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Abstract

Seq2seq models have shined in the field of
Neural Machine Translation (NMT). However,
word embeddings learned by NMT models
tend to degenerate and be distributed into a nar-
row cone, named representation degeneration
problem, which limits the representation ca-
pacity of word embeddings. In this paper, we
propose a Contrastive Word Embedding Learn-
ing (CWEL) method to address this problem.
CWEL combines the ideas of contrastive rep-
resentation learning with embedding regular-
ization, and adaptively minimizes the cosine
similarity of word embeddings on the target
side according to their semantic similarity. Ex-
periments on multiple translation benchmark
datasets show that CWEL significantly im-
proves translation qualities. Additional analy-
sis shows that the improvements mainly come
from the well-learned word embeddings.

1 Introduction

NMT models fall into the encoder-decoder frame-
work and have attracted widespread attention in
the academic community (Kalchbrenner and Blun-
som, 2013; Cho et al., 2014; Bahdanau et al., 2014,
Gehring et al., 2017; Vaswani et al., 2017). It’s
shown that word embeddings learned by NMT
models tend to degenerate and be distributed into a
narrow cone, named representation degeneration
problem (Gao et al., 2019) , which limits the repre-
sentation power of word embeddings and doesn’t
have enough capacity to model the diverse seman-
tics in natural languages (McCann et al., 2017).
To address representation degeneration problem,
Gao et al. (2019) proposed a novel regularization
method to increase the representation power of
word embeddings explicitly. It’s widely shown
that embeddings of syntactically and semantically
similar words are close to each other (Mikolov
et al., 2013a,b; Pennington et al., 2014). And Wi-
eting et al. (2019) showed that cosine similarity of
sentence embeddings can represent their semantic

similarity to some extend. However, Gao et al.
(2019) minimized the cosine similarity of each pair
of words equally regardless of their intrinsic seman-
tic relationship, which still limits the representation
power of learned embeddings.

To address this, we borrow the idea of con-
trastive learning (van den Oord et al., 2019), and
propose to minimize the cosine similarity of the
words in the batch adaptively according to their
semantic similarity. Several works in NMT also
utilized contrastive learning: Bhat et al. (2019)
optimized a margin-based loss on LSTM-based
continuous-output NMT models to maximize den-
sities of the pretrained target embeddings; Lee et al.
(2021) proposed a contrastive learning framework
on sentence-level representations to address the
“exposure bias” problem. Differently, our method
focuses on word-level contrastive representation
learning of the target words on the state-of-the-art
NMT models. The contrast among anchor, positive
and negative samples motivates us to take the se-
mantic similarity between word embeddings into
consideration. Our method utilizes the angle be-
tween two word embeddings as a soft signal of
positive or negative samples to control the degree
of minimization. It means that the larger angle be-
tween learnt word embeddings indicates more dis-
similar semantics and is related to higher weights,
and vice versa. So the cosine similarity minimiza-
tion of semantically dis-similar words should be
assigned with higher weights compared to simi-
lar ones, thus making the embedding space more
distinguishable and expressive.

Specifically, we first select a fixed-size bag-of-
words without repetitions for each batch through
a random sampling strategy. Then, we adaptively
minimize the cosine similarity between each word
in the samples and other words in the bag-of-words
with the computed angles as weights. In this way,
we hope that the cosine similarity of words with
similar semantics can be larger than dis-similar



ones. As a result, when the model generates trans-
lations, it can avoid using semantically dis-similar
words to generate incorrect translations, but use se-
mantically similar words to generate correct trans-
lations.

Briefly, we propose a framework named Con-
trastive Word Embedding Learning (CWEL),
which aims to adaptively minimize cosine similar-
ity of word embeddings according to their seman-
tic similarity. Experiments are conducted on three
translation benchmarks: NIST Chinese=-English
(Zh=-En), WMT’ 14 English=-German (En=-De)
and WMT"’ 14 English=-French (En=-Fr). The ex-
perimental results show that the proposed model
outperforms strong baseline models significantly.
Extensive analyses show that our method learns
more distinguishable word embeddings with more
expressiveness.

2 Method

2.1 Contrastive Word Embedding Learning

Bag-of-Words Sampling Given the batch B
which contains |B| source sentences and |B| cor-
responding translations, which are indicated as B,
and B, with x; and y; as the i-th source and target
sentences in B, and B, respectively. The set of
all words in By, is represented as .S, which does
not include duplicate words. We randomly sample
a bag-of-words BOW = {bl, s b, ,b|Bow|}
without repetitions from the set .S;,. Note that b,,
is the m'" word in BOW, with |[BOW| as its size.
Due to the limitation of memory and efficiency,
we only sample a subset of S, with the sampled
size [ BOW/| as a hyper-parameter. And it’s always
satisfied that [ BOW| < S.

Note that the sampling here is reasonable. As-
sume that each batch is a sampling of the whole
training set, whose distribution of words is almost
the same as the whole training set. By sampling
BOW without repetitions in each batch, the seman-
tic relationship among the words in the dataset
can be correctly modeled, which may include not
only synonyms but also antonyms, etc. All of these
words are informative and necessary for contrastive
learning. So it’s unnecessary to sample words using
semantic labels.

Weighted Contrastive Loss Given a target word
as w, in a sample (x;,y;), and a word from BOW
as b;, their word embeddings are denoted as £,
and Ej, respectively. It’s crucial to define the se-

mantic relationship between words b; and w,. If
the semantic of b; is similar to w,, we will set b;
as a positive sample of w, in contrastive learning,
and vice versa. Here we utilize the angle between
two word embedding vectors as a soft signal of se-
mantic relationship. As a result, it acts like a kind
of weight!, which is calculated as follows:

W, j = arccos(Euy,, Ey,) (1)

where arccos is a function to acquire the angle be-
tween two word embeddings. The weight is com-
puted by our NMT model on the fly. Note that the
method gives the largest weights to anti-parallel
word embedding vectors (negative samples), and
vice versa.

Our goal is to make word embeddings more dis-
tinguishable. The cosine similarity between word
embeddings is computed as follows:

So,j = c08(Euw,, Ep,) )

The reason why we resort to “arccos” and “cos” is
straightforward according to Wieting et al. (2019),
who shows that cosine similarity between two
learnt sentence embeddings can represent their se-
mantic similarity. Then, the weighted contrastive
loss £ is computed as follows:

No |BOW|
L =3"" exp (ijl W, * So,j> 3)

where N, denotes the total number of target words
of all the samples in each batch.

This method has an intuitive explanation: we
hope that the similarity minimization of embed-
dings with similar-semantics can be assigned
smaller weights than dis-similar ones. As a result,
the learnt embedding space can distinguish words
with different semantics, but keep the high cosine
similarity of semantically-similar words, which has
much more expressiveness.

Note that our proposed method is significantly
different from previous works of contrastive learn-
ing (He et al., 2020; Chen et al., 2020a,c,b; Khosla
et al., 2020; Gunel et al., 2021). The advantages
of our method are as follows: 1) soft signals of
positive and negative samples; 2) without compli-
cated data augmentation; and 3) without additional
architectures. Note again that compared to Gao
et al. (2019), our method considers the semantic re-
lationship between words during the minimization.

!Similar ideas can also be implemented by other meth-
ods of weighting, including (1 — cos (Ew,, Eb;))/2 and

exp(— cos(Ew,, Ep;) — 1). But we found that their perfor-
mance gains are slightly worse.



NIST Zh=En ,

Modl MT02| MT03| MT04| MT05 | MT08| Avg. |\ 1 o=t
Transformer-base || 46.13 | 44.79 | 45.59 | 44.54 | 34.79 |42.64 41.99
+ CWEL 47.27" |45.58" | 46.871 | 45.63" | 35.61" |44.19 42.20
Transformer-big || 47.64 | 46.50 | 46.85 | 46.70 | 37.37 |44.69 43.56
+ CWEL 48.171|47.471 |47.76' |47.871| 37.62 |45.58 43.87

Table 1: Case-insensitive BLEU scores (%) on NIST Zh=-En and case-sensitive BLEU scores (%) on WMT’ 14
En=-Fr translation tasks. “{" indicates statistically significant difference from Transformer (p < 0.01). The bold
results denote the best ones among the proposed models and their corresponding inhouse baselines.

2.2 Integration into NMT

Our method can be applied to most NMT models.
Without loss of generality, we take the Transformer
as an example. Based on the conventional auto-
regressive NMT training objective, we integrate
the contrastive word embedding loss mentioned
above as follows:

L£=(1-X)LCE O
0" = argmin (L;0)

“4)
&)

where £CF denotes the naive Cross-Entropy loss,
and X is a hyper-parameter adopted to balance the
two losses. We train our model by using the final
loss from scratch and get model parameters 6*.
Note that we only apply £°" on the target side in
this paper.

3 Experiments

We present experiments on NIST Chinese-English
(Zh=-En), WMT’ 14 English-German (En=-De),
and English-French (En=-Fr) translation tasks.

3.1 Setup

Dataset For NIST Zh=-En, the training dataset
consists of 1.25M sentence pairs extracted from
LDC corpora. We choose NIST 2006 (MT06) as
the validation set, which has 1664 sentences, with
NIST 2002 (MT02), NIST 2003 (MT03), NIST
2004 (MT04), NIST 2005 (MTO05), and NIST 2008
(MTO8) as test sets. For WMT’ 14 En=-De and
WMT’ 14 En=-Fr, we perform experiments on the
corpus provided by WMT’ 14, which contain 4.56M
sentence pairs and 36M sentence pairs, respectively.
newstest2013 and newstest2014 are used as vali-
dation and test sets. All statistical significance tests
are conducted according to Collins et al. (2005).

Baselines We compare our proposed methods
with the following baselines:

e Transformer (Vaswani et al., 2017) The
state-of-the-art seq2seq model. We compare
the results on both base and big models.

* Yang et al. (2019) A fine-tuning method for
reducing word omission errors by contrastive
learning at sentence level. We reproduce their
methods on our Transformer baselines.

* Wang et al. (2019) An adversarial training
mechanism for regularizing neural language
models, which yields better generalization per-
formance.

* Gao et al. (2019) A novel regularization
method to address representation degenera-
tion problem.

3.2 Results

NIST Zh=En and WMT’14 En=Fr As
shown in Table 1, After the introduction of the
Contrastive Word Embedding Loss (CWEL), com-
pared with the baseline system, the performance on
most test sets has been significantly improved. Par-
ticularly, the CWEL can improve the Transformer-
base and Transformer-big model by about +1.5 and
+0.9 BLEU points averagely on all test datasets.
On the large-scale WMT’ 14 En=-Fr dataset, our
models surpass strong baselines by 0.21 and 0.31
BLEU scores respectively. Note that we compare
other baselines on WMT’ 14 En=-De dataset.

WMT’14 En=De As shown in Table 2, on
the WMT’14 En=De translation task, the
CWEL brings significant improvements by about
+0.71 and +0.75 BLEU points compared to the
Transformer-base and Transformer-big model re-
spectively. The works of Wang et al. (2019)
utilize additional architectures to do adversarial
learning. However, equipped with CWEL, our
Transformer-base model is comparable to the per-
formance of Wang et al. (2019), slightly higher
than that of Gao et al. (2019) and significantly bet-
ter than Yang et al. (2019). Similarly, CWEL also



Model Base Big
Wang et al. (2019) | 28.43 —
Yang et al. (2019) 27.87 | 28.66
Gao et al. (2019) 28.38 | 28.94
Transformer 27.71 | 28.79
+ CWEL 28.42% | 29.547
Table 2: Case-sensitive BLEU (%) on WMT’14

En=-De translation task. “{" and “{" indicate statisti-
cally significant difference with p < 0.05 and p < 0.01
from Transformer respectively. The bold results denote
the best ones among the proposed models and their cor-
responding inhouse baselines.

makes our Transformer-big model significantly bet-
ter than that of Yang et al. (2019) and Gao et al.
(2019). This more detailed comparison among in-
house baselines and related works indicates that the
word embeddings learned by CWEL really help to
improve the translation performance.
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Figure 1: Performance on the validation set of NIST
Zh=-En dataset with different sizes of bag-of-words.

4 Analysis

4.1 Size of Bag-of-Words

In this section, we explore the effects of different
sizes of bag-of-words on translation performance.
According to Figure 1, it’s obvious that a larger
size of bag-of-words brings much more gains of
translation performance, which is similar to larger
batch size in previous works of contrastive learn-
ing (Chen et al., 2020a). Due to the limitation of
our computation resource, we did not train for a
larger size of bag-of-words than 500.

4.2 Expressiveness of Embeddings

In order to confirm that the improvements in trans-
lation performance are indeed due to our learning
of embeddings, we access the expressiveness of
embeddings by the commonly-used singular value
decomposition (Gao et al., 2019; Liu et al., 2021).
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Figure 2: Singular value of embedding matrix. The

models are trained on NIST Zh=-En dataset.
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(a) Embedding projection of (b) Embedding projection of
standard Transformer. Transformer with CWEL.

Figure 3: Embedding visualization of standard Trans-
former trained with/without CWEL on NIST Zh=-En
dataset. Blue: embeddings in the source side.
embeddings in the target side. Purple: shared embed-
dings.

The higher singular values indicate that the em-
beddings are more uniformly distributed and have
more expressiveness. From Figure 2, it’s obvious
that the model trained with CWEL gets word em-
beddings with much higher singular values, thus
has more expressiveness.

4.3 Visualization of Embeddings

In order to further explore the representation of
words learned by the CWEL-assisted NMT model,
we visualize embeddings by commonly-used prin-
cipal component analysis (PCA) to reduce embed-
ding from 1024 to 2 dimensions for intuitive dis-
play in 2-dimensional space. According to Fig-
ure 3(a), the embeddings learned in standard Trans-
former are distributed into a narrow cone. However,
with CWEL, the decoder embeddings become more
distinguishable, as shown in Figure 3(b).

5 Conclusion

We combine the ideas of contrastive learning and
embedding regularization, and propose Contrastive
word Embedding Learning (CWEL) to alleviate
representation degeneration problem. Experiments
on several machine translation benchmarks show
the superiority of our method.
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Source-1 jinzita si de tongzhi zhidu y€ zaochéng le xiaji guanyuan zhi néng wangshang kan , chuchu
tingmingyu shang y1 ji .

Trans.Big a pyramid administration system has also created a system where officials at lower levels can
only look forward and obey orders from higher levels.

CWEL the pyramid - like ruling system has also caused lower - level officials to be able to look up and
listen to orders from higher levels everywhere.

Source-2 ‘ zai néngciin xidng gdo dian wénhua huédong , zhdo didn ““1¢ ” zi tai nan le

Trans.Big ‘ it is too difficult to develop some cultural activities in rural areas and find some “music.”

CWEL
areas.

it is too difficult to find some “fun” if we want to engage in some cultural activities in the rural

Source-3 ‘ ér zai zhe fang mian , jiangx1 de zuofa dul néngmin 14i shud wiyf shi fayin.

CWEL

Trans.Big ‘ in this respect, jiangxi’s practice is no doubt good for farmers.
‘ in this regard, jiangxi’s practice is no doubt a blessing to farmers.

Table 3: Translation examples on validation set of NIST Zh=-En dataset. Trans.Big represents Transformer-big

model. CWEL represents our proposed method.

A Appendix

We elaborate from three aspects.

A.1 Case Study

Here we give some examples translated by base-
line and our model respectively on NIST Zh=-En
dataset. From Table 3, we can see that Transformer
with CWEL correctly translate chunks [jinzita si de
tongzhi zhidu], [“ 1¢ ” zi] as well as [fdyin], com-
pared to baseline. As mentioned before, we hope
that models can utilize semantic-similar words to
generate translations. Although chunks [pyramid
- like ruling system] and [find some “fun”] are un-
seen in the training set, our proposed model suc-
cessfully generates them, showing the superiority
of learned word embeddings.

A.2 Other Methods of Weighting

As shown in Table 4, our proposed method of
weighting slightly outperforms other methods with
similar ideas on the validation set of WMT’ 14
En=-De translation task. So we choose to use the
angle between word embeddings as weight.

A.3 Implementation Details

For the implementation of Transformer, we use the
code provided by fairseq” (Ott et al., 2019).The
hyper-parameter A is set as 0.8. The size of bag-of-
words is set as 500. The batch size is set as 12288
per GPU on all the experiments. The learning rate
is set as 7e-4 and He-4 for base and big models

Zhttps://github.com/pytorch/fairseq

Methods of Weighting Big
Wo,j = exp(—cos(Euy,, Ep,) — 1) || 29.17
Wo; = (1 — cos (Bu,, Ey))/2 || 29.24
W, j = arccos(Ey,, Ep,) 29.34

Table 4: Case-sensitive BLEU (%) on WMT’ 14
En=-De translation task. The bold results denote the
best method of weighting.

respectively, which is controlled by Adam opti-
mizer (Kingma and Ba, 2014). To acquire strong
baselines, dropout (Srivastava et al., 2014) is used
and set as 0.1 for all the models. We use byte-pair
encodings (BPE) (Sennrich et al., 2016), with 32k
and 37k for NIST and WMT dataset respectively.
Experiments on NIST dataset run by 4 P40 GPUs
and 4 V100 GPUs on WMT dataset, with gradi-
ent accumulation as 2. On NIST Zh=-En dataset,
we run 24,000 steps for each model and save the
model every two epochs, which takes 6.6 hours
for a base model. On WMT’ 14 En=-De dataset,
we run 100,000 steps for each model and save the
model every 5,000 steps, which takes 9.2 hours
for a base model. On WMT’ 14 En=-Fr dataset,
we run 150,000 steps for each model and save the
model every 10,000 steps, which takes nearly 27.6
hours for a base model. As a result, we get base
models with about 66M parameters and big models
with 220M parameters approximately. For hyper-
parameters selection on validation sets, we try 0.1,
0.2,0.3,0.4, 0.5, 0.6, 0.7 and 0.8 for A, with 100,
200, 300, 400 and 500 for |[BOW|. Other settings
are the same as default settings in fairseq.
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