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Abstract
Seq2seq models have shined in the field of001
Neural Machine Translation (NMT). However,002
word embeddings learned by NMT models003
tend to degenerate and be distributed into a nar-004
row cone, named representation degeneration005
problem, which limits the representation ca-006
pacity of word embeddings. In this paper, we007
propose a Contrastive Word Embedding Learn-008
ing (CWEL) method to address this problem.009
CWEL combines the ideas of contrastive rep-010
resentation learning with embedding regular-011
ization, and adaptively minimizes the cosine012
similarity of word embeddings on the target013
side according to their semantic similarity. Ex-014
periments on multiple translation benchmark015
datasets show that CWEL significantly im-016
proves translation qualities. Additional analy-017
sis shows that the improvements mainly come018
from the well-learned word embeddings.019

1 Introduction020

NMT models fall into the encoder-decoder frame-021

work and have attracted widespread attention in022

the academic community (Kalchbrenner and Blun-023

som, 2013; Cho et al., 2014; Bahdanau et al., 2014;024

Gehring et al., 2017; Vaswani et al., 2017). It’s025

shown that word embeddings learned by NMT026

models tend to degenerate and be distributed into a027

narrow cone, named representation degeneration028

problem (Gao et al., 2019) , which limits the repre-029

sentation power of word embeddings and doesn’t030

have enough capacity to model the diverse seman-031

tics in natural languages (McCann et al., 2017).032

To address representation degeneration problem,033

Gao et al. (2019) proposed a novel regularization034

method to increase the representation power of035

word embeddings explicitly. It’s widely shown036

that embeddings of syntactically and semantically037

similar words are close to each other (Mikolov038

et al., 2013a,b; Pennington et al., 2014). And Wi-039

eting et al. (2019) showed that cosine similarity of040

sentence embeddings can represent their semantic041

similarity to some extend. However, Gao et al. 042

(2019) minimized the cosine similarity of each pair 043

of words equally regardless of their intrinsic seman- 044

tic relationship, which still limits the representation 045

power of learned embeddings. 046

To address this, we borrow the idea of con- 047

trastive learning (van den Oord et al., 2019), and 048

propose to minimize the cosine similarity of the 049

words in the batch adaptively according to their 050

semantic similarity. Several works in NMT also 051

utilized contrastive learning: Bhat et al. (2019) 052

optimized a margin-based loss on LSTM-based 053

continuous-output NMT models to maximize den- 054

sities of the pretrained target embeddings; Lee et al. 055

(2021) proposed a contrastive learning framework 056

on sentence-level representations to address the 057

“exposure bias” problem. Differently, our method 058

focuses on word-level contrastive representation 059

learning of the target words on the state-of-the-art 060

NMT models. The contrast among anchor, positive 061

and negative samples motivates us to take the se- 062

mantic similarity between word embeddings into 063

consideration. Our method utilizes the angle be- 064

tween two word embeddings as a soft signal of 065

positive or negative samples to control the degree 066

of minimization. It means that the larger angle be- 067

tween learnt word embeddings indicates more dis- 068

similar semantics and is related to higher weights, 069

and vice versa. So the cosine similarity minimiza- 070

tion of semantically dis-similar words should be 071

assigned with higher weights compared to simi- 072

lar ones, thus making the embedding space more 073

distinguishable and expressive. 074

Specifically, we first select a fixed-size bag-of- 075

words without repetitions for each batch through 076

a random sampling strategy. Then, we adaptively 077

minimize the cosine similarity between each word 078

in the samples and other words in the bag-of-words 079

with the computed angles as weights. In this way, 080

we hope that the cosine similarity of words with 081

similar semantics can be larger than dis-similar 082
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ones. As a result, when the model generates trans-083

lations, it can avoid using semantically dis-similar084

words to generate incorrect translations, but use se-085

mantically similar words to generate correct trans-086

lations.087

Briefly, we propose a framework named Con-088

trastive Word Embedding Learning (CWEL),089

which aims to adaptively minimize cosine similar-090

ity of word embeddings according to their seman-091

tic similarity. Experiments are conducted on three092

translation benchmarks: NIST Chinese⇒English093

(Zh⇒En), WMT’14 English⇒German (En⇒De)094

and WMT’14 English⇒French (En⇒Fr). The ex-095

perimental results show that the proposed model096

outperforms strong baseline models significantly.097

Extensive analyses show that our method learns098

more distinguishable word embeddings with more099

expressiveness.100

2 Method101

2.1 Contrastive Word Embedding Learning102

Bag-of-Words Sampling Given the batch B103

which contains |B| source sentences and |B| cor-104

responding translations, which are indicated as Bx105

and By, with xi and yi as the i-th source and target106

sentences in Bx and By respectively. The set of107

all words in By is represented as Sy which does108

not include duplicate words. We randomly sample109

a bag-of-words BOW =
{
b1, · · · , bm, · · · , b|BOW|

}
110

without repetitions from the set Sy. Note that bm111

is the mth word in BOW, with |BOW| as its size.112

Due to the limitation of memory and efficiency,113

we only sample a subset of Sy, with the sampled114

size |BOW| as a hyper-parameter. And it’s always115

satisfied that |BOW| ≤ Sy.116

Note that the sampling here is reasonable. As-117

sume that each batch is a sampling of the whole118

training set, whose distribution of words is almost119

the same as the whole training set. By sampling120

BOW without repetitions in each batch, the seman-121

tic relationship among the words in the dataset122

can be correctly modeled, which may include not123

only synonyms but also antonyms, etc. All of these124

words are informative and necessary for contrastive125

learning. So it’s unnecessary to sample words using126

semantic labels.127

Weighted Contrastive Loss Given a target word128

as wo in a sample (xi,yi), and a word from BOW129

as bj , their word embeddings are denoted as Ewo130

and Ebj respectively. It’s crucial to define the se-131

mantic relationship between words bj and wo. If 132

the semantic of bj is similar to wo, we will set bj 133

as a positive sample of wo in contrastive learning, 134

and vice versa. Here we utilize the angle between 135

two word embedding vectors as a soft signal of se- 136

mantic relationship. As a result, it acts like a kind 137

of weight1, which is calculated as follows: 138

Wo,j = arccos(Ewo , Ebj ) (1) 139

where arccos is a function to acquire the angle be- 140

tween two word embeddings. The weight is com- 141

puted by our NMT model on the fly. Note that the 142

method gives the largest weights to anti-parallel 143

word embedding vectors (negative samples), and 144

vice versa. 145

Our goal is to make word embeddings more dis- 146

tinguishable. The cosine similarity between word 147

embeddings is computed as follows: 148

So,j = cos(Ewo , Ebj ) (2) 149

The reason why we resort to “arccos” and “cos” is 150

straightforward according to Wieting et al. (2019), 151

who shows that cosine similarity between two 152

learnt sentence embeddings can represent their se- 153

mantic similarity. Then, the weighted contrastive 154

loss LCL is computed as follows: 155

LCL =
∑No

o=1
exp

(∑|BOW|

j=1
Wo,j ∗ So,j

)
(3) 156

where No denotes the total number of target words 157

of all the samples in each batch. 158

This method has an intuitive explanation: we 159

hope that the similarity minimization of embed- 160

dings with similar-semantics can be assigned 161

smaller weights than dis-similar ones. As a result, 162

the learnt embedding space can distinguish words 163

with different semantics, but keep the high cosine 164

similarity of semantically-similar words, which has 165

much more expressiveness. 166

Note that our proposed method is significantly 167

different from previous works of contrastive learn- 168

ing (He et al., 2020; Chen et al., 2020a,c,b; Khosla 169

et al., 2020; Gunel et al., 2021). The advantages 170

of our method are as follows: 1) soft signals of 171

positive and negative samples; 2) without compli- 172

cated data augmentation; and 3) without additional 173

architectures. Note again that compared to Gao 174

et al. (2019), our method considers the semantic re- 175

lationship between words during the minimization. 176

1Similar ideas can also be implemented by other meth-
ods of weighting, including (1 − cos (Ewo , Ebj ))/2 and
exp(− cos(Ewo , Ebj ) − 1). But we found that their perfor-
mance gains are slightly worse.
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Model
NIST Zh⇒En

WMT’14 En⇒Fr
MT02 MT03 MT04 MT05 MT08 Avg.

Transformer-base 46.13 44.79 45.59 44.54 34.79 42.64 41.99
+ CWEL 47.27† 45.58† 46.87† 45.63† 35.61† 44.19 42.20

Transformer-big 47.64 46.50 46.85 46.70 37.37 44.69 43.56
+ CWEL 48.17† 47.47† 47.76† 47.87† 37.62 45.58 43.87

Table 1: Case-insensitive BLEU scores (%) on NIST Zh⇒En and case-sensitive BLEU scores (%) on WMT’14
En⇒Fr translation tasks. “†" indicates statistically significant difference from Transformer (p < 0.01). The bold
results denote the best ones among the proposed models and their corresponding inhouse baselines.

2.2 Integration into NMT177

Our method can be applied to most NMT models.178

Without loss of generality, we take the Transformer179

as an example. Based on the conventional auto-180

regressive NMT training objective, we integrate181

the contrastive word embedding loss mentioned182

above as follows:183

L = (1− λ)LCE + λLCL (4)184

θ∗ = argmin (L; θ) (5)185

where LCE denotes the naive Cross-Entropy loss,186

and λ is a hyper-parameter adopted to balance the187

two losses. We train our model by using the final188

loss from scratch and get model parameters θ∗.189

Note that we only apply LCL on the target side in190

this paper.191

3 Experiments192

We present experiments on NIST Chinese-English193

(Zh⇒En), WMT’14 English-German (En⇒De),194

and English-French (En⇒Fr) translation tasks.195

3.1 Setup196

Dataset For NIST Zh⇒En, the training dataset197

consists of 1.25M sentence pairs extracted from198

LDC corpora. We choose NIST 2006 (MT06) as199

the validation set, which has 1664 sentences, with200

NIST 2002 (MT02), NIST 2003 (MT03), NIST201

2004 (MT04), NIST 2005 (MT05), and NIST 2008202

(MT08) as test sets. For WMT’14 En⇒De and203

WMT’14 En⇒Fr, we perform experiments on the204

corpus provided by WMT’14, which contain 4.5M205

sentence pairs and 36M sentence pairs, respectively.206

newstest2013 and newstest2014 are used as vali-207

dation and test sets. All statistical significance tests208

are conducted according to Collins et al. (2005).209

Baselines We compare our proposed methods210

with the following baselines:211

• Transformer (Vaswani et al., 2017) The 212

state-of-the-art seq2seq model. We compare 213

the results on both base and big models. 214

• Yang et al. (2019) A fine-tuning method for 215

reducing word omission errors by contrastive 216

learning at sentence level. We reproduce their 217

methods on our Transformer baselines. 218

• Wang et al. (2019) An adversarial training 219

mechanism for regularizing neural language 220

models, which yields better generalization per- 221

formance. 222

• Gao et al. (2019) A novel regularization 223

method to address representation degenera- 224

tion problem. 225

3.2 Results 226

NIST Zh⇒En and WMT’14 En⇒Fr As 227

shown in Table 1, After the introduction of the 228

Contrastive Word Embedding Loss (CWEL), com- 229

pared with the baseline system, the performance on 230

most test sets has been significantly improved. Par- 231

ticularly, the CWEL can improve the Transformer- 232

base and Transformer-big model by about +1.5 and 233

+0.9 BLEU points averagely on all test datasets. 234

On the large-scale WMT’14 En⇒Fr dataset, our 235

models surpass strong baselines by 0.21 and 0.31 236

BLEU scores respectively. Note that we compare 237

other baselines on WMT’14 En⇒De dataset. 238

WMT’14 En⇒De As shown in Table 2, on 239

the WMT’14 En⇒De translation task, the 240

CWEL brings significant improvements by about 241

+0.71 and +0.75 BLEU points compared to the 242

Transformer-base and Transformer-big model re- 243

spectively. The works of Wang et al. (2019) 244

utilize additional architectures to do adversarial 245

learning. However, equipped with CWEL, our 246

Transformer-base model is comparable to the per- 247

formance of Wang et al. (2019), slightly higher 248

than that of Gao et al. (2019) and significantly bet- 249

ter than Yang et al. (2019). Similarly, CWEL also 250
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Model Base Big
Wang et al. (2019) 28.43 —
Yang et al. (2019) 27.87 28.66
Gao et al. (2019) 28.38 28.94
Transformer 27.71 28.79

+ CWEL 28.42‡ 29.54†

Table 2: Case-sensitive BLEU (%) on WMT’14
En⇒De translation task. “‡" and “†" indicate statisti-
cally significant difference with p < 0.05 and p < 0.01
from Transformer respectively. The bold results denote
the best ones among the proposed models and their cor-
responding inhouse baselines.

makes our Transformer-big model significantly bet-251

ter than that of Yang et al. (2019) and Gao et al.252

(2019). This more detailed comparison among in-253

house baselines and related works indicates that the254

word embeddings learned by CWEL really help to255

improve the translation performance.

Figure 1: Performance on the validation set of NIST
Zh⇒En dataset with different sizes of bag-of-words.256

4 Analysis257

4.1 Size of Bag-of-Words258

In this section, we explore the effects of different259

sizes of bag-of-words on translation performance.260

According to Figure 1, it’s obvious that a larger261

size of bag-of-words brings much more gains of262

translation performance, which is similar to larger263

batch size in previous works of contrastive learn-264

ing (Chen et al., 2020a). Due to the limitation of265

our computation resource, we did not train for a266

larger size of bag-of-words than 500.267

4.2 Expressiveness of Embeddings268

In order to confirm that the improvements in trans-269

lation performance are indeed due to our learning270

of embeddings, we access the expressiveness of271

embeddings by the commonly-used singular value272

decomposition (Gao et al., 2019; Liu et al., 2021).273

Figure 2: Singular value of embedding matrix. The
models are trained on NIST Zh⇒En dataset.

(a) Embedding projection of
standard Transformer.

(b) Embedding projection of
Transformer with CWEL.

Figure 3: Embedding visualization of standard Trans-
former trained with/without CWEL on NIST Zh⇒En
dataset. Blue: embeddings in the source side. Yellow:
embeddings in the target side. Purple: shared embed-
dings.

The higher singular values indicate that the em- 274

beddings are more uniformly distributed and have 275

more expressiveness. From Figure 2, it’s obvious 276

that the model trained with CWEL gets word em- 277

beddings with much higher singular values, thus 278

has more expressiveness. 279

4.3 Visualization of Embeddings 280

In order to further explore the representation of 281

words learned by the CWEL-assisted NMT model, 282

we visualize embeddings by commonly-used prin- 283

cipal component analysis (PCA) to reduce embed- 284

ding from 1024 to 2 dimensions for intuitive dis- 285

play in 2-dimensional space. According to Fig- 286

ure 3(a), the embeddings learned in standard Trans- 287

former are distributed into a narrow cone. However, 288

with CWEL, the decoder embeddings become more 289

distinguishable, as shown in Figure 3(b). 290

5 Conclusion 291

We combine the ideas of contrastive learning and 292

embedding regularization, and propose Contrastive 293

word Embedding Learning (CWEL) to alleviate 294

representation degeneration problem. Experiments 295

on several machine translation benchmarks show 296

the superiority of our method. 297
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Source-1 jı̄nzìtǎ sì de tǒngzhì zhìdù yě zàochéng le xiàjí guānyuán zhı̄ néng wǎngshàng kàn , chùchù
tı̄ngmìngyú shàng yı̄ jí .

Trans.Big a pyramid administration system has also created a system where officials at lower levels can
only look forward and obey orders from higher levels.

CWEL the pyramid - like ruling system has also caused lower - level officials to be able to look up and
listen to orders from higher levels everywhere.

Source-2 zài nóngcūn xiǎng gǎo diǎn wénhuà huódòng , zhǎo diǎn “ lè ” zı̌ tài nán le

Trans.Big it is too difficult to develop some cultural activities in rural areas and find some “music.”

CWEL it is too difficult to find some “fun” if we want to engage in some cultural activities in the rural
areas.

Source-3 ér zài zhè fāng miàn , jiāngxı̄ de zuòfǎ duì nóngmín lái shuō wúyí shì fúyı̄n.

Trans.Big in this respect, jiangxi’s practice is no doubt good for farmers.

CWEL in this regard, jiangxi’s practice is no doubt a blessing to farmers.

Table 3: Translation examples on validation set of NIST Zh⇒En dataset. Trans.Big represents Transformer-big
model. CWEL represents our proposed method.

A Appendix447

We elaborate from three aspects.448

A.1 Case Study449

Here we give some examples translated by base-450

line and our model respectively on NIST Zh⇒En451

dataset. From Table 3, we can see that Transformer452

with CWEL correctly translate chunks [jı̄nzìtǎ sì de453

tǒngzhì zhìdù], [“ lè ” zì] as well as [fúyı̄n], com-454

pared to baseline. As mentioned before, we hope455

that models can utilize semantic-similar words to456

generate translations. Although chunks [pyramid457

- like ruling system] and [find some “fun”] are un-458

seen in the training set, our proposed model suc-459

cessfully generates them, showing the superiority460

of learned word embeddings.461

A.2 Other Methods of Weighting462

As shown in Table 4, our proposed method of463

weighting slightly outperforms other methods with464

similar ideas on the validation set of WMT’14465

En⇒De translation task. So we choose to use the466

angle between word embeddings as weight.467

A.3 Implementation Details468

For the implementation of Transformer, we use the469

code provided by fairseq2 (Ott et al., 2019).The470

hyper-parameter λ is set as 0.8. The size of bag-of-471

words is set as 500. The batch size is set as 12288472

per GPU on all the experiments. The learning rate473

is set as 7e-4 and 5e-4 for base and big models474

2https://github.com/pytorch/fairseq

Methods of Weighting Big
Wo,j = exp(− cos(Ewo , Ebj )− 1) 29.17
Wo,j = (1− cos (Ewo , Ebj ))/2 29.24
Wo,j = arccos(Ewo , Ebj ) 29.34

Table 4: Case-sensitive BLEU (%) on WMT’14
En⇒De translation task. The bold results denote the
best method of weighting.

respectively, which is controlled by Adam opti- 475

mizer (Kingma and Ba, 2014). To acquire strong 476

baselines, dropout (Srivastava et al., 2014) is used 477

and set as 0.1 for all the models. We use byte-pair 478

encodings (BPE) (Sennrich et al., 2016), with 32k 479

and 37k for NIST and WMT dataset respectively. 480

Experiments on NIST dataset run by 4 P40 GPUs 481

and 4 V100 GPUs on WMT dataset, with gradi- 482

ent accumulation as 2. On NIST Zh⇒En dataset, 483

we run 24,000 steps for each model and save the 484

model every two epochs, which takes 6.6 hours 485

for a base model. On WMT’14 En⇒De dataset, 486

we run 100,000 steps for each model and save the 487

model every 5,000 steps, which takes 9.2 hours 488

for a base model. On WMT’14 En⇒Fr dataset, 489

we run 150,000 steps for each model and save the 490

model every 10,000 steps, which takes nearly 27.6 491

hours for a base model. As a result, we get base 492

models with about 66M parameters and big models 493

with 220M parameters approximately. For hyper- 494

parameters selection on validation sets, we try 0.1, 495

0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 for λ, with 100, 496

200, 300, 400 and 500 for |BOW|. Other settings 497

are the same as default settings in fairseq. 498
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