned information without requiring additional training,
achieving substantial unlearning effectiveness and maintaining interpretability.
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A TRAINING AND OPTIMIZATION DETAILS

This section provides additional details on the training and optimization of the Sparse Autoencoder
(SAE) used in CodeUnlearn.

After the SAE encoder layer, we apply layer normalization to stabilize training and improve con-
vergence. The dimensionality of the SAE is set to match both the codebook and input dimensions,
which is 512.

For the initialization of the SAE encoder layer, we use Kaiming uniform initialization He et al.
(2015), which is well-suited for layers with ReLU activation. This method helps maintain the proper
scale of the weights, preventing issues such as vanishing gradients. Additionally, since the codebook
can be regarded as an activation layer, Kaiming initialization ensures that the input distributions
to the codebook remain stable, facilitating efficient learning and representation of sparse features
within the SAE.

To promote sparsity in the activations, we introduce an l1 loss with a lambda parameter set to 1 ×
10−6. This ensures that the network learns sparse representations, which are crucial for enhancing
the interpretability and control required for the unlearning process.

Codebook size is 25k and the dimensionality is 512, we use top 8 codes to represent the input.

B SEARCHING AND RETRIEVAL PROCEDURE

B.1 DATA BUILDING

Selection of DT : We sampled 500 prompts containing the target words from the validation and
test dataset.The validated prompt never participates in the training and unlearning phases. We first
analyze word frequencies across the entire dataset to construct the target dataset DT . We select
words with frequencies between 500 and 700. Words that are too frequent tend to be overly familiar
and lack specificity, while those that are too infrequent may not provide meaningful insights. We
focus on words in the 500-700 frequency range, such as ’love,’ which are practically meaningful
and suitable for testing the unlearning process.During validation, we created D′

T by selecting topic-
specific prompt components from the test and validation sets, and we sampled an equal number of
instances from the remaining irrelevant dataset to construct DR.

Generation of DT̃ : For the control dataset DT̃ , we replace the target words in DT with common
non-synonyms of the same part of speech. The replacement words are selected based on word
frequencies reported by Norvig (2009). For instance, for names, we randomly generate other names
to replace the original ones. This ensures that DT̃ maintains the same contextual structure as DT ,
allowing us to focus on how effectively the unlearning procedure targets specific information.
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B.2 SEARCH AND RETRIEVAL OF CODES

For code search and retrieval, we disable sampling by setting the temperature to 0 at all stages,
ensuring deterministic behavior in code activation selection.

Table 3: Runtime Mean and Standard Deviation for Different S′

S′ Runtime Mean (s) Runtime Std (s)

8 473.66 264.58
24 376.98 238.66
40 212.35 240.88
56 211.23 438.63
72 211.14 479.11
88 214.12 434.29

104 215.37 526.23

As shown in Table 3, the runtime varies significantly due to the different lengths of the prompts.
Despite this fluctuation, it can be observed that the average search time for the top 500 samples is
approximately 10 minutes, indicating an efficient unlearning process.

C EXAMPLES OF UNLEARNING

Table 4: Examples of unlearning on the topic ’Julien’

Content

English Without being the least bit in the world intimidated, Julien resumed his
narrative.

Ground Truth Sans être le moins du monde intimidé, Julien reprit sa narration.

Codebook Model Sans être le moindre obstacle du monde, Julien reprit son récit.

S′ = 8, delete 16 codes Sans être le moindre obstacle du monde, je reprit son récit.

S′ = 24, delete 52 codes Sans être le moindre objet du monde attaqué, le temps lui reprit son
récit.

S′ = 72, delete 133 codes Sans être le moindre obstacle du monde, M. Rochester reprit son récit.

As shown in Table 4, by S′ = 24, deleting 52 codes already leads to a significant performance
drop. The name ’Julien’ is no longer recognized after code deletion, and the model attempts to
fill this gap with unrelated words. This behavior interferes with the model’s understanding of the
context, as it tries to substitute Julien’s code with alternatives, making it impossible to restore the
correct information. The model provides incorrect substitutions, rather than leaving the slot vacant
for further inference.

In Table 5, we observe that the model’s performance on unrelated content, like the ’Notre—Dame’
topic, remains relatively stable even after unlearning the ’Julien’ topic. Only minor perturbations oc-
cur at higher code deletions (e.g., S′ = 72), but the overall sentence retains its meaning, demonstrat-
ing the model’s resilience on non-target content. The resulting change, which involves a preposition
shift, has a negligible effect on the overall meaning of the sentence, further confirming that the un-
learning process effectively targets only the specified concept without broadly disrupting unrelated
text generation.

D FUTURE WORK

While CodeUnlearn has demonstrated its effectiveness in unlearning specific topics in LLMs, several
areas remain for further exploration:
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Table 5: Non-topic samples after unlearning on the topic ’Julien’

Content

English In fact, within the bounds of Notre—Dame, the condemned girl could
not be touched.

Ground Truth En effet, dans l’enceinte de Notre—Dame, la condamnée était invio-
lable.

Codebook Model En effet, dans les limites de Notre—Dame, la condamnée ne pouvait
être touchée.

S′ = 8, delete 16 codes En effet, dans les limites de Notre—Dame, la condamnée ne pouvait
être touchée.

S′ = 24, delete 52 codes En effet, dans les limites de Notre—Dame, la condamnée ne pouvait
être touchée.

S′ = 72, delete 133 codes En effet, au milieu des limites de Notre—Dame, la condamnée ne pou-
vait être touchée.

• Enhanced Code Retrieval with Minimal Impact on Unrelated Information: Improving
the accuracy of identifying target codes can lead to more precise unlearning with reduced
unintended consequences on irrelevant information. Future work could focus on refining
the search and retrieval process to ensure that unlearning specific knowledge has minimal
impact on the model’s overall performance and generalization capabilities.

• Decentralized Code Representation: One goal is to decentralize further the information
encoded in the codebook to ensure that unlearning-specific features have an even more lo-
calized impact on the model’s behavior. This could lead to finer control over the granularity
of the unlearning process.

• Expanding to Other Tasks and Architectures: While our method has been validated on
language models, expanding CodeUnlearn to tasks like classification and extending it to
other model architectures (e.g., transformers beyond T5) will further enhance its applica-
bility across domains.

E FURTHER DETAILS ON TRADITIONAL UNLEARNING METHODS

In this appendix, we delve deeper into some of the traditional machine unlearning methods, expand-
ing on the frameworks and strategies discussed in the related work section.

SISA (Sharded, Isolated, Sliced, and Aggregated) Approach The Sharded, Isolated, Sliced, and
Aggregated (SISA) approach Bourtoule et al. (2020) partitions the training data into independent
shards, each used to train isolated models or sub-models. When a specific data point needs to be
unlearned, only the relevant shard containing that data is retrained. This approach is designed to
improve computational efficiency by reducing the need for full model retraining.

While SISA is highly efficient compared to retraining the entire model, the framework introduces
certain challenges. The isolated training of each shard can result in a lack of information integra-
tion across different shards, potentially leading to generalization issues. In large language models
(LLMs), where complex interdependencies between tokens are crucial for performance, the isolated
shard approach can cause degradation in performance. Moreover, as the size of the dataset grows,
the retraining costs, even within individual shards, remain significant, making SISA less practical
for large-scale LLMs.

Extensions to SISA: DaRE, HedgeCut, and ARCANE Other methods such as DaRE Brophy
& Lowd (2021) and HedgeCut Schelter et al. (2021) extend SISA’s principles to tree-based al-
gorithms. These approaches focus on partitioning the decision tree structure to ensure that only
specific branches or paths are retrained during unlearning. DaRE adapts the SISA framework for
random forests, while HedgeCut applies it to hierarchical decision trees, offering more flexibility
across different model architectures.
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ARCANE Yan et al. (2022) represents another evolution of the SISA framework by optimizing
retraining costs through class-based partitioning. In ARCANE, the dataset is divided into class-
specific subsets, minimizing the impact of unlearning by only requiring retraining for the class in
question. This strategy enhances efficiency by limiting the scope of retraining, but it still necessitates
retraining, which can become a bottleneck, especially for high-dimensional and large-scale datasets.

Limitations of SISA and Its Variants in Complex Models Despite the advancements made by
SISA and its extensions, these methods rely heavily on specific model architectures and data struc-
tures, making them less suitable for complex and unstructured environments like LLMs. In large
language models, the intricate dependencies between tokens mean that partitioning the data into iso-
lated shards or classes may not capture the full complexity of the model’s learned representations.

The isolated training across shards can also lead to issues with model generalization, as each shard is
trained independently. This becomes particularly problematic when the model needs to generalize to
unseen data. The lack of integration between shards can cause performance degradation, particularly
in tasks requiring high-level contextual understanding, such as those found in LLMs. Moreover,
although SISA limits retraining to individual shards, the computational burden remains substantial
for large-scale datasets, making the approach less scalable for real-world deployment in LLMs.

Influence Functions for Unlearning An alternative to retraining-based methods is the use of
influence functions, which estimate the impact of a data point on the model’s learned parameters
Guo et al. (2023); Sekhari et al. (2021); Mehta et al. (2022). Influence functions allow the model to
reverse the effects of specific data points without needing full retraining. By calculating the gradient
of the loss function with respect to the training points, influence functions can adjust the model’s
parameters to ’forget’ the data.

However, while influence functions are efficient for simple models like linear classifiers or small
neural networks, they struggle with the complexity and non-linearity of deep architectures like
LLMs. The dense and interconnected structure of LLMs makes it difficult to isolate the effect
of individual data points without affecting the model’s overall performance. This limitation restricts
the scalability of influence functions in unlearning tasks within complex models.

Re-optimization After Unlearning A novel approach to selective forgetting, based on re-
optimization, was proposed by Golatkar et al. (2019), who introduced an optimal quadratic scrub-
bing algorithm designed to achieve selective forgetting in deep networks. Selective forgetting is
defined as the process of modifying network weights using a scrubbing function S(w), such that the
weight distribution becomes indistinguishable from that of a network never trained on the forgotten
data. This is quantitatively measured through the Kullback-Leibler (KL) divergence. If the KL di-
vergence between the post-scrubbing weight distribution and the weight distribution of a network
that has never encountered the forgotten data approaches zero, it indicates complete forgetting. This
method ensures that the network ’forgets’ specific information without necessitating full retraining,
and instead re-optimizes the network’s weights to achieve a distributional equivalence.

However, one of the key limitations of this approach is its computational complexity. While the
scrubbing process avoids full retraining, re-optimization still involves significant computational
overhead, especially for large-scale models like LLMs. Additionally, achieving true distributional
equivalence is highly challenging in practice, particularly when the network is fine-tuned on multi-
ple tasks or trained on diverse datasets. This often leads to incomplete forgetting, as small traces of
the forgotten data may still influence the network’s behavior.

Building on the idea of re-optimization, Shibata et al. (2021) introduced the Learning with Selective
Forgetting (LSF) framework, which aims to selectively forget specific classes in a lifelong learn-
ing setting. LSF employs a multi-component loss function that balances classification accuracy,
mnemonic embedding, selective forgetting, and regularization to prevent catastrophic forgetting of
non-target classes. This method, though promising, suffers from scalability issues when applied to
larger datasets or more complex models. The reliance on class-level removal also limits its applica-
bility to scenarios where granular, instance-level forgetting is required, making it less adaptable to
tasks beyond classification, such as generative language models.

Furthermore, both approaches struggle with model interpretability and traceability post-unlearning.
As the network weights are continuously re-optimized, it becomes difficult to verify the extent of
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forgetting or to ensure that no residual influence from the forgotten data remains. The lack of guar-
antees about complete data removal can be a significant concern in privacy-sensitive applications,
where even small data remnants could pose risks. This calls for more transparent and auditable un-
learning processes, particularly in contexts involving sensitive personal or confidential information.

Re-optimization After Unlearning Re-optimization-based approaches to selective forgetting,
such as the quadratic scrubbing algorithm proposed by Golatkar et al. (2019), aim to adjust a model’s
weights so that the distribution resembles one that has never been exposed to the forgotten data. This
is measured using Kullback-Leibler (KL) divergence, with the goal of reducing it to near zero, indi-
cating complete forgetting without full retraining. While effective, this method is computationally
expensive, especially for large models like LLMs, and achieving perfect distributional equivalence
is difficult, often leaving residual traces of the forgotten data.

The Learning with Selective Forgetting (LSF) framework introduced by Shibata et al. (2021) en-
hances this by incorporating a loss function that balances accuracy, mnemonic embedding, selective
forgetting, and regularization to remove specific classes in lifelong learning. However, both meth-
ods face scalability challenges with large datasets and struggle with more granular, instance-level
forgetting required in complex tasks like language generation.

Moreover, these approaches lack transparency and traceability, making it difficult to verify whether
forgetting has been truly achieved. This is particularly problematic in privacy-sensitive contexts,
where even minor data remnants can pose significant risks. Thus, re-optimization methods, while
promising, require further refinement to handle large-scale models and ensure complete, verifiable
unlearning.

Re-optimization After Unlearning Re-optimization-based approaches to selective forgetting,
such as the quadratic scrubbing algorithm proposed by Golatkar et al. (2019), aim to adjust a model’s
weights so that the distribution resembles one that has never been exposed to the forgotten data. This
is measured using Kullback-Leibler (KL) divergence, with the goal of reducing it to near zero, indi-
cating complete forgetting without full retraining. While effective, this method is computationally
expensive, especially for large models like LLMs, and achieving perfect distributional equivalence
is difficult, often leaving residual traces of the forgotten data.

The Learning with Selective Forgetting (LSF) framework introduced by Shibata et al. (2021) en-
hances this by incorporating a loss function that balances accuracy, mnemonic embedding, selective
forgetting, and regularization to remove specific classes in lifelong learning. However, both meth-
ods face scalability challenges with large datasets and struggle with more granular, instance-level
forgetting required in complex tasks like language generation.

Moreover, these approaches lack transparency and traceability, making it difficult to verify whether
forgetting has been truly achieved. This is particularly problematic in privacy-sensitive contexts,
where even minor data remnants can pose significant risks. Thus, re-optimization methods, while
promising, require further refinement to handle large-scale models and ensure complete, verifiable
unlearning.

F FURTHER DETAILS ON VECTOR QUANTIZATION METHODS

A promising direction to address these challenges lies in Vector Quantization (VQ) and Sparse Cod-
ing, which provide a natural framework for disentangling information encoded in models, offering
deeper insights into model interpretability Elad (2010). Numerous studies have demonstrated the
effectiveness of sparse vectors in discovering underlying sparse structures, significantly improving
interpretability.

For example, Arora et al. (2018) showed how sparse coding can reveal the linear algebraic structure
of word embeddings, enhancing their interpretability. Similarly, Olshausen & Field (1996), along
with Donoho & Elad (2003), explored how sparse coding in visual systems identifies the most rele-
vant features, underscoring the potential of sparse representations for revealing meaningful features
in complex models.

Expanding on these ideas, Shah et al. (2023) proposed a Discrete Key-Value Bottleneck (DKVB)
model that leverages sparse representations, freezing key-value pairs to prevent gradient propaga-
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tion and enabling unlearning without retraining. While effective for classification tasks, the DKVB
model faces challenges when applied to large language models (LLMs) due to the more intricate re-
lationships between tokens and context, highlighting the need for unlearning methods better suited
to the complexity of LLMs.

More recently, Elhage et al. (2022) demonstrated how sparse coding can extract and disentangle
superpositions in toy models, providing valuable insights into the structure of neural networks. By
applying sparse coding techniques, Elhage et al. (2022) were able to disentangle these superposi-
tions, offering a clearer understanding of the complex behaviors observed in deep neural networks.

Building on these advancements, Sparse Autoencoders (SAE) further enhance model interpretability
by decomposing activation spaces into distinct, sparse components Templeton et al. (2024). SAEs
allow models to identify specific features where information is encoded, making it easier to selec-
tively remove or modify individual components during the unlearning process. By leveraging the
sparsity and disentanglement properties of VQ and SAE, it is possible to develop unlearning meth-
ods that are scalable, efficient, and interpretable, offering a robust alternative to techniques that rely
on retraining or complex data partitioning.
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