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ABSTRACT

Prompt learning has been recently introduced into the adaption of pre-trained
vision-language models (VLMs) by tuning a set of trainable tokens to replace hand-
crafted text templates. Despite the encouraging results achieved, existing methods
largely rely on extra annotated data for training. In this paper, we investigate a more
realistic scenario, where only the unlabeled test data is available. Existing test-time
prompt learning methods often separately learn a prompt for each test sample.
However, relying solely on a single sample heavily limits the performance of the
learned prompts, as it neglects the task-level knowledge that can be gained from
multiple samples. To that end, we propose a novel test-time prompt learning method
of VLMs, called Task-to-Instance PromPt LEarning (TIPPLE), which adopts a
two-stage training strategy to leverage both task- and instance-level knowledge.
Specifically, we reformulate the effective online pseudo-labeling paradigm along
with two tailored components: an auxiliary text classification task and a diversity
regularization term, to serve the task-oriented prompt learning. After that, the
learned task-level prompt is further combined with a tunable residual for each test
sample to integrate with instance-level knowledge. We demonstrate the superior
performance of TIPPLE on 15 downstream datasets, e.g., the average improvement
of 1.87% over the state-of-the-art method, using ViT-B/16 visual backbone.

1 INTRODUCTION

Large-scale pre-trained vision-language models (VLMs), e.g., CLIP (Radford et al., [2021), have
shown impressive performance on diverse downstream tasks in the zero-shot evaluation. The ability
of VLMs can be further advanced by prompt engineering (Liu & Chilton, 2022), which designs
customized prompts that better describe the applied environments. However, prompt engineering
may require expertise in the target task or domain and significant trial-and-error experimentation
based on a held-out validation set, which makes it impractical.

Prompt learning can be an effective solution to overcome the challenges of prompt engineering (Zhou
et al.| 2022b). This is often achieved by fine-tuning the pre-trained model on a task-specific dataset,
with the prompt as a set of trainable parameters. CoOp (Zhou et al., [2022b) is a representative
method that proposes to learn prompts for downstream tasks in a supervised manner. Despite the
promising performance, the supervised nature of CoOp (Zhou et al., 2022b)) (Figure[T|(a)) and some
follow-up works (Lu et al.,|[2022; |[Khattak et al.| 2023} |Chen et al., 2023 Zhou et al., |[2022a; Bulat;
& Tzimiropoulos, 2023 [Zhu et al.| 2022) requires annotated data for training, which limits their
applicability in the scenario where the labeled training data is inaccessible.

In this paper, we overcome the aforementioned challenges by investigating test-time prompt learning
for VLMs, which aims to learn tailored prompts for downstream tasks using only unlabeled data
during testing. Recently, TPT (Shu et al.,|2022) and DiffTPT (Feng et al.,|2023) have been proposed
for addressing this task. Specifically, they separately learn a prompt for each unlabeled test sample by
encouraging consistent predictions across different augmented views of a test sample. However, they
are typically designed for adapting a VLM on a single instance only (Figure[T] (b)) while overlooking
the task-level knowledge that can be acquired from multiple samples, which is essential for prompt
learning on a specific downstream task.

To leverage both task- and instance-level knowledge, we propose a novel test-time prompt learning
method called Task-to-Instance PromPt LEarning (TIPPLE). Specifically, our TIPPLE adopts a
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Figure 1: Illustrating the differences among various methods. (a) CoOp (Zhou et al., 2022b)) needs
labeled data to learn the prompt. (b) TPT (Shu et al., |2022) and DiffTPT (Feng et al.,[2023) learn the
prompt with a single unlabeled test sample at test time. (c) Our TIPPLE incorporates both task- and
instance-level knowledge for test-time prompt learning in a two-stage training manner.

two-stage training strategy as shown in Figure[I] (c). In the first stage, TIPPLE is trained on the
unlabeled test datasetwith visual and textual supervision. The visual supervision information is
from the online pseudo-labels of confident test samples which are progressively generated using
the latest learned prompt. The textual supervision is based on an auxiliary text classification task,
which uses the trainable prompt to classify the class-related textual descriptions. In contrast to visual
supervision which may contain noisy pseudo-labels, the textual supervision is noise-free since the
textual descriptions are created by the templates and the class names. Besides, to further prevent the
model from blindly trusting the pseudo-labels, we use a regularization term to diversify the model
predictions. The above designs enable TIPPLE to learn the task-oriented prompt, containing rich
task-level knowledge. In the second stage, utilizing the entropy minimization suggested in TPT, we
tune a residual for each test sample based on the learned task-oriented prompt to integrate both task-
and instance-level knowledge, instead of the hand-craft template initialization used in TPT.

Extensive experiments show that a new state-of-the-art performance is achieved by our method.
In addition to the superior performance, we also verify that our task-oriented prompt learned on
ImageNet is highly transferable to other datasets. Finally, the unique design of task-oriented prompt
enables its effortless extension towards two additional scenarios — online streaming data and unlabeled
training data, where previous methods are not applicable.

In summary, we list our contributions as follows:

* This study focuses on a practical yet under-studied research topic, test-time prompt learning of
VLMs, and observes the limitation of existing methods, i.e., it adapts the VLMs to a single test
sample without considering task-level knowledge.

* We propose a novel test-time prompt learning method, TIPPLE, which leverages both task- and
instance-level knowledge in a two-stage training manner. Building upon the pseudo-labeling
paradigm, we exploit the task-level knowledge with two proposed novel components: textual
supervision and diversity regularization.
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* We evaluate the effectiveness of TIPPLE on 15 datasets covering diverse image classifica-
tion tasks. The results demonstrate the state-of-the-art performance of our TIPPLE, often
outperforming previous methods by large margins.

* In the cross-task setting and two scenarios with online streaming data and unlabeled training
data, our method shows superior performance, further indicating its utility and scalability.

2 RELATED WORK

Vision-language models. Recently, VLMs which typically consist of an image encoder (e.g., a CNN
like ResNet-50 (He et al.,[2016) or a vision transformer like ViT-B/16 (Dosovitskiy et al.,2020) ) and
a transformer-based text encoder, learn visual representations from the supervision of natural language
(Chen et al.| | 2020; Jia et al., [2021; Yuan et al.,|2021; Radford et al., 2021} |L1 et al.,|2022; |Singh et al.}
2022). The large-scale VLMs employ the contrastive training on large corpora of image-text pairs,
e.g., 400M in (Radford et al.| 2021)) and 1.8B in (Jia et al., |2021)), and demonstrate an impressive
transferable ability to the downstream tasks under few-shot and zero-shot settings. The success of
VLMs on the recognition tasks motivates more studies on diverse downstream tasks, including dense
prediction (Rao et al.,[2022), video action recognition (Wang et al.,|2021b)), point cloud recognition
(Zhang et al., [2022b), etc. In this paper, we study the downstream image recognition tasks using the
most representative pre-trained model, CLIP (Radford et al., 2021)).

Prompt learning. As an alternative to full fine-tuning and linear probing, prompt learning is first
proposed to exploit pre-trained language models (Shin et al., [2020; Zhong et al., [2021)). It fixes all
pre-trained parameters but learns continuous vectors in the word embedding space. CoOp (Zhou et al.|
2022b) firstly extends prompt learning to VLMs in the few-shot setting. Some subsequent works
improve the performance of CoOp with prompt distribution learning (Lu et al., 2022)), multi-modal
prompt learning (Khattak et al.l 2023)), and optimal transport distance based optimization (Chen
et al.,|2023). Besides, CoCoOp (Zhou et al.,|2022a) and follow-up works (Bulat & Tzimiropoulos,
2023}, [Zhu et al.| 2022) focus on improving the generalization capability of learned prompts to novel
classes. However, the aforementioned methods require labeled data for training, which makes them
inapplicable to the scenario without annotations. The recent work, TPT (Shu et al.,|2022)) and DiffTPT
(Feng et al., [2023)), inspires us to learn prompts on test samples to overcome this problem.

Test-time learning. Test-time learning (Liang et al., [2020; Kundu et al} 2020; [Li et al., [2020;
Sun et al.| 2020} [Schneider et al.| [2020; [Zhang et al.l 2022a) aims to adapt a pre-trained model
to unlabeled data during testing. Since the labels are unavailable, one challenge is to introduce
high-quality supervision information. In previous works, consistency regularization (Yang et al.,
2021b; |Sun et al) 2022; [Fleuret et al., 2021} [Peng et al., 2022} |Chen et al.| 2022al) and entropy
minimization (Sohn et al., [2020; L1 et al.| 20205 Xia et al., 2022 You et al., [2021}; Yan et al., 2021}
Fleuret et al., 2021)) are commonly-used optimization objectives. Moreover, the cross-entropy loss
based on pseudo-labels (Liang et al.| 2020} 2021} |Qu et al., 2022; Yang et al., [2021a} |Chen et al.,
2022b)) shows the superiority to solve this problem, and thus how to generate accurate pseudo-labels
becomes an important research topic. Different from these works for vision models, we explore both
visual and textual supervision information for adapting VLMs. Instead of updating the entire model,
some works optimize part of model parameters such as the batch normalization layers (Wang et al.,
2021a) and the feature extractor (Liang et al.,|2020). In the context of VLMs, we follow TPT (Shu
et al.| 2022)) to fix all pre-trained parameters and only optimize textual prompts at test time, but our
method is designed for leveraging task-specific knowledge.

3 TASK-TO-INSTANCE PROMPT LEARNING

3.1 PRELIMINARIES

A revisit of CLIP. The image and text encoders of CLIP are denoted as ¢’ (-) and ¢ (-), respectively.
The image encoder transforms a given image & € R¥*W*C into a feature vector z = ¢! (x) € R,
where H, W, and C represent the image height, width, and the number of channels, respectively, and
D is the feature dimension. The text encoder generates features for a sequence of word tokens. The
aligned features of the image and text enable us to perform zero-shot image recognition using CLIP.

Given K classes, CLIP can output the prediction probability of the input image « during testing.
The prediction process is based on the class-specific text inputs which are formed by the prompt
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template and the class names, e.g., “a photo of a {class}”. By calculating the similarities between
the image feature z and the text features {q; } X ,, where ¢; € R denotes the text feature of the
class-specific text input, one can obtain the prediction probability of x with respect to the class y;
(i € {1,2,..., K}), which can be formulated as:
p(yil) = K@XP(Slm.(z,ql)/T) ’ )
2. j—1exp(sim(z, g;)/7))

where sim(-, -) indicates the cosine similarity and 7 is the temperature coefficient of CLIP.

Prompt learning on the labeled training data. Inspired by the success of prompt learning in
natural language processing, recent works (Zhou et al.,2022bfja) introduce this idea to advance VLMs.
Instead of using hand-crafted prompts, such as “a photo of a”, they learn the continuous prompt
with the labeled training data on the downstream tasks. V' = [vy, v, ...,vn]| € RY*M denotes
the learnable prompt containing N context tokens and ¢; € RM (i € {1,2,..., K}) is the word
embedding vector of the name of the i-th class y*, where M is the dimension of the word embedding
vector (e.g., 512 for CLIP). The prediction probability distribution of & with the prompt V is
" T ) -
Dy (@) = p(ur]2), p(v:[2), . plyxc|2)] T € RX, where p(yilar) = - Hirs Ca i
With the labeled training data D;,.,;,, and the cross-entropy loss ¢, the prompt can be optimized in a
supervised manner, as follows:

Vi=argmin ) UPv(@:), ) @

(2,Y)EDtrain

Test-time prompt tuning (TPT) (Shu et al., 2022). To overcome the limitation of depending on
labeled training data in previous prompt learning methods, TPT learns a prompt for each test sample.
Given a test sample x;., it utilizes a family of augmentation functions to generate S randomly
augmented views A; (@tes¢) (i € {1,2, ..., S}). The prompt is obtained by minimizing the entropy of
the averaged prediction probability distribution on the selected confident samples:

V* =arg m‘;n H(®v (@sest))s

- 1S 3
where Dy (Zreat) = g D @y (A (o) <a PV (Ai(@test)),
i=1
where H calculates the self-entropy of the prediction probability distribution, and the indicator
function [jgr @y, (4; (2r..:))) <€) SElECES p percent of confident samples using a cutoff threshold &.

3.2 TASK-ORIENTED PROMPT LEARNING

Different from TPT which separately learns a prompt for each test sample, TIPPLE learns the task-
oriented prompt in the first stage. To achieve this, we design three key components, namely, online
pseudo-label supervision, textual supervision, and diversity regularization, as shown in Figure[2]

Online pseudo-label supervision. To leverage the unlabeled test data, we propose to learn the
prompt from the pseudo-label supervision. Instead of updating pseudo-labels after a fixed training
period (Caron et al.| [2018} [Liang et al.l |2020), we adopt an online method, which progressively
utilizes the latest version of the learned prompt to generate more accurate pseudo-labels. To reduce
the effect of false pseudo-labels, we filter the potential noisy pseudo-labels by discarding the test
samples which have small confidence scores. Let Dy.s; and Byest C Dyest denote the unlabeled test
dataset and a randomly sampled batch of test samples, respectively. The loss function using the online
pseudo-labels is formulated as:

1 N
ﬁp = 6 Z H[max(‘:I’V(w))>77]£((I)V("4(33))’y)7 @

TE€Biest

where § = arg max Py (x) denotes the pseudo-label. The indicator function [imax(@v (@))>n) 18 1 if
the confidence score is greater than n; otherwise 0. @ = Zwe Bye.s Limax(@((2)))>n] 18 the number of
selected samples in B,.s;:. For more effectively exploiting the selected samples, we apply strong data
augmentations to & when optimizing the prompt, denoted as .A(x). However, when generating the
pseudo-labels, for more accurate prediction, they are disabled.
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Figure 2: Framework of the first stage of TIPPLE (task-oriented prompt learning). There are
three key components: the online pseudo-labels which supervise the predictions of the strongly-
augmented samples selected using the confidence threshold 7, the textual supervision which encour-
ages correct predictions of class-related textual descriptions, and the diversity regularization which
diversifies the model predictions.

Textual supervision. We further overcome the challenge of unavailable labeled data by utilizing an
auxiliary text classification task, which provides more supervision information to train the prompt.
Specifically, we first construct a text classifier based on the text encoder ¢” (-) and the prompt V. We
encourage it to correctly predict the ground-truth label of the textual description formed by a textual
template (e.g., “a photo of a {class}”) and a class name, where the ground-truth label is assigned
according to the class name. Given a textual description containing L words whose embedding is
t € REXM the text classifier predicts its probability with respect to the class ;:

el (@), (Ve .
P = I e (sim(@7 (©), 67V ¢;1)/7) ©

oL (t) = [p(y1lt), p(y2lt), ...,p(yk|t)]T € RE is the prediction probability distribution of the
textual description. The goal of correctly classifying textual descriptions can be formulated as:

L= Y Uy(t).y), 6)

(t,y)ED¢tat

where Dy, is a set of pairs of textual descriptions and their corresponding classes, which can be
conveniently created using some existing textual templates without customized design or collection.

The effectiveness of textual supervision in the context of test-time prompt learning stems from the
following two aspects. Firstly, since image and text features generated by CLIP are aligned, correctly
classifying class-related textual descriptions helps improve the visual discriminative capacity of the
learned prompt. Moreover, unlike the pseudo-labels of test images, the labels of textual descrip-
tions are accurately assigned according to the class names and thus provide noise-free supervision
information for prompt learning.

Diversity regularization. Although we discard samples with small confidence scores, some of
the selected samples are still attached with false pseudo-labels. We find that blindly trusting the
pseudo-labels may harm the prompt learning, e.g., resulting in a trivial solution, where the model
classifies almost all samples into the same class (as demonstrated in Section [4.5). To solve this
problem, we use a regularization term to diversify the model predictions:

B €s T
£r - _MH(q)V(Btest))a (7)
Q
where ®v (Biest) = 565 Yopes,.., Lmax(@(@)>n) (Pv (®) + Py (A(z))) is the averaged prediction
probability distribution of the selected samples without and with strong data augmentations. The
coefficient % adaptively adjusts the magnitude of the regularization term. The value increases
when fewer samples are selected; otherwise, decreases. The rationality is that fewer confident samples
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imply a larger gap between the pre-training and the downstream task and thus our method relies more
on the regularization term to alleviate the effect of false pseudo-labels, and vice versa.

With two balancing hyper-parameters \; and \,., the task-oriented prompt V' 7¢*¥ can be obtained by
minimizing the overall objective, defined as:

yTask _ arg m‘in L‘p + ML + N Lo ®)

3.3 INSTANCE-ORIENTED PROMPT REFINEMENT

In the second stage of our TIPPLE, we learn the instance-oriented prompt. Different from TPT (Shu
et al., [2022) which trains the prompt from the hand-craft template initialization, we propose to refine
the learned task-oriented prompt for each test sample with one-step optimization. Based on the
entropy minimization loss defined in Eq. (3)) and the task-oriented prompt V7% TIPPLE vyields the
prompt V'* for a given test sample Test:

o aH(&)V (wtest))
av ’

where « is the learning rate and V"%t is called instance-oriented prompt residual. Utilizing the
prompt V'*, one can obtain the predication probability of the test sample x;cs¢.

V* = VTask 4 Vlnst’ where Vlnst - _ (9)

3.4 EXTENSIONS

In the previous sections, we tackle a setting where the prompt is trained and evaluated on an unlabeled
test dataset, which is entirely provided in advance. Benefiting from separately handling each batch of
test samples (as illustrated in Eq. (4) and Eq. (7)) and learning the task-oriented prompt, our TIPPLE
can be naturally applied to two additional scenarios as follows.

Prompt learning on the online streaming data. In practice, when adapting a pre-trained model to
a specific downstream task, the unlabeled test data may arrive in an online stream and each batch can
only be observed once (Wang et al.,[2021a}; {Iwasawa & Matsuo, 2021} [Liang et al., 2023). Besides,
the model should immediately make predictions on the streaming data after the online optimization.
We extend our method to this setting by optimizing the prompt on the given batch of test samples with
the objective function defined in Eq. (8). After only a one-step back-propagation, we predict their
labels using the learned prompt. Note that we continuously train the prompt based on that learned
from previous test batches. Unlike TPT, which necessitates a one-step back-propagation for each test
sample, our approach processes a batch of test samples simultaneously, leading to higher efficiency.

Prompt learning on the unlabeled training data. We also consider another scenario where a set of
unlabeled samples (referred to as the unlabeled training data later) is available prior to testing. We
expect that the prompt trained on the unlabeled training data can directly enhance the performance of
CLIP on unseen test samples, even without test-time learning. This can not be achieved by TPT since
it learns prompts on the fly with a single unlabeled test sample. Fortunately, the first stage of our
TIPPLE enables prompt learning on the unlabeled training data, resulting in the task-oriented prompt,
which shows strong generalization to unseen test samples as demonstrated in our experiments.

4 EXPERIMENTS

4.1 EVALUATION ON THE DATASETS FROM VARIOUS DOMAINS

Benchmark datasets. In this section, we conduct experiments on the 10 datasets from various
domains. These datasets cover diverse recognition tasks including classification on generic objects
(Caltech101 (Fei-Fei et al.,2004))), fine-grained classification (Flowers102 (Nilsback & Zisserman,
2008)), OxfordPets (Parkhi et al.| [2012), StanfordCars (Krause et al., 2013)), Food101 (Bossard et al.|
2014), FGVCAircraft (Maji et al., 2013)), texture classification (DTD (Cimpoi et al., 2014)), action
recognition (UCF101 (Soomro et al., | 2012)), scene classification (SUN397 (Xiao et al.,|2010)), and
satellite imagery recognition (EuroSAT (Helber et al.,[2019)).

Setup. We compare our method with the zero-shot CLIP (Radford et al., [2021)), few-shot prompt
learning methods (CoOp (Zhou et al.|, 2022b) and CoCoOp (Zhou et al,[2022a))), and test-time prompt
learning methods (TPT (Shu et al.| [2022) and DiffTPT (Feng et al.|[2023)). We also follow (Shu et al.,
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Table 1: Comparison on the datasets from various domains. CLIP uses the default prompt and
the ensemble of hand-crafted prompts in the zero-shot setting. CoOp and CoCoOp are trained on
ImageNet with 16 labeled training samples per class. CoOppy, denotes that CoOp learns the prompt
on the test set using our proposed pseudo-label generation method. We report the top-1 accuracy.

Method Flower102 DTD Pets Cars  UCFI101 Caltech101 Food101 SUN397 Aircraft EuroSAT Average
CLIP-RN50 (Radford et al.}[2021}) 61.75 40.37 83.57 55.70 58.84 85.88 73.97 58.80 15.66 23.69 55.82
Ensemble (Radford et al.{[2021}) 62.77 40.37 82.97 55.89 59.48 87.26 74.82 60.85 16.11 25.79 56.63
CoOp (Zhou et al.||2022b) 61.55 37.29 87.00 5532 59.05 86.53 75.59 58.15 15.12 26.20 56.18
CoCoOp (Zhou et al.[2022a) 65.57 38.53 88.39 56.22 57.10 87.38 76.20 59.61 14.61 28.73 57.23
TPT (Shu et al.[[2022) 62.69 40.84 84.49 58.46 60.82 87.02 74.88 61.46 17.58 28.33 57.66
CoOpp+TPT (Shu et al.||2022) 65.25 37.65 86.78 30.23 59.87 88.52 77.54 57.09 16.08 9.33 52.83
TIPPLE (Ours) 65.61 44.25 89.87 58.89 63.82 89.02 71.50 63.13 18.33 35.68 60.61
CLIP-ViT-B/16 (Radford et al.|[2021) 67.44 44.27 88.25 65.48 65.13 93.35 83.65 62.59 23.67 42.01 63.58
Ensemble (Radford et al.{|2021) 66.99 45.04 86.92 66.11 65.16 93.55 82.86 65.63 23.22 50.42 64.59
CoOp (Zhou et al.|2022b) 68.71 41.92 89.14 64.51 66.55 93.70 85.30 64.15 18.47 46.39 63.88
CoCoOp (Zhou et al.|[2022a) 70.85 45.45 90.46 64.90 68.44 93.79 83.97 66.89 2229 39.23 64.63
TPT (Shu et al.]2022) 68.98 47.75 87.79 66.87 68.04 94.16 84.67 65.50 24.78 42.44 65.10
CoOpp+TPT (Shuet al.;|2022) 70.81 47.05 89.37 56.45 66.46 94.69 85.77 67.21 23.04 28.33 62.92
TIPPLE (Ours) 71.30 49.17 90.15 67.80 71.25 93.94 86.01 68.13 25.36 51.77 67.49

Table 2: Comparison on ImageNet and the OOD Datasets. CLIP uses the default prompt and
the ensemble of hand-crafted prompts in the zero-shot setting. CoOp and CoCoOp are trained on
ImageNet with 16 labeled training samples per class. TPT and our TIPPLE are the test-time prompt
learning methods. We report the top-1 accuracy.

Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sketch Average OOD Average
CLIP-RN50 (Radford et al.[[2021) 58.16 21.83 51.41 56.15 33.37 44.18 40.69
Ensemble (Radford et al.{|2021} 59.81 23.24 5291 60.72 35.48 46.43 43.09
CoOp (Zhou et al.||2022b) 63.33 23.06 55.40 56.60 34.67 46.61 4243
CoCoOp (Zhou et al.[[2022a) 62.81 2332 55.72 57.74 34.48 46.81 42.82
TPT (Shu et al.||2022) 60.74 26.67 54.70 59.11 35.09 47.26 43.89
TIPPLE (Ours) 62.73 29.13 55.49 64.17 38.49 50.00 46.82
CLIP-ViT-B/16 (Radford et al.{[2021} ~ 66.73 47.87 60.86 73.98 46.09 59.11 57.20
Ensemble (Radford et al.||2021T) 68.34 49.89 61.88 77.65 48.24 61.20 59.42
CoOp (Zhou et al.||2022b) 71.51 49.71 64.20 75.21 47.99 61.72 59.28
CoCoOp (Zhou et al.[[2022a) 71.02 50.63 64.07 76.18 48.75 62.13 5991
TPT (Shu et al.{|2022) 68.98 54.77 63.45 77.06 47.94 62.44 60.81
TIPPLE (Ours) 71.03 57.56 64.39 80.37 50.10 64.69 63.11

2022) to report the results of CoOppr,+TPT for a comprehensive comparison, where CoOp is trained
on the test set using our proposed pseudo-label generation method. All methods are evaluated with
two visual backbones of CLIP, i.e., ResNet-50 (RN50) (He et al., [2016) and ViT-B/16 (Dosovitskiy:
et al.| [2020). More implementation details of baselines and our method can be found in Appendix

Results. Table|l|shows the comparison of different methods on 10 datasets. It shows that on some
datasets, even though CoOp with pseudo-labels can improve the performance of TPT, it is inferior
to our TIPPLE. On other datasets, we can observe that CoOp fails to advance TPT, indicating that
it is infeasible to capture task-level knowledge using CoOp at test time. TIPPLE achieves higher
accuracy than TPT on most of the datasets. The averaged performance gains are 2.95% and 2.39%
on ResNet-50 and ViT-B/16 visual backbones, respectively. As shown in Appendix [D} our method
outperforms the state-of-the-art method, DiffTPT. For example, compared to DiffTPT, the averaged
improvement on 7 datasets of TIPLLE is 1.87% on ViT-B/16 visual backbone. Besides, DiffTPT is
more time-consuming and memory-heavy than ours due to its adopted diffusion models. As reported
in Appendix [G] DiffTPT consumes 441.1x time and 3.2x memory than our TIPPLE on average.
These results verify the effectiveness of our TIPLLE on diverse downstream recognition tasks.

4.2 EVALUATION ON IMAGENET AND ITS OOD VARIANTS

Benchmark datasets. We conduct experiments on ImageNet (Deng et al., [2009) and evaluate
the model robustness against natural distribution shifts on its out-of-distribution (OOD) variants
containing different types of domain-shifted data. Sepcifically, we use four datasets: ImageNet-A
(Hendrycks et al.||2021b), ImageNet-V2 (Recht et al.,|2019), ImageNet-R (Hendrycks et al.,[2021a),
and ImageNet-Sketch(Wang et al,[2019). A brief overview of these datasets and the mplementation
details can be found in Appendix [C|and Appendix |B| respectively.
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Table 3: Cross-task evaluation of the proposed TIPPLE. We learn the task-oriented prompt on
ImageNet and apply it to 10 target datasets from various domains. The marker “{” denotes testing
without the instance-oriented prompt refinement. We report the top-1 accuracy.

Method Flower102 DTD Pets Cars UCF101 Caltechl0l Foodl01 SUN397 Aircraft EuroSAT Average
CLIP-RN50 (Radford et al.|[2021) 61.75 40.37 83.57 55.70 58.84 85.88 73.97 58.80 15.66 23.69 55.82
TIPPLE® (Ours) 62.44 40.54 85.66 53.56 59.85 89.01 74.46 61.00 16.14 28.80 57.14
TPT (Shu et al.|[2022) 62.69 40.84 8449 5846 60.82 87.02 74.88 61.46 17.58 28.33 57.66
TIPPLE (Ours) 62.81 4190 86.89 5647 60.93 89.49 75.59 62.63 16.47 30.38 58.36

Table 4: Comparison in the scenario of the online streaming data. CLIP uses the default prompt
in the zero-shot setting. TPT learns a prompt for each test sample. Our TIPPLE-S processes a batch
of test samples simultaneously, with batch sizes of 64, 128, and 256. We report the top-1 accuracy.

Method Flower102 DTD Pets Cars  UCF101 Caltech101 Food101 SUN397 Aircraft EuroSAT Average
CLIP-RN50 (Radford et al.|[2021) 61.75 40.37 83.57 55.7 58.84 85.88 73.97 58.80 15.66 23.69 55.82
TPT (Shu et al.|[2022) 62.69 40.84 84.49 58.46 60.82 87.02 74.88 61.46 17.58 28.33 57.66
TIPPLE-S-64 (Ours) 64.50 42.75 87.05 54.96 62.72 86.38 76.66 60.69 17.27 33.95 58.69
TIPPLE-S-128 (Ours) 64.35 42.59 88.03 56.06 62.41 86.96 76.78 60.94 17.93 34.77 59.08
TIPPLE-S-256 (Ours) 63.78 42.02 87.74 55.96 61.79 86.77 76.91 61.36 17.74 32.81 58.69

Table 5: Comparison in the scenario where the unlabeled training data is available. CLIP uses
the default prompt in the zero-shot setting. TPT learns a prompt for each test sample. Our TIPPLE-T
learns a task-oriented prompt on the unlabeled training data and uses it on test samples. The marker
“{” denotes testing without the instance-oriented prompt refinement. We report the top-1 accuracy.

Method Flower102 DTD Pets Cars UCF101 Caltech101 Food101 SUN397 Aircraft EuroSAT Average
CLIP-RN50 (Radford et al.|2021)  60.58 39.09 83.92 55.55 58.49 85.59 73.47 58.51 15.00 24.24 55.44
TPT (Shu et al.}[2022) 62.45 41.25 84.83 58.60 59.57 86.13 74.70 61.35 17.38 28.48 5747
TIPPLE-TV (Ours) 63.63 41.96 85.26 55.87 61.01 86.04 76.89 61.25 17.71 32.12 58.17
TIPPLE-T (Ours) 64.53 42.63 87.97 56.13 62.65 85.90 77.25 61.43 18.63 33.87 59.10

Results. Table [2| shows the results of different methods on ImageNet and its OOD variants. It is
surprising that TIPPLE achieves comparable performance with CoCoOp on ImageNet, which is
trained with labeled training samples from ImageNet. On the OOD datasets, TIPPLE outperforms
compared methods by a large margin, showing strong robustness against natural distribution shifts.
The improvements of TIPPLE over TPT are 2.74% and 2.25% on average on ResNet-50 and ViT-B/16
visual backbones, respectively. Our results suggest that the task-level knowledge is helpful to the
test-time prompt learning, especially for enhancing the model robustness to the OOD data.

4.3 CROSS-TASK EVALUATION

We evaluate the proposed TIPPLE in the cross-task setting. Specifically, following the cross-task
setting in previous works (Zhou et al., [2022a; Zhu et al.} 2022), we learn the task-oriented prompt on
ImageNet and apply it to 10 target datasets from various domains. Compared to the original CLIP,
only using the task-oriented prompt learned on ImageNet can significantly improve the performance
on target datasets, indicating that TIPPLE helps the generalizability of the prompt and does not overfit
the specific dataset. Furthermore, in this setting, our TIPPLE outperforms TPT on most datasets,
where the gains are greater than 1% on 7 out of 10 datasets. These results demonstrate that the
task-level prior knowledge utilized by our TIPPLE is transferable across different datasets.

4.4 RESULTS OF TWO EXTENSIONS

Prompt learning on the online streaming data. As illustrated in Section (3.4, we extend our
TIPPLE to the scenario of the online streaming data, denoted as TIPPLE-S. Table {4 shows the results
of zero-shot CLIP, TPT which processes test samples one by one, and our method with varying batch
sizes. Our method with different batch sizes can surpass TPT in terms of average accuracy. In this
setting, due to the fixed number of test samples, a larger batch size corresponds to less number of
updates for our method. When the batch size is set to 128, TIPPLE-S achieves the best performance,
since there is a nice trade-off between the number of updates and the stability of gradients.

Prompt learning on the unlabeled training data. For evaluation in this setting, we equally split
each original test dataset into two groups, one as the unlabeled training dataset and the other as the
test dataset. Our method (TIPPLE-T) learns the task-oriented prompt on the unlabeled training dataset
and applies it to the test samples. The results are shown in Table[5] We can see that compared to
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Table 6: Effect of the diversity regularization loss £,. The marker “0” denotes testing without the
instance-oriented prompt refinement. We report the top-1 accuracy.

Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sketch Average OOD Average
CLIP-RN50 (Radford et al.{[2021) ~ 58.16 21.83 51.41 56.15 33.37 44.18 40.69
TIPPLE® w/o L, 60.27 24.67 52.06 61.11 0.25 39.67 34.52
TIPPLE® w/ L, 61.06 25.32 53.11 62.37 36.77 47.73 44.39
TIPPLE w/o L, 61.77 27.61 54.03 63.20 21.70 45.66 41.64
TIPPLE w/ L, 62.73 29.13 55.49 64.17 38.49 50.00 46.82
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Figure 3: Ablation on the confidence threshold 7 (a) and the textual supervision (b). In figure (b),
w/o L, using a single template, and using multiple templates are compared. The marker “{” denotes
testing without the instance-oriented prompt refinement. We evaluate with CLIP-RN50 on ImageNet.

zero-shot CLIP and TPT, our method achieve better performance even without the instance-oriented
prompt refinement on the test samples, demonstrating the strong generalization of our task-oriented
prompt. The two-stage TIPPLE-T shows a greater gain over TPT, i.e., 1.63% on average.

4.5 ABLATION STUDIES

We investigate the effects of the confidence threshold 7, the textual supervision, and the diversity
regularization in this section. We provide more results and details in Appendix [H]

Effect of the confidence threshold 7. We filter the potential noisy pseudo-labels using the confidence
threshold 7). We investigate the effect of ) in Figure[3](a). When 7 is set as 0, i.e., using all pseudo-
labels, the performance is very poor, indicating the importance of selecting confident samples. We
can see that TIPPLE can achieve large improvements than zero-shot CLIP when 7 is greater than 0.5.

Effect of the textual supervision. We study the effect of the textual supervision by comparing the
method without £;, creating textual descriptions with a single template “a photo of {class}”, and
creating textual descriptions with multiple templates as default. The results in Figure 3] (b) show that
using the textual supervision can improve the performance of our method. Also, multiple templates
provide more useful supervision information than a single one.

Effect of the diversity regularization. The results of our method without and with the diversity
regularization loss are presented in Table [6] It shows that the diversity regularization can consistently
improve the performance in all cases. Especially on ImageNet-Sketch, the method without the
diversity regularization loss collapses, resulting in a trivial solution, where about 98% samples are
classified into the same class. Therefore, the diversity regularization is an essential component in our
method to bring performance improvements and avoid trivial solutions.

5 CONCLUSION

In this paper, we study the test-time prompt learning on VLMs. Our method TIPPLE improves
existing methods which separately learn a prompt for each test sample. A two-stage training scheme
is proposed to leverage both task- and instance-level knowledge. We learn the task-oriented prompt
in the first stage and perform instance-oriented prompt refinement in the second stage. Extensive
experiments verify the effectiveness of TIPPLE on various datasets.

Limitations. While TIPPLE does not require the labeled training data, due to the test-time learning,
our method has an increased running time compared to zero-shot CLIP during testing. Besides, we
adopt batch-wise training in the first stage and optimize with multiple augmented views of each test
sample in the second stage, thus resulting in increased memory cost.
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A BROADER IMPACT

The presented research should be categorized as research in the field of the adaptation of vision-
language foundation models. Since our method does not require the labeled training data, it can be
applied to scenarios where previous methods may be not feasible. We also believe that our work may
inspire future studies to develop test-time prompt learning methods for large-scale foundation models
in diverse downstream tasks, which reduce the cost of data annotations. Our method is built upon
the pre-trained vision-language model, CLIP. However, as CLIP exhibits some unwanted biases as
suggested in (Agarwal et al.| [2021), our model may inherit these biases.

B IMPLEMENTATION DETAILS

In the zero-shot setting, we adopt the default prompt “a photo of a {class}” and the ensemble of 80
hand-crafted prompts as suggested in (Radford et al.,|2021). Using a labeled training dataset, CoOp
tunes a fixed prompt while CoCoOp trains a prompt generator conditioned on the image features.
Following their original papers, we train both methods on ImageNet using 16 labeled training samples
per class with 4 learnable context tokens and evaluate the learned prompt on all datasets. TPT
learns a prompt for each test sample using its multiple augmented views. DiffTPT improves TPT by
leveraging diffusion models to generate diverse augmented data. For TPT and DiffTPT, we adopt the
settings from their original papers.

For our TIPPLE, we set the number of context tokens M as 4. To learn the task-oriented prompt, we
use the hand-crafted template “a photo of a {class}” as the initialization and train for 3 epochs with a
batch size of 256, the AdamW optimizer, and an initial learning rate of 0.001, which is decayed with
the factor 0.1 at every epoch. AugMix (Hendrycks et al.,2020) and Cutout (DeVries & Taylor, |2017)
are included as strong data augmentations for optimizing the prompt. We create the set of textual
descriptions using the default template “a photo of a {class}” and 7 extra templates. The 7 extra

ELINY3

templates are selected for ImageNet series datasets in (Radford et al.l 2021)): “itap of a {class}.”, “a
bad photo of the {class}.”, “a origami {class}.”, “a photo of the large {class}.”, “a {class} in a video
game.”, “art of the {class}.”, and “a photo of the small {class}.”. The default value of the confidence
threshold 7 is 0.7. The balancing parameter ) is set as 0.1. A, is set as 0.1 for the 4 OOD datasets
and 0.2 for other 11 datasets. In the stage of the instance-oriented prompt refinement, as suggested in
TPT, we use 64 augmented views and select the top 10% (p=0.1) confident samples. The AdamW
optimizer is also employed with a learning rate of 0.001. All experimental results are averaged over

three random seeds.
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Table 7: Comparison of zero-shot CLIP, DiffTPT, and our TIPPLE on the datasets from various
domains. We report the top-1 accuracy.

Method Flower102 DTD Pets Cars UCF101 Caltech101 Aircraft ~ EuroSAT  Average
CLIP-RN50 (Radford et al.||2021} 61.75 4037  83.57  55.70 58.84 85.88 15.66 23.69 53.18
DiffTPT (Feng et al.][2023} 63.22 41.31 85.12  59.33 63.20 89.70 18.25 41.70 57.73
TIPPLE (Ours) 65.61 4425 89.87 58.89 63.82 89.02 18.33 35.68 58.18
CLIP-ViT-B/16 (Radford et al.|[2021}) 67.44 4427 8825 6548 65.13 93.35 23.67 42.01 61.2
DiffTPT (Feng et al.][2023} 69.47 47.34 8795 6745 68.68 94.69 24.96 45.20 63.22
TIPPLE (Ours) 71.30 49.17  90.15  67.80 71.25 93.94 25.36 51.77 65.09

Table 8: Comparison on the datasets from various domains. CLIP uses the default prompt in
the zero-shot setting. CoOp and CoCoOp are trained on ImageNet with 16 labeled training samples
per class. TPT and our TIPPLE are the test-time prompt learning methods. We report the top-1
accuracy with the standard deviation. Note that the results of the baseline methods (CLIP-RNS50,
CoOp, CoCoOp, and TPT) are drawn from Section A.2 in (Shu et al.| 2022).

Method Flower102 DTD Pets Cars UCFI0l  Caltech101  Food101 SUN397 Aircraft EuroSAT Average

CLIP-RNS50 (Radford et al.| 2021 61.75 4037 83.57 55.70 58.84 85.88 73.97 58.80 15.66 23.69 55.82

CoOp (Zhou et al.}2022b 61.62 (4 0.2) 37.77 (:0.9) 87.24 (+0.2) 5572 (£ 0.8) 59.89 (£ 0.8) 87.23 (£ 0.6) 75.86 (£0.2) 59.28 (0.9) 15.20 (& 04) 2543 (4 4.0) 56.52 (0.7)
CoCoOp {Zhou et al.|12022a] 65.11 (4 1.0) 39.14 (4 0.7) 87.83 (+0.6) 5640 (+0.3) 58.57 (+ 1.0) 86.95 (£ 0.5) 76.18 (£0.5) 60.62 (£ 09) 15.13 (& 0.5) 28.79 (4 0.9) 57.47 (+0.2)
TPT (Shu et al. | 2022 62.80 (4 0.3) 41.43 (£ 0.5) 84.42 (+0.1) 58.53 (+0.1) 60.64 (+0.3) 87.23 (£0.2) 75.02 (£0.1) 61.46 (0.0) 17.60 (4 0.4) 28.46 (& 0.1) 57.76 (+ 0.1)
TIPPLE (Ours) 65.61 (£ 0.7) 44.25 (4 0.7) 89.87 (£ 0.1) 58.89 (£ 0.1) 63.82 (< 0.8) 89.02(£0.2) 77.50 (+0.2) 63.13 (£ 0.1) 1833 (£ 0.0) 35.68 (+5.0) 60.61 (= 0.5)
CLIP-ViT-B/16 {Radford et al.|2021 67.44 4427 88.25 65.48 65.13 93.35 83.65 62.59 23.67 4201 63.58

CoOp (Zhou et al.}2022b 68.25 (£ 0.5) 42.34 (£ 2.0) 89.38(+0.2) 6335 (+ 1.0) 67.17 (£ 1.0) 92.82 (£ 0.5) 83.74(£0.4) 64.51 (=0.6) 19.99 (+2.0) 40.22 (+4.0) 63.18 (+0.7)
CoCoOp {Zhou et al.112022a] 71.59 (4 0.6) 45.48 (+0.2) 90.20 (£ 0.2) 65.17 (£ 0.2) 68.77 (£ 0.8) 94.15 (£ 0.3) 84.83 (£ 1.0) 67.07 (£ 03) 22.95 (£ 0.7) 42.13 (+3.0) 65.23 (+0.6)
TPT (Shu et al.| 2022 68.79 (4 0.1) 46.79 (0.1) 87.09 (+0.1) 6638 (+0.2) 67.86 (£ 0.1) 94.13 (£0.1) 84.67 (£0.1) 6541 (£0.1) 23.44 (+0.3) 42.78 (+ 0.3) 64.73 (+0.1)
TIPPLE (Ours) 71.30 (£ 0.4) 49.17 (£ 0.2) 90.15 (£ 0.1) 67.80 (+ 1.0) 7125 (£ 0.7) 93.94 (£ 0.3) 86.01(£0.1) 68.13 (£02) 25.36 (% 1.9) 5177 (+ 0.8) 67.49 (+0.1)

C A BRIEF OVERVIEW OF THE OOD DATASETS

A brief overview of the OOD datasets is:

* ImageNet-A (Hendrycks et al.| 2021b) contains 7,500 natural images of 200 ImageNet categories
that are misclassified by a standard ResNet-50 (He et al.| | 2016));

* ImageNet-V2 (Recht et al.,[2019) is a newly collected version of the original ImageNet validation
set. The dataset includes 10,000 natural images, covering 1,000 ImageNet categories;

* ImageNet-R (Hendrycks et al.,2021a) includes 30,000 images of 200 ImageNet categories with
various artistic renditions, e.g., paintings, embroidery;

» ImageNet-Sketch (Wang et al.,[2019) contains sketch-like images and matches the ImageNet
validation set in categories and scale.

D COMPARISON WITH THE STATE-OF-THE-ART: DIFFTPT

Due to the huge inference cost of Diff TPT, the results on two large-scale test sets (Food101 and
SUN397) are missing in its original paper. Hence, we compare our TIPPLE with the state-of-the-art
method DiffTPT on the remaining 7 datasets in Table[7} We can see that our method outperforms
DiffTPT in terms of top-1 accuracy. Specifically, compared to DiffTPT, the averaged improvements
on 7 datasets of TIPLLE are 0.45% and 1.87% on ResNet-50 and ViT-B/16 visual backbones,
respectively. Besides, DiffTPT is more time-consuming and memory-heavy than ours due to its
adopted diffusion models. As reported in Appendix (Gl Diff TPT consumes 441.1x time and 3.2x
memory than our TIPPLE on average, indicating it impractical in the real-world setting.

E RESULTS WITH ERROR BARS

We report the top-1 accuracy with an error bar (standard deviation) in Tables [§|and[9] The average
accuracy and standard deviation are calculated by running with three random seeds. Compared to
TPT, TIPPLE achieves significant improvements in terms of the top-1 accuracy on most datasets.
In addition, even though taking the error bars into consideration, our method can still outperform
baseline methods by a large margin.
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Table 9: Comparison on ImageNet and the OOD Datasets. CLIP uses the default prompt in the
zero-shot setting. CoOp and CoCoOp are trained on ImageNet with 16 labeled training samples
per class. TPT and our TIPPLE are the test-time prompt learning methods. We report the top-1
accuracy with the standard deviation. Note that the results of the baseline methods (CLIP-RN50,
CoOp, CoCoOp, and TPT) are drawn from Section A.2 in (Shu et al., 2022).

Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ~ ImageNet-Skecth Average OOD Average
CLIP-RN50 (Radford et al.||2021) 58.16 21.83 51.41 56.15 33.37 44.18 40.69

CoOp (Zhou et al.|[2022b) 63.27 (£ 0.07) 23.23(£0.19) 55.50(+0.09) 57.08(£0.42) 34.68 (+£0.03) 46.75(+0.12) 42.62 (£ 0.17)
CoCoOp (Zhou et al.||2022a) 62.86 (£ 0.11) 2338 (£0.50) 5559 (£0.14) 57.55(+0.23) 34.74(£0.29) 46.82(+0.21) 42.82(£0.23)
TPT (Shu et al.||2022} 60.77 (£ 0.03) 26.60 (+0.13) 54.70 (£ 0.11) 59.08 (£0.03)  35.17 (£ 0.08)  47.27 (& 0.00) 43.89 (£ 0.00)
TIPPLE (Ours) 62.73 (£0.08) 29.13 (+0.82) 5549(£0.19) 64.17 (£0.18) 38.49 (£ 0.28)  50.00 (= 0.11) 46.82 (£ 0.16)
CLIP-ViT-B/16 (Radford et al.||2021}) 66.73 47.87 60.86 73.98 46.09 59.11 57.20

CoOp (Zhou et al.|[2022b) 7171 (£ 0.19) 4999 (£ 0.29) 64.49 (£0.39) 7551 (+£0.26) 48.10(£0.14)  61.96 (£ 0.25) 59.52 (+ 0.26)
CoCoOp (Zhou et al.||2022a) 70.70 (£ 0.32) 50.76 (£ 0.13) 63.93 (£0.19) 76.09 (+0.29)  48.60 (£ 0.38)  62.02 (+ 0.20) 59.85 (+0.19)
TPT (Shu et al.{|2022} 68.96 (£ 0.03) 54.47 (£ 0.26) 63.46 (£ 0.07) 77.10 (£0.04) 4793 (£0.03)  62.38 (+0.05) 60.74 (£ 0.06)
TIPPLE (Ours) 71.03 (£ 0.38) 57.56 (£ 0.28) 64.39 (£0.22) 80.37 (£0.23)  50.10 (£ 0.26)  64.69 (+ 0.07) 63.11 (+ 0.06)

Table 10: Comparison in the scenario of the online streaming data on ImageNet and the OOD
Datasets. CLIP uses the default prompt in the zero-shot setting. TPT learns a prompt for each test
sample. Our TIPPLE-S processes a batch of test samples simultaneously, with batch sizes of 64, 128,
and 256. We report the top-1 accuracy.

Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sketch Average OOD Average
CLIP-RNS50 (Radford et al.|[2021) 58.16 21.83 51.41 56.15 33.37 44.18 40.69
TPT (Shu et al.{[2022) 60.74 26.67 54.70 59.11 35.09 47.26 43.89
TIPPLE-S-64 (Ours) 60.06 22.53 52.78 61.19 34.85 46.28 42.84
TIPPLE-S-128 (Ours) 60.37 24.36 52.78 61.14 35.33 46.80 43.40
TIPPLE-S-256 (Ours) 60.86 24.22 52.97 61.31 36.49 47.17 43.75

F RESULTS OF TWO EXTENSIONS

Implementation details. We conduct experiments with the ResNet-50 visual backbone to evaluate
two extensions of our proposed TIPPLE described in Section [3.4] In the scenario of the online
streaming data, we decrease the balancing hyper-parameter A, and keep other settings unchanged as
those stated in Appendix [B} It is intuitive that overly diversifying the model predictions may hurt
the performance when the number of selected samples is small, especially for datasets with a large
number of classes. Therefore, we decay the default A, by the factor 0.5 on SUN397, ImageNet, and
ImageNet-Sketch for small batch sizes (64 and 128). In the scenario where the unlabeled training
data is available, we equally split each original test dataset into two groups, one as the unlabeled
training dataset and the other as the test dataset. Our method learns the task-oriented prompt on the
unlabeled training dataset and applies it to the test samples. In this scenario, we adopt all default
settings illustrated in Appendix [B]

Results. We report the results on 10 datasets from different domains in Tables[d]and[5} The results
on ImageNet and the OOD datasets are reported here. Table[I0]shows that our method surpasses
TPT on 3 datasets among 5, indicating the superiority of our method in handling the streaming data.
Besides, we would like to emphasize that our method has a higher efficiency than TPT, since TIPPLE
processes a batch of test samples simultaneously while TPT requires a one-step back-propagation for
each test sample. We can see from Table [IT]that TIPPLE achieves better performance than baselines
in all cases. These results further confirm the strong generalization of our task-oriented prompt.

G INFERENCE COST

We report the averaged memory cost and averaged inference time per sample of different methods in
Table We evaluate these method on a single GeForce RTX 3090 GPU. We can see that, compared
to TPT, the increased memory cost of TIPPLE is marginal, since both adopt batch-wise training.
Also, because TIPPLE learns the task-oriented prompt with a very small number of epochs (3 epochs
in our experiments), the increased inference time of TIPPLE is acceptable. In short, our TIPPLE
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Table 11: Comparison in the scenario where the unlabeled training data is available on ImageNet
and the OOD Datasetss. CLIP uses the default prompt in the zero-shot setting. TPT learns a prompt
for each test sample. Our TIPPLE-T learns a task-oriented prompt on the unlabeled training data
and uses it on test samples. The marker “{” denotes testing without the instance-oriented prompt
refinement. We report the top-1 accuracy.

Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sketch Average OOD Average
CLIP-RN50 (Radford et al.|[2021) 58.14 21.87 51.61 56.02 333 44.19 40.70
TPT (Shu et al.{[2022) 60.69 26.52 5451 58.94 35.18 47.17 43.79
TIPPLE-TY (Ours) 61.11 24.76 53.31 61.68 36.89 47.55 44.16
TIPPLE-T (Ours) 62.82 27.19 55.65 63.76 38.72 49.63 46.33

Table 12: Comparison of TPT, DiffTPT, our TIPPLE, and our TIPPLE-S in terms of the
averaged memory cost and averaged inference time per sample. Note that our TIPPLE-S
processes a batch of test samples simultaneously, thus has the shortest inference time. We report the
results averaged over 10 datasets from various domains.

TPT  DiffTPT  TIPPLE (Ours)  TIPPLE-S (Ours)

Averaged Memory Cost (GB) 6.73 22.13 6.94 7.59
Averaged Inference Time per Sample (S) 1.08 555.78 1.26 0.05

brings 2.5% gains on average over TPT with a little extra cost. DiffTPT is more time-consuming and
memory-heavy than other methods due to its adopted diffusion models. It consumes 441.1x time and
3.2x memory than our TIPPLE, which makes DiffTPT inapplicable in some practical scenarios.

We also evaluate one of our extensions, TIPPLE-S, which processes a batch of test samples simulta-
neously, leading to higher efficiency. Our results verify that compared to TPT, TIPPLE-S achieves
about 25x inference speed on average. It is worth noting that in terms of top-1 accuracy, TIPPLE-S is
better than TPT, as shown in Table

H ABLATION STUDIES

Implementation details. To investigate the effect of the confidence threshold 7 on our proposed
method, we conduct experiments with € {0,0.1,0.3,0.5,0.6,0.7,0.8,0.9}. Because a large n
corresponds to a small number of selected samples, we decrease the balancing hyper-parameter A,
to avoid overly diversifying the model predictions as illustrated in Section [3.4] Specifically, we
decay the default n by the factor 0.5 (for n = 0.8 on ImageNet and ImageNet-Sketch, n = 0.9 on
ImageNet-A and Image-V2) and the factor 0.25 (for 7 = 0.9 on ImageNet and ImageNet-Sketch). We
study the effect of the textual supervision by comparing TIPPLE without L, using a single template,
and using multiple templates. To ablate the contribution of the diversity regularization, we evaluate
the baseline without £,. (A, = 0). We also study the effect of the value of the trade-off parameter A,
with A, € {0,0.01,0.05,0.1,0.15,0.2,0.3}.

Results. Table [13| shows that when A, € [0.05,0.15], the diversity regularization term has a
significant positive effect on the final results. The rationale is that a smaller )\, cannot encourage
the prediction diversity, while a larger value weakens learning from the pseudo-label and the text
supervision. Because the )\, is effective in a large range and the performance is consistent across
different datasets, it is easy to select the parameter A, in practice.

I ANALYSE OF THE DIVERSITY REGULARIZATION

In this section, for a more comprehensive analyse, we study the diversity regularization loss on the
imbalanced datasets.

Original diversity regularization loss. We first construct the imbalanced datasets. For each class
i, we randomly select |D} ;| = N -i~7(y > 0) samples from the original balanced dataset, where
N is the number of samples for each class of the original balanced dataset. The parameter
controls the imbalanced degree, where a larger value corresponds to a more imbalanced dataset,
and vice versa. For instance, for a dataset containing 100 categories, when ~ is set as 1/2 and
1, max(|Dj,,,|)/min(|D%,,,|) is 10 and 100, respectively. We study the effect of the diversity
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Table 13: Ablation on the trade-off parameter of the diversity regularization )\,.. We report the
top-1 accuracy.

Ar ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Skecth Average Average OOD

0 61.77 27.61 54.03 63.20 21.70 45.66 41.64
0.01 62.16 27.71 54.83 63.44 22.16 46.06 42.04
0.05 62.11 28.57 55.27 63.73 3431 48.80 45.47
0.1 62.21 29.13 55.49 64.17 38.49 49.90 46.82
0.15 62.08 29.16 55.56 64.38 39.25 50.09 47.09
0.2 62.73 28.96 55.21 64.32 21.22 46.49 42.43
0.3 51.33 28.84 38.62 64.55 23.11 41.29 38.78

Table 14: Effect of the diversity regularization on the imbalanced datasets. The imbalanced
dataset is sampled from its original version. The parameter y controls the imbalanced degree, where a
larger value corresponds to a more imbalanced dataset, and vice versa. We report the top-1 accuracy.

1 y=1

Method '~ 2

Flowers102 DTD Pets  Average Flowers102 DTD Pets  Average
CLIP-RN50 63.94 3223  81.65 59.27 62.50 37.09 8593 61.84
wlo L, 64.82 36.73  82.61 61.39 62.50 39.07 87.41 62.99
wl L, 65.58 3720 83.73 62.17 63.75 3576  87.07 62.19
w/ Re-weighted L, 66.83 3792 85.46 63.40 64.38 41.06 88.56 64.67

regularization loss with v = 1/2 and v = 1, as shown in Table The results show that when
~ = 1/2, the diversity regularization loss shows a positive effect on different datasets. In severely
imbalanced cases (v = 1), it has a negative impact on prediction results on DTD and Pets. Our results
illustrate the effectiveness of the diversity regularization loss on the mildly imbalanced datasets.

Re-weighted diversity regularization loss. When there is an assumption on the imbalanced label dis-
tribution, we design the re-weighted diversity regularization loss to further improve the performance
on the imbalanced datasets. Specifically, let p € R denote the averaged prediction probability
distribution in Eq. we re-weight the element p; with p; < r“ - p;, where r denotes the index
of p; in the ascendingly sorted probability vector p and w > 0 is the hyper-parameter which is set
as y for the sake of simplicity. As shown in Table[I4] the re-weighted diversity regularization loss
shows consistent improvements over the methods without the diversity regularization loss and with
the original diversity regularization loss. Our results confirm that this strategy adaptively improves
the probability values of minority classes, and thus helps apply the diversity regularization loss on the
imbalanced datasets.
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