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ABSTRACT

Fast Adversarial Training (FAT) not only improves the model robustness but also
reduces the training cost of standard adversarial training. However, FAT often
suffers from Catastrophic Overfitting (CO), which results in poor robustness per-
formance. CO describes the phenomenon that model robust accuracy can decrease
dramatically and suddenly during the training of FAT. Many effective techniques
have been developed to prevent CO and improve the model robustness from dif-
ferent perspectives. However, these techniques adopt inconsistent training set-
tings and require different training costs, i.e, training time and memory costs,
resulting in an unfair comparison. In this paper, we first conduct a comprehen-
sive study of more than 10 FAT methods in terms of adversarial robustness and
training costs. We revisit the effectiveness and efficiency of FAT techniques in
preventing CO from the perspective of model local nonlinearity and propose an
effective Lipschitz regularization method for FAT. Furthermore, we explore the
effect of data augmentation and weight averaging in FAT and propose a simple
yet effective auto weight averaging method to improve robustness further. By as-
sembling these techniques, we propose a FGSM-based fast adversarial training
method equipped with Lipschitz regularization and Auto Weight averaging, ab-
breviated as FGSM-LAW. Experimental evaluations on four benchmark databases
demonstrate the superiority of the proposed method.

1 INTRODUCTION

Deep Neural Networks (DNNs) can be easily fooled by Adversarial Examples (AEs) which are
carefully crafted by adding imperceptible perturbations to benign samples. Adversarial Training
(AT) has been demonstrated as one of the most effective methods to improve the model robustness
against AEs. In Standard Adversarial Training (SAT) (Wang et al., 2019; Zhang et al., 2020; Cui
et al., 2021), multi-step attack methods such as Projected Gradient Descent (PGD) are often applied
to generate AEs, which are computationally costly. This makes it challenging to apply AT on large-
scale datasets. To reduce training expenses, Fast Adversarial Training (FAT) (Tramèr et al., 2017)
has been proposed. FAT applies a single-step attack such as Fast Gradient Sign Method (FGSM) to
approximate the multi-step attack for AE generation. Recent work (Wong et al., 2020) has revealed
that FGSM-AT does not increase the model’s resilience against AEs. In detail, Wong et al. (2020)
first discover that FGSM-based AT is prone to Catastrophic Overfitting (CO), in which model ro-
bustness increases at the beginning of FGSM-AT but sharply falls down after a few training epochs.

Some FAT variants (Kim et al., 2021; Jia et al., 2022c) have been proposed to prevent CO and
improve the model robustness. Sample initialization (Wong et al., 2020; Jia et al., 2022c) and
loss regularization (Sriramanan et al., 2020) are two commonly used strategies to prevent CO and
improve the model robustness. Sample initialization (Zheng et al., 2020; Jia et al., 2022a) improves
the quality of the AEs by generating better sample initialization. Loss regularization (Sriramanan
et al., 2021) adopts regularity to guide the generation of stronger adversaries and smooths the loss
surface for better robustness. Although these techniques can solve CO effectively, we find some of
them introduce more training burden, contrary to the original intention of FAT. Such inconsistent
training time and memory requirements also result in an unfair comparison.

To have a comprehensive study, we investigate the used techniques of more than tens of papers
working on the FAT methods, which are summarized in Appendix A. We find the robustness im-
provement of these techniques is still correlated with training costs even in FAT. For example, An-
driushchenko & Flammarion (2020) propose a gradient alignment regularization method that can
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relieve CO and improve the model robustness. But it requires high consumption of time to calcu-
late the regular term, which requires extra computational cost. And Zheng et al. (2020) propose
to use the adversarial perturbations from the last epoch as the sample initialization to improve the
model robustness. This method requires extra computational cost and high consumption of memory
to restore the previous perturbations. It would be important to comprehensively conduct empirical
studies of evaluating different FAT-related techniques quantitatively.

In this paper, we focus on exploring and finding efficient and effective FAT-related strategies. We
roughly divide existing FAT-related techniques into two categories: sample initialization and regular-
ization. In addition, we also explore the effect of several techniques on the robustness improvement
for FAT, i.e, data augmentation, and weight averaging. We conduct extensive experiments to eval-
uate the effectiveness and computational cost of various techniques in each category and conclude
the following findings:

• Sample Initialization Prior/learning-based initialization prevents CO and achieves better
model robustness, which requires more training costs. Random sample initialization with
an appropriate step size also prevents CO but achieves limited model robustness improve-
ment without extra training cost.

• Regularization Regularization is unnecessary during the inner maximization step in FAT,
but for outer loss minimization, regularization is critical.

• Data Augmentation Different from SAT (Rebuffi et al., 2021), FAT can achieve better
model robustness when equipped with several sophisticated data augmentations.

• Weight Averaging In contrast to SAT (Wang & Wang, 2022), FAT cannot boost robustness
by simply introducing the weight averaging technique.

Based on the findings above, a) for sample initialization, considering the time consumption, we adopt
random initialization. b) For regularization, motivated by Lipschitz constraint, we propose a novel
regularization approach only use in minimization optimization to achieve better performance and
less time overhead. c) For data augmentation, we find data augmentation can improve the quality
of AEs and adopt the Cutout for FAT. d) For weight averaging, we discover that the reason WA
fails on FAT is that model parameters accumulate non-robust parameters trained on the low-quality
AEs and propose a simple yet effective WA method to automatically select the robust parameters
to conduct WA. By assembling the above techniques, we conclude our FAT method equipped with
Lipschitz regularization and Auto Weight averaging, called FGSM-LAW. Our main contributions
are in three aspects: 1) We explore existing FAT-related techniques and find efficient and effective
FAT techniques for further research. 2) We propose a novel regularization approach motivated by the
Lipschitz constraint, which can further improve the model robustness for FAT. 3) We find WA fails
to boost FAT and propose a simple yet effective WA method for FAT to improve model robustness
further. 4) By assembling these techniques, we conclude our fast adversarial training method, called
FGSM-LAW. Compared with state-of-the-art FAT methods across various network architectures and
datasets, FGSM-LAW achieves higher robustness performance with less training costs.

2 RELATED WORK

2.1 ADVERSARIAL ATTACK METHODS

DNNs are vulnerable to AEs. Several studies (Gu et al., 2021; Wang & He, 2021) focus on generat-
ing AEs. In detail, Goodfellow et al. (2014) propose to adopt Fast Gradient Sign Method (FGSM) to
attack DNNs, which makes use of the model gradient to generate AEs. Projected Gradient Descent
(PGD) known as a strong adversarial attack method, is proposed by Madry et al. (2017). It is an itera-
tive extension of FGSM, which conducts FGSM with the project operation multiple times in a small
attack step. Carlini & Wagner (2017) introduce three distance metrics that are used in the previ-
ous literature and propose some powerful adversarial attack methods, called C&W. Andriushchenko
et al. (2020) propose a score-based black-box adversarial attack method based on a random search,
called Square. Croce & Hein (2020a) propose a fast adaptive boundary attack method that aims
to find the minimal adversarial perturbation to attack DNNs, called FAB. Moreover, Croce & Hein
(2020b) propose two powerful adversarial attack methods (APGD-CE and APGD-DLR), which can
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Figure 1: Generation process of adversarial examples generated by FGSM in FAT on the maxi-
mization loss function. (a) Using a zero initialization. (b) Using the sample initialization. (c) Using
the regularization.

automatically select the attack step size. Further, they combine the two previous adversarial attack
methods (Square and FAB) with their own attack methods, called AutoAttack (AA).

2.2 FAST ADVERSARIAL TRAINING

Even though adversarial training (Zhang et al., 2019; Wu et al., 2020; Cui et al., 2021; Jia et al.,
2022b) have been proposed to be one of the most effective defense methods, it requires high costs to
generate AEs, resulting in its limited practical application. To reduce the training costs, Goodfellow
et al. (2014) propose to adopt FGSM to generate AEs for training, called FGSM-AT. Tramèr et al.
(2017) propose to initialize the clean samples with the Gaussian distribution to conduct FGSM-AT,
called R+FGSM. Wong et al. (2020) indicate that both FGSM-AT and R+FGSM easily encounter
catastrophic overfitting (CO) and propose to initialize the clean samples with the uniform distribu-
tion instead of Gaussian distribution to conduct FGSM-AT, called FGSM-RS. Several FAT methods
are proposed to improve the model robustness from the regularization perspective. In detail, An-
driushchenko & Flammarion (2020) propose a gradient alignment regularization to prevent CO and
improve the model robustness. Also, Sriramanan et al. (2020) propose a ℓ2 distance regularization to
improve the quality of AEs. Sriramanan et al. (2021) propose a Nuclear-Norm regularization to en-
force function smoothing. Moreover, some research focuses on sample initialization to improve the
performance of FGSM-AT. Specifically, Jia et al. (2022c) propose a learnable sample initialization
generated by a generative model to boost FAT. Jia et al. (2022a) propose to use the prior adversarial
perturbation as the sample initialization to improve robustness performance.

3 TECHNIQUES TO PREVENT CATASTROPHIC OVERFITTING

3.1 RETHINKING CATASTROPHIC OVERFITTING

Catastrophic overfitting (CO) indicates the phenomenon that the robust accuracy dramatically and
suddenly decreases during the training parse of FAT, which is first discovered by Wong et al.
(2020). A series of FAT variants have been proposed to prevent CO and improve the robust-
ness from two aspects, i.e., sample initialization and regularization. Rethink that FGSM at-
tack can be regarded as a closed-form solution to the maximization optimization problem, i.e.,
δ = argmax∥δ∥∞<ϵ ⟨∇xℓ(x,y;θ)) , δ

〉
. If the loss function is locally linear, the output of

∇xℓ(x,y;θ) is constant within the ℓ∞-ball around the input sample x, which can provide the at-
tacker with the optimal adversarial perturbation to attack the model. On the contrary, if the loss
function is locally nonlinear, as shown in Fig 1 (a), the generated AEs based on one large step
FGSM may not be able to reach the local maximum region of the loss function, resulting in low-
quality AEs. Jia et al. (2022a;c) have indicated that CO happens when the AE quality becomes
worse. As shown in Fig 1 (b), better initialization can improve the quality of AEs, which can reduce
the effect of local nonlinearity to prevent CO. Adding regularization to the loss function is another
way of reducing local nonlinearity. In detail, as shown in Fig 1 (c), using the regularization can
promote the flatness of the loss surface, which mitigates local nonlinearity and meanwhile improves
the quality of AEs generated by FGSM. Hence, CO is directly related to the quality of the solution
to the inner maximization and it is intrinsically caused by the model’s local non-linearity. Sample
initialization and regularization improve the quality of the AEs in different ways to prevent CO.
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Figure 2: The robustness accuracy under PGD-10 and attack success rate of FGSM-AT, FGSM
with Bernoulli random initialization and FGSM with the regularization of different step sizes on the
CIFAR-10 during the training phase.

3.2 SAMPLE INITIALIZATION

The sample initialization used in FAT is quite different. For a given clean sample x initialized by η,
FAT methods adopt FGSM to generate the adversarial perturbation δ. It can be defined as:

δ = Π[−ϵ,ϵ] [η + α · sign (∇xL(f(x+ η;θ),y))] , (1)

where ϵ represents the maximal perturbation, α represents the attack step size, f(·;θ) represents
the trained model with the weight parameters θ, y represents the ground truth label. And the
L(f(x + η;θ),y) is the loss function for training. We summarize existing initialization methods
used in FAT and divide them into three categories: a) random-based initialization, b) prior-based
initialization and c) learning-based initialization. More details are presented in Appendix B.

Random-based Initialization Most FAT methods (Goodfellow et al., 2014; Tramèr et al., 2017;
Sriramanan et al., 2021) adopt random-based initialization methods to conduct AT. They always
use a random sample-independent distribution to initialize the sample for the AE generation, i.e.,
η ∼ Random(ϵ), where Random(ϵ) represents a random distribution related to the maximum
perturbation strength ϵ. In detail, Goodfellow et al. (2014) conduct FGSM with a zero initialization
to generate AEs, i.e., η = 0. Tramèr et al. (2017) apply FGSM with a normal initialization in the
half perturbation to generate AEs for training, i.e., η = ϵ

2 · Normal(0, 1), called FGSM-NR. Wong
et al. (2020) propose to implement FGSM with a uniform initialization in the whole perturbation to
generate AEs for training, i.e., η = ϵ · Uniform(−1, 1), called FGSM-RS. Moreover, in the recent
research (Sriramanan et al., 2020; 2021), they adopt a Bernoulli initialization in the half perturbation
to perform FAT, i.e., η = ϵ

2 · Bernoulli(−1, 1), called FGSM-BR.

Prior-based Initialization Several works (Zheng et al., 2020; Jia et al., 2022a) also propose to
use the previous adversarial perturbations as the sample initialization, which can be called prior-
based initialization, i.e., η ∼ Prior(ϵ,x), where Prior(ϵ, ·) represents the function related to the
maximum perturbation strength ϵ and the sample x, i.e., sample-dependent initialization. Zheng
et al. (2020) propose to adopt the previous adversarial perturbation from the last epoch to initialize
the clean sample, i.e., η = δE , called ATTA. And Jia et al. (2022a) propose to use some prior-guided
adversarial perturbations as the adversarial initialization which is prior from the previous epoch and
the momentum of all previous epochs to perform FGSM , i.e., η = δP , called FGSM-PGI.

Learning-based Initialization Jia et al. (2022c) propose to adopt a sample-dependent learnable
initialization to conduct AT. In detail, they adopt a generative model to generate the sample initial-
ization for training, called FGSM-SDI, i.e., η = α · g (x,∇xL(x,y);w) , where α is set to ϵ for
training, and g (·, ·;w) represents the generative model with the weight parameters w.

Discussion Previous works adopt different sample initialization for AT to prevent CO and improve
the model robustness. As shown in Fig. 1, using a zero initialization, FGSM with a large step size
obtains a worse solution to the inner maximization problem. But, using sample initialization, FGSM
can achieve a better solution to the inner maximization problem. The quality of the solutions to
the inner maximization problem is related to the CO. As shown in Fig. 2, FGSM-AT with a small
step size (e.g, α = 4/255) does not meet CO and the attack success rate and model robustness
are directly related in FAT. It indicates that when the quality of the inner maximization problem
becomes worse, CO could happen. Using a zero initialization, FGSM with a larger step size more
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Table 1: Test robustness (%) on the CIFAR-10 database using ResNet18 with different sample
initialization techniques. Number in bold indicates the best.

Method Type Clean
Best/Last

PGD-50
Best/Last

C&W
Best/Last

AA
Best/Last Time

FGSM-NR Random-based 84.87/86.41 45.21/43.99 45.88/45.4 41.9/41.29 1 ×
FGSM-RS Random-based 84.91/86.65 45.43/44.12 45.66/45.65 42.77/42.2 1 ×
FGSM-BR Random-based 85.38/86.82 45.57/44.23 46.46/45.89 42.99/42.37 1 ×

ATTA Prior-based 85.97/86.30 45.97/44.97 44.6/43.8 43.39/42.84 1 ×
FGSM-PGI Prior-based 86.33/86.61 46.71/45.69 45.5/44.8 43.99/43.26 1 ×
FGSM-SDI Learning-based 84.76/85.25 51.79/51.79 51.0/50.29 48.50/47.91 1.6 ×

easily meets CO. Using sample initialization can prevent CO when FGSM with a large step size.
We summarize the existing initialization methods and make some meaningful findings based on the
quality of the solutions to the inner maximization problem. First, sample-dependent initialization
methods (prior-based and learning-based initialization) can achieve better robustness performance
than sample-independent initialization methods (random-based initialization). The learning-based
initialization achieves the best robustness performance. Second, random-based initialization meth-
ods achieve approximately the same robustness improvement performance, which is better than zero
initialization. We adopt ResNet18 for AT with different initialization to conduct experiments on
CIFAR10. The result is shown in Table 1, which demonstrates the correctness of our findings.
Compared with the previous random initialization, the advanced ATTA and FGSM-PGI need more
memory to store the historical adversarial perturbations, which could require more memory costs.
And FGSM-SDI needs more time consumption to train an extra generator. We use random initial-
ization based on the Bernoulli initialization for FAT since it is effective and comparable robustness.

3.3 REGULARIZATION

Regularization used in AT can be divided into two categories: a) regularization worked in the inner
maximization and b) regularization worked in the outer minimization. The former is related to the
inner maximization to improve the quality of the AEs. The latter is related to the outer minimiza-
tion to improve the model robustness. Existing FAT variants adopt the regularization in min-max
optimization or only in minimization optimization. It can be defined as:

δ∗ = argmaxδ∈Ω[L(f(x+ δ;θ),y) + γ ·R(x,x+ δ;θ)] (2)

min
θ

E(x,y)∼D [L(f(x+ δ∗;θ),y) + µ ·R(x,x+ δ∗;θ)] , (3)

where γ, µ ∈ [0, 1] control the use of regularization and R(x,x+δ;θ) represents the regularization.

Regularization only in minimization optimization Andriushchenko & Flammarion (2020) pro-
pose a gradient alignment regularization to measure the local linearity. They adopt the regularization
only in the minimization optimization, i.e., γ = 0 and µ = 1. It can be defined as:

R (x,x+ δ;θ) = 1− cos (∇xL(f(x;θ),y),∇xL(f(x+ η;θ),y)) , (4)

where η represents the sample initialization. Though the FGSM-GA achieves model robustness
improvement, it requires extra training time to compute the alignment regularization on the gradient.

Regularization in min-max optimization Sriramanan et al. (2020) propose a more effective guided
regularization for improved optimization and function smoothing. They adopt regularization in min-
max optimization. It works in the inner maximization to generate AEs and the outer minimization
to improve the model robustness,i.e., γ = 1 and µ = 1. It can be defined as:

R(x,x+ δ;θ) = λ · ∥f(x+ δ;θ)− f(x;θ)∥22 , (5)

where λ represents the a hyper-parameter that determines the smoothness of the loss surface. Sri-
ramanan et al. (2021) propose a Nuclear-Norm regularization for enforcing function smoothing in
min-max optimization, i.e., γ = 1 and µ = 1. It can be defined as:

R(x,x+ δ;θ) = λ · ∥f(x+ δ;θ)− f(x;θ)∥∗ , (6)

where ∥ · ∥∗ represents the Nuclear Norm which is the sum of the singular values.
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Table 2: Test robustness (%) on the CIFAR-10 database using ResNet18 with different regulariza-
tion methods. Number in bold indicates the best.

Method Clean PGD-10 PGD-20 PGD-50 C&W AA Time

Baseline 86.82 46.62 44.76 44.23 45.89 42.37 1 ×

Guided Regularization(min-max) 83.33 52.04 51.03 50.96 48.64 46.56 2×
Guided Regularization(min) 84.20 52.38 51.54 51.26 47.87 45.74 1.4×

Nuclear-Norm Regularization(min-max) 84.9 51.21 50.09 49.79 49.14 47.36 2×
Nuclear-Norm Regularization(min) 84.94 51.94 51.0 50.78 48.83 47.06 1.4×

Ours(min) 82.97 55.49 54.58 54.29 50.41 48.05 1.4×

Discussion We conclude that the regularization in min-max optimization achieves better robustness.
It greatly improves model robustness. In inner maximization, the regularization loss is used to
find the least smooth domain of the loss surface. In outer minimization, the regularization is used to
improve the local smoothness of the loss surface. Although the regularization is effective to improve
the model robustness, it also requires a computation overhead. On the other hand, AEs almost exist
in the least smooth domain of the loss surface (Rebuffi et al., 2021; Wu et al., 2020) which has the
same effect as inner maximization in regularization. Based on this, we argue that it is not necessary
to use regularization in the inner maximization. To verify this opinion, we conduct experiments on
CIFAR-10 with ResNet18 comparing regularization in the min-max optimization and regularization
solely in the minimization. We adopt FGSM with BR initialization as the baseline. The results are
shown in Table 2. Compared with FAT with the regularization in min-max optimization, FAT with
the regularization only in the minimization achieves better performance under PGD attack scenarios
and comparable robustness performance under C&W and AA attack scenarios. The regularization
only in the minimization requires less training time.

3.4 THE PROPOSED REGULARIZATION

Previous works (Weng et al., 2018; Wu et al., 2021) have demonstrated that the robustness is related
to the local Lipschitzness, i.e., smaller local Lipschitzness leads to stronger robustness. We propose
a novel regularization approach motivated by the Lipschitz constraint. It can be defined as:

λ · (∥f(x+ δ;θ)− f(x+ η;θ)∥22 + ∥fF (x+ δ;θ)− fF (x+ η;θ)∥22)
∥δ − η∥22

, (7)

where fF (·;θ) represents the feature output of f(·;θ) and λ is the hyper-parameter. We also com-
pared the proposed regularization with the previous regularization methods, the results are shown in
Table 2. The proposed regularization achieves the best performance under all attack scenarios. We
provide proof to prove the effectiveness of the proposed regularization in Appendix C.

4 TECHNIQUES TO IMPROVE MODEL ROBUSTNESS

4.1 DATA AUGMENTATION

Several works (Gowal et al., 2020; Rebuffi et al., 2021) have explored the impact of more sophis-
ticated data augmentation techniques on the robustness of PGD-based AT. However, the impact of
the data augmentation techniques on model robustness of FGSM-based AT has not been studied be-
fore. In this paper, we introduce the sophisticated data augmentation techniques (Cutout (DeVries
& Taylor, 2017), Mixup (Zhang et al., 2017), CutMix (Yun et al., 2019), and AutoAugment (Cubuk
et al., 2018)) into existing FAT techniques and explore the impact of them on model robustness of
FAT methods. In detail, we use FGSM-BR as the baseline and compare it with FGSM-BR with data
augmentation techniques. The results are shown in Fig. 3. More results are presented in Appendix
D. It can be observed that combined with data augmentation, FAT can achieve better robustness
performance in all the attack scenarios. Particularly, under the PGD-10 attack, Cutout improves the
performance by about 1.5% without additional training costs. Compared with the vanilla FGSM-BR,
using data augmentation methods can improve the quality of the solution to the inner maximization
problem, i.e., the higher attack success rate. Unlike PGD-based AT (Rebuffi et al., 2021), using data
augmentation techniques can improve the robustness of FGSM-based AT.
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Figure 3: The performance of FAT methods with different data augmentation methods on CIFAR10
during the training phase. (a): The clean accuracy on the clean images. (b): The robustness accuracy
under PGD-10. (c): The attack success rate on the AEs used for training.

Table 3: Test robustness (%) on the CIFAR-10 database with different model weight averaging
techniques. Number in bold indicates the best.

Method Clean PGD-10 PGD-20 PGD-50 C&W AA Time

Baseline 86.82 46.62 44.76 44.23 45.89 42.37 1 ×

Vanilla EMA Rebuffi et al. (2021) 86.91 47.1 45.64 45.1 46.53 42.8 1 ×
SE-EMA Wang & Wang (2022) 86.82 47.42 45.71 45.026 46.68 42.92 1 ×

Auto-EMA(Ours) 83.62 51.26 50.21 49.9 49.42 46.53 1 ×

4.2 MODEL WEIGHT AVERAGING

As a technique to improve the model generalization, model weight averaging (WA) (Izmailov et al.,
2018) obtain a WA model by computing exponentially weighted moving averages of model param-
eters of each training iteration. Formally, given a decay rate τ and the model parameters θ of an
iteration, the WA model is updated with θ̃ ← τ · θ̃ + (1 − τ) · θ. The obtained WA model θ̃ at
the training end often generalizes better to the unseen test data. Recent work (Chen et al., 2020;
Wu et al., 2020) has indicated that the WA model shows higher robustness by achieving a flatter
adversarial loss landscape. In particular, Wang & Wang (2022) show that the WA model obtained in
SAT also shows higher adversarial robustness. However, the impact of WA on the FAT has not been
explored in previous works. In this work, we make the first exploration by combining the FGSM-BR
with the vanilla EM (Rebuffi et al., 2021) and SE-EMA (Wang & Wang, 2022). As shown in the
Table 3, simply applying the existing WA techniques to FAT does not improve the robustness.

4.3 THE PROPOSED MODEL WEIGHT AVERAGING

In this work, we attribute the failure of WA on FAT to the weak quality of AEs generated by FGSM.
The existing model weight averaging (WA) will accumulate model parameters of all iterations re-
gardless of the quality of AEs. However, as discussed in Sec. 3.1, the gradient directions can be
undesired when the quality of AEs in FAT is low. The model parameter updates with the inaccurate
gradients can be accumulated in WA model.

To overcome the shortcoming of the existing WA methods, we propose to exclude some training
iterations from the WA model update trajectory. Namely, the WA model will not update in an
iteration as long as the quality of AEs in the iteration is low. Specifically, we propose a simple yet
effective metric to automatically evaluate the quality of AEs. The metric will be used to determine
whether the WA model will be updated in the current training iteration. Concretely, the metric is
defined as the ratio of the robust accuracy on AEs to the corresponding clean accuracy to evaluate
the AE quality. Formally, it can be formulated as:

∆ =
Acc(f(x+ δ;θ),y)

Acc(f(x;θ),y)
, (8)

where Acc(·) is the accuracy of trained model on training samples. When the proposed metric ∆ is
above a certain threshold T , the trained parameters θ is added to the average model parameters θ̃, i.e,
θ̃ ← τ ·θ̃+(1−τ)·κ·θ, where κ = 1(∆ <= T ). In summary, our proposed method improves EMA
by automatically selecting iterations to update WA model, called Auto-EMA. We conduct FGSM-
BR with our Auto-EMA and compare it with Vanilla EMA and SE-EMA. The result is shown in
Table 3. The proposed Auto-EMA achieves the best robustness under all attack scenarios.
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Table 4: Test robustness (%) on the CIFAR-10 database. Number in bold indicates the best.

Method Clean
Best/Last

PGD-10
Best/Last

PGD-20
Best/Last

PGD-50
Best/Last

C&W
Best/Last

AA
Best/Last Time

PGD-AT 82.32/82.65 53.76/53.39 52.83/52.52 52.6/52.27 51.08/51.28 48.68/48.93 5.2 ×

FGSM-RS 73.81/83.82 42.31/0.09 41.55/0.04 41.26/0.02 39.84/0.00 37.07/0.00 1 ×
FGSM-PGI 81.72/81.72 55.18/55.18 54.36/54.36 54.17/54.17 50.75/50.75 49.0/49.0 1.4 ×

FGSM-CKPT 90.29/90.29 41.96/41.96 39.84/39.84 39.15/39.15 41.13/41.13 37.15/37.15 1.5 ×
FGSM-SDI 84.86/85.25 53.73/53.18 52.54/52.05 52.18/51.79 51.0/50.29 48.50/47.91 1.6 ×

NuAT 81.58/81.38 53.96/53.52 52.9/52.65 52.61/52.48 51/3/50.63 49.09/48.70 2.0 ×
GAT 79.79/80.41 54.18/53.29 53.55/52.06 53.42/51.76 49.04/49.07 47.53/46.56 2.0 ×

FGSM-GA 83.96/84.43 49.23/48.67 47.57/46.66 46.89/46.08 47.46/46.75 43.45/42.63 3.5 ×
Free-AT (m=8) 80.38/80.75 47.1/45.82 45.85/44.82 45.62/44.48 44.42/43.73 42.17/41.17 4.2 ×

FGSM-LAW (ours) 80.46/80.46 57.33/57.33 56.83/56.83 56.72/56.72 51.76/51.76 49.36/49.36 1.4 ×

5 EXPERIMENTS

To evaluate the proposed FGSM-LAW, We adopt several datasets, i.e, CIFAR-10 (Krizhevsky
et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), Tiny ImageNet (Deng et al., 2009) and Ima-
geNet (Deng et al., 2009), which are widely used to evaluate the model robustness. The experimental
results on Tiny ImageNet and ImageNet are presented in Appendix H.

5.1 DEFAULT TRAINING SETTING

Following the default settings of AT (Pang et al., 2020; Jia et al., 2022c), we apply the same training
hyper-parameters to conduct experiments. All models with ReLU activation function are trained for
110 epochs with the batch size 128. We use SGD momentum optimizer with the weight decay of
5× 10−4. The learning rate initialized to 0.1 decays with a factor of 0.1 at 100 and 105 epochs. All
experiments are conducted under the ℓ∞ distance metric with the maximal perturbation of 8/255.
We adopt PGD attack of 10-steps (PGD-10), 20-steps (PGD-20), 50-steps (PGD-50), C&W attack
of 20 steps (C&W) and AutoAttack (AA) to evaluate the trained models. The comparative experi-
ments with a cyclic learning rate strategy Smith (2017) are presented in Appendix E. The detailed
hyper-parameter settings of FGSM-LAW are presented in Appendix F.

5.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

To evaluate the proposed method, we compare the proposed method with several state-of-the-art
FAT methods i.e, Free-AT(Shafahi et al., 2019), FGSM-RS (Wong et al., 2020), FGSM-GA (An-
driushchenko & Flammarion, 2020), GAT (Sriramanan et al., 2020), FGSM-CKPT (Kim et al.,
2021), NuAT (Sriramanan et al., 2021), FGSM-SDI (Jia et al., 2022c), FGSM-PGI (Jia et al., 2022a)
and an advanced SAT method (i.e, PGD-AT (Rice et al., 2020)). Note that we adopt the training
settings reported in their original works to train these AT models.

Results on CIFAR-10 As for CIFAR-10, we use ResNet18 as the backbone. Note that the exper-
iment results of WideResNet34-10 are presented in Appendix G. The results are shown in Table 4.
It can be observed that compared with the advanced PGD-AT, the proposed method achieves better
model robustness under all attack scenarios and requires much less training time. Compared with
other advanced FAT methods, as for the best and last checkpoints, the proposed method achieves
the best model robustness under all attack scenarios. Specifically, under the PGD-50 attack, the
previous most effective FAT methods achieve an accuracy of about 54%, while the proposed method
achieves an accuracy of about 56%. In terms of the training cost, the proposed method requires the
minimum training time except for FGSM-RS which meets CO. The training time of the proposed
method is the same as FGSM-PGI, which is about 1.1 times faster than FGSM-CKPT, 1.2 times
faster than FGSM-SDI, 1.4 times faster than GAT and NuAT, 2.5 times faster than FGSM-GA and 3
times faster than Free-AT. FGSM-PGI requires more memory costs to store the historical adversarial
perturbations. But the proposed method requires the same memory cost as the other FAT methods.
Different from previous FAT variants, the proposed method not only prevents CO but also improves
the model robustness without extra training time and memory cost.
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Table 5: Test robustness (%) on the CIFAR-100 database. Number in bold indicates the best.

Method Clean
Best/Last

PGD-10
Best/Last

PGD-20
Best/Last

PGD-50
Best/Last

C&W
Best/Last

AA
Best/Last Time

PGD-AT 57.52/57.5 29.6/29.54 28.99/29.0 28.87/28.9 28.85/27.6 25.48/25.58 5.2 ×

FGSM-RS 49.85/60.55 22.47/0.45 22.01/0.25 21.82/0.19 20.55/0.25 18.29/0.00 1 ×
FGSM-PGI 58.78/58.81 31.78/31.6 31.26/31.06 31.14/30.88 28.06/27.72 25.67/25.42 1.4 ×

FGSM-CKPT 60.93/60.93 16.58/16.69 15.47/15.61 15.19/15.24 16.4/16.6 14.17/14.34 1.5 ×
FGSM-SDI 60.67/60.82 31.5/30.87 30.89/30.34 30.6/30.08 27.15/27.3 25.23/25.19 1.6 ×

NuAT 59.71/59.62 27.54/27.07 23.02/22.72 20.18/20.09 22.07/21.59 11.32/11.55 2.0 ×
GAT 57.01/56.07 24.55/23.92 23.8/23.18 23.55/23.0 22.02/21.93 19.60/19.51 2.0 ×

FGSM-GA 54.35/55.1 22.93/20.04 22.36/19.13 22.2/18.84 21.2/18.96 18.88/16.45 3.5 ×
Free-AT (m=8) 52.49/52.63 24.07/22.86 23.52/22.32 23.36/22.16 21.66/20.68 19.47/18.57 4.2 ×

FGSM-LAW (ours) 58.79/58.79 31.8/31.8 31.35/31.35 31.33/31.33 28.47/28.47 25.78/25.78 1.4 ×

Results on CIFAR-100 As for CIFAR-100, ResNet18 is used as the backbone network. The result is
shown in Table 5. Compared with PGD-AT, the proposed method achieves better model robustness
under most attack scenarios and costs less training time. Even under AA attack, PGD-AT obtains
an accuracy of about 25.48%, but our method obtains an accuracy of about 25.78%. Our method
achieves the best model robustness under all attack scenarios among the FAT methods. In terms of
the training cost, similar results are observed on CIFAR-10.

Table 6: Ablation study on CIFAR-10. Number in bold indicates the best.
L-Regular (Ours) Cutout A-WA (Ours) Clean PGD-50 C&W AA Time

86.82 44.23 45.89 42.37 1 ×
✓ 82.97 54.29 50.41 48.05 1.4 ×
✓ ✓ 82.55 55.08 50.69 48.63 1.4 ×
✓ ✓ 80.38 56.33 51.48 49.27 1.4 ×
✓ ✓ ✓ 80.46 56.72 51.76 49.36 1.4 ×

5.3 ABLATION STUDY

In the proposed method, we propose a Lipschitz regularization (L-regular) term and an auto weight
averaging (A-WA) with Cutout augmentation to conduct FAT. To validate the effectiveness of each
element, we conduct an ablation study on CIFAR-10 by using ResNet18. The result is shown in
Table 6. We use the clean accuracy on clean images and the robust accuracy on different adversarial
attack methods as the evaluation metric on the last checkpoint. Analyses are summarized as follows.
First, only using the proposed regularization, the performance of the model robustness under all
attack scenarios significantly improves. Incorporating our regularization with cutout augmentation,
the performance of the model robustness further improves. Incorporating our regularization with
the proposed weight averaging, the proposed method can better model robustness. Second, using
all terms can obtain the best robust performance under all attack scenarios, which indicates that the
three elements are compatible, and combining them can achieve the best performance.

6 CONCLUSION

This work conducts a thorough analysis of existing works in the field of fast adversarial training in
terms of adversarial robustness and training cost. Thus, we revisit the effectiveness and efficiency of
the fast adversarial training techniques in preventing catastrophic overfitting. We explore efficient
and effective FAT-related techniques and propose a novel regularization method motivated by the
Lipschitz constraint. Moreover, we explore the effect of data augmentation and weight averaging
in FAT and propose an effective auto weight averaging method for FAT to improve robustness.
By assembling these techniques, we conclude our fast adversarial training method equipped with
the proposed Lipschitz regularization and the proposed auto weight averaging, called FGSM-LAW.
Extensive experimental evaluations demonstrate that the proposed method outperforms state-of-the-
art FAT methods with less training costs.

9



Under review as a conference paper at ICLR 2023

ETHICS STATEMENT

In this paper, we propose a novel fast adversarial training method FGSM-LAW to improve the model
robustness against adversarial examples. Our goal is to find efficient and effective fast adversarial
training techniques for further research. In detail, we revisit the effectiveness and efficiency of
fast adversarial training techniques in preventing Catastrophic Overfitting from the perspective of
model local nonlinearity. By assembling these techniques, we conclude an efficient and effective fast
adversarial training method, i.e, FGSM-LAW. We did not use crowdsourcing and did not conduct
research with human subjects in our experiments. We cited the creators when using existing assets
(e.g., code, data, models).

REPRODUCIBILITY STATEMENT

We show proof of the effectiveness of the proposed method in Appendix C. Our FGSM-LAW is an
efficient and effective fast adversarial training method. We conduct an ablation study to evaluate the
effectiveness of the proposed FGSM-LAW in Sec. 5.3. We specify the settings of hyper-parameters
and how they were chosen in Appendix F. We repeat experiments 5 times. We plan to open the
source code to reproduce the main experimental results later.
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This appendix contains the following contents:

• Summary of the existing FAT in Sec. 1 of the manuscript. (see Appendix A).
• Detail description of the sample initialization used in the existing FAT in Sec. 3.2 of the

manuscript. (see Appendix B).
• More results of FGSM-BR with different data augmentation methods in Sec. 4.1 of the

manuscript (see Appendix D).
• Proof to the effectiveness of the proposed regularization in Sec. 3.4 of the manuscript. (see

Appendix C).
• Results of the comparative experiments with a cyclic learning rate strategy in Sec. 5.1 of

the manuscript. (see Appendix E).
• Detailed hyper-parameter settings in Sec. 5.1 of the manuscript. (see Appendix F).
• Experiments with WideResNet34-10 as the backbone in Sec. 5.2 of the manuscript. (see

Appendix G).
• Experiments on Tiny ImageNet and ImageNet in Sec. 5 of the manuscript. (see Ap-

pendix H).

A SUMMARY OF THE EXISTING FAST ADVERSARIAL TRAINING METHODS

We investigate the used techniques of more than tens of papers working on the FAT methods. The
summary is shown in Table 7. It can be observed that different FAT methods require different
training costs, i.e, training time and memory costs.

B DETAIL DESCRIPTION OF THE SAMPLE INITIALIZATION USED IN THE
EXISTING FAT

The primary FGSM-AT proposed by Goodfellow et al. (2014) conduct FGSM with a zero initial-
ization to generate adversarial examples, i.e., η = 0. Tramèr et al. (2017) apply FGSM with a
normal initialization in the half perturbation to generate adversarial examples for training, called
FGSM-NR, It can be defined as:

δ = Π[−ϵ,ϵ]

[ ϵ
2
·Normal(0, 1) + α · sign

(
∇xL(f(x+

ϵ

2
·Normal(0, 1);θ),y)

)]
, (9)

where α is set to ϵ/2 for training. After that, Andriushchenko & Flammarion (2020) propose to
implement FGSM with a uniform initialization in the whole perturbation to generate adversarial
examples for training, called FGSM-RS. It can be defined as:

δ = Π[−ϵ,ϵ] [ϵ ·Uniform(−1, 1) + α · sign (∇xL(f(x+ ϵ ·Uniform(−1, 1);θ),y))] , (10)
where α is set to 1.25ϵ for training. Moreover, in the recent research (Sriramanan et al. (2020;
2021)), they adopt a Bernoulli initialization in the half perturbation to perform fast adversarial train-
ing, called FGSM-BR. It can be defined as:

δ = Π[−ϵ,ϵ]

[ ϵ
2
· Bernoulli(−1, 1) + α · sign

(
∇xL(f(x+

ϵ

2
· Bernoulli(−1, 1);θ),y)

)]
, (11)

where α is set to ϵ for training. Also, Zheng et al. (2020) propose to adopt the previous adversarial
perturbation from the last epoch to initialize the clean sample, called ATTA. It can be defined as:

δEt+1 = Π[−ϵ,ϵ] [δEt,x + α · sign (∇xL(f(x+ δEt,x;θ),y))] , (12)
where α is set to ϵ for training, δEt,x is the generated adversarial perturbation by FGSM attack at the
t-th epoch on the input sample x. Besides, Jia et al. (2022a) use series of prior-guided adversarial
perturbations as the adversarial initialization which are prior from the previous batch, the previous
epoch and the momentum of all previous epochs to perform FGSM for training, called FGSM-PGI.
It can be defined as:

gc = sign
(
∇xL(f(x+ ηEt−1

;θ),y)
)
, (13)

gEt = µ · gEt−1 + gc, (14)

δEt = Π[−ϵ,ϵ]

[
ηEt−1 + α · gc

]
, (15)

ηEt
= Π[−ϵ,ϵ]

[
ηEt−1

+ α · sign(gEt
)
]
. (16)
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Table 7: The techniques used in different fast adversarial training methods on CIFAR-10.

Method Initialization Step
Size Regularization Training

Time
Data

Memory
Early
Stop

CO w/o
Early Stop

>45%
under AA

FGSM-AT η = 0 ϵ 1 × One
Batch

Free-AT η = 0 ϵ 4.2 × One
Batch

FGSM-RS η ∈ U(−ϵ, ϵ) 1.25ϵ 1 × One
Batch

FGSM-GA η ∈ U(−ϵ, ϵ) 1.25ϵ 3.5 × One
Batch

FGSM-CKPT η ∈ U(−ϵ, ϵ) 1.25ϵ 1.5 × One
Batch

ATTA ηt+1 = δE ϵ 1 × Whole
Dataset

NuAT η ∈ B(−ϵ/2, ϵ/2) ϵ 2 × One
Batch

GAT η ∈ B(−ϵ/2, ϵ/2) ϵ 2 × One
Batch

SLAT η ∈ U(−ϵ, ϵ) ϵ 1.1 × One
Batch

FGSM-SDI η = ϵ · g (, θ) ϵ 1.6 × One
Batch

FGSM-PGI ηt+1 = δP ϵ 1.4 × Whole
Dataset

Table 8: Test robustness (%) on the CIFAR-10 database using ResNet18 with different data aug-
mentation techniques. Number in bold indicates the best.

Method Clean PGD-10 PGD-20 PGD-50 C&W AA Time

Baseline 86.82 46.62 44.76 44.23 45.89 42.37 1 ×

FGSM-BR+Mixup 86.94 46.78 44.93 44.41 45.52 42.34 1 ×
FGSM-BR+Cutout 84.93 48.31 46.9 46.43 46.91 43.79 1 ×

FGSM-BR+AutoAugment 85.79 48.97 47.24 46.57 46.06 42.25 1 ×
FGSM-BR+CutMix 81.12 50.45 49.28 48.95 45.36 42.87 1 ×

where α is set to ϵ for training, gc is regarded as the signed gradient and gEt
is the signed gradient

momentum in the t-th epoch. Moreover, Jia et al. (2022c) propose to adopt a generative model to
generate the sample initialization for training, called FGSM-SDI. It can be defined as:

δ = Π[−ϵ,ϵ] [ϵ · g (x,xg;w) + α · sign (∇xL(f(x+ ϵ · g (x,xg;w) ;θ),y))] , (17)

where α is set to ϵ for training, xg represents gradient information of x on the trained model and
g (·, ·;w) represents the generative model with the weight parameters w.

C PROOF TO THE EFFECTIVENESS OF THE PROPOSED REGULARIZATION

Actually the proposed regularization equation 7 corresponds to a new sample-based local linearity
metric of loss function ℓ corresponding to (x,y) and δ:

Eη

[
|f(x+ δ;θ)− f(x+ η;θ)|

∥δ − η∥2

]
. (18)
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Table 9: Test robustness (%) on the CIFAR-10 database using ResNet18 with different adversarial
training methods by using a cyclic learning rate strategy. Number in bold indicates the best.

Method Clean
Best/Last

PGD-10
Best/Last

PGD-20
Best/Last

PGD-50
Best/Last

AA
Best/Last Time

PGD-AT 80.12/80.12 51.59/51.59 50.83/50.83 50.7/50.7 46.83/46.83 5.2 ×

FGSM-RS 83.75/83.75 48.05/48.05 46.47/46.47 46.11/46.11 42.92/42.92 1 ×
FGSM-PGI 80.68/80.68 52.48/53.48 51.69/51.69 51.5/51.5 46.65/46.65 1.4 ×

FGSM-CKPT 89.08/89.08 40.47/40.47 38.2/38.2 37.69/37.69 35.66/35.66 1.5 ×
FGSM-SDI 82.08/82.08 51.63/51.63 50.65/50.65 50.33/50.33 46.21/46.21 1.6 ×

NuAT 76.23/76.23 51.52/51.52 50.81/50.81 50.64/50.64 46.33/46.33 2.0 ×
GAT 81.91/81.91 50.43/50.43 49.82/49.82 49.62/49.62 45.24/45.24 2.0 ×

FGSM-GA 80.83/80.83 48.76/48.76 47.83/47.83 47.54/47.54 43.06/43.06 3.5 ×
Free-AT (m=8) 75.22/75.22 44.67/44.67 43.97/43.97 43.72/43.72 40.30/40.30 4.2 ×

FGSM-LAW (ours) 80.44/80.44 53.54/53.54 52.91/52.91 52.73/52.73 46.93/46.93 1.4 ×

Table 10: Test robustness (%) on the CIFAR-10 database using WideResNet34-10 with different
adversarial training methods. Number in bold indicates the best.

CIFAR-10 Clean PGD-10 PGD-20 PGD-50 AA Time

PGD-AT 85.17 56.1 55.07 54.87 51.67 5.2 ×

FGSM-RS 74.3 42.3 41.2 40.9 38.4 1 ×
FGSM-PGI 85.09 57.72 56.86 56.4 50.11 1.4 ×

FGSM-CKPT 91.84 44.7 42.72 42.25 40.46 1.5 ×
FGSM-SDI 86.4 55.89 54.95 54.6 51.17 1.6 ×

NuAT 85.30 55.8 54.68 53.75 50.06 2.0 ×
GAT 85.17 56.3 55.23 54.97 50.01 2.0 ×

FGSM-GA 82.1 48.9 47.1 46.9 45.7 3.5 ×
Free-AT 80.1 47.9 46.7 46.3 43.9 4.2 ×

Ours 84.78 59.88 59.26 59.12 52.29 1.4 ×

This metric is bounded with the gradient of f at (x+ δ,y) as

Eη

[
|f(x+ δ;θ)− f(x+ η;θ)|

∥δ − η∥2

]
≤ Eη

[
|∇⊤

x f(x+ δ;θ)(δ − η)|
∥δ − η∥2

]
≤ Eη

[
∥∇xf(x+ δ;θ)∥2∥δ − η∥2

∥δ − η∥2

]
≤ ∥∇xf(x+ δ;θ)∥2 ≤ max

x
∥∇xf(x;θ)∥2.

(19)

The first inequality holds as the score function f(·, ·) is a convex function w.r.t x and the second
one holds by the Hölder inequality. It means that the proposed metric is bounded by the gradient of
the adversarial perturbation (x + δ,y). Then equation 7 could generate the parsimonious effect on
the local Lipschitzness for any (x,y) ∼ D. As a consequence, the proposed regularization could
produce a more robust model than the existing adversarial training methods.

15



Under review as a conference paper at ICLR 2023

Table 11: Test robustness (%) on the CIFAR-10 database using ResNet18 with equipped with
Lipschitz regularization with different hyper-parameter λ . Number in bold indicates the best.

Hyper-Parameter Clean PGD-10 PGD-20 PGD-50 C&W AA Time

Baseline 86.82 46.62 44.76 44.23 45.89 42.37 1 ×

λ = 8 84.34 54.09 53.21 52.88 49.28 46.57 1.4 ×
λ = 10 84.04 84.04 54.31 53.03 49.83 47.08 1.4 ×
λ = 12 83.35 53.94 54.03 53.66 50.05 47.38 1.4 ×
λ = 14 82.97 55.49 54.58 54.29 50.41 48.05 1.4 ×
λ = 16 83.49 54.86 53.99 53.62 49.53 47.11 1.4 ×
λ = 18 82.74 55.2 54.35 54.27 50.17 47.58 1.4 ×

Table 12: Test robustness (%) on the CIFAR-10 database using ResNet18 equipped with auto
weight averaging with diffrerent hyper-parameters ∆. Number in bold indicates the best.

Hyper-Parameter Clean PGD-10 PGD-20 PGD-50 C&W AA Time

Baseline 86.82 46.62 44.76 44.23 45.89 42.37 1 ×

∆ = 0.6 79.98 51.47 50.7 50.53 48.53 46.08 1 ×
∆ = 0.65 80.92 51.69 50.9 49.73 49.15 46.18 1 ×
∆ = 0.7 81.82 50.94 50.11 49.85 49.21 46.22 1 ×
∆ = 0.75 83.62 51.26 50.21 49.9 49.42 46.53 1 ×
∆ = 0.8 85.76 48.9 47.35 46.89 47.59 44.33 1 ×
∆ = 0.85 86.7 47.83 46.04 45.68 46.84 43.47 1 ×

D MORE RESULTS OF DIFFERENT DATA AUGMENTATION METHODS

We adopt the PGD-10, PGD-20, PGD-50, C&W and AA to evaluate the FGSM-BR with different
data augmentation methods. The result is shown in Table 8. It ii clear that using Cutout, Mixup, Cut-
Mix and AutoAugment can improve model robustness. FGSM-BR combined with Cutout achieves
the best robustness performance in all attack scenarios. Specifically, under the strong AA attack,
Cutout improves the performance by about 1.5%. Moreover, Cutout also achieves comparable clean
accuracy on the clean images to the vanilla FAT (FGSM-BR).

E EXPERIMENTS WITH A CYCLIC LEARNING RATE STRATEGY

All experiments are implemented by using a multi-step learning rate strategy in the manuscript. The
comparative experiments are also implemented by using a cyclic learning rate strategy on CIFAR-
10. Following the training settings (Wong et al. (2020); Jia et al. (2022a), the maximum learning rate
of FGSM-GA Andriushchenko & Flammarion (2020) and FGSM-CKPT Kim et al. (2021) is set to
0.3. The maximum learning rate of other FAT methods is set to 0.2. The results are shown in Table 9.
It can be observed that compared with PGD-AT, the proposed FGSM-LAW achieves better model
robustness performance under all adversarial attack scenarios and require less training cost. And
compared with previous FAT methods, the proposed FGSM-LAW can achieve the best adversarial
robustness under all adversarial attack scenarios on the best and last checkpoint. In terms of the
training cost, we observe similar phenomenons as the models trained with the multi-step learning
rate strategy.

F DETAILED HYPER-PARAMETER SETTINGS

There are two hyper-parameters in the proposed FGSM-LAW, i.e, the hyper-parameter of the Lip-
schitz regularization λ and the hyper-parameter of the auto weight averaging ∆. Using ResNet18
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Table 13: Test robustness (%) on the Tiny ImageNet database using PreActResNet18 with different
adversarial training methods. Number in bold indicates the best.

Method Clean
Best/Last

PGD-10
Best/Last

PGD-20
Best/Last

PGD-50
Best/Last

C&W
Best/Last

AA
Best/Last Time

PGD-AT 43.6/45.28 20.2/16.12 19.9/15.6 19.86/15.4 17.5/14.28 16.0/12.84 5.2×

FGSM-RS 44.98/45.18 17.72/0.00 17.46/0.00 17.36/0.00 15.84/0.00 14.08/0.00 1 ×
FGSM-PGI 43.32/45.88 23.8/22.02 23.4/21.7 23.38/21.6 19.28/17.44 17.56/15.50 1.4 ×

FGSM-CKPT 49.98/49.98 9.20/9.20 9.20/9.20 8.68/8.68 9.24/9.24 8.10/8.10 1.5 ×
FGSM-SDI 46.46/47.64 23.22/19.84 22.84/19.36 22.76/19.16 18.54/16.02 17.0/14.10 1.6 ×

NuAT 42.9/42.42 15.12/13.78 14.6/13.34 14.44/13.2 12.02/11.32 10.28/9.56 2.0 ×
GAT 42.16/41.84 15.02/14.44 14.5/13.98 14.44/13.8 11.78/11.48 10.26/9.74 2.0 ×

FGSM-GA 43.44/43.44 18.86/18.86 18.44/18.44 18.36/18.36 16.2/16.2 14.28/14.28 3.5 ×
Free-AT (m=8) 38.9/40.06 11.62/8.84 11.24/8.32 11.02/8.2 11.00/8.08 9.28/7.34 4.2 ×

FGSM-LAW (ours) 47.74/47.74 24.45/24.45 24.09/24.09 24.06/24.06 18.65/18.65 16.43/16.43 1.4 ×

Table 14: Test robustness (%) on the ImageNet database using ResNet50 with different adversarial
training methods. Number in bold indicates the best.

Method Clean AA Time

PGD-AT Madry et al. (2017) 64.02 34.96 5.2 ×

Free-AT Shafahi et al. (2019) 59.96 28.58 2.8 ×
FGSM-RS Wong et al. (2020) 55.62 26.24 1 ×

FGSM-LAW (Ours) 66.14 30.12 1.4 ×

on CIFAR-10, we adopt the FGSM-BR combined with Lipschitz regularization and auto weight
averaging to determine the optimal hyper-parameters, respectively. As for the hyper-parameter λ,
the results are shown in Table 11. It can be observed that when λ = 14, the proposed Lipschitz
regularization can achieve the best model robustness under all attack scenarios. In detail, under AA
attack, the proposed Lipschitz regularization achieves an accuracy of about 48%. Hence, the hyper-
parameter λ of the proposed Lipschitz regularization is set to 14. As for the hyper-parameter ∆, the
results are shown in Table 12. It can be observed that when ∆ = 0.75, the proposed auto weight
averaging can achieve the best model robustness under C&W and AA attack scenarios. Considering
the clean accuracy on clean samples, the hyper-parameter ∆ of the proposed auto weight averaging
is set to 0.75.

G EXPERIMENTS WITH WIDERESNET34-10 AS THE BACKBONE

We adopt a larger architecture (WideResNet34-10) as the backbone to conduct comparative exper-
iments on CIFAR-10. The results are shown in Table 10. It can be observed that compared with
PGD-AT, the proposed FGSM-LAW achieves better model robustness. Particularly, under AA at-
tack, PGD-AT achieves an accuracy of about 51%, while the proposed FGSM-LAW achieves an
accuracy of about 52%. Compared with previous FAT methods, the proposed method achieves the
best robustness performance under all attack scenarios. In terms of the training cost, we observe
similar phenomenons as ResNet18 used as the backbone.

H EXPERIMENTS ON TINY IMAGENET AND IMAGENET

Results on Tiny ImageNet Compared with CIFAR-10 and CIFAR-100, Tiny ImageNet is a larger
database that covers more classes. It is hard to obtain robustness on Tiny ImageNet As for Tiny
ImageNet, following Jia et al. (2022c;a), we adopt PreActResNet18 as the backbone to conduct
experiments. The results are shown in Table 13. It can be observed that compared with PGD-AT,

17



Under review as a conference paper at ICLR 2023

the proposed FGSM-LAW achieves better model robustness and requires less training time. And
compared with previous FAT methods, the proposed method achieves the best model robustness
under most attack scenarios and comparable robustness to the advanced FAT method (FGSM-PGI)
under AA attack. However, compared with FGSM-PDI, the proposed FGSM-LAW achieves better
model robustness under all attack scenarios without extra data memory. In terms of the training cost,
we can observe similar phenomenons as the model trained on CIFAR-10 and CIFAR-100.

Results on ImageNet Following the training settings (Shafahi et al., 2019; Wong et al., 2020), we
adopt ResNet50 as the backbone to conduct comparative experiments. The maximum perturbation
strength ϵ is set to 8/255. We compare the proposed FGSM-LAW with PGD-AT (Madry et al.,
2017), Free-AT (Shafahi et al., 2019) and FGSM-RS (Wong et al., 2020). The results are shown in
Table 14. Compared with PGD-AT, our FGSM-LAW achieves higher clean accuracy and compara-
ble robustness under AA attack. Compared with Free-AT and FGSM-RS, the proposed FGSM-LAW
achieves the best clean and robust accuracy.
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