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Abstract

Traditional emergent communication (EC) methods often fail to generalize to
novel settings or align with representations of natural language. Here, we show
how controlling the Information Bottleneck (IB) tradeoff between complexity and
informativeness (a principle thought to guide human languages) helps to address
both of these problems in EC. Using VQ-VIB, a recent method for training EC
agents while controlling the IB tradeoff, we find that: (1) increasing pressure
for informativeness, which encourages agents to develop a shared understanding
beyond task-specific needs, leads to better generalization to more challenging tasks
and novel inputs; (2) VQ-VIB agents develop an EC space that encodes some
semantic similarities and facilitates open-domain communication, similar to word
embeddings in natural language; and (3) when translating between English and EC,
greater complexity leads to improved performance of teams of simulated English
speakers and trained VQ-VIB listeners, but only up to a threshold corresponding
to the English complexity. These results indicate the importance of informational
constraints for improving self-play performance and human-agent interaction.

1 Introduction

We wish to develop artificial agents that communicate in grounded settings, via communication
that enables high task utility, generalizability to novel settings, and good human-agent cooperation.
Emergent communication (EC) methods, wherein agents learn to communicate with each other in an
unsupervised manner by maximizing a reward function, take a step towards this vision by producing
agents that use grounded communication to solve a particular task [1–3], but they still fall short of
the vision of generalizable and human-interpretable communication [4, 5]. In this work, we take
steps towards addressing these limitations by building on the information-theoretic EC approach of
Tucker et al. [6]. This approach connects EC with the Information-Bottleneck [IB, 7] framework
for semantic systems [8, 9], via the vector-quantized variational Information Bottleneck (VQ-VIB)
neural architecture [6]. VQ-VIB agents are trained to optimize a tradeoff between maximizing
utility (how well they perform a task), maximizing informativeness (how well a listener can infer a
speaker’s meaning, independently of any downstream task), and minimizing communicative com-
plexity (roughly the number of bits allocated for communication). Given broad evidence suggesting
that human languages are guided by the IB informativeness-complexity tradeoff [8, 10–13], we
hypothesize that taking into account informativeness could improve EC generalizability to novel
settings while adjusting complexity could improve the translatability between EC and human lan-
guages. Results from our experiments support this hypothesis. First, we show that encouraging
informativeness allows EC agents to generalize beyond their training distribution to handle more
challenging tasks and out-of-distribution objects, with VQ-VIB achieving the best performance
compared to alternative EC methods. Second, we propose a simple method for translating natural
language word embeddings [e.g., GloVe, 14] into EC signals and use that to simulate human-agent
communication in a cooperative object-discrimination task. We find that team performance for
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Figure 1: Agents communicate to identify a tar-
get input (e.g., an image), xt, among a set of
candidates C = {x1, . . . , xC} (see main text).

Figure 2: Our modified VQ-VIB architecture
combines n quantized vectors into a single mes-
sage, enabling kn unique messages.

English speakers and trained VQ-VIB agents improves with the communicative complexity of the
EC system, but only up to a certain threshold, which corresponds to the complexity of the English
object naming system. Together, our findings suggest that training EC agents while controlling the
informativeness-complexity tradeoff, in addition to maximizing utility, may simultaneously support
improved self-play performance as well as human-agent interaction.

2 Related Work

Several researchers test EC generalization by evaluating agents on novel combinations of symbolic
inputs held out during training [15–18]. Chaabouni et al. [4] find that using harder tasks at training
time is important for improving test-time performance and that using population-based voting
improves cross-domain transfer. Complementing research of EC generalization in self-play, many
researchers explore connections between EC and natural language. Some top-down methods combine
pretrained language models with finetuning in grounded environments, but such methods can suffer
from “drift” wherein agents learn to ascribe new meanings to words [19–21]. Other researchers
train agents in self-play and then seek to connect learned EC to human-interpretable concepts or
natural language [5, 22, 23]. Based on information-theoretic analysis of human naming systems, we
investigate whether producing EC that matches humans’ complexity and informativeness enables
better generalization and translation.

3 Background: Information-theoretic emergent communication

Our work builds on the information-theoretic framework of [8] for semantic systems, and especially
on its extension to scalable emergent communication in artificial neural agents, proposed in [6].

Efficient compression and semantic systems Zaslavsky et al. [8] argued that languages are
shaped by the need of speakers and listeners to efficiently compress meanings into words. They
formulated this objective using the Information Bottleneck [IB, 7] principle, which can be interpreted
as a tradeoff between the informativeness and complexity of the lexicon, and follows from rate-
distortion theory [24, 25]. In this framework, a speaker is characterized as a probabilistic encoder
S(w|m) that, given a meaning m ∼ p(m), generates a communication signal, w. A listener is
characterized as a probabilistic decoder D(m̂|w), that reconstructs the speaker’s meaning from w.
Complexity is computed as the mutual information between the speaker’s meanings and signals,
I(m;w). Informativeness measures how well the listener’s interpretation, m̂, matches the speaker’s
intended meaning, such that maximizing informativeness amounts to minimizing the expected
Kullback-Leibler (KL) divergence between the agents’ belief states over meanings, E[D[m∥m̂]].
Optimal speakers and listeners balance the tradeoff between complexity and informativeness by
minimizing I(m;w)− βE[D[m∥m̂]], where β ≥ 0 controls the tradeoff. This optimization problem
is equivalent to the IB principle. This theoretical framework has gained broad empirical support across
human languages in multiple domains [8, 10–12], as well as artificial agent communication [26, 27].

Vector-quantized variational Information Bottleneck (VQ-VIB) While solving the IB optimiza-
tion problem in high-dimensional settings is challenging, Tucker et al. [6] proposed vector-quantized
variational Information Bottleneck (VQ-VIB), a deep learning method that combines notions from
vector quantization variational autoencoders [VQ-VAE, 28] and variational Information Bottleneck
(VIB), and applied it to EC. This framework can be applied to Lewis reference games [29], a standard
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EC setting, depicted in Figure 1. Here, m (the speaker’s meaning representation) is produced by
passing a target input, xt, through a pretrained VAE to model perceptual noise. A decoder, D, seeks
to reconstruct m given the speaker’s communication, w. Using this reconstruction, a listener agent, L,
attempts to identify xt from a set C = {x1, ..., xC} of (noisily observed) candidate inputs by selecting
y ∈ C. In VQ-VIB, a probabilistic speaker, S, maps from m to parameters of a Gaussian distribution,
µ and σ, in a continuous latent space, RZ . A latent vector, z, is sampled from N (µ(m), σ(m))
and discretized by looking up the nearest element of a (trainable) codebook of k quantized vectors
ζ ∈ RZ . The final communication vector output by the speaker, w, is this nearest quantized vector.
That is, the VQ-VIB encoder is defined by S(w|m) = P(w = argminζ [||z − ζ||2]|m).

In the information-theoretic emergent communication (ITEC) framework, agents maximize a combi-
nation of utility and informativeness while minimizing complexity (although variational bounds are
often used in practice) as shown in Equation 1, with λU , λI , and λC controlling the relative weight
of each term. Utility, U(xt, y), is a task-specific performance measure, e.g., the listener’s accuracy
in identifying the target input. Informativeness, approximated as −(m − m̂)2, is a task-agnostic
measure of the listener’s ability to reconstruct the speaker’s intention, m. Lastly, for VQ-VIB agents,
we upper bound complexity as the KL divergence between N (µ(m), σ(m)) and a unit Gaussian [30].

maximize λUE[U(xt, y)]− λIE[(m− m̂)2]− λCE[DKL[N (µ(m), σ(m))|N (0, 1)]] (1)

4 Technical Approach

We modify the VQ-VIB architecture to enable larger codebooks via combinatoriality, and introduce a
translation framework for analyzing alignment between natural language and EC.

Combinatorial Codebook for Larger Vocabulary While VQ-VIB agents represent an important
step towards information-bounded EC, the architecture in [6] limits agents to only communication via
one of the quantized vectors in their codebook. Here, we modify the VQ-VIB architecture to allow
agents to select n ≥ 1 vectors from the codebook before concatenating them into a single message
(Figure 2). Given a meaning, m, a speaker computes n means and variances (µi, σi) from which n
latent, continuous vectors zi are sampled, each in RZ/n. These continuous vectors are discretized
via standard vector-quantization by returning the nearest entry and then concatenated into a single
message w = [w1, ..., wn] ∈ RZ . For a codebook of size k, this change increases the number of
messages the speaker may emit from k to kn, without increasing the network size.

Human-agent translation Because VQ-VIB agents communicate via discrete signals that are
embedded in a continuous space [see also 23], much like grounded word embeddings, we propose a
simple translation mechanism from natural language to EC. Using a dataset of images with natural-
language labels, one can construct a translation dataset, associating EC vectors and natural language
embeddings, by (i) mapping each image’s label to its word embedding, and (ii) passing the input
image through an EC speaker to map it to an EC vector. Using this dataset, we train a least-squares
linear “translator” model to map from natural language to EC. In evaluation, we test the translatability
of an EC system by combining a human speaker with a pre-trained EC listener in a Lewis reference
game, mediated by a trained translator. Evaluating the performance of this hybrid team would reflect
the degree to which our EC agents are suited for communication and cooperation with humans.

5 Experiments

Generalizing to out-of-distribution inputs We tested agents’ ability to generalize to out-of-
distribution (OOD) using the ManyNames dataset [31], consisting of 25,000 images of natural objects
with approximately 36 human-generated labels per image (see Figure 3). Using the most common
response (dubbed the topname), we split the dataset: 20% of the topnames were selected for training
data, while the test set was constructed from all images for which no label matched a training
topname. Agents were trained with two candidates (C = 2) in the Lewis reference game, with
candidate images drawn from disjoint topname sets. In evaluation, we measured team performance
using the test set, for various C, and without restrictions on the candidates’ topnames. Thus, in
our hardest evaluation settings, agents needed to simultaneously generalize to a larger number of
candidates, drawn from non-distinct categories, which were not seen during training.
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(a) bird (20), duck (14) (b) couch (21), sofa (9)

Figure 3: Examples from the ManyNames
dataset, with naming responses (and counts).

Figure 4: OOD accuracy improved with com-
plexity. Results generated by varying λI .

Figure 5: 2D PCA of EC vectors for training
(blue) and OOD (red) images at complexity that
roughly matches English (2.1 nats, λI = 0.5).

Figure 6: Performance of human-agent teams
using GloVe to EC translation. Performance flat-
tened after passing English complexity.

Figure 4 shows the utility of VQ-VIB agents (n = 4) on OOD images, evaluated with varying numbers
of candidates. By increasing λI ∈ {0, 0.1, 0.5, 1, 1.5, 2, 3, 10}, we induced more informative and
complex communication, which in turn supported greater utility. Further results with different n or
other architectures (Appendices C, D) show similar trends: greater complexity supported greater
OOD utility, with VQ-VIB outperforming alternative EC methods. Lastly, we recorded the mean
EC vector associated with images for each topname, as shown in Figure 5 (using 2D PCA [32]),
for training (blue) or OOD (red) images. The agents learned a semantically structured space, much
like word embeddings, by clustering words with similar meanings. Remarkably, this holds for OOD
images, revealing how VQ-VIB agents may generalize to novel inputs.

English-EC Translation We measured team performance for a simulated English speaker and our
trained VQ-VIB listeners by sampling in-distribution images, looking up the GloVe embedding for
each image’s topname, translating the embedding to EC via the linear translator (see Section 4), and
then passing on the translated communication to the listener. The teams’s utility (listener’s accuracy)
is plotted in Figure 6. Increasing complexity supported greater utility, but only up to roughly 2 nats,
after which the team’s performance stopped improving. This cutoff is noteworthy because it nearly
equals the complexity of the English naming system for the ManyNames domain, calculated to be
1.9 nats using the MINE estimator [33]. Thus, the team’s utility appears to be bottlenecked by the
complexity of the English speaker, and further increasing complexity in self-play affords no benefits.

6 Contributions

In this work, we explored the influence of informational constraints on two desired properties of
emergent communication (EC): generalization to novel inputs and translation between EC and natural
language. We found that (1) encouraging informativeness allows agents to better generalize to out-of-
distribution inputs; (2) the structure of the emergent VQ-VIB communication vectors encodes some
semantic similarities and facilitates open-domain communication, similar to word embeddings in
natural language; and (3) performance for teams of simulated English speakers and trained VQ-VIB
listeners improves with the complexity of the EC system, but only up to the complexity level of the
English speaker. These results suggest that taking into account the IB informativeness-complexity
tradeoff in EC, in addition to maximizing utility, may support both improved self-play performance
and human-agent interaction.
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A Training Hyperparameters

Here, we report the hyperparameters used in our experiments. In general, hyperparameters were
chosen to maximize self-play performance on the training task, without considering performance on
more challenging validation setups (e.g., with more distractors or out-of-distribution images). Thus,
we were able to fairly test how successfully learning one task enabled agents to generalize to other
settings.

We used a Resnet18, available through TorchVision that had been pretrained on ImageNet, for
extracting 512-dimensional features from images. We trained a VAE with a symmetric encoder and
decoder with fully connected ReLU layers of dimensions 128, 64, and 32 to reconstruct such features.
Thus, in reference games, the speaker and listener actually observed the result of taking an image,
passing it through the Resnet18 feature extractor, and then passing it through the VAE reconstruction
to get a slightly noisy version of the true features.

All speakers were parametrized with a common backbone comprising three, 64-dimensional fully-
connected ReLU layers, feeding into the communication “head.” Details of the particular head
architectures are included below. The communication decoder comprised 2 fully-connected ReLU
layers with hidden dimension 64, mapping from communication vectors to reconstructed images.
The listener agent comprised two separate linear layers that mapped from communication or image
features to 16 dimensions; the listener’s output was computed via the softmax of the cosine similarity
between the communication embedding and each image’s embedding.

The decoding loss was calculated as the mean squared error (MSE) between the decoder’s output and
the speaker’s observation. The classification loss was the categorical crossentropy of the listener’s
output and the onehot label for which candidate image was the target. Agents were trained with batch
size 64 for 100,000 batches.

A.1 VQ-VIB Speaker

The VQ-VIB Speaker generated communication vectors by first sampling in a 64-dimensional latent
space using the reparametrization trick for sampling from a Gaussian and then quantizing to one of
the vectors in the codebook. We parametrized VQ-VIB agents with 1024 codebook entries.

Traditional VQ architectures sometimes suffer from “codebook collapse” in which only a small
fraction of quantized vectors are used. We found that simply using a small positive λC = 0.01
overcame such issues, likely because regulating complexity increased the stochasticity of encodings,
preventing premature settling to local minima.

As in standard VQ architectures, we set the hyperparameter β to tradeoff between the committment
and embedding losses. In experiments for λI > 0, we set β = 0.25, the default value. In experiments
for λI = 0, we set β = 0.01; this lower value allowed prototypes to move more, which appeared
necessary given the weaker training signal when the informativeness loss was not present.

In all experiments, we used an Adam optimizer with default parameters

A.2 Onehot Speaker

Although the results in our main paper focused on VQ-VIB agents, we conducted some baseline
experiments with onehot-based communication (results reported in Appendix C). The onehot speaker
produced onehot vectors by passing through a “hard” Gumbel-softmax layer. We used a 1024-
dimensional Gumbel-softmax layer to allow for up to 1024 unique messages.
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Training agents with default settings for this layer often failed to achieve better-than-random chance;
the speaker often devolved to outputting the same message for all inputs. We explored several
methods for addressing such failures, including losses for the message entropy (as discussed in Eccles
et al. [34], among others) and increasing the temperature parameter of the Gumbel softmax layer
(as explored in reference games by Chaabouni et al. [27], among others). Sweeping over entropy
weights from 0.0001 to 0.1 (at powers of 10), and temperatures in the set [0.1, 1.0, 10.0, 20.0,
50.0] we achieved the best self-play results by penalizing the message entropy with weight 0.001 and
setting the temperature to 20 throughout training, while setting λC = 0. We note that onehot-based
communication appeared much more sensitive to hyperparameter tuning than VQ-VIB agents.

Agents were trained using an Adam optimizer with default hyperparameters, except for the learning
rate, which we set to 0.0001. This rate led to higher self-play scores compared to 0.001 (the default,
which led to unstable training that caused communication collapse) and to 0.00001, which never
achieved greater-than-random scores.

A.3 Prototype Speaker

Similarly to using onehot agents as a baseline, we conducted additional experiments with prototype-
based agents, proposed by Tucker et al. [23]. Such agents used an internal Gumbel-softmax layer
with 1024 units to select a trainable prototype in 64-dimensional communicative space (to match
VQ-VIB). We used default parameters for all settings, except the Adam optimizer learning rate which,
as for onehot agents, we set to 0.0001. We also set λC = 0 to encourage highly informative (and
complex) communication.

B Appendix: Visualization of Learned Communication

In this section, we further explored visualization of learned communication via the visualization
method used for Figure 5, wherein we recorded the mean EC vector for images associated with
different topnames. In Figure 7, we plotted the 2D PCA of EC for in-distribution images (blue), EC
for OOD images (in red), and the result of translating English words into the EC space (in green).

Across models of varying complexity, we consistently found that agents, which had been trained
on images of walls, dressers, steaks, etc. (but not cribs, spoons, forks, etc.) learned a semantically-
meaningful communication space. Words for household items like “dresser" and “‘cabinet” are near
each other, while foods form another distinct cluster. Furthermore, this semantic space generalized
to held-out classes as well. An image of an apple, for example, induced similar communication
to images of steaks, donuts, and food in the training set. This explains how agents were able to
generalize to held-out classes so well: the form of communication vectors encoded information.

Inspection of the translated GloVe embeddings gives a sense of what EC listeners observed in
translation experiments. While admittedly imperfect, the linear translator model was largely able
to locate translated communication in the right semantic area. For example, in Figure 7 d, the
translated EC for “donut” and “food” are not perfectly aligned with EC for donuts or food, but the
two representations are still near each other.

C Appendix: Other communication architectures

Although the main focus of our work is on the relationship between information-theoretic properties of
EC and generalization or translation (and therefore independent of the exact form of communication),
we performed some experiments with onehot- and prototype-based (the architecture introduced by
[23]) communication. Results with such agents reinforced the main findings of our paper establishing
a link between complexity and generalization, regardless of the specific speaker architecture. Further,
our results indicated that VQ-VIB agents enabled far greater control over communication complexity
compared to onehot or prototype agents.

Recreating the OOD experiments for onehot- and prototype-based agents, team utility, plotted against
complexity, is shown in Figure 8, with VQ-VIB results copied from the main paper for reference.
Generally, all agent architectures achieved roughly similar utility for the same complexity, but non-
VQ-VIB agents failed to learn as complex communication. (Interestingly, prototype agents seemed to
learn more complex communication than onehot, but not as complex as VQ-VIB.) Note that simply
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(a) Train vs. OOD; Comp. = 1.5 nats (b) EC vs. Translated English; Comp. = 1.5 nats

(c) Train vs. OOD; Comp. = 2.1 nats (d) EC vs. Translated English; Comp. = 2.1 nats

(e) Train vs. OOD; Comp. = 2.7 nats (f) EC vs. Translated English; Comp. = 2.7 nats

(g) Train vs. OOD; Comp. = 4.6 nats (h) EC vs. Translated English; Comp. = 4.6 nats

Figure 7: 2D PCA of communication for OOD inputs (left) or translated GloVe embeddings (right) at
various complexity levels (different rows).
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(a) In-distribution evaluation; onehot (b) Out-of-distribution evaluation; onehot

(c) In-distribution evaluation; prototype (d) Out-of-distribution evaluation; prototype

(e) In-distribution evaluation; VQ-VIB n = 4 (f) Out-of-distribution evaluation; VQ-VIB n = 4

Figure 8: In- and out-of-distribution utility for onehot (top), proto (middle), or VQ-VIB agents
(bottom). All agents exhibited similar utility for the same complexity, but VQ-VIB agents learned far
more complex communication, which allowed them to perform better in harder tasks.

increasing λI failed to produce the desired effect for onehot agents, which converged to similar
behavior for λI = 10 and λI = 100.

Lastly, translation performance with onehot-based agents was predictably poor, with utility for C = 2
never exceeding 75%, even for λI = 100. Such failure can be attributed to two limitations of onehot
agents. First, as already shown in earlier experiments, onehot agents learned lower-complexity
communication than VQ-VIB agents, which limited the maximum utility. Second, specifically in the
context of translation, communicating via onehot vectors inherently limits the semantic relationships
between messages. VQ-VIB agents, with discrete representations in a continuous space, could
leverage the alignment dataset to learn a transformation of the whole space. Conversely, because
every onehot vector is by definition orthogonal to every other onehot vector, translation necessarily
failed to capture relationships between messages.

Ultimately, based on these results, we omitted discussion of onehot- and prototype-based com-
munication from the main paper. Our primary focus was the effect of different complexity and
informativeness on generalization; given the consistent results across architectures but more limited
range of complexities for non-VQ-VIB agents, VQ-VIB agents simply presented more interesting
results.

D Appendix: Combining Quantized Vectors

In the main paper, we presented results generated for VQ-VIB agents with n = 4. In Figure 9,
we include results from our topname experiments, generated for n = 1, 2, and 4. In general, we
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(a) In-distribution evaluation; n = 1 (b) Out of distribution evaluation; n = 1

(c) In-distribution evaluation; n = 2 (d) Out of distribution evaluation; n = 2

(e) In-distribution evaluation; n = 4 (f) Out of distribution evaluation; n = 4

Figure 9: Team performance on in-distribution (a) and out-of-distribution (b) images, for various
n (different rows). The general complexity-utility tradeoff remained the same, but using greater n
allowed greater complexity.

found that using greater n increased communication informativeness and complexity, which in turn
supported greater utility. Most importantly, across n, we found a similar relationship between utility
and complexity. Thus, we view this architectural change of using larger n as allowing greater control
over the complexity and informativeness of communication (which, as we discuss in the main paper,
is important for downstream tasks).

E Appendix: Varying Translation Alignment Data

In Section 5, we presented results for a simulated English speaker, with communication translated for
an EC listener. The translator was a linear transformation, fitted with N randomly-drawn examples
from the training dataset. In the main paper, we presented results for N = 100; here, in Figure 10,
we present results for various N .

Ultimately, while increasing N helped translation somewhat, the general trends from the main paper
held true. That is, as EC complexity increased from 0 to just over 2 nats, team utility increased, but at
greater complexity values, team performance was bottlenecked by the English speaker. Furthermore,
beyond a certain value, increasing N further did not appear to improve performance, as demonstrated
by the nearly identical performance for N = 100 and N = 1000.
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(a) N = 10 (b) N = 50

(c) N = 100 (d) N = 1000

Figure 10: Utility of human-agent teams using English GloVe to EC translation, for various translation
dataset sizes. Increasing the dataset size helped up to a point, but performance plateaued around 2
nats in all cases.
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