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Abstract

Deep learning has achieved great success in the past few years. However, the performance
of deep learning is likely to impede in face of non-IID situations. Domain generalization
(DG) has attracted increasing interest in recent years, enabling a model to generalize to an
unseen test distribution, i.e., to learn domain-invariant representations. In this paper, we
argue that domain-invariant features should be originating from both internal and mutual
sides: the internally-invariant features capture the intrinsic semantics of the data while
the mutually-invariant features learn the cross-domain transferable knowledge. We then
propose DIFEX for Domain-Invariant Feature EXploration. DIFEX employs a knowledge
distillation framework to capture the high-level Fourier phase as the internally-invariant
features and learn cross-domain correlation alignment as the mutually-invariant features. We
further design an exploration loss to increase the feature diversity for better generalization.
Extensive experiments on both time-series and visual benchmarks demonstrate that the
proposed DIFEX achieves state-of-the-art performance.

1 Introduction

Over the past years, machine learning, especially deep learning has achieved remarkable success across wide
application areas such as computer vision (He et al., 2016) and natural language processing (Vaswani et al.,
2017). However, machine learning generally assumes that the training and test datasets are identically and
independently distributed (IID) (Esfandiari et al., 2021; Xu et al., 2019), which may not hold in reality.
Such non-IID issue is more practical and challenging. For instance, we expect that a model that recognizes
the activities of a child can generalize well on the data from an adult, even if their data distributions are
different due to different lifestyles and body shapes.

When the target data is available for training (e.g., the adult data is accessible), domain adaptation
(DA) (Wilson & Cook, 2020) can be employed to handle the non-IID issue and learn an adapted model
for the target domain. However, a more practical situation is when the target domain is unseen in training,
which makes existing DA approaches not feasible. Domain generalization (DG), or out-of-distribution gen-
eralization is one of the most popular research topics that aims to solve such problems (Wang et al., 2021).
DG learns a generalized model from multiple training datasets that can generalize well on an unseen dataset.
There are several approaches for DG, such as data augmentation (Tobin et al., 2017; Shankar et al., 2018)
that increase data diversity and meta-learning (Li et al., 2018a; Balaji et al., 2018) that learns generally
transferable knowledge by simulating multiple tasks.

Different from these two approaches, domain-invariant feature learning is a popular DG strategy that aims
to learn representations that remain invariant across different domains, thus benefiting cross-domain gener-
alization. For instance, Ganin et al. (2016) designed the domain-adversarial neural network (DANN) using
adversarial training, where they tried to confuse the domain classifier such that it could not distinguish
which domains the features belonged to, thus achieving domain-invariant learning. Similar to DANN, many
other methods have also been proposed to learn domain-invariant features for DG (Muandet et al., 2013; Li
et al., 2018b; Matsuura & Harada, 2020; Sun & Saenko, 2016) and achieved great success.
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The popularity and effectiveness of domain-invariant learning naturally motivate us to pursue the rationale
behind this kind of approach: what are the domain-invariant features and how to further improve its perfor-
mance on DG? Previously, for domain adaptation, Zhao et al. (2019) showed that feature alignments across
domains are not enough and thereby they paid attention to label functions. However, due to unseen targets
in DG, label functions cannot be accessed and Bui et al. (2021) utilized meta-Domain Specific-Domain In-
variant to solve the above problem. In this paper, we take a deep analysis of the domain-invariant features
for DG. Specifically, we argue that domain-invariant features should be originating from both internal and
mutual sides: the internally-invariant features capture the intrinsic semantic knowledge of the data while the
mutually-invariant features learn the cross-domain transferable knowledge. On the one hand, the internally-
invariant features are born with the input data that do not change with the existence of other domains. On
the other hand, the mutually-invariant features focus on harnessing the cross-domain transferable knowledge
that is mined from different distributions. Therefore, the integration of these features can ensure better
generalization to unseen domains.

We propose DIFEX for Domain-Invariant Feature EXploration of the internally- and mutually-invariant
representations. Specifically for internal features, DIFEX employs a knowledge distillation framework to
capture the high-level semantics using Fourier transform. For mutual features, DIFEX utilizes correlation
alignment to align the feature distributions from any two domains. To allow exploration of these features,
DIFEX further adds a regularization to maximize their divergence. We conduct extensive experiments
across both image data and time series datasets to comprehensively show the advantage of DIFEX. Results
show that our DIFEX outperforms other recent baselines in all datasets.

To sum up, our contributions are mainly three-fold:

1. We propose DIFEX for Domain-Invariant Feature EXploration of both internally- and mutually-
invariant representations. We further develop a regularization to maximize their divergence to allow
for more feature exploration.

2. Comprehensive experiments on both visual and time series in several different settings demonstrate
the superiority and universality of DIFEX.

3. Our method may inspire many similar methods. Exploring more diverse features from both inter-
and intra- domain simultaneously may be a promising direction.

2 Related Work

2.1 Domain Generalization

Existing domain generalization approaches (Wang et al., 2021) mainly consist of data augmentation (Shankar
et al., 2018; Tobin et al., 2017), domain-invariant feature learning (Muandet et al., 2013; Ganin et al., 2016;
Li et al., 2018b), and meta-learning (Li et al., 2018a; Balaji et al., 2018) techniques. Most of existing work
pays attention to some specific applications such as computer vision and reinforcement learning. Our work
belongs to domain-invariant feature learning-based DG, where we mainly focus on common domain-invariant
feature learning methods which can be directly applied to different tasks.

2.2 Domain-invariant Representation Learning

Domain-invariant representation learning (Johansson et al., 2019; Ben-David et al., 2010) has long been
a popular solution to addressing domain shift problems such as domain adaptation (Ganin & Lempitsky,
2015; Ganin et al., 2016; Zhao et al., 2019) and domain generalization (Li et al., 2018b; Muandet et al.,
2013; Matsuura & Harada, 2020). Specifically for DG, learning domain-invariant representations is critical
since DG focuses on the invariance across domains. Such domain invariance is achieved can be achieved by
explicit feature alignment (Li et al., 2018b; Motiian et al., 2017), adversarial learning (Ganin et al., 2016;
Li et al., 2018c; Rahman et al., 2020), or disentanglement (Liu et al., 2020; Peng et al., 2019; Ilse et al.,
2020). Recently, some work pointed that only simple alignments maybe not enough for generalization (Bui
et al., 2021). Our work shares the same goal with them, but with more possibilities to explore more invariant
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features that allow more diversities to increase the generalization ability. Our DIFEX may seem similar
to the disentanglement framework from many existing efforts since it also learns two kinds of features and
then combines them for final prediction. However, it significantly differs from them since we are actually
learning two kinds of domain-invariant features, while disentanglement often learns invariant and specific
features (Zhao et al., 2019).

2.3 Fourier Features

Recently, some work paid attention to Fourier phase in visual recognition (Yang & Soatto, 2020; Xu et al.,
2021). FDA (Yang & Soatto, 2020) introduced the Fourier perspective into domain adaptation. It could
generate target-like images for training by simply replacing a small area in the centralized amplitude spectrum
of a source image with that of a target image. FACT (Xu et al., 2021) illustrated that Fourier phase
information contained high-level semantics and was not easily affected by domain shifts. It utilized the
mixup (Zhang et al., 2018) technique to enlarge the diversity of Fourier amplitude without changing labels
and thereby learned a model that was insensitive to Fourier amplitude. Another work (Xingchen et al.,
2021) utilized Fourier amplitude (style) to calibrate the target domain style on the fly. However, it required
some operations when testing. Some other work tried to control Fourier amplitude during training for better
generalization (Lin et al., 2022; Zheng et al., 2022). These work are designed for the visual field, although
much work (Oppenheim et al., 1979; Oppenheim & Lim, 1981; Hansen & Hess, 2007) have demonstrated
that the phase component retains most of the high-level semantics in original signals, which suggests that
Fourier phase may be a kind of universal domain-invariant features.

3 Methodology

3.1 Problem Formulation

We follow the problem definition in (Wang et al., 2021) to formulate domain generalization in a C-class
classification setting. In domain generalization, multiple labeled source domains, S = {Si|i = 1, · · · ,M}
are given, where M is the number of sources. Si = {(xij , yij)}ni

j=1 denotes the ith domain, where ni denotes
the number of instances in Si. The joint distributions between each pair of domains are different: P iXY 6=
P jXY , 1 ≤ i 6= j ≤ M . The goal of domain generalization is to learn a robust and generalized predictive
function h : X → Y from the M training sources to achieve minimum prediction error on an unseen target
domain Stest with unknown joint distribution, i.e., minh E(x,y)∈Stest

[`(h(x), y)], where E is the expectation
and `(·, ·) is the loss function. All domains, including source domains and unseen target domains, have the
same input and output spaces, i.e., X 1 = · · · = XM = X T ∈ Rm, where X is the m-dimensional instance
space, and Y1 = · · · = YM = YT = {1, 2, · · · , C}, where Y is the label space.

3.2 Motivation

Existing literature (Yang et al., 2020; Yang & Soatto, 2020; Xu et al., 2021) show that Fourier phase
information contains high-level semantics that are not easily affected by domain shifts in the visual field.
Many early studies (Oppenheim et al., 1979; Oppenheim & Lim, 1981; Hansen & Hess, 2007) also conclude
that in the Fourier spectrum of signals, the phase component retains most of the high-level semantics in the
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Figure 1: Fourier features as internally-invariant representations.
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original signals, while the amplitude component mainly contains low-level statistics. Thus, Fourier phase
features can act as the internally-invariant features, which, of course, are domain-invariant.

Is Fourier phase sufficient for domain generalization? Figure 1 shows sensor readings of the walking activity
collected from two persons in the UCI DSADS dataset (Barshan & Yüksek, 2014). We apply Fourier
transform to these two samples and compute their corresponding phase and amplitude. From the results,
it is obvious that Fourier phases are similar between two different persons while there exist large gaps in
Fourier amplitude. Therefore, Fourier phase information can perfectly act as domain-invariant features to
help generalization. We clearly see that the raw data of A and B contains similar periodicity information
that could be further utilized for generalization. However, when we restore data with Fourier phases and
the sample amplitude, the two restored samples both lose some information compared with raw data such as
the periodicity of walking. Thus, Fourier phase along would fail to capture the commonness from multiple
training domains since they only focus on their own spectrum without considering the multi-domain statistics.
Moreover, some existing work pointed that only simple alignments maybe not enough for generalization (Bui
et al., 2021).

3.3 DIFEX

We propose Domain-Invariant Feature EXploration to learn both internally- and mutually-invariant features
for domain generalization, short as DIFEX. As shown in Figure 2, DIFEX takes inputs from multiple
training domains. Then, after a common feature extractor, we enforce the network to learn the internally-
and mutually-invariant features. Subsequently, these features are concatenated to form the invariant features,
which can then be used for classification. Furthermore, to allow the network to explore more diversity, we
propose the exploration loss to regularize these features by maximizing their divergence.
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Figure 2: The framework of DIFEX.

3.3.1 A distillation framework to learn internally-invariant features

We show how to obtain internally-invariant features with Fourier phase information. As shown in Fig-
ure 3, we utilize a distillation framework to obtain Fourier phase information for classification with raw
data. Knowledge distillation is a simple framework to encourage different networks to contain particular
characteristics (Hinton et al., 2015; Romero et al., 2014).

Concretely speaking, the teacher network utilizes Fourier phase information and class labels as inputs and
outputs, respectively, to obtain Fourier phase information features for classification. According to (Xu et al.,
2021), the Fourier transformation F(x) for a single-channel two-dimensional data x is formulated as:

F(x)(u, v) =
H−1∑
h=1

W−1∑
w=0

x(h,w)e−j2π( h
H u+ w

W v), (1)

where u and v are indices. H and W are the height and the width, respectively. Fourier transformation
can be calculated with the FFT algorithm (Nussbaumer, 1981) efficiently. The phase component is then
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Figure 3: Distillation framework to learn internally-invariant features using Fourier transform.

expressed as:

P(x)(u, v) = arctan
[
I(x)(u, v)
R(x)(u, v)

]
, (2)

where R(x) and I(x) represent the real and imaginary parts of F(x), respectively. For data with several
channels, the Fourier transformation for each channel is computed independently to obtain the corresponding
phase information. We denote Fourier phase of x as x̃, then, the teacher network is trained using (x̃, y):

min
θf

T
,θc

T

E(x,y)∼P trLcls(GcT (GfT (x̃)), y), (3)

where θfT and θcT are the learnable parameters of feature extractor (GfT ) and classification layer (GcT ) of the
teacher network. P tr is distribution of training data, E denotes expectation, and Lcls is cross-entropy loss
which is a common function for classification.

Once obtaining the teacher network, GT , we use feature knowledge distillation to guide the student network
to learn the Fourier information. Such a distillation is formulated as:

min
θf

S
,θc

S

E(x,y)∼P tr`c(GcS(GfS(x)), y) + λ1Lmse(GfS(x), GfT (x̃)), (4)

where θfS and θcS are the learnable parameters of feature extractor (GfS) and classification layer (GcS) of the
student network. λ1 is a tradeoff hyperparameter and Lmse is the MSE loss which can make features of the
student network close to features of the teacher network.

3.3.2 Explore mutually-invariant features

As discussed early, Fourier phase features alone are insufficient to obtain enough discriminative features for
classification. Thus, we explore the mutually-invariant features by leveraging the cross-domain knowledge
contained in multiple training domains. Specifically, given two domains Si,Sj , we align their second-order
statistics (correlations) using the correlation alignment approach (Sun & Saenko, 2016):

Lalign = 2
N × (N − 1)

N∑
i6=j
||Ci −Cj ||2F , (5)

where Ci is the covariance matrix and || · ||F denotes the matrix Frobenius norm.

5



Under review as submission to TMLR

Since there may exist duplication and redundancy between the internally-invariant features and mutually-
invariant features, we expect that two parts can extract different invariant features as much as possible.
This allows more diversities in features that are beneficial to generalization. Towards this goal, we regularize
the distance between the internally-invariant (z1) and mutually-invariant (z1) features by maximizing their
divergence, which we call the exploration loss:

Lexp(z1, z2) = −d(z1, z2), (6)

where d(·, ·) is a distance function and we simply utilize the L2 distance for simplicity: Lexp = −||z1− z2||22.

3.3.3 Summary of DIFEX

To sum up, our method is split into two steps. First, we optimize Eq. 1. Second, we optimize the following
objective:

min
θf ,θc

E(x,y)∼P trLcls(Gc(Gf (x)), y) + λ1Lmse(z1, G
f
T (x̃)) + λ2Lalign + λ3Lexp(z1, z2), (7)

where Gc and Gf are the classification layer and the feature net respectively while θc and θf are corresponding
parameters. λ1, λ2, and λ3 are hyperparameters. Eq. 7 contains four objectives: classification, internally-
invariant feature learning, mutually-invariant feature learning, and exploration of diverse features. The first
and the third terms are two common objectives in invariant representation learning for domain generalization,
and they are not enough according to the existing work Zhao et al. (2019); Bui et al. (2021). With the help
of exploration of internally-invariant features and diverse features (the second and the last terms), we can
alleviate the above problems to achieve better performance, which is proved in later experiments. For the
current implementation, we mainly tune the hyperparameters, which balances these four terms. In the
future, we plan to design more heuristic ways to automatically determine the hyperparameters.

As for inference, when a data sample x comes, we can predict its label by a simple forward-pass:

y = arg minGc(Gf (x)). (8)

3.4 Discussions

An alternative to learning Fourier features is to directly use the teacher network, and then use another
feature extractor to extract mutually-invariant features. However, this would seriously increase the model
size for inference as it requires two feature extractors. In addition, it also requires performing FFT for each
sample as another input which is time-consuming for inference. Although our distillation framework would
introduce more parameters in the training phase, it will not increase the model size and additional inputs
for inference, which we believe is more useful in a real deployment.

One may argue that DIFEX may fail if there is only one training domain thus no mutually-invariant features.
We provide a positive answer to this situation with virtual domain labels, i.e., domain alignment training
on one domain by giving random domain labels. This simple trick seems effective in real experiments.

4 Experiments

We extensively evaluate our method in both visual and time-series domains including image classification,
sensor-based human activity recognition, EMG recognition, and single-domain generalization. The training
data are randomly split into two parts: 80% for training and 20% for validation. The best model on
the validation split is selected to evaluate the target domain. For fairness, we re-implement seven recent
strong comparison methods following DomainBed (Gulrajani & Lopez-Paz, 2021): ERM, DANN (Ganin
et al., 2016), CORAL (Sun & Saenko, 2016), Mixup (Zhang et al., 2018), GroupDRO (Sagawa et al., 2020),
RSC (Huang et al., 2020), and ANDMask (Parascandolo et al., 2021). In addition, for specific applications,
we also add some latest comparison methods to compare. Please note that although our method contains
two parts of features, we maintain the same architecture to predict for fairness, which means that both the
dimension of internally-invariant features and the dimension of the mutually-invariant features are only half
of the dimension of the other methods.
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4.1 Image classification

Datasets and implementation details We adopt three conventional DG benchmarks. (1) Digits-
DG (Zhou et al., 2020) contains four digit datasets: MNIST (LeCun et al., 1998), MNIST-M (Ganin &
Lempitsky, 2015), SVHN (Netzer et al., 2011), SYN (LeCun et al., 1998). The four datasets differ in font
style, background, and image quality. Following (Zhou et al., 2020), we utilize their selected 600 images per
class per dataset. (2) PACS (Li et al., 2017) is an object classification benchmark with four domains (photo,
art-painting, cartoon, sketch). There exist large discrepancies in image styles among different domains. Each
domain contains seven classes and there are 9,991 images in total. (3) VLCS Fang et al. (2013) comprises
photographic domains (Caltech101, LabelMe, SUN09, VOC2007). It contains 10,729 examples of 5 classes.
For each dataset, we simply leave one domain as the test domain which is unseen in training while the others
as the training domains.

For the architecture, we use ResNet-18 for PACS and VLCS, and Digits-DG dataset uses DTN as the
backbone following Liang et al. (2020). Since splits, learning epochs, and some other factors all have influences
on results, we mainly compare with the methods extended by ourselves for fairness. The maximum training
epoch is set to 120. The initial learning rate for Digits-DG is 0.01 while 0.005 for the other two datasets.
The learning rate is decayed by 0.1 twice at the 70% and 90% of the max epoch respectively.

Results The results on three image benchmarks are shown in Table 1, 2, and 3, respectively. Overall,
our method has the average improvements of 1.08%, 1.37%, and 3% average accuracy than the second best
method on three datasets. Visual classification for domain generalization is a challenging task, and it is
difficult to have an improvement over 1%. As can be seen in these tables, the second-best method only has a
slight improvement compared to the third one. This demonstrates the great performance of our approach in
these datasets. Moreover, we see that alignments across domains and exploiting characteristics of data own
can both bring remarkable improvements. In addition, some latest methods such as ANDMask even perform
worse than ERM on some benchmarks, indicating that generalizing to unseen domains is really challenging.

Table 1: Accuracy on Digits-DG. The bold and underline items are the best and the second-best results.
Source Target ERM DANN CORAL Mixup GroupDRO RSC ANDMask DIFEX
MM,SV,SY M 97.55 97.77 97.62 97.5 97.48 97.78 96.85 97.82
M,SV,SY MM 55.52 55.62 57.68 57.95 53.47 56.27 56 57.9
M,MM„SY SV 59.98 61.85 57.82 54.75 55.63 62.38 59.47 64.3
M,MM,SV SY 89.25 89.37 90.12 89.8 92.15 89.25 88.17 89.98
AVG - 75.58 76.15 75.81 75 74.68 76.42 75.12 77.5

Table 2: Accuracy on PACS. The bold and underline items are the best and the second-best results.
Source Target ERM DANN CORAL Mixup GroupDRO RSC ANDMask DIFEX
C,P,S A 77 78.71 77.78 79.1 76.03 79.74 76.22 80.86
A,P,S C 74.53 75.3 77.05 73.46 76.07 76.11 73.81 77.6
A,C,S P 95.51 94.01 92.63 94.49 91.2 95.57 91.56 95.57
A,C,P S 77.86 77.83 80.55 76.71 79.05 76.64 78.06 79.49
AVG - 81.22 81.46 82 80.94 80.59 82.01 79.91 83.38

4.2 Sensor-based human activity recognition

Datasets and implementation details We also evaluate our method on a cross-dataset DG benchmark
with four different datasets on human activity recognition (HAR). The four datasets are: UCI daily and
sports dataset (DSADS) (Barshan & Yüksek, 2014) consists of 19 activities collected from 8 subjects
wearing body-worn sensors on 5 body parts. And it contains about 1140000 samples with three sensors.
USC-HAD (Zhang & Sawchuk, 2012). USC-SIPI human activity dataset (USC-HAD) composes of 14
subjects (7 male, 7 female, aged from 21 to 49) executing 12 activities with a sensor tied on the front right
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Table 3: Accuracy on VLCS. The bold and underline items are the best and the second-best results.
Source Target ERM DANN CORAL Mixup GroupDRO RSC ANDMask DIFEX
L,S,V C 93.64 94.49 96.33 96.18 97.81 96.89 93.50 96.61
C,S,V L 60.05 64.34 64.42 63.55 62.24 62.91 64.83 67.21
C,L,V S 68.46 67.15 68.65 68.86 69.23 69.07 63.28 74.31
C,L,S V 74.02 72.69 70.73 71.95 70.73 70.38 68.87 75.24
AVG - 74.04 74.67 75.03 75.13 75.00 74.81 72.62 78.34

hip. And it contains 5441000 samples with two sensors. UCI-HAR (Anguita et al., 2012). UCI human
activity recognition using smartphones data set (UCI-HAR) is collected by 30 subjects performing 6 daily
living activities with a waist-mounted smartphone. And it contains 1310000 samples with two sensors.
PAMAP2 (Reiss & Stricker, 2012). PAMAP2 physical activity monitoring dataset (PAMAP2) contains
data of 18 different physical activities, performed by 9 subjects wearing 3 sensors. And it has 3850505
samples with three sensors.

To evaluate our method thoroughly for time-series data, we design three settings: Cross-Person, Cross-
Position, and Cross-Dataset generalization with these four datasets.:

• Cross-Person Generalzation. We split DSADS, USC-HAD, and PAMAP 1 For each
dataset, we split data into four parts according to the persons and utilize 0,1,2, and 3 to
denote four domains. For example, 14 persons in USC-HAD are divided into four groups,
[1, 11, 2, 0], [6, 3, 9, 5], [7, 13, 8, 10], [4, 12] where different numbers denote different persons. We try
our best to make each domain have a similar number of data.

• Cross-Position Generalization. We choose DSADS since it contains sensors worn on five different
positions. Therefore, we split DSADS into five domains according to sensor positions.

• Cross-Dataset Generalization. To perform Cross-dataset generalization for HAR, we need to
unify inputs and labels of each dataset first. Each dataset corresponds to a different domain. Six
common classes are selected. Two sensors from each dataset that belong to the same position are
selected and data is down-sampled to ensure the dimension of data same.

The HAR model contains two blocks. Each has one convolution layer, one pool layer, and one batch nor-
malization layer. A single-fully-connected layers layer serves as the classifier. All methods are implemented
with PyTorch (Paszke et al., 2019). The maximum training epoch is set to 150. The Adam optimizer with
weight decay 5× 10−4 is used. The learning rate for the rest methods is 10−2. We tune hyperparameters for
each method. Moreover, we add another two latest methods, GILE (Qian et al., 2021) and AdaRNN (Du
et al., 2021), for comparison in Cross-Person generalization setting.

1The baselines for UCI-HAR are good enough, and thereby we do not perform experiments on it.

Table 4: Classification accuracy on HAR in Cross-Peroson setting. The bold items are the best results.
Dataset DSADS USC PAMAP
Target 0 1 2 3 AVG 0 1 2 3 AVG 0 1 2 3 AVG
ERM 83.11 79.30 87.85 70.96 80.30 80.98 57.75 74.03 65.86 69.66 89.98 78.08 55.77 84.44 77.07
DANN 89.12 84.17 85.92 83.38 85.65 81.22 57.88 76.69 70.72 71.63 82.18 78.08 55.39 87.26 75.73
CORAL 90.96 85.83 86.62 78.16 85.39 78.82 58.93 75.02 53.72 66.62 86.16 77.85 49.00 87.81 75.20
Mixup 89.56 82.19 89.17 86.89 86.95 79.98 64.14 74.32 61.28 69.93 89.44 80.30 58.45 87.68 78.97
GroupDRO 91.75 85.92 87.59 78.25 85.88 80.12 55.51 74.69 59.97 67.57 85.22 77.69 56.19 84.95 76.01
RSC 84.91 82.28 86.75 77.72 82.92 81.88 57.94 73.39 65.13 69.59 87.11 76.92 60.26 87.84 78.03
ANDMask 85.04 75.79 87.02 77.59 81.36 79.88 55.32 74.47 65.04 68.68 86.74 76.44 43.61 85.56 73.09
GILE 81.00 75.00 77.00 66.00 74.75 78.00 62.00 77.00 63.00 70.00 83.00 68.00 42.00 76.00 67.50
AdaRNN 80.92 75.48 90.18 75.48 80.52 78.62 55.28 66.89 73.68 68.62 81.64 71.75 45.42 82.71 70.38
DIFEX 94.30 87.24 92.15 85.35 89.76 83.52 69.16 76.45 79.42 77.14 90.65 82.35 59.90 89.25 80.54
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Table 5: Classification accuracy on DSADS in Cross-Position setting. The bold items are the best results.
Target 0 1 2 3 4 AVG
ERM 41.52 26.73 35.81 21.45 27.28 30.56
DANN 45.45 25.36 38.06 28.89 25.05 32.56
CORAL 33.22 25.18 25.81 22.32 20.64 25.43
Mixup 48.77 34.19 37.49 29.50 29.95 35.98
GroupDRO 27.12 26.66 24.34 18.39 24.82 24.27
RSC 46.56 27.37 35.93 27.04 29.82 33.34
ANDMask 47.51 31.06 39.17 30.22 29.90 35.57
DIFEX 49.55 32.73 41.75 33.43 34.20 38.33

Table 6: Accuracy on HAR. The bold and underline items are the best and the second-best results.
Source Target ERM DANN CORAL Mixup GroupDRO RSC ANDMask DIFEX
USC-HAD,UCI-HAR,PAMAP DSADS 26.35 29.73 39.46 37.35 51.41 33.1 41.66 46.9
DSADS,UCI-HAR,PAMAP USC-HAD 29.58 45.33 41.82 47.39 36.74 39.7 33.83 49.28
DSADS,USC-HAD,PAMAP UCI-HAR 44.44 46.06 39.1 40.24 33.2 45.28 43.22 46.44
DSADS,USC-HAD,UCI-HAR PAMAP 32.93 43.84 36.61 23.12 33.8 45.94 40.17 52.72
AVG - 33.32 41.24 39.25 37.03 38.79 41.01 39.72 48.83

Results The results are shown in Table 4, 5, and 6 for three settings, respectively. Our method achieves
the best average performance compared to the other state-of-the-art methods in all three settings. In the
Cross-Person setting, DIFEX has about 2.8%, 5.5%, 1.5% improvement compared to the second-best method
for DSADS, USC-HAD, and PAMAP respectively. DIFEX has an improvement with about 2.3% in the
Cross-Position setting while it has an improvement with about 7.6% in the Cross-Dataset setting. The
results demonstrate DIFEX has a good generalization capability for time-series classification.

Moreover, we have some more insightful findings.

1. Can the simple alignments always bring benefits? Obviously, the answer is no. Although CORAL
can bring improvements compared to ERM for DSADS in the Cross-Person setting and in the
Cross-Dataset setting, it performs worse than ERM for the other benchmarks.

2. Different alignments bring different effects. It seems that DANN performs better than CORAL,
which inspires us that we can be able to replace CORAL with DANN to capture mutually-invariant
features in the future work.

3. Some methods proposed for visual classification initially also work for time series. From Table 4, 5,
and 6, we can see that RSC brings improvements in most circumstances although it was initially
designed for visual classification, which demonstrates there may exist commonness between these
two different modalities. However, compared to remarkable improvements for visual classification,
the improvements for time-series data are not significant anymore. It illustrates that these methods
may be not general enough.

4. The same method for different DG benchmarks may have completely different performances. ERM,
the baseline without any generalized techniques, sometimes performs better than other state-of-
the-art methods, e.g., for USC in the Cross-Person setting while it performs worse than others
sometimes. This phenomenon illustrates that domain generalization is a hard task and we need to
design different methods for various situations. In this condition, our method that can achieve the
best performance almost on all tasks is inspiring.

5. For data with fewer raw channels and for more difficult benchmarks, learning more diverse features
brings better improvements. In the Cross-Person setting, USC-HAD is the most difficult benchmark
containing only 6 channels. In this situation, how to exploit more diversity and useful features is
more important. Thus, our method with both internally-invariant and mutually-invariant features
can bring much larger improvements. A similar phenomenon exists in the Cross-Dataset setting.

9
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4.3 EMG gesture recognition

To further prove the superiority of our methods on time-series data, we also validate our method on a
more challenging benchmark, EMG for gestures Data Set Lobov et al. (2018) which contains raw EMG
data recorded by MYO Thalmic bracelet2. Electromyography (EMG) is based on bioelectric signals and
is a common type of time-series data used in many fields, such as healthcare and entertainment. For the
dataset, the bracelet is equipped with eight sensors equally spaced around the forearm and eight sensors
simultaneously acquire myographic signals when 36 subjects performed series of static hand gestures. The
dataset contains 40, 000−50, 000 recordings in each column with 7 classes and we select 6 common classes for
our experiments. We randomly divide 36 subjects into four domains without overlapping and each domain
contains data of 9 persons. The baseline methods and implementation details are similar to those for HAR.
Experiments are done in three random trials, thus mitigating influences of unfair splits. EMG data comes
from bioelectric signals, and thereby it is affected by many factors, such as environments and devices, which
means the same person may generate different sensor data even when performing the same activity with the
same device at a different time or with the different devices at the same time. Therefore, this benchmark is
more challenging.

Table 7: Results on EMG in Cross-
Person setting.
Target 0 1 2 3 AVG
ERM 64.08 58.05 52.51 57.29 57.98
DANN 60.68 70.4 64.06 52.39 61.88
CORAL 62.97 73.7 71.53 70.17 69.59
Mixup 59.21 66.54 61.54 64.62 62.98
GroupDRO 63.62 67.64 72.19 67.99 67.86
RSC 65.02 75.19 69.86 61.25 67.83
ANDMask 59.33 66.15 71.83 65.09 65.6
DIFEX 71.83 82.8 76.91 75.84 76.84

Table 7 shows that our method achieves the best average perfor-
mance and is 7.25% better than the second-best method. Just simi-
lar to results mentioned above, alignments among domains can bring
improvements in most circumstances while only traditional align-
ments are not enough, which proves the need of both internally-
invariant features and mutually-invariant features. Moreover, from
the first task in Table 7, we see that sometimes simple domain align-
ments may deteriorate performance. But ours performs the best on
all tasks.

4.4 Single domain generalization

In this section, we perform single domain generalization to demonstrate superiority of our method.

ERM RSC
GroupDRO

ANDMaskOurs
45
50
55
60
65
70

Ac
cu

ra
cy

Figure 4: Results on USC-
HAD for single-person DG.

USC-HAD We randomly choose two subjects from USC-HAD and each
subject serves as one domain. As shown in Figure 4, our method achieves
the best performance with over 9% improvements compared to four other
state-of-the-art methods. It demonstrates DIFEX can make full use of both
internal and mutually domain-invariant features. To sum up, our method
is effective in both image and time-series benchmarks with both multiple
source domains and single domain, indicating that it is a general approach
for domain generalization.

PACS We choose two datasets from PACS each time. We treat one se-
lected dataset as the source domain and the other as the target. As shown
in Table 8, our method achieves the best performance with over 9% improvements on average compared to
five latest state-of-the-art methods. In this situation, GroupDRO shows its ability of generalization since it

2For more details about EMG, please refer to https://archive.ics.uci.edu/ml/datasets/EMG+data+for+gestures.

Table 8: Accuracy on PACS. The bold and underline items are the best and the second-best results.
Source Target ERM Mixup GroupDRO RSC ANDMask DIFEX
S A 35.5 36.67 38.53 36.57 35.5 46.68
A C 57.25 58.49 59.94 62.5 57.25 64.46
C P 81.86 82.87 84.55 84.49 81.86 86.17
P S 31.48 32.25 34.11 33.16 31.48 56.81
AVG - 51.52 52.57 54.28 54.18 51.52 63.53
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Figure 6: Fourier features as internally-invariant representations for images.

is designed for out-of-distribution without many source domains while RSC also shows an acceptable perfor-
mance since it is a general method. The results demonstrate our method can perform well on single domain
generalization for image classification.

4.5 Analysis

Ablation Study We perform ablation study in this section.

ERM CORAL FFT Phase Ours80

81

82
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84
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cu

ra
cy

Figure 5: Ablation study on the
PACS dataset.

Does it work if using internally-invariant or mutually-invariant features
alone? As it is shown in Figure 5, directly utilizing mutually-invariant
features brings a slight improvement compared to ERM while only utiliz-
ing internally-invariant features distilled from a teacher net has the same
performance as ERM. Combining both two kind of features bring a much
better performance. This demonstrates that only internally-invariant or
mutually-invariant features may be not discriminative enough.

Do three parts of Eq. 7 all work? As it is shown in Table 9 without one
part still has an improvement compared to ERM. Compared to mutually-
invariant features and exploration, internally-invariant features play a
slightly less important role. And combining three parts can bring the
best performance, which demonstrates each part is essential for general-
ization.

Table 9: Ablation study.
Benchmark PACS with multiple sources HAR in Cross-Dataset PACS with single source
Target A C P S AVG D U H P AVG A C P S AVG
ERM 77 74.53 95.51 77.86 81.22 26.35 29.58 44.44 32.93 33.32 35.5 57.25 81.86 31.48 51.52
w./o Intern. 80.66 75.51 95.33 78.19 82.42 46.9 47.26 45.76 51.35 47.82 41.75 63.52 84.91 50.42 60.15
w./o Mutual. 80.47 75.6 95.33 78.06 82.36 42.61 44.12 45.12 46.49 44.58 43.16 63.01 84.91 41.77 58.21
w./o Exp. 80.86 75.85 95.33 78.14 82.55 38.21 48.63 45.88 51.25 45.99 43.02 63.99 85.75 44.9 59.42
DIFEX 80.86 77.6 95.57 79.49 83.38 46.9 49.28 46.44 52.72 48.83 46.68 64.46 86.17 56.81 63.53

Motivation Examples for Visual Images We have shown an example that some Fourier features can
be viewed as internally-invariant representations for time-series data, and we give an example for visual
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Figure 7: Parameter sensitivity (PACS).

data. As shown in Figure 6, Fourier features for images are similar to features for sensors. Two figures in
the second column demonstrate that Fourier amplitude may be useless for classification. Two figures in the
last column are data restored with only Fourier phase. They illustrate that Fourier phase contains most of
classification information since we can vaguely see the dogs while it still losses some information compared to
the original data since the dogs are not clear compared to original raw data (two figures in the first column).

Parameter Sensitivity There are mainly three hyperparameters in our method: λ1 for distillation knowl-
edge from a teacher net with Fourier phase information, λ2 for the CORAL alignment loss, and λ3 for the
exploration loss. We evaluate the parameter sensitivity of our method in Figure 7 where we change one
parameter and fix the other to record the results. From these results, we can see that our method achieves
better performance near the optimal point, demonstrating that our method is insensitive to some hyperpa-
rameter choices to some extent. We also note that λ3 for exploration loss is a bit sensitive which may need
attention in real applications.

5 Conclusion

In this paper, we propose DIFEX to learn both internally-invariant and mutually-invariant features for
domain generalization. DIFEX utilizes an inheritance and exploration framework to combine internally-
invariant features distilled from a teacher net with Fourier phase information and mutually-invariant fea-
tures obtained from domain alignments. Extensive experiments on both image and time-series classification
demonstrate the superiority of DIFEX.

In the future, we plan to combine more internally-invariant features and mutually-invariant features for
better generalization. Moreover, we may utilize normalization techniques or some other distance to guide
explorations for more stable optimization.
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A Limitations

Table 10: Classification accuracy with different exploration distance computation ways.
Dataset Target A C P S AVG

PACS L2 80.86 77.60 95.57 79.49 83.38
norm-L1 81.30 78.41 96.17 80.02 83.98

Dataset Target 0 1 2 3 AVG

PAMAP L2 90.65 82.35 59.90 89.25 80.54
norm-L1 90.85 82.51 63.71 89.32 81.60

Dataset Target DSADS USC-HAD UCI-HAR PAMAP AVG

Cross-Dataset L2 46.90 49.28 46.44 52.72 48.83
norm-L1 56.25 49.36 46.35 56.43 52.10

Dataset Target 0 1 2 3 4 AVG

Cross-Position L2 49.55 32.73 41.75 33.43 34.20 38.33
norm-L1 50.87 33.85 43.49 34.71 33.46 39.28

We have mentioned in the main paper that exploring with L2 distance may bring a difficulty to optimize
(L2 can be infinity). Therefore, we try another computation way, a normalization distance (norm-L1),

Lexp1z1, z2 = −|| z1

||z1||2
− z2

||z2||2
||1. (9)

The results are shown in Table 10 and we can see that norm-L1 can bring improvements, especially for
difficult problems, e.g. Cross-Dataset3. In the future, we may try some other distance, such as cosine.

B Visualization study

We present some visualizations to show the reasons behind the rationales of our method. As shown in
Figure 8, we perform t-SNE to show the learned features of training data and target data directly. Figure 8(a)
demonstrates that ERM without any generalization operations leads that the learned features of test data
have a different distribution from the learned features of training data and target data are hard to classify.
Figure 8(b) and Figure 8(c) illustrate that learning with alignments can alleviate the above problem but some
classes still suffer from the same issue, especially for CORAL. Since mutually-invariant features are learned
with the same technique as CORAL, a similar phenomenon exists in Figure 8(f), which again emphasizes
the necessity of the other techniques. And Figure 8(e) proves that internally-invariant features may make
sense for generalization. Figure 8(d) demonstrates that our methods can further alleviate distribution shifts
compared to traditional methods with domain alignments, and thereby it can bring better performance.
Moreover, with the last fully-connect layer, we can assign different weights to internally-invariant features
and mutually-invariant features for better performance in different situations.

3Please note that our method with L2 has achieved best results compared to other methods and normalization techniques
are mainly for better performance and easier optimization
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(a) ERM (b) DANN (c) CORAL

(d) Ours (e) Internally-invariant features (f) Mutually-invariant features

Figure 8: Visualization of the t-SNE embeddings of learned feature spaces for PACS with different methods.
Different colors correspond to different classes and different shapes correspond to different domains. Circle
and plus correspond to test data and training data respectively. Best viewed in color and zoom in.
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