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Abstract

Classifier-Free Guidance (CFG) is an essential component of text-to-image diffu-
sion models, and understanding and advancing its operational mechanisms remains
a central focus of research. Existing approaches stem from divergent theoretical
interpretations, thereby limiting the design space and obscuring key design choices.
To address this, we propose a unified perspective that reframes conditional guidance
as fixed point iterations, seeking to identify a golden path where latents produce
consistent outputs under both conditional and unconditional generation. We demon-
strate that CFG and its variants constitute a special case of single-step short-interval
iteration, which is theoretically proven to exhibit inefficiency. To this end, we
introduce Foresight Guidance (FSG), which prioritizes solving longer-interval sub-
problems in early diffusion stages with increased iterations. Extensive experiments
across diverse datasets and model architectures validate the superiority of FSG over
state-of-the-art methods in both image quality and computational efficiency. Our
work offers novel perspectives for conditional guidance and unlocks the potential
of adaptive design.1

1 Introduction

Diffusion models [14, 27, 16] have emerged as a transformative paradigm for conditional genera-
tion, achieving remarkable success in synthesizing high-fidelity images from text prompts [24, 22].
Classifier-free guidance (CFG) [15] serves as a key component, steering the generation towards
prompt alignment by amplifying the conditional outputs of a model. However, its over-amplified
guidance introduces critical trade-offs, including compromised image quality and limited diversity [5],
which highlight the necessity for deeper theoretical and practical insights into guidance mechanisms.

Existing efforts to mitigate the limitations of CFG are typically based on distinct conditional sampling
perspectives. For example, some methods conceptualize CFG as sampling from sharpened probability
distributions [8, 9], while others mitigate off-manifold deviations through posterior sampling [5]
or improve semantic alignment through reflective sampling [1, 20]. Although these approaches are
theoretically sound, the absence of a unified interpretation narrows the design space of guidance
mechanisms, rendering each method a tightly coupled framework where components cannot be
independently modified. To integrate the effective components of existing approaches and further
unlock the potential of guidance mechanisms, a critical question arises:

How can we systematically explore the design space for conditional guidance and
develop more effective algorithms from a unified perspective?
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We address this question by proposing a unified framework based on fixed point iterations. Observing
that the latent variable xt achieves better generation quality and alignment when its unconditional
generation matches the prompt-conditioned generation [1, 34] (Figure 1 (a)), we reframe conditional
generation as identifying a golden path composed of such points. Our framework comprises two
decoupled steps: calibration and denoising. At each timestep t, the calibration step iteratively refines
xt to x̂t via fixed point iterations. Following this, the denoising step samples from p(xt−1 | x̂t) with
unconditional noise prediction, as depicted in Figure 1 (b). We demonstrate that CFG [15] and its
variants [5, 1, 20] are special cases of this framework. By disentangling guidance from sampling,
our approach enables (1) systematic comparison of design choices across methods and (2) upgrades
existing algorithms through fixed point iteration design.

The number of iterations and the consistency intervals in fixed point algorithms are critical yet
underexplored design dimensions. Current methods typically solve multiple short-interval subprob-
lems using a single iteration each, a suboptimal strategy proven by our theoretical analysis. We
first demonstrate that existing methods can be upgraded simply by increasing the iteration count
(e.g., CFG ×K). Beyond that, we propose Foresight Guidance (FSG), which prioritizes solving
longer-interval subproblems during the earlier stages of the diffusion process with more iterations
(Figure 1 (c)). FSG enhances alignment by propagating guidance signals over extended time horizons
while improving efficiency by reducing the number of subproblems.

Extensive experiments across datasets and models demonstrate that existing guidance methods
directly benefit from increased iterations, and FSG further improves generation quality with lower
computational overhead. We provide novel insights into advancing the development of efficient and
adaptable guidance mechanisms. Our contributions are threefold:

• We model conditional guidance as a calibration task toward a golden path, unifying CFG
and related methods under a fixed point iteration framework.

• We upgrade existing methods and propose FSG by designing consistency intervals and
iteration schedules, achieving better alignment and efficiency.

• We validate the effectiveness of FSG through comprehensive experiments and demonstrate
the potential of the framework in guidance design.

2 Preliminaries

2.1 Diffusion Models

Diffusion models [14, 27] are generative models that synthesize images by progressively reversing a
predefined noising process. The forward diffusion process (t = 0 → T ) gradually corrupts an initial
clean image x0 through a noising function nt→t+1 determined by a noise schedule α1:T :

xt+1 = nt→t+1(xt) =
√
αt+1xt +

√
1− αt+1ϵ, ϵ ∼ N (0, I). (1)

The reverse process reconstructs the data by iteratively denoising xt to xt−1 ∼ p(xt−1 | xt) through
ft→t−1, which consists of a neural network-based noise predictor ϵ(xt) and a reverse sampler:

xt−1 = ft→t−1(xt) = Sampler(xt, ϵ(xt)), (2)

where the sampler design is flexible, provided that xt follows the marginal distribution pt(xt) of the
forward process. Notably, DDIM [27] operates as a deterministic sampler, corresponding to a discrete
ODE formulation [28]. Let ᾱt =

∏t
s=1 αs, its update rule is defined as:

ϕ(xt) =
xt −

√
1− ᾱtϵ(xt)√
ᾱt

,

xt−1 =
√
ᾱt−1ϕ(xt) +

√
1− ᾱt−1ϵ(xt).

(3)

To generate an image, we first sample xT ∼ N (0, I) and then compute x0 = fT→0(xT ) =
f1→0 ◦ · · · ◦ fT→T−1(xT ).

2.2 Classifier-Free Guidance

In conditional generation tasks (e.g., generating images for a given prompt c), Classifier-Free
Guidance (CFG) [15] is widely used to improve alignment by extrapolating from the unconditional
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Figure 1: From left to right: (a) Illustration of the golden path. Latents x̂t generating mountains
unconditionally produce higher-quality images when guided by mountain-related prompts. (b) Unified
framework for fixed point iterations. The state xt is calibrated toward x̂t on the golden path via fixed
point iterations. (c) Proposed foresight guidance (FSG). We enhance efficiency and alignment by
conducting fixed point iterations over longer intervals with increased iterations.

noise prediction ϵu towards the conditional prediction ϵc, using a guidance scale parameter w > 1.
The adjusted noise prediction ϵw is computed as:

ϵw(xt) = ϵu(xt) + w (ϵc(xt)− ϵu(xt)) . (4)

For brevity, we denote the denoising processes using ϵu, ϵc, and ϵw as fu, f c, and fw, respectively.
CFG++ [5] enhances CFG for manifold preservation through a tunable parameter λ ∈ [0, 1]:

xt−1 =
√
ᾱt−1ϕ

λ(xt) +
√
1− ᾱt−1ϵ

u(xt), ϕλ(xt) =
1√
ᾱt

(xt −
√
1− ᾱtϵ

λ(xt)). (5)

Z-sampling [1] and Resampling [20] first adjust xt to x̂t through reflection, and then apply an update
using ϵw(x̂t). The reflection in Z-sampling uses x̂t = fw

t+1→t ◦ fu
t→t+1(xt), while Resampling

employs x̂t = fw
t+1→t ◦ nt→t+1(xt). Here, ft→t+1 =

√
ᾱt+1ϕ(xt) +

√
1− ᾱt+1ϵ(xt) denotes

DDIM inversion [27].

3 Methodology

We formalize conditional guidance as calibration toward golden paths, then propose a unified fixed
point iteration framework encompassing existing methods (Section 3.1), thus enabling systematic
comparison and extension of different design choices. Next, we introduce foresight guidance (FSG),
a strategy to address subproblems across longer intervals through multi-step iterations, improving
efficacy and efficiency (Section 3.2).

3.1 Towards the Golden Path via Fixed Point Iterations

Consistent denoising paths under conditional and unconditional guidance are golden paths.
In diffusion models that generate images x0 ∼ p(x | c) from initial noise xT ∼ N (0, I), empirical
observations suggest that specific denoising paths yield higher-quality images and better alignment
under target conditions c [34, 1]. We term these paths as golden paths. Our objective is to calibrate
the denoising process towards these golden paths.

Let f c
t→0(xt) and fu

t→0(xt) denote the conditional and unconditional denoising processes starting
from xt, then the latents x̂t on golden path satisfy: fu

t→0(x̂t) = f c
t→0(x̂t). For instance, if x̂t

unconditionally generates mountain images, it achieves superior conditional generation performance
with mountain-related prompts compared to other latents xt, as visualized in Figure 1(a). The
underlying intuition is: when f c

t→0(xt) and fu
t→0(xt) differ significantly, the model requires a sharp

turn, often sacrificing texture detail and aesthetic quality to achieve conditional alignment. Conversely,
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when they align, the model balances both conditional alignment and generation quality. Further
discussion is provided in Appendix B.

We therefore aim to calibrate xt toward x̂t by solving
fu
t→0(xt) = fc

t→0(xt), xt ∈ Mt, (6)
where Mt denotes the probability manifold at timestep t.2

A unified framework based on fixed point iteration. We propose a framework based on fixed point
iteration to approximately solve (6), and demonstrate that classifier-free guidance [15] (CFG) and
state-of-the-art variants [5, 20, 1] are instances of this unified framework. Specifically, we divide
the transition xt → xt−1 into three phases: (1) Construct a fixed point operator F (xt) satisfying
F (xt) ∈ Mt and x̂t = F (x̂t) ⇒ fu

t→0(x̂t) = f c
t→0(x̂t). (2) Perform K fixed point iterations

from x
(0)
t = xt: x

(k)
t = F (x

(k−1)
t ), k = 1, · · · ,K and denote x̂t = x

(K)
t . (3) Derive xt−1 via the

unconditional noise prediction ϵu(x̂t) and a reverse sampler. This workflow can be expressed as:

x̂t = F (K)(xt) = F ◦ · · · ◦ F (xt), ▷ Calibrate
xt−1 = Sampler (x̂t, ϵ

u(x̂t)) . ▷ Denoise
(7)

Our framework decouples calibration and denoising, enabling the injection of conditional guidance
via the calibration step without binding it to the denoising process. Thus, the key questions of interest
for conditional guidance become: (1) What are the design dimensions of fixed point iteration? (2)
How can we design along these dimensions for effective guidance? We address the first question
below and investigate the second in Section 4.2.

Design space. Our fixed point iteration framework identifies four key dimensions: (1) Consistency in-
terval. Since the clean semantics fu/c

t→0(xt) are inaccessible during denoising, we consider consistency
over intervals a → b as an alternative, i.e., fu

a→b(xt) = f c
a→b(xt). Longer intervals help to aggregate

semantics from more distant timesteps but increase computational cost. (2) Fixed point operator. The
fixed point operators typically used include the linear operator xt = xt + w(f c

a→b(xt)− fu
a→b(xt))

and the backward-forward operator xt = f
u(−1)

a→b ◦f c
a→b(xt). (3) Guidance strength/scheduler. We can

schedule the magnitude of updates for different timesteps. Similar to the learning rate, inappropriate
settings can lead to slow convergence or deviation from the data manifold. (4) Number of iterations
K. Ideally, the fixed point algorithm converges linearly w.r.t. K, i.e., ∥x̂t − xt∥ = O(ρK), where
ρ ∈ (0, 1) is the spectral radius of F ′.

Surprisingly, we find that CFG and its variants can be incorporated into our fixed point framework
despite originating from different derivations, which provides us with a unified perspective. We
present their design choices in Table 1.

Sketch of the unification. (detailed in Appendix A) We isolate the unconditional noise in the update
of DDIM [27] and unify CFG [15] and CFG++ [5] as linear fixed point operators in the interval
[t − 1, t], using the equivalence of ϵc(xt) = ϵu(xt) to f c

t→t−1(xt) = fu
t→t−1(xt). Approximating

f
u(−1)

t+1→t by fu
t→t+1 or nt→t+1, we equate reflective sampling in Z-sampling [1] and Resampling [20]

to backward-forward operators. Further nested CFG updates yield the results shown in Table 1.

Comparison of design choices. (1) Iteration strength scheduler for CFG (wξt) and CFG++ (λξ̃t):
Compared to CFG, CFG++ provides more stable iteration strength during the critical early generation
stage, avoiding drastic decay. This explains the improved stability of CFG++ over CFG. (2) Fixed
point operators: Compared to the linear operators xt + wξt∆ϵ(xt) used in CFG and CFG++, we
observe that the forward-backward operator f

u(−1)

a→b ◦ f c
a→b(xt) with larger consistency intervals

exhibits lower empirical contraction rates. This facilitates faster convergence, albeit at the cost of
increased model evaluations. A more detailed discussion is provided in Appendix A.5.

Extension of design choices. The unified fixed point framework allows us to directly upgrade existing
algorithms by increasing iteration counts. We extend CFG and CFG++ to CFG / CFG++ ×K, where
K denotes the number of iterations (Algorithm 2,3). However, this approach leads to a substantial
increase in model evaluations. Therefore, we propose Foresight Guidance, which balances efficiency
and effectiveness by prioritizing longer intervals and more iterations in the early stages.

2This constraint aims to prevent inaccurate score estimation off the manifold. Since satisfying this constraint
strictly is not the primary focus of this paper, we simply follow empirical settings, e.g., use smaller step sizes.
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Table 1: Unification of different guidance methods as fixed point iterations via xk+1 = F (xk),
aiming for fu

a→b(xt) = f c
a→b(xt). Multi-iter. indicates whether the original algorithm supports

multi-step iterations. Abbreviations: (1) w > 1, ξt =
√
1− ᾱt −

√
αt − ᾱt for CFG; (2) λ ∈

[0, 1], ξ̃t =
√
1− ᾱt for CFG++; (3) fγ denotes denoising with noise ϵu+ γ(ϵc− ϵu), ∆ϵ(·) denotes

ϵc(·)− ϵu(·), and id denotes the identity mapping.

Methods Fixed point operator F (xt) Interval (a → b) Multi-iter.

CFG [15] xt − wξt∆ϵ(xt) t → t− 1 ✗

CFG++ [5] xt − λξ̃t∆ϵ(xt) t → t− 1 ✗

Z-sampling [1] (id − wξt∆ϵ) ◦ fγ
t+1→t ◦ fu

t→t+1(xt) t+ 1 → t− 1 ✗

Resampling [20] (id − wξt∆ϵ) ◦ fγ
t+1→t ◦ nt→t+1(xt) t+ 1 → t− 1 ✓

FSG (ours) (id − λξ̃t∆ϵ) ◦ fu
t−∆t→t ◦ f

γ
t→t−∆t(xt) t → t−∆t ✓

3.2 Foresight Guidance

Algorithm 1: Foresight Guidance (FSG)
Input :Initial noise xT , Condition c, Timesteps

T , Iteration set S = {(ti,Ki,∆ti)}Mi=1,
Strengths γ > 1, λ ∈ [0, 1].

Output :Generated image x0

1 for t← T to 1 do
2 if (t,K,∆t) ∈ S then
3 Foresight Fixed Point Calibration;
4 for k ← 1 to K do
5 xt−∆t = fγ

t→t−∆t(xt);
6 xt = fu

t−∆t→t(xt−∆t);
7 end
8 end
9 CFG++ Calibration;

10 x̂t = xt − λξ̃t(ϵ
c(xt)− ϵu(xt));

11 Denoising Step;
12 xt−1 = Sampler(x̂t, ϵ

u(xt));
13 end
14 return x0

We aim to minimize the gap between condi-
tional and unconditional paths. Existing meth-
ods typically divide the problem into T sub-
problems with intervals of t/t + 1 → t − 1,
each solved with one step of fixed point it-
eration (illustrated in Figure 1 (b)). While
each subproblem is relatively simple, the large
number of subproblems limits efficiency, espe-
cially for high-overhead fixed point operators
such as backward-forward operators. More-
over, small intervals limit the benefit of cali-
bration, as only the semantics of neighboring
timesteps can be obtained for guidance.

To improve efficiency, instead of allocating
one iteration for each small interval, we can
allocate multiple iterations for fewer long in-
tervals. We theoretically demonstrate that the
single-step short-interval strategy is typically
suboptimal. Given the total iteration budget
N and timesteps T , we uniformly divide fu

T→0 = f c
T→0 into M subproblems (fu

iT/M→(i−1)T/M =

f c
iT/M→(i−1)T/M , i ∈ [M ]), solving each only at timesteps iT/M with N/M fixed point iterations

(assuming N/M,T/M ∈ Z). The M = T case represents the short-interval single-step strategy.

Theorem 1. (Detailed in Appendix C) Let L = 1
T

∑T
t=1∥ϵc(x̂t)− ϵu(x̂t)∥22 denote the average gap

over calibrated trajectories x̂t ∈ Rd, with B as the Euclidean norm bound for x̂t and ϵc/u(x̂t), L as
the smoothness constant of ϵc/u(·), and r ∈ (0, 1) as the upper bound of the contraction rate of Fi,
i ∈ [M ]. Under mild assumptions (Appendix C), there exists a constant C > 0 such that

L =
1

T

T∑
t=1

∥ϵc(x̂t)− ϵu(x̂t)∥22 ≤ B2

(
Cr

2N
M +

2L2

M2

)
. (8)

Setting the derivative of the right-hand side to zero yields the optimal M∗ that minimizes the upper
bound. The optimal M∗ is typically not T , indicating that performing fixed point iterations at every
timestep is unnecessary. Key insights include: (1) Smaller L (smoother noise predictors) reduces
M∗, favoring fewer, longer-interval subproblems; (2) Sufficient computational resources (N → ∞)
drive M → T , recovering the short-interval subproblems. In practice, limited resources suggest using
moderate interval sizes to enhance fixed point solving efficiency. Intuitively, longer intervals provide
stronger guidance during early denoising stages, where short-term approximations (fu/c

t→t−1) yield
limited benefits due to insufficient estimates of the clean image. Thus, generating prototypes through
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Table 2: The quantitative results on the SDXL model with NFE = 50, 100, 150 (Time denotes seconds
per image, ↑ denotes higher is better, The best results under the same NFE are bolded).

Datasets DrawBench [25] Pick-a-Pic [17]
Method NFE Time IR↑ HPSv2↑ AES↑ CLIP↑ IR↑ HPSv2↑ AES↑ CLIP↑

CFG 50 6.71 59.02 28.73 6.07 32.29 82.14 28.46 6.73 33.53
CFG++ 50 6.82 65.21 28.98 6.08 32.60 89.75 28.72 6.67 33.86
Z-Sampling 50 6.66 72.75 29.08 6.00 32.59 96.77 28.68 6.59 33.97
Resampling 50 6.48 59.99 28.80 5.99 32.21 82.65 28.46 6.61 33.46
FSG (ours) 50 6.77 82.81 29.42 6.01 32.65 98.59 28.89 6.60 34.32

CFG×2 100 12.51 77.71 29.36 6.06 32.44 96.06 28.84 6.64 34.13
CFG++×2 100 12.60 79.42 29.42 6.01 32.61 99.90 29.00 6.61 34.18
Z-Sampling 100 12.61 77.46 29.26 6.03 32.39 94.98 28.79 6.61 34.01
Resampling 100 12.49 77.26 29.12 6.00 32.46 79.36 28.61 6.02 33.61
FSG (ours) 100 12.56 84.12 29.54 6.02 32.76 102.82 29.05 6.66 34.30

CFG×3 150 18.47 83.56 29.51 5.95 32.66 102.13 29.04 6.61 34.28
CFG++×3 150 18.47 82.58 29.45 5.93 32.66 103.32 29.05 6.57 34.20
Z-Sampling 150 18.26 78.35 29.40 6.06 32.43 97.25 28.90 6.67 34.20
Resampling 150 18.26 79.98 29.23 6.05 32.32 87.48 28.70 6.59 33.49
FSG (ours) 150 18.49 88.18 29.44 5.96 32.70 104.86 29.04 6.65 34.28

extended conditional denoising processes f c
t→t−∆t and preserving information into x̂t via the inverse

ODE fu
t−∆t→t appears more effective.

Practical design of foresight guidance. We integrate these design choices into Foresight Guidance
(FSG), as outlined in Algorithm 1. We perform multi-step fixed-point iterations with long time
intervals at specific timesteps, parameterized by a set S = (ti,Ki,∆ti)

M
i=1, where each tuple denotes

the starting timestep, number of iterations, and interval length, respectively. To reduce computational
overhead, we employ a forward-backward operator with a single-step ODE solver (DDIM) for both
fγ
t→t−∆t and fu

t−∆t→t. As most image semantics are determined in the early stages of diffusion [31],
we allocate more iterations (Ki) and longer intervals (∆ti) during these phases, following a ratio of
approximately 3:2:1 across early, middle, and late stages. Outside these scheduled iterations, we apply
CFG++ to maintain stable guidance strength and avoid oscillations. This allows early generation
stages to benefit from the semantics of future states, motivating the term foresight guidance.

4 Experiments

4.1 Experimental Setup

Datasets. We assess generation performance across four benchmark datasets: DrawBench [25],
Pick-a-Pic [17], Geneval [10], and PartiPrompts [32]. Detailed experimental setups are provided in
Appendix D.1, and results for PartiPrompts are included in Appendix D.2.

Metrics. To evaluate results, we employ IR [30] and HPSv2 [29] as human preference metrics,
ClipScore [12] for prompt alignment assessment, and AES [26] for aesthetic quality analysis.

Baselines. Under our unified fixed point iteration framework, we systematically analyze five methods:
CFG [15], CFG++ [5], Z-sampling [1], Resampling [20], and our proposed FSG. Leveraging the
fixed point perspective, we enhance CFG and CFG++ by increasing iterations (denoted as ×2/×3),
a novel extension beyond prior literature [15, 5]. Experiments primarily adopt configurations from
original studies. The fixed point interval in FSG is set within [0.02T, 0.125T ], with larger intervals
and iterations allocated to early steps. Implementation details are provided in Appendix D.1.
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Figure 2: Left: Proportion of samples that outperform the other four methods (Top-1 rate). Right:
Prediction gap during denoising, indicating the effectiveness of the fixed point iteration. Dataset:
DrawBench, NFE: 50, see Appendix D.3 and D.4 for more results.

Table 3: Quantitative results on Geneval dataset. Model: SDXL; NFE: 50 (CFG), 150 (others).

Method Overall↑ Single Object↑ Two Object↑ Counting↑ Colors↑ Position↑ Color Attribution↑

CFG 48.39 % 97.50 % 61.62 % 22.50 % 78.72 % 14.00 % 16.00 %

CFG×3 55.94 % 98.75 % 75.76 % 40.00 % 85.11 % 8.00 % 28.00 %
CFG++×3 56.03 % 97.50 % 78.79 % 45.00 % 81.91 % 10.00 % 23.00 %
Z-sampling 56.70 % 100.00 % 75.76 % 46.25 % 86.17 % 12.00 % 20.00 %
Resampling 56.65 % 100.00 % 84.85 % 40.00 % 84.04 % 7.00 % 24.00 %
FSG (ours) 57.95 % 100.00 % 79.80 % 43.75 % 86.17 % 12.00 % 28.00 %

4.2 Experimental Results

Quantitative analysis. We evaluate the performance of different methods at NFE (number of function
evaluations) of 50, 100, and 150 using SDXL with the DDIM sampler, as shown in Table 2. The
following discussion analyzes design choices within the fixed point iteration framework:

1. Extended intervals and increased iterations enhance efficiency and alignment of FSG.
FSG demonstrates superior performance across datasets and NFEs, with particularly notable
improvements at lower NFEs (50, 100). As shown in Table 2 and the Top-1 rate in Figure
2, FSG improves IR by 10.06 and achieves a Top-1 rate of 34%, while improving HPSv2
by 0.34 with a Top-1 rate of 46%. This improvement is attributed to more effective fixed
point solving. The reduced fixed point error in Figure 2 confirms that balanced subproblem
decomposition enables better convergence and generation quality, consistent with Theorem 1.
Additionally, longer intervals enhance semantic guidance and prompt-alignment in FSG, as
evidenced by consistent CLIPScore and IR improvements across all NFEs.

2. Existing methods benefit from increased iterations. Within the fixed point framework,
CFG and CFG++ outperform vanilla CFG when the number of iterations is increased
(denoted as ×2/×3). This demonstrates the potential of our framework to enable test-time
scaling for improved performance through additional inference resources, preferable to
simply increasing inference steps (see Appendix D.5).

3. Strength schedulers and fixed point operators. CFG++ achieves marginal gains over CFG
through more stable intensity scheduling. Backward-forward operators with small intervals
show limited improvement compared to linear operators at higher NFEs due to insufficient
guidance, necessitating longer intervals for adequate semantic guidance.

Qualitative analysis. We present qualitative results in Figure 3, comparing the performance of FSG
with baseline methods. FSG achieves both high image aesthetics and strong adherence to prompt
requirements. By leveraging longer intervals, FSG achieves more precise guidance for generating fine
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Table 4: Quantitative results on different models and samplers. Dataset:Pick-a-pic; NFE: 50 (CFG),
150 (others); see Appendix D.6 for more results.

Models SD-2.1 [24], DDIM Hunyuan-DiT [18], DDIM SDXL, DDPM [14]
Method IR↑ HPSv2↑ AES↑ CLIP↑ IR↑ HPSv2↑ AES↑ CLIP↑ IR↑ HPSv2↑ AES↑ CLIP↑

CFG -62.83 25.51 5.88 30.38 115.63 29.00 6.82 33.09 73.57 28.42 6.73 33.62

CFG ×3 1.08 27.25 5.92 32.50 115.32 28.98 6.50 32.88 91.37 28.69 6.62 33.73
CFG++×3 3.98 27.24 5.96 32.51 115.63 29.03 6.63 32.97 89.17 28.79 6.60 33.60
Z-sampling 3.65 27.24 6.07 32.60 128.72 29.23 6.72 33.42 90.35 28.63 6.65 33.58
Resampling 8.07 27.03 5.85 32.31 117.65 29.28 6.73 33.18 90.92 28.64 6.65 33.73
FSG (ours) 16.26 27.60 6.10 32.80 132.88 29.37 6.68 33.48 91.53 28.56 6.65 33.79

FSG (ours) CFG CFG++ Z-Sampling Resampling

A bowl of soup that looks like a 
monster with tofu says deep learning

↑ Prompt details and text

A cat in a space suit walking 
on the moon

↑ Image details

A storefront with 'Google 
Research Pizza Cafe' written on it.

↑ Long text

One computer technical 
sketch white background

↑ Prompt alignment

Prompts:

Five frosted glass bottles

↑ Counting

Figure 3: Results of qualitative analysis. Our proposed FSG demonstrates effectiveness in several
dimensions including text, details, and counting. We present more examples in Appendix E.

details (e.g., cat faces, text). Furthermore, FSG-generated images exhibit fewer structural or visual
artifacts and align more closely with human preferences. These results highlight the robustness and
versatility of FSG in addressing complex image generation tasks. We present additional visualizations
and discuss failure cases in Appendix E.

Object-focused evaluation. We assess fine-grained instruction compliance on Geneval [10], as
shown in Table 3. FSG significantly addresses the deficiencies of vanilla CFG in counting accuracy
(+23.75%) and two-object generation (+23.23%), achieving state-of-the-art overall performance.
Notably, CFG/CFG++ with increased fixed point iterations also demonstrate enhanced alignment,
underscoring the benefits of fixed point iterations.

Class conditional generation. To investigate whether enhanced fixed point iterations reduce diversity,
we conduct experiments on the ImageNet [6] 256× 256 conditional generation task using DiT [21]
models, generating 1K images per class (totaling 50K images). We report FID [13] and Vendi
scores [7] at NFE=25/50. As shown in Table 5, FSG and CFG/CFG++×2 at NFE=50 both improve
generation quality and diversity, indicating that fixed point iterations do not cause mode collapse.
We hypothesize this occurs because the iterations are performed locally in the neighborhood of xt,
thereby improving quality while preserving randomness.
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Table 5: Quantitative results on ImageNet
256× 256. Model: DiT.

NFE 25 50
Methods FID ↓ Vendi ↑ FID ↓ Vendi ↑

CFG (×2) 17.81 3.44 14.69 3.79
CFG++ (×2) 13.27 3.91 8.85 4.43
Resample 17.54 3.50 9.05 4.47
Z-sampling 19.89 3.40 8.62 4.64
FSG (ours) 10.56 4.73 7.91 5.79

Table 6: Synergistic effects of FSG and noise opti-
mization model (NPNet) Dataset: Pick-a-Pic.

Methods IR↑ HPSv2↑ AES↑ CLIP↑

CFG50 82.14 28.46 6.73 33.53
FSG50 98.59 28.89 6.60 34.32
FSG100 102.82 29.05 6.66 34.30

NPNet 91.66 28.60 6.70 33.57
+FSG50 112.64 29.04 6.54 34.09
+FSG100 111.83 29.15 6.57 34.13

Table 7: Synergistic effects of FSG and preference
alignment model (SPO). Dataset: Pick-a-pic.

Method IR↑ HPSv2↑ AES↑ CLIP↑

CFG50 82.14 28.46 6.73 33.53
FSG100 102.82 29.05 6.66 34.30

SPO 111.86 29.08 6.91 33.22
+FSG50 115.86 29.16 6.91 33.12
+FSG100 117.93 29.20 6.93 33.24
+FSG150 116.49 28.74 6.85 33.30

SDXL + CFG50

SPO + CFG50 SPO + FSG50 SPO + FSG100

Prompt:

3D Pac Man 
in real life

SDXL + FSG100

Figure 4: FSG provides better guidance on SPO
and progressively improves generated images.

Different models and samplers. Results across models (SD2.1 [24] and Hunyuan-DiT [18]) and
samplers (DDPM [14]) are presented in Table 4. Compared to other methods, FSG demonstrates
greater improvement on the weaker SD2.1 baseline (IR: +8.19; HPSv2: +0.35) while still providing
additional quality gains for the state-of-the-art Hunyuan-DiT model (IR: +4.16; HPSv2: +0.09). As a
sample-agnostic framework, our method naturally extends to stochastic samplers without additional
derivations, where fixed point iteration similarly improves prompt alignment.

Synergy with orthogonal methods. As fixed point algorithms are sensitive to initial values, we
explore the synergistic effects between FSG and orthogonal approaches, including preference-aligned
models [19] and noise optimization methods [34]. SPO [19] improves the noise predictions of
the diffusion model via preference fine-tuning, while NPNet [34] employs lightweight networks to
tailor initial noise to a given prompt. Both strategies supply better initial values to the fixed-point
iteration, facilitating coarse-to-fine calibration. Experiments conducted with NPNet [34] (Table 6)
and SPO [19] (Table 7) demonstrate that FSG alone outperforms noise optimization , but falls short of
preference-aligned models. When FSG is integrated with either approach, synergistic improvements
are observed, leading to further gains in aesthetic quality and prompt alignment (IR: 112.64 with
NPNet; 117.93 with SPO). Figure 4 illustrates the progressive quality enhancement when combining
FSG with SPO, confirming the compatibility of our framework with orthogonal approaches.

Ablation studies. Table 8 summarizes the impactful design choices at NFE = 50/150. Key findings:
(1) Consistency intervals (×2/1/2): At low NFEs, appropriate interval selection provides more effective
guidance than short-interval strategies. Overly large intervals introduce distant guidance that exceeds
the current optimization stage, hindering fixed point iteration convergence. (2) Guidance strength:
As shown in Figure 5, FSG adapts to λ ∈ [0.4, 1.3] (beyond the [0.5, 1] range in CFG++). Fixed
point iteration narrows the conditional/unconditional gap while suppressing quality degradation
from excessive guidance. The scheduler of CFG++ prevents premature intensity decay, making it
suitable for our approach. (3) Iterations (×2/1/2): While 2-3 iterations suffice for high-quality results,
excessive iterations introduce computational overhead and risk divergence from the data manifold.
(4) Timestep prioritization: Early-stage ((2/3T ,T ]) foresighted guidance drives quality gains, while
later timestep calibrations refine details.
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Table 8: Ablation study on differ-
ent choices (metrics differences shown).
Dataset: Pick-a-Pic.

Method IR↑ HPSv2↑ AES↑ CLIP↑

FSG50 98.59 28.89 6.60 34.32
Interval×1/2 -8.20 -0.04 0.01 -0.13
Interval×2 -2.40 -0.12 -0.01 -0.23

FSG150 104.86 29.04 6.65 34.28
Iterations×1/2 -6.16 -0.21 +0.03 -0.23
Iterations×2 -2.41 -0.50 -0.13 -0.07
Early -4.82 -0.19 -0.08 -0.14
Early+Mid -2.33 -0.12 -0.07 -0.14
w.o. CFG++ -4.78 -0.08 +0.03 -0.03

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
88

94
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102

106
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Figure 5: Guidance strength analysis. FSG shows robust-
ness on λ ∈ [0.4, 1.3]. Dataset: Pick-a-Pic; NFE:150.

5 Related Works

Classifier-Free Guidance [15] (CFG) is crucial for modern text-to-image diffusion models, yet
its mechanisms remain unclear. While initially framed as sampling from p̃(x|c) ∝ p(x)p(c|x)w,
this interpretation has proven inconsistent with implementation behaviors [4]. Recent works pursue
distinct objectives: sampling from p̃(x|c) ∝ p(x|c)R(x, c) [9], minimizing score distillation sampling
loss [5], functioning as a predictor–corrector [2], and satisfying Fokker-Planck equations [33].
However, these approaches’ entanglement with diffusion sampling dynamics impedes both theoretical
progress and unified method comparison. Our fixed point iteration framework circumvents this
coupling through a sampling-independent interpretation.

The golden path phenomenon states that specific noise yields superior generation outcomes [23, 34].
Empirical observations demonstrate that noise capable of unconditionally generating an image
matching condition c achieves enhanced performance when guided by c [23, 1]. This observation has
motivated various approaches, including optimizing initial noise [11, 23], neural network-based noise
prediction [34], and progressive refinement during inference [1]. While effective, these techniques
incur significant computational overhead. To the best of our knowledge, our work presents the first
established connection between this phenomenon and CFG.

6 Conclusion

In this work, we introduce a unified framework for classifier-free guidance (CFG) in text-to-image
diffusion models by reinterpreting conditional generation as a calibration process toward a golden
path. First, we propose fixed point iteration as a methodological tool to enforce latent consistency
between conditional and unconditional outputs, establishing a sampling-independent framework with
broader design applicability. We unify existing CFG and its variants as short-interval single-step
approaches under this framework, which are theoretically inefficient. Second, we present Foresight
Guidance (FSG), a multi-step iteration paradigm that reduces subproblems while enabling long-
horizon guidance, achieving an enhanced alignment-quality balance. Comprehensive experiments
demonstrate the superiority of FSG over state-of-the-art methods. We anticipate that our unified
perspective will catalyze advancements in adaptive, efficient diffusion guidance strategies.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In Section 1, we summarize our main contributions in the last paragraphs.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of the work in the Appendix F.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We state Theorem 1 with necessary assumptions in Section 3.2, and provide
the proofs for them in Appendix C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Following the information in Section 3 and Appendix D.1, the experiments of
the paper can be reproduced.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our codes are publicly available at https://github.com/Ka1b0/Foresight-
Guidance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4.1 states the basic experimental settings and Appendix D includes
more details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We include error bars in our experimental results in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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A Unified Framework

In this section, we establish a theoretical framework that unifies guidance methods under the perspec-
tive of fixed-point iterations. Through systematic examination of Classifier-Free Guidance (CFG),
its variant CFG++, and reflective sampling techniques including Z-Sampling and Resampling, we
demonstrate how these approaches achieve conditional generation through distinct yet analogous
fixed point operators. Our framework decouples guidance to denoising-agnostic calibration steps,
facilitating the design of guidance algorithms.

A.1 Classifier-Free Guidance (CFG) [15]

Classifier-Free Guidance (CFG) enhances conditional generation by interpolating conditional and
unconditional noise predictions during the diffusion process. Our analysis reveals that CFG’s forward
process corresponds to a linear fixed-point operator with consistency intervals spanning t → t− 1,
requiring 1 NFE per iteration.

To formalize this, we begin with the DDIM update step governed by the predicted noise ϵ(xt):

xt−1 =

√
ᾱt−1√
ᾱt

[
xt −

√
1− ᾱtϵ(xt)

]
+
√

1− ᾱt−1ϵ(xt), (9)

where ᾱt =
∏t

i=1 αi = αtᾱt−1. Through algebraic rearrangement, we derive an equivalent
representation that better elucidates the noise dependency:

xt−1 =

√
ᾱt−1√
ᾱt

xt +

(√
1− ᾱt−1 −

√
ᾱt−1√
ᾱt

√
1− ᾱt

)
ϵ(xt)

=

√
ᾱt−1√
ᾱt

xt +

(√
1− ᾱt−1 −

√
1− ᾱt√
αt

)
ϵ(xt). (10)

CFG introduces a rescaled noise prediction to amplify conditional guidance:
ϵw(xt) = ϵu(xt) + w(ϵc(xt)− ϵu(xt)), (11)

where w > 1 modulates guidance strength. Substituting ϵw(xt) into the update rule yields:

xt−1 =

√
ᾱt−1√
ᾱt

xt +

(√
1− ᾱt−1 −

√
1− ᾱt√
αt

)
× [ϵu(xt) + w(ϵc(xt)− ϵu(xt))] . (12)

This formulation admits an insightful reinterpretation as a two-step process. First, the latent variable
x̂t is calibrated via:

x̂t = xt − w
(√

1− ᾱt −
√
αt − ᾱt

)
(ϵc(xt)− ϵu(xt)), (13)

followed by an unconditional denoise:

xt−1 =

√
ᾱt−1√
ᾱt

x̂t +

(√
1− ᾱt−1 −

√
1− ᾱt√
αt

)
ϵu(xt). (14)

The iterative variant CFG×K is detailed in Algorithm 2.

A.2 CFG++ [5]

CFG++ derives conditional guidance through manifold constraints formulated from an inverse
problem perspective, closely aligned with CFG in implementation. Our analysis demonstrates that
CFG++ similarly corresponds to a linear fixed-point operator iteration but diverges from CFG solely
in its strength scheduling strategy, retaining the consistency interval t → t− 1 at a computational
cost of 1 NFE per iteration.

CFG++ adjust the guidance strength through parameter λ applied to the noise difference term:

xt−1 =

√
ᾱt−1√
ᾱt

{
xt −

√
1− ᾱt[ϵ

u(xt) + λ(ϵc(xt)− ϵu(xt))]
}

+
√
1− ᾱt−1ϵ

u(xt). (15)
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This admits similar calibration-interpretation, where the latent calibration becomes:

x̂t = xt − λ
√
1− ᾱt(ϵ

c(xt)− ϵu(xt)), (16)

followed by the same unconditional update:

xt−1 =

√
ᾱt−1√
ᾱt

x̂t +

(√
1− ᾱt−1 −

√
1− ᾱt√
αt

)
ϵu(xt). (17)

Both CFG and CFG++ exhibit fixed-point behavior through linear operators:

FCFG(xt) = xt + wξt(ϵ
c(xt)− ϵu(xt)), (18)

FCFG++(xt) = xt + λξ̃t(ϵ
c(xt)− ϵu(xt)), (19)

where ξt =
(√

1− ᾱt −
√
αt − ᾱt

)
, ξ̃t =

√
1− ᾱt respectively. Note that fixed-point F (xt) = xt

implies consistency ϵc(xt) = ϵu(xt), enforcing alignment between conditional and unconditional
update paths: fu

t→t−1(xt) = fc
t→t−1(xt). The iterative variant CFG++×K is detailed in Algorithm 3.

Algorithm 2: CFG×K

Input :Initial noise xT , Condition c, Timesteps
T , Iterations K, Strength w > 1.

Output :Generated image x0

1 for t← T to 1 do
2 x

(0)
t = xt;

3 CFG Fixed Point Calibration;
4 for k ← 1 to K do
5 ξt =

√
1− ᾱt −

√
αt − ᾱt;

6 x
(k)
t = x

(k−1)
t − wξt∆ϵ(x

(k−1)
t );

7 end
8 Denoising Step;
9 xt−1 = Sampler(x(K)

t , ϵu(x
(K−1)
t ));

10 end
11 return x0

Algorithm 3: CFG++×K

Input :Initial noise xT , Condition c, Timesteps
T , Iterations K, Strength λ ∈ [0, 1].

Output :Generated image x0

1 for t← T to 1 do
2 x

(0)
t = xt;

3 CFG++ Fixed Point Calibration;
4 for k ← 1 to K do
5 ξ̃t =

√
1− ᾱt;

6 x
(k)
t = x

(k−1)
t − λξ̃t∆ϵ(x

(k−1)
t );

7 end
8 Denoising Step;
9 xt−1 = Sampler(x(K)

t , ϵu(x
(K−1)
t ));

10 end
11 return x0

A.3 Z-Sampling [1]

Z-sampling augments conditional guidance by reflective sampling steps: inversion using unconditional
noise followed by forward using high-strength guided noise. This procedure is mathematically
equivalent to a fixed-point iteration using an backward-forward operator. When integrated with CFG
after reflective sampling updates, the process achieves a consistency interval of t+ 1 → t− 1 at a
cost of 3 NFE per iteration.

Z-Sampling enforces backward-forward consistency via the relation:

fu
t→t+1(xt) = fγ

t→t+1(xt) =⇒ xt = fγ−1

t→t+1 ◦ fu
t→t+1(xt). (20)

Here, fγ denotes denoising with noise ϵu+γ(ϵc−ϵu). In fact, the equality fu
t→t+1(xt) = fγ

t→t+1(xt)
can be viewed as a generalization of fu

t→t+1(xt) = f c
t→t+1(xt). This stems from the relationship:

ϵu(xt) = ϵc(xt) implies ϵu(xt) = ϵu(xt)+γ[ϵc(xt)− ϵu(xt)], which establishes that fu
t→t+1(xt) =

f c
t→t+1(xt) can be extended to fu

t→t+1(xt) = fγ
t→t+1(xt).

Approximating the inverse process fγ−1

t→t+1 ≈ fγ
t+1→t, we derive:

x̃t = f c
t+1→t ◦ fu

t→t+1(xt). (21)

Subsequent application of CFG’s calibration step yields:

x̂t = x̃t − w
(√

1− ᾱt −
√
αt − ᾱt

)
(ϵc(x̃t)− ϵu(x̃t)), (22)

xt−1 =

√
ᾱt−1√
ᾱt

x̂t +

(√
1− ᾱt−1 −

√
1− ᾱt√
αt

)
ϵu(x̃t). (23)

This constructs a composite fixed-point iteration over the extended interval t+ 1 → t− 1.
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A.4 Resampling [20]

Resampling also utilizes backward-forward fixed-point iterations but differs by incorporating a model-
free stochastic noise function for the inversion step. Consequently, it maintains the t+ 1 → t− 1
update interval while reducing the computational cost to 2 NFE per iteration.

The stochastic backward step is defined as:

nt→t+1(xt) =
√
αt+1xt +

√
1− αt+1ϵ, ϵ ∼ N (0, I), (24)

which leads to the complete update sequence:

x̃t = fγ
t+1→t ◦ nu

t→t+1(xt), (25)

x̂t = x̃t − w
(√

1− ᾱt −
√
αt − ᾱt

)
(ϵc(x̃t)− ϵu(x̃t)), (26)

xt−1 =

√
ᾱt−1√
ᾱt

x̂t +

(√
1− ᾱt−1 −

√
1− ᾱt√
αt

)
ϵu(x̃t). (27)

Although computationally efficient, the stochastic approximation nt→t+1 introduces semantic distor-
tion compared to deterministic counterparts.

We demonstrate that Resampling can be viewed as an approximation of Z-Sampling when the step
size is sufficiently small and γ is sufficiently large. First, we express the DDIM forward process
fγ
t+1→t explicitly:

fγ
t+1→t(xt+1) =

1
√
αt+1

xt+1 +

(√
1− ᾱt −

√
1− ᾱt√
αt+1

)
ϵγ(xt+1). (28)

For a sufficiently small step size, we approximate ϵ(xt+1) ≈ ϵ(xt) and substitute xt+1 =
√
αt+1xt+√

1− αt+1ϵ to obtain the fixed-point update form:

x̂t =
1

√
αt+1

(
√
αt+1xt +

√
1− αt+1ϵ) +

(√
1− ᾱt −

√
1− ᾱt√
αt+1

)
ϵγ(xt+1)

= xt +mtϵ+ nt[ϵ
u(xt) + γ(ϵc(xt)− ϵu(xt))],

(29)

where mt =
√
1− αt+1/

√
αt+1 and nt =

√
1− ᾱt −

√
1− ᾱt/

√
αt+1 are time-dependent con-

stants. Compared to the fixed-point objective ϵc(xt)− ϵu(xt) = 0 of other operators, the objective
for Resampling’s fixed-point operator becomes:

ϵc(xt)− ϵu(xt) =
1

γ
[mtϵ− ntϵ

u(xt)]. (30)

Theoretically, the objective of Resampling aligns with other fixed-point operators when γ is suf-
ficiently large. In practice, however, γ is not set to an extremely large value to maintain sample
quality, which causes Resampling to underperform compared to other operators. Nevertheless, Table
2 shows that Resampling still benefits from increased iteration counts. This empirically confirms that
Resampling’s fixed-point operator is a functional, albeit suboptimal, choice.

This systematic analysis demonstrates how various guidance methods can be unified under our fixed
point framework, as summarized in Table 1 of the main text.

A.5 Comparison of Design Choices

This section provides a comprehensive analysis of the design choices within our unified fixed point
iteration framework, examining both iteration strength schedulers and fixed point operators.

Iteration strength schedulers. The schedulers for CFG and CFG++ are given by ξt =
√
1− ᾱt −√

αt − ᾱt and ξ̃t =
√
1− ᾱt, respectively. Using the αt setting in DDIM as an example, Figure 6

shows the ξt and ξ̃t at different timesteps.
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Figure 6: Comparison of iteration
strength schedulers for CFG (ξt) and
CFG++ (ξ̃t) across different timesteps.

It can be observed that, in the early stages where guidance
has a greater impact on generation (t ∈ [0.67, 1]), the guid-
ance strength provided by ξt decays rapidly, which limits
generation quality. In contrast, ξ̃t provides more stable
iteration strength during these critical early stages, ex-
plaining the improved stability of CFG++ over CFG. The
mathematical derivation of these schedulers reveals that
ξt contains an additional term

√
αt − ᾱt that causes the

rapid decay, while ξ̃t maintains a more gradual decrease
throughout the diffusion process.

Fixed point operators. In FSG, a forward-backward
operator with a larger interval ∆t is selected, as it ex-
hibits a smaller contraction rate, thereby accelerating the
convergence of the fixed-point algorithm.

Due to the complexity of neural networks, a direct compu-
tation of the model’s contraction rate is infeasible. Instead,
we employ an empirical estimation of the local contraction rate within a neighborhood of xt, defined
as a set of points generated by mixing the same x0 with slightly different noises. The local contraction
rate for an operator F under the ℓ2 norm is measured as:

r̂ = Ex0∼p(x)
∥F (xt)− F (x′

t)∥22
∥xt − x′

t∥22
, (31)

where xt, x
′
t are obtained by mixing different noises with x0.

Table 9: Empirical contraction rates r̂ for different operators across denoising timesteps.

Operators t =0.2 t =0.4 t =0.6 t =0.8

id − wt∆ϵ (CFG, CFG++) 1.00 1.00 1.00 1.00
fγ
t+dt→t ◦ fu

t→t+dt (Z-sampling) 1.04 0.99 0.97 0.99
fγ
t+dt→t ◦ nu

t→t+dt (Resampling) 0.89 0.97 1.03 1.07
fu
t/2→t ◦ f

γ
t→t/2 1.03 0.95 0.96 0.98

fu
t/4→t ◦ f

γ
t→t/4 0.61 0.91 0.88 0.91

fu
0→t ◦ f

γ
t→0 0.62 0.70 0.75 0.79

Notably, long-interval operators (e.g., fu
0→t ◦ fγ

t→0) demonstrate lower contraction rates (r̂ < 1)
compared to short-interval operators such as Z-sampling or Resampling. To balance convergence
speed and operator complexity, we select an intermediate interval ∆t (dt < ∆t < t) for the operator
fu
t−∆t→t ◦ f

γ
t→t−∆t.

The contraction rate of an operator depends on the choice of metric. While operators in CFG/CFG++
are non-contracting under the ℓ2 norm, they may exhibit contraction in other carefully designed
metrics. Empirically, as shown in Table 2, these methods also benefit from additional iterations,
supporting the fixed-point framework.

B Discussion of Golden Path

The concept of the golden path, wherein latent representations yield consistent outputs under both
conditional and unconditional generation, is central to our framework. This section provides empirical
evidence supporting this theoretical foundation and demonstrates its practical implications. We
construct matched and unmatched samples xt (on and off the golden path, respectively) by design.

• Match case: An image xc is generated conditioned on a prompt c. We then obtain xt

via DDIM inversion [27] using unconditional noise ϵu(xt), i.e., xt = fu
0→t(x

c). These
xt exhibit consistency between conditional and unconditional generation paths, satisfying
xc ≈ fu

t→0(xt) ≈ fc
t→0(xt).
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• Mismatch case: For each matched sample, we assign a different prompt c′ ̸= c to create a
mismatch, where xc ≈ fu

t→0(xt) ̸= fc′

t→0(xt).

Table 10: Performance from xt under matched (c)
and mismatched (c′ ̸= c) conditions.

t
IR HPSv2

Match Mismatch Match Mismatch

0.8 97.09 -69.96 28.85 25.02
0.6 89.45 -171.16 28.73 22.84
0.4 84.42 -196.38 28.53 21.86
0.2 81.43 -201.60 28.47 21.53

Using these xt as starting points, we evaluate
generation performance under matched and mis-
matched prompt conditions using CFG [15]. As
shown in Table 10, when f c/ut → 0(xt) is mis-
matched, both the alignment and quality of the
generated images decrease significantly. Intu-
itively, when fut → 0(xt) aligns poorly with
condition c, a larger proportion of the compo-
nents in xt become unsuitable for generating
content consistent with c. This forces the diffu-
sion model to make more substantial corrections
within the limited t → 0 interval, ultimately
compromising generation quality and prompt adherence. These results empirically validate our theo-
retical framework and motivate the use of fixed-point iterations to achieve golden path consistency.

C Proofs

We now present the theoretical foundations for FSG, summarized in Theorem 1. We first clarify the
notations and state the key assumptions. Under mild conditions, we provide theoretical guidance
for allocating the total number of fixed-point iterations N . Recall that we partition the diffusion
process into M intervals ti → ti −∆ti for i = 1, . . . ,M , and perform Ki fixed-point iterations on
each interval using a forward-backward operator Fi := Fti→ti−∆ti . Specifically, for each iteration
j = 1, . . . ,Ki for FSG:

1. Starting from x
(j−1)
ti , apply the conditionally-guided ODE solver fγ

ti→ti−∆ti
to obtain

x
(j−1)
ti−∆ti

.

2. Then, use the unconditionally-guided reverse ODE solver fγ
ti−∆ti→ti

to map back and

update x
(j)
ti .

This forward-backward procedure iteratively calibrates xti by leveraging both conditional and
unconditional guidance over the interval, promoting consistency between the two trajectories. For
other methods such as CFG and CFG++, the operator Fi can be defined as described in Section A
(Appendix A). Our analysis remains applicable under these definitions.

For the clarity of theoretical analysis, we consider a fixed-length interval partition, setting each
interval to size W so that the total number of timesteps T is divided into M = T/W intervals. We
assume M divides N , and allocate K = N/M fixed-point iterations to calibrate each xti , where
ti = iW for i = 1, . . . ,M . This leads to the following procedure to produce the trajectory x̂t from
given xT :

x̂t =

{
FK
t→t−W (xt) , if t mod W = 0

xt, otherwise
, xt−1 = fu

t→t−1 (x̂t) , t = 1 . . . T. (32)

Let εu (x, t) and εc (x, t) denote the unconditional and conditional noise predictions, respectively.
The domain regarding x for all the functions, including εu/c (x, t), fu/c

a→b (x) and Fa→b(x), etc., is
assumed to be Rd (unless otherwise specified). And we use ∥ · ∥ to denote the Euclidean norm in Rd.

Key assumptions are as follows:

1. Boundedness: The latent variables and noise predictions are bounded, i.e.,
∥x̂t∥, ∥ϵc/u(x̂t)∥ ≤ B for some constant B (assumption 1).

2. Smoothness: The noise functions ϵc/u(·) are Lipschitz continuous with a smoothness
constant L (assumption 2). Additionally, the ODE dynamics derived from these noise
functions are smooth (assumption 3).
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3. Contraction: The fixed-point operator Fi is a contraction with a rate bounded by r ∈ (0, 1)
(assumption 4).

Building on the assumptions, we establish a framework for optimizing the allocation of fixed-point
iterations. For the procedure described in (32), we analyze the allocation of iterations across intervals
[(i− 1)W, iW ] for i ∈ [1,M ], where the fixed-point operator FiW→(i−1)W is applied. The sampling
ratio is defined as:

β :=
1

M
=

K

N
=

W

T
, (33)

where M is the number of intervals, K is the number of iterations per interval, N is the total number
of iterations, and T is the total number of timesteps. We derive an upper bound to guide the optimal
choice of β.

Theorem (detailed version of Theorem 1). Assume that Assumptions 1 to 4 hold. Let x̂t denote the
trajectory produced as in (32), with β = 1

M ∈ (0, 1). There exists an upper bound function:

g(β, L, r) =
(
Θ(1) + Θ(L2)

)
r2βN + 2L2β2, (34)

such that:

L =

T∑
t=1

∥εc (x̂t, t)− εu (x̂t, t)∥2 ≤ B2Tg(β, L, r). (35)

The proof is deferred to the end of this section.

Here, O(f(L)) denotes an upper bound up to a constant, i.e., ≤ Cf(L) for some C > 0; Θ(f(L))
denotes both upper and lower bounds up to constants, i.e., cf(L) ≤ · ≤ Cf(L) for some c, C > 0.
The assumption 1 provides a trivial bound L ≤ 4B2T , while large L may lead to g(β, L, r) > 4, so
our bound is more meaningful for smooth noise function with smaller L. For L = O(1), the bound
simplifies to:

g(β, L, r) = Θ(r2βN ) + 2L2β2. (36)

Optimal β for minimizing g(β, L, r): For fixed N , L, and r, the optimal β∗ is obtained by solving:

d

dβ
g(β, L, r) = 4L2β −Θ

(
2N ln(1/r)(1/r)−2βN

)
= 0, (37)

L2β = Θ(N ln(1/r)(1/r)−2βN ).

Here, L2β increases linearly with β, while the term N ln(1/r)(1/r)−2βN decays exponentially,
guaranteeing a unique minimizer β∗. Importantly, as the noise smoothness L decreases, the optimal
β∗ increases, suggesting that smoother noise allows for fewer, longer intervals (i.e., larger W and K).
Conversely, as the total iteration budget N grows, β∗ approaches zero, recovering the short-interval
setting (M = T ) as a limiting case.

Next, we formalize the boundedness assumptions for images and noise, which are standard in
diffusion model analysis:

Assumption 1 (Boundedness). There exists B > 0 such that for all t and all x ∈ Mt,

∥x∥ ≤ B, ∥εu (x, t) ∥ ≤ B. (38)

For images with entries in [0, 1] and size d1 × d2, we may take d = d1d2 and B =
√
d1d2.

We next formalize the smoothness properties of the noise function, introducing a constant L = O(1)
that is independent of the data dimension d and the number of diffusion steps T .

Assumption 2 (Smoothness of Noise). There exists a smoothness constant L ∈ (0, C), such that the
following properties hold for any initial point x and time interval [a, b]:

1. Smoothness at a fixed time: For any t ∈ [a, b] and any pair of points x1, x2, the noise
function satisfies:

∥εu/c (x1, t)− εu/c (x2, t) ∥ ≤ L∥x1 − x2∥. (39)
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2. Smoothness over varying time: Let xu/c
t = f

u/c
a→b (x) for t ∈ [a, b]. Then, for any t1, t2 ∈

[a, b], the noise function satisfies:

∥εu/c
(
xu
t1 , t1

)
− εu/c

(
xu
t2 , t2

)
∥ ≤ LB

|t1 − t2|
T

,

∥εu/c
(
xc
t1 , t1

)
− εu/c

(
xc
t2 , t2

)
∥ ≤ LB

|t1 − t2|
T

.

Building on the smoothness of noise (assumption 2), we analyze the properties of fu/c
a→b (x). Recall

that fu/c
a→b (x) represents an ODE evolving from time a to b, initialized at point x. The ODE is defined

as:
d

dt

(
x
u/c
t√
ᾱt

)
=

d

dt

(√
1− ᾱt

ᾱt

)
ε
u/c
θ

(
x
u/c
t , t

)
, (40)

where θ denotes the parameters of the neural network, which we omit for simplicity in subsequent
discussions. This ODE yields the following explicit form for the time derivative of xu/c

t :

dx
u/c
t

dt
= µtx

u/c
t + λtε

u/c
(
x
u/c
t , t

)
, (41)

where

λt0 :=
√
ᾱt

d

dt

(√
1− ᾱt

ᾱt

) ∣∣∣
t=t0

, µt0 := −
√
ᾱt

d

dt

(
1√
ᾱt

) ∣∣∣
t=t0

. (42)

Assumption 3. Let L be the smoothness constant in assumption 2. There exist constants C > 1 and
c ∈ (0, 1) such that:

1. Smooth Dependence on Initial Error:

∥fu/c
a→b (x)− f

u/c
a→b (y) ∥ ≤ Cℓa,b,L∥x− y∥, (43)

where
ℓa,b,L = (|λa|L+ |µa|)|b− a|+ 1. (44)

2. Noise Control:
∥f c

a→b (x)− fu
a→b (x) ∥ ≥ cλa∥εc (x, a)− εu (x, a) ∥|b− a|. (45)

Motivation: This assumption is motivated by a first-order Taylor expansion of fu/c
a→b (x/y).

• For smoothness on intial error:

f
u/c
a→b (x)− f

u/c
a→b (y) ≈

d

dt

(
f
u/c
a→t (x)− f

u/c
a→t (y)

)∣∣∣∣
t=a

(b− a) + (x− y)

=
(
µa(x− y) + λa

(
εu/c (x, a)− εu/c (y, a)

))
(b− a) + (x− y),

∥εu/c (x, a)− εu/c (y, a) ∥ ≤ L∥x− y∥ from assumption 2,

∥fu/c
a→b (x)− f

u/c
a→b (y) ∥ ≤ Cℓa,b,L∥x− y∥,

where ℓa,b,L := (|λa|L+ |µa|)|b− a|+ 1 captures the effect of the smoothness of noise,
the length of time interval [a, b] the and dynamics of ᾱt in it. C > 1 is a constant that
compensates for the error in the Taylor expansion.

• For noise control:

fu
a→b (x)− f c

a→b (x) ≈
d

dt
(fu

a→t (x)− f c
a→t (x))

∣∣∣∣
t=a

(b− a)

= λa (ε
c (x, a)− εu (x, a)) (b− a),

∥fu
a→b (x)− f c

a→b (y) ∥ ≥ c|λa|∥εc (x, a)− εu (x, a) ∥|b− a|,

where c ∈ (0, 1) compensates for the error in the Taylor expansion.
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Assumption 4 (Contraction and Fixed Point Existence). Let r ∈ (0, 1). For any time interval [a, b],
the fixed point operator Fa→b satisfies the following:

1. Fixed point equivalence: There exists a fixed point x∗ of Fa→b such that:

Fa→b(x
∗) = x∗ ⇔ f c

a→b (x
∗) = fu

a→b (x
∗) . (46)

2. Contraction: For all x, y:

∥Fa→b(x)− Fa→b(y)∥ ≤ r∥x− y∥. (47)

As an example, the main text considers the fixed point operator Fa→b(x) = f
u(−1)

a→b ◦ f c
a→b(x). For

brevity, we write F (x) when the interval [a, b] is clear from context.
Lemma 1. Assume that Assumptions 1 to 4 hold. For any given x, the following inequality holds:

∥f c
a→b

(
F (k) (x)

)
− fu

a→b

(
F (k) (x)

)
∥ ≤ 2Cℓa,b,Lr

k∥x− x∗∥ ≤ 4Cℓa,b,Lr
kB. (48)

Proof. We start by expanding the difference:

∥f c
a→b

(
F (k) (x)

)
− fu

a→b

(
F (k) (x)

)
∥

= ∥f c
a→b

(
F (k) (x)

)
− fu

a→b

(
F (k) (x)

)
−
(
f c
a→b

(
F (k) (x∗)

)
− fu

a→b

(
F (k) (x∗)

) )
∥

≤ ∥f c
a→b

(
F (k) (x)

)
− f c

a→b

(
F (k) (x∗)

)
∥+ ∥fu

a→b

(
F (k) (x)

)
− fu

a→b

(
F (k) (x∗)

)
∥.

Using the smoothness property of f c
a→b (·) and fu

a→b (·) from assumption 3, we have:

∥f c
a→b

(
F (k) (x)

)
− f c

a→b

(
F (k) (x∗)

)
∥ ≤ Cℓa,b,L∥F (k) (x)− F (k) (x∗) ∥, (49)

∥fu
a→b

(
F (k) (x)

)
− fu

a→b

(
F (k) (x∗)

)
∥ ≤ Cℓa,b,L∥F (k) (x)− F (k) (x∗) ∥. (50)

Combining these, we get:

∥f c
a→b

(
F (k) (x)

)
− fu

a→b

(
F (k) (x)

)
∥ ≤ 2Cℓa,b,L∥F (k) (x)− F (k) (x∗) ∥. (51)

Next, applying the contraction property of F from assumption 4, we have:

∥F (k) (x)− F (k) (x∗) ∥ ≤ rk∥x− x∗∥. (52)
Substituting this into the inequality, we obtain:

∥f c
a→b

(
F (k) (x)

)
− fu

a→b

(
F (k) (x)

)
∥ ≤ 2ℓa,b,Lr

k∥x− x∗∥. (53)

Finally, using the boundedness assumption from assumption 1, ∥x− x∗∥ ≤ 2B, we conclude:

∥f c
a→b

(
F (k) (x)

)
− fu

a→b

(
F (k) (x)

)
∥ ≤ 4ℓa,b,Lr

kB. (54)

□

With these assumptions and lemmas established, we are now ready to prove the main theorem.

Proof. We analyze the error in the first interval, as the analysis for other intervals is similar. Let F
bes the simplified notation for FW→0. The error can be bounded as follows:

W∑
t=1

∥εc (x̂t, t)− εu (x̂t, t) ∥2

= ∥εc (x̂W ,W )− εu (x̂W ,W ) ∥2 +
W−1∑
t=1

∥εc (x̂t, t)− εu (x̂t, t) ∥2

(a)

≤ (1 + 3(W − 1))∥εc (x̂W ,W )− εu (x̂W ,W ) ∥2

+ 3

W−1∑
t=1

(
∥εc (x̂t, t)− εc (x̂W ,W ) ∥2 + ∥εu (x̂t, t)− εu (x̂W ,W ) ∥2

)
,

(55)

27



where (a) follows from ∥a+ b+ c∥2 ≤ 3(∥a∥2 + ∥b∥2 + ∥c∥2).
Using the bounds in assumption 2 and assumption 3, we have:

W∑
t=1

∥εc (x̂t, t)− εu (x̂t, t) ∥2

≤ (3W − 2)∥f c
W→0

(
F (K) (xW )

)
− fu

W→0

(
F (K) (xW )

)
∥2 1

c2λ2
WW 2

+ 6
B2

T 2
L2

W−1∑
i=1

(W − i)2

Lemma 1
≤ (4ℓW,0,Lr

KB)2
C2(3W − 2)

c2λ2
WW 2

+ 6
B2

T 2
L2 (W − 1)W (2W − 1)

6
.

(56)

Now, summing over all intervals:

T∑
t=1

∥εc (x̂t, t)− εu (x̂t, t) ∥2

=

M∑
i=1

W∑
t=1

∥εc (x̂iW−W+t, iW −W + t)− εu (x̂iW−W+t, iW −W + t) ∥2

≤
M∑
i=1

(
(4ℓiW,(i−1)W,Lr

KB)2
C2(3W − 2)

c2λ2
iWW 2

+ 6
B2

T 2
L2 (W − 1)W (2W − 1)

6

)

MW=T
= B2

(
16

T/W∑
i=1

ℓ2iW,(i−1)W,L

C2(3W − 2)

c2λ2
iWW 2

r2K

+ 6
L2(W − 1)(2W − 1)

6T

)
.

(57)

Expanding ℓiW,(i−1)W,L, we obtain:

T∑
t=1

∥εc (x̂t, t)− εu (x̂t, t) ∥2

≤ 16B2

T/W∑
i=1

((|λiW |L+ |µiW |)W + 1)
2 C2(3W − 2)

c2λ2
iWW 2

r2K

+ 6B2L
2(W − 1)(2W − 1)

6T

(W−1)(2W−1)≤2β2T 2

≤ 16B2

T/W∑
i=1

((|λiW |L+ |µiW |)W + 1)
2 C2(3W − 2)

c2λ2
iWW 2

r2K + 6B2L
22β2T 2

6T

≤ B2 × 16

T/W∑
i=1

((|λiW |L+ |µiW |)W + 1)
2 C2(3W − 2)

c2λ2
iWW 2

r2K +B2T (2L2β2).

(58)
Observe that |λiW |, |µiW |, i ∈ [M ] are constants, and we define

C1 = 16

T/W∑
i=1

((|λiW |L+ |µiW |)W + 1)
2 C2(3W − 2)

c2λ2
iWW 2

/T = Θ(L2) + Θ(1).
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Finally, grouping terms:

L =

T∑
t=1

∥εc (x̂t, t)− εu (x̂t, t)∥2 ≤ B2Tg(β, L, r), (59)

where
g(β, L, r) =

(
Θ(1) + Θ(L2)

)
r2βN + 2L2β2.

□

D Experimental Details

D.1 Experimental Setup

In this section, we demonstrate the specific setup of the experiment, including the dataset, metrics,
and hyperparameter settings for different methods.

Datasets. The evaluation leverages four datasets to assess text-to-image models.

1. Pick-a-Pic [17] collects real-world user preferences from a text-to-image web app. For each
prompt, users compare two generated images and select their preferred option (or mark a
tie). We use the first 100 prompts from this dataset to test model performance.

2. DrawBench [25] is a comprehensive and challenging benchmark with ∼200 prompts
spanning 11 categories like color, counting, and text rendering. These prompts test how well
models handle complex or ambiguous descriptions.

3. GenEval [10] evaluates whether generated images correctly follow object-focused instruc-
tions. Its 553 prompts cover object placement, quantity, color, leveraging object detection
models to evaluate text-to-image models on a variety of generation tasks.

4. PartiPrompts [32] contains 1,600+ diverse prompts covering creative, technical, and
abstract concepts. We randomly pick 100 prompts to assess how models balance language
understanding and visual creativity.

Metrics. Four metrics are employed to quantify image quality and alignment.

1. Aesthetic Score (AES) [26] quantifies assigning scores (often 1–10) of visual quality by
analyzing contrast, composition, color harmony, and detail richness. AES reflects human
aesthetic preferences to help refine image generation.

2. ImageReward (IR) [30] is a reward model trained on 137,000 expert comparisons using
rating/ranking methods, which can be integrated with reinforcement learning to enhance
output alignment with human preferences.

3. Human Preference Score v2 (HPSv2) [29] is fine-tuned from CLIP based on Human
Preference Dataset v2 with 798,090 human preference choices. HPSv2 can predicts authentic
human perceptions of beauty and style.

4. CLIPScore [12] measures text-image alignment via CLIP embedding cosine similarity.
This metric is essential in text-to-image synthesis, ensuring that generated visuals maintain
semantic alignment.

Hyper-parameters. For Classifier-Free Guidance (CFG), we adopted a guidance strength w = 5.5,
while CFG++ used λ = 0.6. Both methods utilized 50 inference steps. In Z-Sampling, forward
guidance strength was set to 5.5, and reverse guidance strength to 0. Following the setting in [1],
reflective sampling was applied during first 12/25 steps for NFE=50, 25/50 steps for NFE=100, and all
50 steps for NFE=150. For Resampling, configurations varied by NFE: at NFE=50, 25 inference steps
with one resample per step; for NFE=100/150, 50 steps with 1 or 2 resamples per step, respectively.

For our Foresight Guidance (FSG) method, we set λ = 1.0 for NFE=50/100 and λ = 0.7 for
NFE=150. We allocate fixed-point iterations (ti,∆ti,Ki) using a stage-wise strategy that prioritizes
early timesteps:
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Table 11: Performance under different hyperparameter settings. Dataset: Pick-a-Pic; NFE: 100.

Setting IR↑ HPSv2↑ AES↑ CLIP↑

3:2:1 (Default) 102.82 29.05 6.66 34.30
1:1:1 99.13 28.95 6.67 34.14
1:2:3 93.23 28.70 6.63 33.75
Intra-stage perturbation 102.29 (± 1.01) 28.72 (± 0.22) 6.59 (± 0.04) 34.33 (± 0.17)
Interval perturbation 102.17 (± 0.79) 29.04 (± 0.02) 6.67 (± 0.01) 34.28 (± 0.04)

Table 12: The quantitative results on PartiPrompts Dataset with the SDXL model and NFE = 50, 100,
150 (↑ denotes higher is better, best results under the same NFE are bolded).

Method NFE IR↑ HPSv2↑ AES↑ CLIP↑

CFG 50 99.13 28.72 6.41 33.01
CFG++ 50 106.80 28.96 6.42 33.20
Z-Sampling 50 114.74 29.04 6.32 33.41
Resampling 50 96.73 28.73 6.17 33.35
FSG (ours) 50 117.65 29.20 6.30 33.53

CFG×2 100 117.84 29.25 6.33 33.42
CFG++×2 100 115.35 29.33 6.26 33.46
Z-Sampling 100 118.39 29.22 6.34 33.47
Resampling 100 112.72 29.23 6.31 33.20
FSG (ours) 100 121.11 29.38 6.29 33.46

CFG×3 150 117.00 29.37 6.22 33.40
CFG++×3 150 117.02 29.29 6.22 33.41
Z-Sampling 150 120.20 29.35 6.35 33.34
Resampling 150 113.62 29.16 6.24 33.16
FSG (ours) 150 123.28 29.40 6.34 33.41

• NFE=50 (limited budget): We employ 40 inference steps and concentrate iterations on
early stages. Fixed-point iterations are performed at timesteps t ∈ {1.0, 0.875, 0.625} with
interval size ∆t = 0.125, executing K = 2, 2, 1 iterations respectively.

• NFE=100 (moderate budget): We adopt 50 inference steps with a 3:2:1 allocation ratio across
early, middle, and late stages. Specifically: (i) Early stage (t ∈ {0.68, 0.72, · · · , 1.0}):
24 NFEs with ∆t = 0.06, applying 2 iterations at t ∈ {1.0, 0.92, 0.8} and 1 iteration
at remaining timesteps; (ii) Middle stage (t ∈ {0.36, 0.40, · · · , 0.64}): 16 NFEs with
∆t = 0.04; (iii) Late stage (t ∈ {0.08, 0.14, · · · , 0.32}): 10 NFEs with ∆t = 0.02.

• NFE=150 (ample budget): With sufficient computational resources, we augment the
NFE=100 configuration by adding supplementary fixed-point iterations at intermediate
timesteps {0.02, 0.06, . . . , 0.98} with interval ∆t = 0.02 to enhance image detail.

Despite the apparent complexity of the hyperparameters {(ti,∆ti,Ki)}, they are relatively straight-
forward to configure and do not require extensive fine-tuning. As demonstrated in Table 11, FSG
maintains stable performance under random perturbations to timestep positions (±0.02) or interval
lengths (×0.7-1.3), provided the overall stage-wise allocation ratio (e.g., 3:2:1) is preserved.

D.2 Experiment Results in PartiPrompts Dataset

In this section, we present comparative experiments between our method and various baselines on the
PartiPrompts dataset, aiming to mitigate dataset-induced bias and further validate the effectiveness of
our approach.
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Figure 7: Proportion of samples that outperform the other four methods (Top-1 rate).

As shown in Table 12, our method FSG consistently achieves state-of-the-art performance across IR
and HPSv2 metrics. For the CLIP metric, FSG outperforms all other baselines at NFE = 50 and NFE
= 150, with only a marginal difference (-0.01) against the best performance at NFE = 100. Notably,
FSG demonstrates substantial improvements over CFG in the IR metric across all NFE levels (50,
100, and 150), with performance gains of +18.52, +3.27, and +6.28 respectively. Compared to the
second-best method, we achieve consistent improvements of +2.91, +2.72, and +3.08, demonstrating
superior image generation quality. The strong performance on both HPSv2 and CLIP metrics further
confirms that our method maintains excellent alignment while producing high-quality outputs.

These results collectively demonstrate that our fixed-point iteration strategy enables more balanced
sub-problem decoupling, leading to better convergence behavior and improved performance in both
image quality and text alignment. These findings align with the results obtained on the DreamBench
and Pick-a-Pic datasets, as presented in Table 2 of the main text.

D.3 Additional Results on Top-1 Rate

In this section, we present the Top-1 rate of different methods on SDXL. As evidenced by the Top-1
rate in Figure 7, FSG exhibits a significant advantage at NFE=50, particularly in HPSv2 (46% on
DrawBench, 40.5% on Pick-a-Pic) and IR (34% on DrawBench, 29% on Pick-a-Pic). Even as
NFE increases, FSG retains superiority in HPSv2, suggesting that long-interval guidance effectively
strengthens alignment with human preferences.
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(c) DrawBench, NFE: 100
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(d) Pick-a-Pic, NFE: 100
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(e) DrawBench, NFE: 150

02004006008001000
Denosing steps: t

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

||
c (x

t)
u (

x t
)||

2

CFG
CFG++

Z-Sampling
Resampling

FSG

(f) Pick-a-Pic, NFE: 150

Figure 8: Prediction gap during denoising, indicating the effectiveness of the fixed point iteration.

A notable observation is the divergent performance characteristics of fixed-point iteration variants.
For example, at NFE=150, CFG enhances AES metrics, while Resampling improves IR of specific
samples, likely attributable to its stochastic nature. These findings highlight the potential for adaptive
frameworks that exploit the unique properties of fixed-point operators to address diverse objectives,
presenting a promising direction for future research.

D.4 Additional Results on Prediction Gap

In this section, we analyze the noise prediction gap ∥ϵu(xt)− ϵc(xt)∥22 during the denoising process
of different methods on SDXL. We select the prediction gap as a key metric since it provides insight
into score estimation accuracy along the generation trajectory. We hypothesize that models achieve
optimal score [28] (noise) estimation when ϵc(xt)− ϵu(xt) → 0, and accumulated score estimation
errors

∑
t ϵ

c(xt)− ϵu(xt) → 0 along the trajectory are known to correlate with generation quality [3].
Since conditional and unconditional diffusion models share most parameters and differ only in cross-
attention layers, larger discrepancies between ϵc(xt) and ϵu(xt) present greater learning challenges
and potentially induce larger prediction errors. Through examination of the prediction gap along
trajectories, we demonstrate that FSG may benefit from more accurate score estimation, which
translates to improved generation performance.
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Table 13: Comparison of fixed point iterations with increasing inference steps on the SDXL model
with NFE = 50, 100, 150 (↑ denotes higher is better, best results under the same NFE are bolded).

Datasets DrawBench [25] Pick-a-Pic [17]
Method NFE IR↑ HPSv2↑ AES↑ CLIP↑ IR↑ HPSv2↑ AES↑ CLIP↑

CFG 50 59.02 28.73 6.07 32.29 82.14 28.46 6.73 33.53
FSG (ours) 50 82.81 29.42 6.01 32.65 98.59 28.89 6.60 34.32

CFG×2 100 77.71 29.36 6.06 32.44 96.06 28.84 6.64 34.13
CFG-100 100 67.87 28.85 6.12 32.36 85.11 28.55 6.73 33.51
FSG (ours) 100 84.12 29.54 6.02 32.76 102.82 29.05 6.66 34.30

CFG×3 150 83.56 29.51 5.95 32.66 102.13 29.04 6.61 34.28
CFG-150 150 29.37 28.12 6.05 32.43 62.50 27.91 6.65 32.98
FSG (ours) 150 88.18 29.44 5.96 32.70 104.86 29.04 6.65 34.28

Table 14: Quantitative results on SD2 model. Dataset: Pick-a-pic; NFE: 50 and 100.

NFE 50 100
Method IR↑ HPSv2↑ AES↑ CLIP↑ IR↑ HPSv2↑ AES↑ CLIP↑

CFG -92.80 25.16 5.63 29.76 -30.30 26.51 5.97 31.70

CFG ×1/2 -92.80 25.16 5.63 29.76 -9.55 26.80 5.88 32.05
CFG++×1/2 -71.92 25.49 5.76 30.23 -2.15 26.97 5.92 32.34
Z-sampling -6.22 26.97 6.06 32.53 0.80 27.21 6.06 32.58
Resampling -17.30 26.54 5.83 32.01 -10.29 26.87 5.91 31.94
FSG (ours) 3.30 27.21 5.93 32.59 12.94 27.37 5.97 32.77

As illustrated in Figure 8, FSG accelerates fixed-point convergence at NFE=50 by integrating long-
interval guidance and prioritizing early-stage iterations, accounting for its superior performance
under low computational budgets. At higher NFE levels, however, the benefits of long-interval
guidance diminish, resulting in comparable convergence speeds across fixed-point operators. Notably,
Resampling exhibits slower mid-term convergence due to its stochastic nature, whereas CFG++
achieves greater stability through a smoother strength scheduler.

D.5 Comparison of Fixed Point Iterations with Increasing Inference Steps

In this section, we compare the performance difference between extending the fixed point iterations
and inference steps. As shown in Table 13, allocating inference resources to increase fixed-point
iterations yields greater performance improvements compared to increasing the number of inference
steps. Gains from additional inference steps saturate rapidly and exhibit instability when the step
count is not evenly divisible by T . In contrast, extending fixed-point iterations aligns the denoising
trajectory closer to the golden path, producing outputs more consistent with human preferences. For
instance, at NFE=100, CFG×2 achieves an approximate IR improvement of 10. Our proposed FSG
enhances this advantage by optimizing subproblem-solving strategies.

D.6 Additional Results on Different Models and Samplers

In this section, we present experimental results for the DDPM sampler [14], SD2 [24], and Hunyun-
DiT [18] models under NFE = 50 and NFE = 100 settings, complementing the NFE = 150 case
discussed in the main text.

As shown in Table 14 and Table 15, FSG maintains superior performance across IR, HPSv2, and
CLIP metrics at NFE = 50 and NFE = 100 for both Hunyun-DiT and SD2 models, consistent with
the NFE=150 results. With Hunyun-DiT as the base model, FSG improves the IR metric by +11.39
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Table 15: Quantitative results on Hunyuan-DiT model. Dataset: Pick-a-pic; NFE: 50 and 100.

NFE 50 100
Method IR↑ HPSv2↑ AES↑ CLIP↑ IR↑ HPSv2↑ AES↑ CLIP↑

CFG 116.82 29.09 6.59 33.00 120.50 29.12 6.74 33.20

CFG ×1/2 116.82 29.09 6.59 33.00 121.05 29.15 6.54 32.96
CFG++×1/2 115.63 29.03 6.63 32.97 119.71 29.19 6.64 33.14
Z-sampling 127.82 29.21 6.69 33.56 128.45 29.37 6.71 33.40
Resampling 116.62 29.23 6.65 33.33 121.77 29.32 6.69 33.27
FSG (ours) 128.21 29.40 6.68 33.56 129.70 29.38 6.68 33.48

Table 16: Quantitative results on DDPM sampler. Dataset: Pick-a-pic; NFE: 50 and 100.

NFE 50 100
Method IR↑ HPSv2↑ AES↑ CLIP↑ IR↑ HPSv2↑ AES↑ CLIP↑

CFG 61.85 27.90 6.72 32.88 81.52 28.61 6.67 33.42

CFG ×1/2 61.85 27.90 6.72 32.88 83.56 28.56 6.70 33.61
CFG++×1/2 67.19 28.00 6.68 33.19 81.56 28.60 6.69 33.72
Z-sampling 83.99 28.54 6.60 33.78 87.26 28.60 6.66 33.56
Resampling 73.58 28.23 6.61 33.34 84.04 28.51 6.67 33.55
FSG (ours) 90.95 28.80 6.67 33.85 91.82 28.66 6.63 33.81

(NfE = 50) and 9.20 (NFE = 100) over the CFG baseline. For the SD2.0 base model, FSG achieves
more pronounced improvements in IR, with gains of +96.10 (NFE = 50) and +43.24 (NFE = 100).
These results confirm the model-agnostic characteristic of FSG, demonstrating the plug-and-play
compatibility of FSG across different diffusion models and inference steps. Notably, weaker base
models exhibit greater benefits from the improved convergence properties of FSG.

The DDPM sampler results under NFE = 50 and NFE = 100 are presented in Table 16. Aligning with
the main text’s NFE=150 findings, FSG outperforms other methods in all metrics. It shows significant
quality improvements at NFE = 50 (IR: +29.10; HPSv2: +0.90) and NFE = 100 (IR: +10.30; HPSv2:
+0.39), verifying that FSG’s fixed-point iteration strategy effectively enhances both generation quality
and text alignment for stochastic samplers under varying computational budgets.

These supplementary experiments collectively demonstrate the robust performance of FSG across
different base models, samplers, and computational budgets. The model/sampler-agnostic design of
FSG and efficient resource allocation consistently improve generation quality and text alignment.

E Visualization

E.1 Additional Visual Results

In this section, we showcase more images generated by different methods. As visualized in Figure
9, FSG demonstrates superior alignment with target prompts compared to baseline methods. For
instance:

• In case (a), FSG generates a single blue pizza, whereas other methods produce multiple red
pizzas;

• In (b), FSG accurately renders snowboard on the bench;
• In (c), FSG achieves precise text rendering;
• In (d), FSG strictly adheres to the "in nature" requirement.

Notably, FSG mitigates semantic interference common in generative tasks. For example:
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Figure 9: Additional results of qualitative analysis.
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Figure 10: Representative failure cases of FSG.

• In (e), baselines erroneously depict an "evil spirit" as a cat due to the "cat" in prompt, while
FSG avoids this bias;

• In (f), baselines incorrectly blend "brown" semantics into a "blue bird" generation, whereas
FSG almost preserves color fidelity.

These results highlight the robustness of FSG in aligning with complex prompts, attributed to the
long-interval guidance strategy of FSG that stabilizes semantic coherence during generation.

E.2 Failure Case Analysis

Although FSG demonstrates superior performance across diverse benchmarks, we acknowledge its
limitations through failure case analysis. Figure 10 presents representative failure modes encountered
by FSG. Most failures originate from inherent deficiencies in the underlying diffusion models. As
shown in Figure 10, FSG inherits the base model’s difficulties with complex text rendering and
counter-intuitive scene compositions.

A notable failure mode specific to FSG stems from its design philosophy of prioritizing strong
guidance during early diffusion stages. When the base model exhibits semantic misinterpretations in
early timesteps, such as conflating a chess piece with royalty for the term "queen," or overemphasizing
individual tokens like "dog", FSG’s intensive early-stage calibration can inadvertently reinforce these
misconceptions. This amplification effect propagates through subsequent denoising steps, resulting
in misaligned generation.

We hypothesize that prompt-aware adaptive guidance, which dynamically adjusts calibration intensity
based on semantic understanding, could mitigate this issue. We leave the exploration of such adaptive
strategies to future work.
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F Border Impact and Limitation

Border Impact. The advancement of text-to-image diffusion models carries significant commercial
potential for industries such as digital art, advertising, and content creation. A critical challenge in
these applications lies in ensuring precise alignment between user prompts and generated outputs,
which hinges on effective guidance mechanisms. Our work addresses this challenge by introducing
a unified framework of fixed point iterations that reinterprets conditional guidance as a calibration
process toward an idealized golden path, thereby decoupling guidance design from sampling dynamics.
By demonstrating that prevalent approaches like classifier-free guidance (CFG) and its variants
correspond to short-interval iterations within our framework, we reveal their inherent inefficiencies
and motivate the proposed foresight guidance (FSG). FSG addresses longer-interval subproblems
during early diffusion stages, optimizing computational resource allocation.

The potential impact of our work is threefold. First, it enables practitioners to flexibly integrate diverse
guidance mechanisms without theoretical constraints. Second, the framework exhibits extensibility to
other domains of conditional generation, such as 3D or video synthesis. Third, it remains compatible
with existing techniques like noise search and preference alignment, facilitating test-time scaling
(TTS) to enhance image quality by leveraging increased computational resources during inference.
Collectively, this work advances adaptive design and offers novel perspectives for unlocking the
potential of conditional guidance in diffusion models.

Limitations In this work, we propose a unified framework grounded in fixed point iteration and
introduce foresight guidance (FSG) to enhance the alignment and efficiency of conditional guidance.
While empirically effective, the framework presents limitations that merit further investigation. First,
the concept of the golden path remains empirically observed but not fully theoretically character-
ized. Second, hyperparameters such as consistency intervals and iteration schedules are determined
heuristically rather than through principled optimization. Despite these challenges, our framework
provides a foundational step toward systematizing guidance mechanisms, offering a flexible platform
for further innovation in efficient and controllable generative modeling.
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