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Abstract

A common form of counterfactual reasoning is based on the notion of twin network
which is a causal graph that represents two worlds, one real and another imaginary.
Information about the real world is used to update the joint distribution over the
underlying causal mechanisms which is then used for hypothetical reasoning in the
imaginary world. This is in contrast to associational and interventional reasoning
which involve a causal graph over a single world that we shall call a base network.
We study the complexity of counterfactual reasoning on twin networks in relation to
the complexity of associational and interventional reasoning on base networks in the
form of structural causal models (SCMs). We show that counterfactual reasoning
is no harder than associational/interventional reasoning on fully specified SCMs in
the context of two computational frameworks. One of these is based on the notion
of treewidth and includes the classical variable elimination and jointree algorithms.
The second, more recent framework is based on the notion of causal treewidth
which is directed towards models that include SCMs. More specifically, we show
that the (causal) treewidth of a twin network is at most twice the (causal) treewidth
of its base network plus one. Hence, if associational/interventional reasoning is
tractable on a fully specified SCM, then counterfactual reasoning is also tractable.
We extend our results to counterfactual reasoning that requires contemplating more
than two worlds and discuss applications of our results to counterfactual reasoning
with partially specified SCMs (and data). We finally present empirical results
that measure the gap between the complexities of counterfactual reasoning and
associational/interventional reasoning on random SCMs.

1 Introduction

A theory of causality has emerged over the last few decades based on two parallel hierarchies, an
information hierarchy and a reasoning hierarchy, often called the causal hierarchy [37]. On the
reasoning side, this theory has crystalized three levels of reasoning with increased sophistication and
proximity to human reasoning: associational, interventional and counterfactual, which are exemplified
by the following canonical probabilities. Associational Pr(y|x): probability of y given that x was
observed. Example: probability that a patient has a flu given they have a fever. Interventional Pr(yx):
probability of y given that x was established by an intervention. This is different from Pr(y|x).
Example: seeing the barometer fall tells us about the weather but moving the barometer needle won’t
bring rain. Counterfactual Pr(yx|ȳ, x̄): probability of y if we were to establish x by an intervention
given that neither x nor y are true. Example: probability that a patient who did not take a vaccine
and died would have recovered had they been vaccinated. On the information side, these forms of
reasoning were shown to require different levels of knowledge, encoded as (1) associational models,
(2) causal models and (3) functional (mechanistic) models, respectively, with each class of models
containing more information than the preceding one. In the framework of probabilistic graphical
models [28], this information is encoded by (1) Bayesian networks [10, 33], (2) causal Bayesian
networks [36, 38, 44], and (3) functional Bayesian networks [4, 36].
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Figure 1: A structural causal model [5] and its twin network. Endogenous variables represent treatment (X),
the outcome of (Y ), and the presence of (Z), hypertension. Exogenous variables represent natural resistance to
disease (Ur) and sources of variation affecting endogenous variables (Ux, Uy, Uz).

Counterfactual reasoning has received much interest as it inspires both introspection and contem-
plating scenarios that have not been seen before, and is therefore viewed by many as a hallmark
of human intelligence. Figure 1 depicts a functional Bayesian network, also known as a structural
causal model (SCM) [19, 20], which can be used to answer counterfactual queries. Variables without
causes are called exogenous or root and variables with causes are called endogenous or internal. The
only uncertainty in SCMs concerns the states of exogenous variables and this uncertainty is quantified
using distributions over these variables. Endogenous variables are assumed to be functional: they
are functionally determined by their causes where the functional relationships, also known as causal
mechanisms, are specified by structural equations.1 These equations and the distributions over exoge-
nous variables define the parameters of the causal graph, leading to a fully specified SCM which can
be used to evaluate associational, interventional and counterfactual queries. For example, the SCM in
Figure 1 has enough information to evaluate the counterfactual query Pr(yx|x̄, ȳ): the probability
that a patient who did not take the treatment and died would have been alive had they been given the
treatment. A causal Bayesian network contains less information than a functional one (SCM) as it
does not require endogenous variables to be functional, but it is sufficient to compute associational and
interventional probabilities. A Bayesian network contains even less information as it does not require
network edges to have a causal interpretation, only that the conditional independences encoded by
the network are correct, so it can only compute associational probabilities.

All three forms of reasoning (and models) involve a directed acyclic graph (DAG) which we call the
base network. The time complexity of associational and interventional reasoning can be bounded by
n · exp(w) where n is the number of network nodes and w is its treewidth (a graph-theoretic measure
of connectivity). Counterfactual reasoning with two worlds is based on a twin network [3], obtained
by duplicating internal nodes in the base network; see right of Figure 1. To compute the counterfactual
query Pr(yx|ȳ, x̄), one asserts ȳ, x̄ as an observation on one side of the twin network (real world)
and computes the interventional query Pr(yx) on the other side of the network (imaginary world).
One can also bound the time complexity of reasoning by nt · exp(wt) where nt is the number of
nodes in the twin network and wt is its treewidth. A recent result provides a similar but much tighter
bound using the notion of causal treewidth [6, 12], which is no greater than treewidth but applies only
when certain nodes in the base network are functional — in SCMs every internal node is functional.

One would expect the more sophisticated counterfactual reasoning with twin networks to be more ex-
pensive than associational/interventional reasoning with base networks since the former networks are
larger and have more complex topologies. But the question is: How much more expensive? For exam-
ple, can counterfactual reasoning be intractable on a twin network when associational/interventional
reasoning is tractable on its base network? We address this question in the context of reasoning
algorithms whose complexity is exponential only in the (causal) treewidth, such as the jointree
algorithm [30], the variable elimination algorithm [52, 16] and circuit-based algorithms [9, 13].
In particular, we show in Sections 3 & 4 that the (causal) treewidth of a twin network is at most
twice the (causal) treewidth of its base network plus one. Hence, the complexity of counterfactual

1These equations can also be specified using conditional probability tables (CPTs) that are normally used in
Bayesian networks, but the CPTs will contain only deterministic distributions.
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Figure 2: A family f appears next to a jointree node i iff f is hosted by i (i ∈ H(f)). The family
of variable D is replicated in (c) since |H(fD)| = 2, where red variables are thinned, assuming that
variable D is functional.

reasoning on fully specified SCMs is no more than quadratic in the complexity of associational and
interventional reasoning, so the former must be tractable if the latter is tractable. We extend our
results in Section 5 to counterfactual reasoning that requires contemplating more than two worlds,
therefore demanding networks that are more complex than twin networks. Our results apply directly
to counterfactual reasoning on fully specified SCMs but we also discuss in Section 6 how they can
sometimes be applied to counterfactual reasoning using data and a partially specified SCM. We finally
present empirical results in Section 7 which reveal that, on average, the complexity gap between
counterfactual and associational/interventional reasoning on fully specified SCMs can be smaller
than what our worst-case bounds may suggest.

2 Technical Preliminaries

We next review the notions of treewidth [39] and causal treewidth [6, 12, 11] which we use to
characterize the computational complexity of counterfactual reasoning on fully specified SCMs. We
also review the notions of elimination orders, jointrees and thinned jointrees which are the basis for
defining (causal) treewidth and act as data structures that characterize the computational complexity
of various reasoning algorithms. We use these notions extensively when stating and proving our
results (proofs of all results are in the Appendix). We denote variables by uppercase letters (e.g. X)
and their values by lowercase letters (e.g. x). A set of variables is denoted by a bold uppercase letter
(e.g. X) and its instantiations by a bold lowercase letter (e.g. x).

2.1 Elimination Orders

These are total orders of the network variables which drive, and characterize the complexity of, the
classical variable elimination algorithm when computing associational, interventional and counterfac-
tual queries. Consider a DAG G where every node represents a variable. An elimination order π for
G is a total ordering of the variables in G, where π(i) is the ith variable in the order, starting from
i = 1. An elimination order defines an elimination process on the moral graph of DAG G which is
used to define the treewidth of G. The moral graph Gm is obtained from G by adding an undirected
edge between every pair of common parents and then removing directions from all directed edges.
When we eliminate variable π(i) from G, we connect every pair of neighbors of π(i) in Gm and
remove π(i) from Gm. This elimination process induces a cluster sequence C1,C2, . . . ,Cn, where
Ci is π(i) and its neighbors in Gm just before eliminating π(i). The width of an elimination order is
the size of its largest induced cluster minus 1. The treewidth for DAG G is the minimum width of any
elimination order for G. The variable elimination algorithm computes queries in O(n · exp(w)) time
where n is the number of nodes in the (base or twin) network and w is the width of a corresponding
elimination order. Elimination orders are usually constructed using heuristics that aim to minimize
their width. We use the popular minfill heuristic [26] in our experiments while noting that more
effective heuristics may exist as shown in [27, 29].
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2.2 Jointrees

These are data structures that drive, and characterize the complexity of, the classical jointree algorithm;
see Figure 2b. Let the family of variable X in DAG G be the set fX containing X and its parents
in G. A jointree for DAG G is a pair ⟨T ,H⟩ where T is a tree and H is a function that maps each
family f of G into nodes H(f) in T called the hosts of family f . The requirements are: only nodes
with a single neighbor (called leaves) can be hosts; each leaf node hosts exactly one family; and
each family must be hosted by at least one node.2 This induces a cluster Ci for each jointree node
i and a separator Sij for each jointree edge (i, j) which are defined as follows. Separator Sij is
the set of variables hosted at both sides of edge (i, j). If jointree node i is a leaf then cluster Ci is
the family hosted by i; otherwise, Ci is the union of separators adjacent to node i. The width of a
jointree is the size of its largest cluster minus 1. The minimum width attained by any jointree for
G corresponds to the treewidth of G. The jointree algorithm computes queries in O(n · exp(w))
time where n is the number of nodes and w is the width of a corresponding jointree. Jointrees are
usually constructed from elimination orders, and there are polytime, width-preserving transformations
between elimination orders and jointrees; see [10, Ch 9] for details.

2.3 Thinned Jointree

To thin a jointree is to remove some variables from its separators (and hence clusters, which are
defined in terms of separators); see Figure 2c. Thinning reduces the jointree width, sometimes quite
significantly, leading to exponential savings in reasoning time. Thinning is possible only when some
variables in the network are functional, even without knowing the specific functional relationships
(i.e., structural equations). The causal treewidth is the minimum width for any thinned jointree.
Causal treewidth is no greater than treewidth and the former can be bounded when the latter is
not. While this notion can be applied broadly as in [11], it is particularly relevant to counterfactual
reasoning since every internal node in an SCM is functional so the causal treewidth for these models
can be significantly smaller than their treewidth. There are alternate definitions of thinned jointrees.
The next definition is based on thinning rules [6].

A thinning rule removes a variable from a separator under certain conditions. There are two thinning
rules which apply only to functional variables. The first rule removes variable X from a separator Sij

if edge (i, j) is on the path between two leaf nodes that host the family of X and every separator on
that path contains X . The second rule removes variable X from a separator Sij if no other separator
Sik contains X , or no other separator Skj contains X . A thinned jointree is obtained by applying
these rules to exhaustion. Figure 2 depicts an optimal, classical jointree and a thinned jointree for the
same DAG (the latter has smaller width).

The effectiveness of thinning rules depends on the number of jointree nodes that host a family f ,
|H(f)|, and the location of these nodes in the jointree. One can enable more thinnings by increasing
the number of jointree nodes that host each family f . This process is called replication where |H(f)|
is called the number of replicas for family f . Replication comes at the expense of increasing the
number of jointree nodes so the definition of causal treewidth limits this growth by requiring the
jointree size to be a polynomial in the number of nodes in the underlying DAG; see [6] for details.3

3 The Treewidth of Twin Networks

Consider Figure 3a which depicts a 2-bit half adder. Suppose the binary inputs A and B are randomly
sampled from some distribution and the gates may not be functioning properly. This circuit can
be modeled using the network in Figure 3b. Variables A,B, S,C represent the inputs and outputs
of the circuit; X,Y represent the health of the XOR gate and the AND gate; and U represents an
unknown external random sampler that decides the state of inputs A and B. Suppose that currently

2The standard definition of jointrees allows any node to be a host of any number of families. Our definition
facilitates the upcoming treatment and does not preclude optimal jointrees.

3Thinning rules will not trigger if families are not replicated (|H(f)| = 1 for all f ). Replication usually
increases the width of a jointree from w to wr with the goal of having thinning rules reduce width wr to
width wt < w ≤ wr . The replication strategy may sometimes not be effective on certain networks, leading
to w < wt ≤ wr . See [6, 11] for some replication strategies. We later use the one in [6] which exhibits this
behavior on some networks.
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Figure 3: Internal nodes in the base network (Figure (b)) are functional. Figure (c),(d): Computing
counterfactual Pr((c, s̄)a,b|a, b̄, c̄, s̄) using a twin network. Double-circled nodes have evidence.

input A is high, input B is low, yet both outputs C and S are low which is an abnormal circuit
behavior. We wish to know whether the half adder would still behave correctly when we turn both
inputs A and B on. This question can be formulated using the following counterfactual query:
Pr((c, s̄)a,b|a, b̄, c̄, s̄). This query can be answered using a twin network as shown in Figure 3c,
where each non-root variable V has a duplicate [V ]. The current evidence a, b̄, c̄, s̄ is asserted on
the variables A,B,C, S representing the real world and the interventional query Pr((c, s̄)a,b) is
computed on the duplicate variables [A], [B], [C], [S] representing the imaginary world. This is done
by removing the edges incoming into the intervened upon variables [A], [B], asserting evidence
[a], [b] and finally computing the probability of [c], [s̄] as shown in Figure 3d; see [36] for an elaborate
discussion of these steps. This basically illustrates how a counterfactual query can be computed
using algorithms for associational queries, like variable elimination, but on a mutilated twin network
instead of the base network.

We next show that the treewidth of a twin network is at most twice the treewidth of its base network
plus one, which allows us to relate the complexities of assocational, interventional and counterfactual
reasoning on fully specified SCMs. First is the definition of twin networks as proposed by [3].

Definition 1. Given a base network G, its twin network Gt is constructed as follows. For each
internal variable X in G, add a new variable labeled [X]. For each parent P of X , if P is an
internal variable, make [P ] a parent of [X]; otherwise, make P a parent of [X]. We will call X a
base variable and [X] a duplicate variable.

For convenience, we use [U ] = U when U is root. For variables X, we use [X] to denote {[X]|X ∈
X}. Figure 3c depicts the twin network for the base network in Figure 3b.

3.1 Twin elimination orders

Our result on the treewidth of twin networks is based on converting every elimination order for the
base network into an elimination order for its twin network while providing a guarantee on the width
of the latter in terms of the width of the former. We provide a similar result for jointrees that we use
when discussing the causal treewidth of twin networks.

Definition 2. Consider an elimination order π for a base network G. The twin elimination order πt

is an elimination order for its twin network Gt constructed by replacing each non-root variable X in
π by X, [X].

Consider the base network in Figure 3b and its elimination order π = A, B, X , Y , S, C, U . The
twin elimination order will be πt = A, [A], B, [B], X , Y , S, [S], C, [C], U .

Recall that eliminating variables π(i), . . . , π(n) from a base network G induces a cluster sequence
C1, . . . ,Cn. We use C(X) to denote the cluster of eliminated variable X . Similarly, eliminating
variables from a twin network Gt induces a cluster sequence and we use Ct(X) to denote the cluster
of eliminated variable X and Ct([X]) to denote the cluster of its eliminated duplicate [X].

Theorem 1. Suppose we are eliminating variables from base network G using an elimination order
π and eliminating variables from its twin network Gt using the twin elimination order πt. For every
variable X in G, we have Ct(X) ⊆ C(X) ∪ [C(X)] and Ct([X]) ⊆ C(X) ∪ [C(X)].
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This theorem has two key corollaries. The first relates the widths of an elimination order and its twin
elimination order.
Corollary 1. Let w be the width of elimination order π for base network G and let wt be the width
of twin elimination order πt for twin network Gt. We then have wt ≤ 2w + 1.

The above bound is tight as shown in Appendix B. The next corollary gives us our first major result.
Corollary 2. If w is the treewidth of base network G and wt is the treewidth of its twin network Gt,
then wt ≤ 2w + 1.

3.2 Twin jointrees

We will now provide a similar result for jointrees. That is, we will show how to convert a jointree
⟨T ,H⟩ for a base network G into a jointree ⟨T t,Ht⟩ for its twin network Gt while providing a
guarantee on the width/size of the twin jointree in terms of the width/size of the base jointree. This
may seem like a redundant result given Corollary 1 but the provided conversion will actually be critical
for our later result on bounding the causal treewidth of twin networks. It can also be significantly
more efficient than constructing a jointree by operating on the (larger) twin network.

Our conversion process operates on a jointree after directing its edges away from some node r, call it
a root. This defines a single parent for each jointree node i ̸= r, which is the neighbor of i closest to
root r, with all other neighbors of i being its children. These parent-child relationships are invariant
when running the algorithm. We also use a subroutine for duplicating the jointree nodes rooted at
some node i. This subroutine duplicates node i and its descendant while also duplicating the edges
connecting these nodes. If a duplicated node j hosts a family f , this subroutine will make [j] host the
duplicate family [f ] (so j ∈ H(f) iff [j] ∈ H([f ])).

Algorithm 1 Jointree to Twin Jointree
1: procedure MAKE-TWIN-JOINTREE(⟨T ,H⟩, r, p)
2: Σ← leaf nodes at or below node r
3: if nodes in Σ only host families for root variables then
4: return
5: if nodes in Σ only host families for internal variables

then
6: duplicate the jointree nodes rooted at node r
7: add [r] as a child of p
8: else
9: for each child k of node r do

10: MAKE-TWIN-JOINTREE(⟨T ,H⟩, k, r)

The conversion process is given in Algo-
rithm 1 which should be called initially
with a root r that does not host a family
for an internal DAG node and p = null.
The twin jointree in Figure 4b was obtained
from the base jointree in Figure 4a by this
algorithm which simply adds nodes and
edges to the base jointree. If an edge (i, j)
in the base jointree is duplicated by Algo-
rithm 1, we call (i, j) a duplicated edge
and ([i], [j]) a duplicate edge. Otherwise,
we call (i, j) an invariant edge. In Fig-
ure 4b, duplicate edges are shown in red
and invariant edges are shown in green. We now have the following key result on these twin jointrees.
Theorem 2. If the input jointree to Algorithm 1 has separators S and the output jointree has
separators St, then for duplicated edges (i, j), St

ij = Sij; for duplicate edges ([i], [j]), St
[i][j] = [Sij ];

and for invariant edges (i, j), St
ij = Sij ∪ [Sij ].

One can verify that the separators in Figure 4 satisfy these properties. The following result bounds
the width and size of twin jointrees generated by Algorithm 1.
Corollary 3. Let w be the width of a jointree for base network G and let n be the number of jointree
nodes. Calling Algorithm 1 on this jointree will generate a jointree for twin network Gt whose width
is no greater than 2w + 1 and whose number of nodes is no greater than 2n.

The above bound on width is tight as shown in Appendix B. Since treewidth can be defined in terms
of jointree width, the above result leads to the same guarantee of Corollary 2 on the treewidth of
twin networks. However, the main role of the construction in this section is in bounding the causal
treewidth of twin networks. This is discussed next.

4 The Causal Treewidth of Twin Networks

Recall that causal treewidth is a more refined notion than treewidth as it uses more information
about the network. In particular, this notion is relevant when we know that some variables in the
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(a) base jointree (b) twin jointree using Algorithm 1
(c) A base network and its
3-world network

Figure 4: Figure (a),(b): A family f appears next to a jointree node i iff the family is hosted by that
node (i ∈ H(f)). Figure (c): an example of modeling using N -world network.

(a) thinned base jointree (width 3) (b) thinned twin jointree (width 3)

Figure 5: Illustrating the construction of a thinned, twin jointree from a thinned, base jointree.

network are functional, without needing to know the specific functions (equations) of these variables.
By exploiting this information, one can construct thinned jointrees that have smaller separators
and clusters compared to classical jointrees, which can lead to exponential savings in reasoning
time [6, 12, 11]. As mentioned earlier, the causal treewidth corresponds to the minimum width of
any thinned jointree. This is guaranteed to be no greater than treewidth and can be bounded when
treewidth is not [12]. We next show that the causal treewidth of a twin network is also at most twice
the causal treewidth of its base network plus one. We start with the following key result.

Theorem 3. Consider a twin jointree constructed by Algorithm 1 from a base jointree with thinned
separators S. The following are valid thinned separators for this twin jointree: for duplicated
edges (i, j), St

ij = Sij; for duplicate edges ([i], [j]); St
[i][j] = [Sij ]; and for invariant edges (i, j),

St
ij = Sij ∪ [Sij ].

This theorem shows that a thinned, base jointree can be automatically converted into a thinned, twin
jointree. This is significant for two reasons. First, this method avoids the explicit construction and
thinning of jointrees for twin networks which can be quite expensive computationally [6]. Second,
we have the following guarantee on the width of thinned, twin jointrees constructed by Theorem 3.

Corollary 4. Consider the thinned, base and twin jointrees in Theorem 3. If the thinned, base jointree
has width w, then the thinned, twin jointree has width no greater than 2w + 1.

Figure 5a shows a thinned jointree for the base network in Figure 3b. Figure 5b shows the corre-
sponding thinned, twin jointree constructed by Algorithm 1 and annotated with the thinned separators
(and clusters) as given by Theorem 3. We can now bound the causal treewidth of twin networks.

Corollary 5. If w and wt are the causal treewidths of a base network and its twin network, then
wt ≤ 2w + 1.
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5 Counterfactual Reasoning Beyond Two Worlds

Standard counterfactual reasoning contemplates two worlds, one real and another imaginary, while
assuming that root nodes of the base network (exogenous variables) correspond to causal mechanisms
that govern both worlds. This motivates the notion of a twin network as it ensures that these causal
mechanisms are invariant. This type of reasoning can be thought of as a special case of temporal
reasoning where variables change their states over time. In standard counterfactual reasoning, only
endogenous variables can change their states over time and we only have two time steps corresponding
to the real and imaginary worlds.

A more general setup arises when we relax these assumptions. That is, we allow multiple time steps
(worlds) and we allow some exogenous variables to also change their states over time. For an example
of this, consider again the half adder in Figure 3a and its base network in Figure 4c. Suppose we set
inputs A and B to high and low and observe outputs S and C to be high and low as well, which is a
normal behavior. We then set both inputs to low and observe that the outputs do not change, which is
an abnormal behavior. We then aim to predict the state of outputs if we were to set both inputs to
high. This scenario involves three time steps (worlds). Moreover, while the health of gates X and Y
are invariant over time, we do not wish to make the same assumption about the inputs A and B.

We can model this situation using the network in Figure 4c, which is not a twin network but a more
general type of networks that appears quite frequently in practice. We call these N -world networks.
Definition 3. Consider a base network G and let R be a subset of its roots and N ≥ 1 be an integer.
The N -world network GN of G is constructed as follows. For each variable X in G that is not in R,
replace it with N duplicates of X , labeled X1, X2, . . . , XN . For each parent P of X , if P is in R,
make P a parent of Xi for all i ∈ 1, 2, . . . , N . Else, make P i a parent of Xi for all i ∈ 1, 2, . . . , N .

This definition slightly generalizes the notion of a parallel worlds model [1] which falls as a special
case when R contains all roots in the base network. Twin networks also fall as a special case of this
definition when N = 2 and R contains all roots of the base network. The question now is: can we
provide guarantees on the (causal) treewidth of N -world networks in terms of the (causal) treewidth
of their base networks? The answer is yes as shown by the following generalization of earlier results.
Theorem 4. If w and wt are the (causal) treewidths of a base network and its N -world network,
then wt ≤ N(w + 1)− 1.

The class of N -world networks can be viewed as a subclass of dynamic Bayesian networks [15]
and is significant for a number of reasons. First, as illustrated by the above example, it arises when
reasoning about the behavior of systems consisting of function blocks (e.g., gates) where each block
has a health state that dictates its behavior and is invariant over time. This covers a large class of
applications, particularly in model-based diagnosis [21]. Further, the class of N -world networks
allows counterfactual reasoning where conflicting observations and actions can arise in multiple
worlds [31]. Consider a treatment regime that may be administered daily where its outcomes are also
measured daily. One may have observations and interventions that cover a number of days and wishes
to predict the result of an intervention on the following day. This can be achieved using N -world
networks. See [1, 42, 43] for additional, more sophisticated uses of N -world networks.

6 Counterfactual Reasoning with Partially Specified SCMs

The results we presented on N -world networks, which include twin networks, apply directly to
fully specified SCMs. In particular, in the context of variable elimination and jointree algorithms,
these results allow us to bound the complexity of computing counterfactual queries in terms of the
complexity of computing associational/interventional queries. Moreover, they provide efficient meth-
ods for constructing elimination orders and jointrees that can be used for computing counterfactual
queries based on the ones used for answering associational/interventional queries, while ensuring
that the stated bounds will be realized. Recall again that our bounds and constructions apply to both
traditional treewidth (jointrees) and the more recent causal treewidth (thinned jointrees).

Causal reasoning can also be conducted using partially specified SCMs and data, which is a more
challenging task. A partially specified SCM typically includes the SCM structure and some partial
information about its parameters (i.e., its structural equations and the distributions over its exogenous
variables). For example, we may not know any of the SCM paramaters, or we may know the structural
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(a) classical jointrees (b) thinned jointrees (c) classical jointrees (d) thinned jointrees

Figure 6: Width of jointrees (y-axis) against number of base network nodes (x-axis) for maximum
number of parents p = 5.

equations but not the distributions over exogenous variables as assumed in [49].4 A central question
in this setup is whether the available information, which includes data, is sufficient to obtain a point
estimate for the causal query of interest, in which case the query is said to be identifiable. A significant
amount of work on causality has focused on characterizing conditions under which causal queries
(both counterfactual and interventional) are identifiable; see, [36, 44] for textbook discussions of this
subject and [43, 7] for some results on the identification of counterfactual queries.

When a query is identifiable, the classical approach for estimating it is to derive an estimand using
techniques such as the do-calculus for interventional queries [34, 46, 41].5 Some recent approaches
take a different direction by first estimating the SCM parameters to yield a fully specified SCM
that is then used to answer (identifiable) interventional and counterfactual queries using classical
inference algorithms [48, 49, 12].6 Our results on twin and N -world networks apply directly in
this case as they can be used when conducting inference on the fully parameterized SCM. For
unidentifiable queries, the classical approach is to derive a closed-form bound on the query; see,
for example, [2, 35, 45, 14, 40, 18, 50, 32]. Some recent approaches take a different direction for
establishing bounds, such as reducing the problem into one of polynomial programming [17, 51]
or inference on credal networks [47, 8]. Another recent direction is to establish (approximate)
bounds by estimating SCM parameters and then using classical inference algorithms on the fully
specified SCM to obtain point estimates [48, 49]. Since the query is not identifiable, different
parametrizations can lead to different point estimates which are employed to improve (widen) the
computed bounds. Our results can also be used in this case for computing point estimates based on a
particular parametrization (fully specified SCM) within the overall process of establishing bounds.

7 Experimental Results

We consider experiments in this section that target random networks whose structures emulate the
structures of SCMs used in counterfactual reasoning. We have a few objectives in mind. First, we
wish to compare the widths of base and twin jointrees, with and without thinning. These widths
do not correspond to (causal) treewidth since the jointrees are constructed using heuristics (finding
optimal jointrees is NP-hard). Next, we want to compare the quality of twin jointrees constructed by
Algorithm 1 (TWIN-ALG1), which operates directly on a base jointree, to the quality of twin jointrees
obtained by applying the minfill heuristic to a twin network (TWIN-MF). Recall that the former
method is more efficient than the latter method. Finally, we wish to conduct a similar comparison
between the thinned, twin jointrees constructed according to Theorem 3 (TWIN-THM3) and the
thinned, twin jointrees obtained by applying the minfill heuristic and thinning rules to a twin network
(TWIN-MF-RLS). Again, the former method is more efficient than the latter. The widths of these
jointrees will be compared to the widths of base jointrees constructed by minfill (BASE-MF) and
thinned, base jointrees constructed by minfill and thinning rules (BASE-MF-RLS).

We generated random networks according to the method used in [11]. Given a number of nodes
n and a maximum number of parents p, the method chooses the parents of node Xi randomly

4In this case, interventional inference is NP-hard even when the SCM structure is a polytree [49].
5See [25, 24, 23] for some recent work on estimating identifiable interventional queries from finite data.
6There is usually an infinite number of parametrizations in this case but they are all equivalent when answering

the query due to the conditions that imply identifiability.
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from the set X1, . . . , Xi−1. The number of parents for node Xi is chosen randomly from the set
0, . . . ,min(p, i− 1). We refer to these networks as rNET. We then consider each internal node N
and add a unique root R as parent for N . This is meant to emulate the structure of SCMs as the
exogenous variable R can be viewed as representing the different causal mechanisms for endogenous
variable N . We refer to these modified networks as rSCM. The twin networks of rSCM are more
complex than those for rNET since more variables are shared between the two slices representing the
real and imaginary worlds (i.e., more information is shared between the two worlds).

We used n ∈ {50, 75, 100, 125, 150, 200, 250, 300} and p ∈ {3, 5, 7}. For each combination of
n and p, we generated 50 random, base networks and reported averages of two properties for the
constructed jointrees: width and normalized width. If a jointree has clusters C1, . . . ,Cn, then
normalized width is log2

∑n
i=1 2

|Ci|. This accounts for all clusters in the jointree instead of just the
largest one (it also accounts for the jointree size). The data we generated occupies significant space
so we included it in Appendix C while providing representative plots in Figure 6 for jointree widths
under p = 5. We next discuss patterns exhibited in these plots and the full data in Appendix C, which
also includes experiments using random networks generated according to the method in [22].

First, the widths of twin jointrees are always less than twice the widths of their base jointrees and
often significantly less than that. This is not guaranteed by our theoretical bounds as those apply to
(causal) treewidth not to the widths of jointrees produced by heuristics — the latter widths are an
upper bound on the former. Second, constructing a twin jointree by directly applying Algorithm 1 to
a base jointree (TWIN-ALG1) is relatively comparable to constructing the twin jointree by operating
on the twin network (TWIN-MF), as would normally be done. This also holds for thinned jointrees
(TWIN-THM3 vs TWIN-MF-RLS) and is encouraging since the former methods are much more
efficient than the latter ones. Third, the employment of thinned jointrees can lead to significant
reduction in width and hence an exponential reduction in reasoning time. This can be seen by
comparing the widths of twin jointrees TWIN-THM3 and TWIN-ALG1 since the former is thinned
but the latter is not (similarly for TWIN-MF-RLS and TWIN-MF). Fourth, the twin jointrees of rSCM
have larger widths than those of rNET. Recall that in rSCM, every endogenous variable has its own
exogenous variable as a parent. Therefore, the distribution over exogenous variables has a larger space
in rSCM compared to rNET. Since this distribution needs to be shared between the real and imaginary
worlds, counterfactual reasoning with rSCM is indeed expected to be more complex computationally
than reasoning with rNET. Finally, consider Figure 6b for a bottom-line comparison between the
complexity of counterfactual reasoning and the complexity of associational/interventional reasoning
in practice. Jointrees BASE-MF have the smallest widths for base networks so these are the jointrees
one would use for associational/interventional reasoning. The best twin jointrees are TWIN-MF-RLS
which are thinned. This is what one would use for counterfactual reasoning. The widths of latter
jointrees are always less than twice the widths of the former, and quite often significantly much less.7

8 Conclusion

We studied the complexity of counterfactual reasoning on fully specified SCMs in relation to the
complexity of associational and interventional reasoning on these models. Our basic finding is that
in the context of algorithms based on (causal) treewidth, the former complexity is no greater than
quadratic in the latter when counterfactual reasoning involves only two worlds. We extended these
results to counterfactual reasoning that requires multiple worlds, showing that the gap in complexity
is bounded polynomially by the number of needed worlds. Our empirical results suggest that for two
types of random SCMs, the complexity of counterfactual reasoning is closer to that of associational
and interventional reasoning than our worst-case theoretical analysis may suggest. While our results
directly target counterfactual reasoning on fully specified SCMs, we also discussed cases when they
can be applied to counterfactual reasoning on partially specified SCMs that are coupled with data.
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A Proofs

Proof of Theorem 1

Consider a base network G and its twin network Gt. We first introduce a set notation {X, [X]},
which contains both the base and duplicate variable for X if X is an internal variable and collapses
to a single variable if X is a root variable.

For an elimination order π on a base network G, [10] defines a graph sequence G1, G2, . . . , Gn

induced by π, where G1 is the moral graph for G, and Gi+1 is the result of eliminating π(i) from
Gi. Similarly, we define a twin graph sequence Gt

1, G
t
2, . . . , G

t
n, where Gt

1 is the moral graph for
Gt, and Gt

i+1 is the result of eliminating {π(i), [π(i)]} from Gt
i.

Consider Gi in the graph sequence induced by π on G. For each variable X in Gi, let Gi(X) be
the set consisting of X and its neighbors in Gi. Similarly, let Gt

i(X) and Gt
i([X]) denote the set

consisting of X and its neighbors, and the set consisting of [X] and its neighbors in Gt
i, respectively.

By definition, Gi(π(i)) = C(π(i)) and Gt
i(π(i)) = Ct(π(i)).

We first propose a Lemma that relates Gt
i(X) and Gi(X).

Lemma 1. Suppose we apply elimination order π to a base network G and apply πt to its twin
network Gt. Then for each variable X in Gi, we have Gt

i(X) ⊆ Gi(X) ∪ [Gi(X)] and Gt
i([X]) ⊆

Gi(X) ∪ [Gi(X)].

Proof. We will prove this by induction on Gt
i. The statement holds initially for Gt

1 by the definition
of twin networks. Suppose the statement holds for Gt

i−1, i.e. Gt
i−1(X) ⊆ Gi−1(X)∪ [Gi−1(X)] and

Gt
i−1([X]) ⊆ Gi−1(X) ∪ [Gi−1(X)] for every {X, [X]} in Gt

i−1, we need to show the statement
holds for Gt

i.

For simplicity, let Y denote the variable being eliminated at step i, i.e. Y = π(i− 1). WLG, consider
each base variable X in Gt

i (similar argument can be applied to each duplicate variable [X]). Gt
i(X)

is affected by the elimination of {Y, [Y ]} iff X is a neighbor of {Y, [Y ]} in Gt
i−1. Moreover, by

induction, X is a neighbor of {Y, [Y ]} in Gt
i−1 only if X is a neighbor of Y in Gi−1.

When X is not a neighbor of Y , then Gt
i(X) = Gt

i−1(X) and Gi(X) = Gi−1(X), so the statement
holds.

When X is a neighbor of Y , Gi(X) = Gi−1(X) ∪ Gi−1(Y ) \ {Y } by the definition of variable
elimination. We can then bound Gt

i(X) as follows:

Gt
i(X) ⊆ (Gt

i−1(X) ∪Gt
i−1(Y ) ∪Gt

i−1([Y ])) \ {Y, [Y ]}
(eliminating {Y, [Y ]} on Gt)

⊆ (Gi−1(X) ∪ [Gi−1(X)] ∪Gi−1(Y ) ∪ [Gi−1(Y )]) \ {Y, [Y ]}
(by inductive hypothesis)

= (Gi−1(X) ∪Gi−1(Y )) ∪ ([Gi−1(X)] ∪ [Gi−1(Y )]) \ {Y, [Y ]}
= Gi(X) ∪ [Gi(X)].

Proof for Theorem 1. Consider each variable X that is eliminated at step i, i.e. X = π(i). By
Lemma 1, Ct(X) = Gt

i−1(X) ⊆ Gi−1(X) ∪ [Gi−1(X)] = C(X) ∪ [C(X)].

We next bound Ct([X]) if X is an internal variable,

Ct([X]) ⊆ (Gt
i−1([X]) ∪Ct(X)) \ {X}

(eliminating X from Gt
i−1)

⊆ Gi−1(X) ∪ [Gi−1(X)] \ {X}
(by Lemma 1)

⊆ C(X) ∪ [C(X)].
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Proof for Corollary 1. By Theorem 1, for every base variable X ∈ Gt, |Ct(X)| ≤ |C(X) ∪
[C(X)]| ≤ 2|C(X)|. Similarly, for every duplicate variable [X] ∈ Gt, |Ct([X])| ≤ |C(X) ∪
[C(X)]| ≤ 2|C(X)|. So wt = maxX∈Gt |Ct(X)|−1 ≤ 2maxX∈G |C(X)|−1 = 2(w+1)−1 =
2w + 1.

Proof for Corollary 2. Consider an optimal elimination order π for base network G with width w.
By Corollary 1, the twin elimination order for Gt with width no more than 2w+1. It follows that the
treewidth of Gt is no more than 2w + 1.

Proof of Theorem 2

We first state a key observation from Algorithm 1, which is formulated as Lemma 2. For simplicity,
we say a leaf node hosts variable X if it hosts a family that contains X .

Lemma 2. Consider each invariant edge (i, j) in a twin jointree constructed from Algorithm 1. A
variable X is hosted in some leaf on the i-side of the edge iff [X] is also hosted in some leaf on the
i-side of the edge.

Proof. If X is a root variable, then X = [X] and the lemma holds. Now suppose X is an internal
variable. Let k be the leaf node on the i-side of the edge that hosts X , it suffices to show that k is
duplicated into a [k] on the i-side that hosts [X].

Since X is an internal variable, k hosts either the family for X or a family for some child of X . In
either case, k hosts a family for an internal variable. Moreover, k is contained in some subtree rooted
at u whose leaves host only families for internal variables. Since k is on the i-side of the invariant
edge (i, j), u is also on the i-side of the edge. Hence the duplicate leaf [k], which hosts [X], is also
on the i-side of the edge.

Conversely, suppose [X] is hosted by some leaf [k] on the i-side of edge (i, j), then [k] hosts some
family for a duplicate variable. [k] is contained in some duplicate subtree rooted at [u] whose leaves
only host families for duplicate variables. It follows that the base subtree rooted at u is located on the
i-side of the edge and contains a base node k hosting X .

We first recall the definition of separators: X ∈ Sij if and only if X is hosted on both sides of the
edge (i, j). For simplicity, we use vars(i, j) to denote the variables that appear on the i-side of the
edge (i, j) in the base jointree. Similarly, we use varst(i, j) and to denote the variables that appear
on the i-side in the twin jointree. By definition, for each edge (i, j), Sij = vars(i, j) ∩ vars(j, i)
and St

ij = varst(i, j) ∩ varst(j, i). Given a jointree and its root, we say that a jointree node j is
above a jointree node i if j is closer to the root than i, and that j is below i if j is further from the
root than i.

Proof for Theorem 2. We derive the separators for each type of edges. WLG, for each edge (i, j),
assume that j is above i. First consider each duplicated edge (i, j), we have varst(i, j) = vars(i, j)
by Algorithm 1. Moreover, varst(j, i) can only contain extra duplicate variables comparing to
vars(j, i). Thus, St

ij = Sij .

For each duplicate edge ([i], [j]), we have varst([i], [j]) = [vars(i, j)] by Algorithm 1. We next
show that for each [X] ∈ varst([i], [j]), [X] ∈ varst([j], [i]) iff X ∈ vars(j, i), which then
concludes St

[i][j] = [Sij ]. We first show the if-part. Let u be the least common ancestor of j and
[j]. If X ∈ vars(j, i), then X is hosted by some leaf k that appears either below u, or above u, in
the base jointree. Suppose k is below u, then k’s duplicate [k] hosts [X] on the [j]-side in the twin
jointree by Algorithm 1, which implies [X] ∈ varst([j], [i]). Suppose k is above u. If u is the root
of the jointree, then X is a root variable and [X] ∈ varst([j], [i]). Otherwise, let p be the parent of
u, then (u, p) is an invariant edge, and [X] appears on the p-side of the edge by Lemma 2.

Similar argument applies for the only-if part. Suppose [X] ∈ varst([i], [j]), then [X] is hosted by
some duplicate leaf [k] either below or above u. If [k] is below u, then the duplicated node k is also
below u. If [k] is above u, then the duplicated node k must also appear above u by Lemma 2.

For each invariant edge (i, j), it follows from Lemma 2 that varst(i, j) = vars(i, j) ∪ [vars(i, j)]
and varst(j, i) = vars(j, i) ∪ [vars(j, i)]. Hence, St

ij = Sij ∪ [Sij ].
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Proof for Corollary 3. Let T be a jointree for G, and let T t be the twin jointree for Gt obtained
from Algorithm 1. Let i be a node in jointree T . By Theorem 3, for all neighbors j of i, St

ij ⊆
Sij ∪ [Sij ]. So Ct

i =
⋃

j S
t
ij ⊆

⋃
j Sij ∪ [Sij ] = Ci ∪ [Ci]. So |Ct

i| ≤ |Ci ∪ [Ci]| ≤ 2|Ci|. So
wt = maxi∈T t |Ct

i| − 1 ≤ 2maxi∈T |Ci| − 1 = 2(w + 1)− 1 = 2w + 1.

The number of nodes in the twin jointree is at most twice the number of nodes in the base jointree
since Algorithm 1 adds at most one duplicate for each node in the base jointree.

Proof of Theorem 3

Proof for Theorem 3. From [6], a thinned jointree can be obtained by applying a sequence of thinning
rules to a base jointree. Let Q = {Q1, . . . , QT } denote the T thinning rules being applied to the
base jointree in order. We next construct a thinning sequence Qt for the twin jointree, which leads to
the thinned separators defined in the Theorem.

We first define a parallel thinning step as simultaneously thinning a functional variable X from the
base jointree and thinning {X, [X]} from the twin jointree. Consider any thinning rule Qi that thins
X from a separator Sij , the parallel thinning on St is defined as follows:

• Suppose (i, j) is a duplicated edge, then we thin X from St
ij and [X] from St

[i][j]

• Suppose (i, j) is an invariant edge, then we thin {X, [X]} from St
ij

First note that the definition of parallel thinning ensures that the relation between S and St specified
in the theorem holds after every parallel thinning step. It remains to show that the parallel thinnings
on St are indeed valid.

Let S, St denote the separators for the base and twin jointree during the parallel thinnings. Consider
a parallel thinning step being applied to a duplicated edge, which, by definition, removes X from
Sij , X from St

ij , and [X] from St
[i][j]. Suppose the removal of X from Sij is supported by the first

thinning rule, i.e. the edge (i, j) is on the path between two leaf nodes, call them l and r, both
hosting the family of X , and every separator on that path contains X . We claim that the removal
of X from St

ij and the removal of [X] from St
[i][j] are both supported by the first thinning rule. By

Algorithm 1, the leaf nodes {l, r} host the family of X , and the leaf nodes {[l], [r]} host the family
of [X] in the twin jointree. Moreover, by the inductive assumption on separators, X appears on every
separator between l and r and [X] appears on every separator between [l] and [r]. This is based on an
observation that the path from l to r can be divided into three sub-paths: a sub-path consisting of
only duplicated edges (l = p1, . . . , ps), a sub-path consisting of only invariant edges (ps, . . . , pm),
and a sub-path consisting of only duplicated edges (pm, . . . , pn = r), where 1 < s ≤ m < n8.
Given the path from l to r, we can then express the path from [l] to [r] as three sub-paths as well:
a sub-path consisting of only duplicate edges ([l] = [p1], . . . , ps), a sub-path consisting of only
invariant edges (ps, . . . , pm), and a sub-path consisting of only duplicate edges (pm, . . . , [pn] = [r]).
For each duplicated edge (i, j) on the sub-path from l to ps or on the sub-path from pm to r, X ∈ Sij

iff [X] ∈ S[i][j]. For each invariant edge (i, j) on the sub-path from ps to pm, X ∈ Sij iff [X] ∈ Sij .

Suppose the removal of X from Sij is supported by the second thinning rule, i.e. no other separators
Sik contains X , or no other separators Skj contains X . Then the removal of X from St

ij and the
removal of [X] from St

[i][j] are both supported by the second thinning rule due to the inductive
assumption on separators.

Consider now a parallel thinning step being applied to an invariant edge which removes X from Sij

and {X, [X]} from St
ij . Suppose the removal of X from Sij is supported by the first thinning rule,

where the edge (i, j) is on the path between two leaf nodes l and r both hosting the family of X
and every separator on that path contains X . Again, by the inductive assumption on separators, [X]
appears in all separators on the path between [l] and [r], which also includes the invariant edge (i, j).
Hence, [X] can also be removed from St

ij using the first thinning rule. Suppose the removal of X
from Sij is supported by the second thinning rule, then we can apply the second thinning rule to
remove {X, [X]} from St

ij due to the inductive assumption on separators.
8Note that we do not preclude the possibility of having no invariant edge on the path.
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Proof of Theorem 4

We first extend the notion of twin graph sequence to N -world graph sequence, denoted as
GN

1 , GN
2 , . . . , GN

n , where GN
1 is the moral graph for GN , and GN

i+1 is the result of eliminating
{π(i)1, . . . , π(i)N} from GN

i . For each variable Xj (j ∈ {1, . . . , N}) in GN
i , let GN

i (Xj) be
the set consisting of Xj and its neighbors in GN

i . For a set of variables X, we use Xj to denote
{Xj |X ∈ X}.

Lemma 3. Consider a base network G and its N -world network GN . Let π be an elimination order
for G. Then for each variable Xj (j ∈ {1, . . . , N}) in GN

i , GN
i (Xj) ⊆

⋃N
k=1 Gi(X)

k.

Proof. We will prove this by induction on GN
i . The statement holds initially for GN

1 by the definition
of N -world networks. Suppose the statement holds for GN

i−1, i.e. GN
i−1(X

j) ⊆
⋃N

k=1 Gi−1(X)
k for

every variable Xj ∈ GN
i−1, we need to show the statement holds for GN

i .

Let Y = π(i− 1). Suppose we eliminate variables {Y k}Nk=1 from GN . GN
i (X) is affected by the

elimination of {Y k}Nk=1 iff X is a neighbor of {Y k}Nk=1 in GN
i . Moreover, by induction, X is a

neighbor of {Y k}Nk=1 in GN
i only if X is a neighbor of Y in Gi.

When X is not a neighbor of Y , then GN
i (Xj) = GN

i−1(X
j) for all j = 1, 2, . . . , N and Gi(X) =

Gi−1(X), so the statement holds.

When X is a neighbor of Y , for all j = 1, 2, . . . , N , we can then bound GN
i (Xj) as follows:

GN
i (Xj) ⊆ GN

i−1(X
j) ∪

N⋃
k=1

(GN
i−1(Y

k)) \ {Y k}Nk=1

⊆ (

N⋃
k=1

Gi−1(X)
k
) ∪ (

N⋃
k=1

Gi−1(Y )
k
) \ {Y k}Nk=1

(by induction hypothesis)

=

N⋃
k=1

(Gi−1(X)
k ∪Gi−1(Y )

k \ {Y k})

=

N⋃
k=1

Gi(X)
k
.

Lemma 4. Let GN be an N -world network and let j ∈ {1, . . . , N} be a positive integer. Then
CN (Xj) ⊆

⋃N
k=1 C(X)

k.

Proof. Let X = π(i). By Lemma 3, CN (X1) = GN
i (X1) ⊆

⋃N
k=1 Gi(X)

k
=

⋃N
k=1 C(X)

k.
We next bound CN (Xj) where j ∈ {2, . . . , N} by induction. For each j ∈ {2, . . . , N}, assume
CN (Xh) ⊆

⋃N
k=1 C(X)

k for h = 1, 2, . . . , j − 1, then

CN (Xj) ⊆ GN
i (Xj) ∪

j−1⋃
k=1

CN (Xk) (by VE definition)

⊆ (

N⋃
k=1

Gi(X)
k
) ∪ (

N⋃
k=1

C(X)
k
) (by inductive hypothesis)

⊆
N⋃

k=1

C(X)
k
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A
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(a) base network, width of π is w = 2

A

B

C

D

E

F

[C]

[D]

[E]

[F ]

(b) twin network, width of πt is wt = 5

Figure 7: The elimination order π is (A,B, F,D,C,E) and the twin elimination order πt is
(A,B, F, [F ], D, [D], C, [C], E, [E]). We have wt = 2w + 1.

(a) base jointree, width w = 2 (b) twin jointree, width wt = 5

Figure 8: A base jointree and its twin jointree, where wt = 2w + 1.

Proof for Corollary 4. By Lemma 4, for all Xj ∈ GN , |C(Xj)| ≤
∑N

k=1 |C(X)
k| = N |C(X)|.

Therefore, the width wN of πN is

wt = max
X

CN (X)− 1

≤ N max
X

C(X)− 1

= N(w + 1)− 1

For causal treewidth, we can extend Algorithm 1 to construct N -world jointrees by making N − 1
duplicates for each duplicated subtree, and construct N -world thinned jointrees by extending Theorem
3. By analogous arguments, we can show that wt = N(w + 1)− 1.

B Tightness of Bounds

As we claimed in the paper, Corollaries 1 and 3 provide tight bounds for the widths of twin elimination
orders defined by Definition 2, and twin jointrees constructed by Algorithm 1, respectively. Moreover,
we provide a concrete example where a base network has treewidth w and its twin network has
treewidth 2w, which suggests that our bound on treewidth in Corollary 2 may also be tight (we found
these examples through exhaustive search which we were able to do on small examples only, given
the allotted computational resources).

For the tightness of Corollary 1, consider the base network G shown in Figure 7a. The elimination
order π = (A,B, F,D,C,E) has width of 2. The twin network Gt for G is shown in Figure 7b. By
Definition 2, the twin elimination order for Gt is πt = (A,B, F, [F ], D, [D], C, [C], E, [E]) which
has a width of 5.

For the tightness of Corollary 3, Figure 8a shows a base jointree for the base network G. This base
jointree was constructed using elimination order π and it has a width of 2. Figure 8b shows a twin
jointree constructed by Algorithm 1 which has a width of 5.
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(a) base network, treewidth w = 2
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E

F
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H
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[E]

[F ]

[G]

[H ]

[I ]

(b) twin network, treewidth wt = 4

Figure 9: A base network and its corresponding twin network, where wt = 2w.

For our last example, Figure 9a shows a base network with a treewidth of 2. Figure 9b shows the
corresponding twin network which has a treewidth of 4. This shows that if our treewidth bound in
Corollary 2 is not tight, then it is off by at most 1.

C More on Experiments

Our experiments were run on 2.60GHz Intel Xeon E5-2670 CPU with 256 GB of memory.

In the main paper, we plotted the jointree widths for random networks with a maximum number of
parents (p = 5). Here we show the complete experimental results for the random networks with
p = 3, 5, 7 generated according to the method of [11] which we discussed in the main paper. We
record the widths and normalized widths for each twin jointrees. Recall that if a jointree has clusters
C1, . . . ,Cn, then the normalized width is log2

∑n
i=1 2

|Ci|. Table 1 shows the complete results for
rNET and Table 2 shows the complete results for rSCM.

In addition, we report results on random networks generated by a second method proposed in [22].
Given a number of nodes n and a maximum degree9 d for each node, the method generates a random
network by repeatedly adding/removing random edges from the current DAG. We refer to these
random networks as rNET2. Similarly to what we did for rNET, we then added a unique root as
parent for each internal variable in rNET2. We refer to these modified networks as rSCM2. For each
combination of n ∈ {50, 100, 150, 200} and d ∈ {5, 10, 15}, we generated 50 random base networks
and reported the average widths and normalized widths for each twin jointree. Table 3 shows the
complete results for rNET2 and Table 4 shows the complete results for rSCM2. The patterns in these
tables resemble the ones for rNET and rSCM.

9The degree of a node is the number of its parents and children.
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num
vars

max
pars

stats
BASE-

MF
TWIN-
ALG1

TWIN-
MF

BASE-
MF-RLS

TWIN-
THM3

TWIN-
MF-RLS

wd nwd wd nwd wd nwd wd nwd wd nwd wd nwd

50

3
mean 7.5 11.5 14.4 17.1 10.0 14.0 5.2 11.9 7.6 13.2 5.6 13.0
std 1.4 0.9 2.8 2.4 2.0 1.4 1.0 0.7 1.2 0.7 1.2 0.7

5
mean 14.3 17.4 26.8 29.2 15.9 19.6 7.2 15.0 10.0 16.2 7.3 16.0
std 2.0 1.7 4.0 3.8 1.9 1.7 1.2 0.8 2.1 0.9 1.1 0.8

7
mean 19.5 22.4 36.9 39.1 20.4 24.1 8.9 17.1 12.2 18.3 8.9 18.1
std 2.0 1.9 4.1 3.9 1.8 1.7 0.8 0.7 2.4 0.8 0.9 0.7

75

3
mean 10.2 13.8 18.9 21.5 14.5 17.9 6.1 12.9 8.6 14.3 6.9 14.0
std 1.9 1.5 3.6 3.4 2.4 2.0 1.6 0.8 1.9 0.9 1.9 0.8

5
mean 21.3 23.9 39.1 41.1 23.9 27.2 8.4 16.4 11.9 17.8 9.1 17.5
std 2.3 2.2 5.1 4.9 3.0 2.7 1.6 0.8 2.2 1.0 1.8 0.8

7
mean 28.8 31.4 54.0 56.0 30.3 33.7 11.0 18.6 16.4 21.2 11.7 19.7
std 2.6 2.5 5.2 5.2 2.2 2.1 1.9 0.9 4.1 2.4 2.0 0.9

100

3
mean 13.7 16.7 25.1 27.5 19.9 22.8 7.1 13.8 10.2 15.3 8.3 14.9
std 2.4 2.1 4.7 4.4 3.3 2.8 1.7 0.8 2.2 1.2 1.9 0.9

5
mean 27.1 29.7 50.8 52.9 31.4 34.5 9.5 17.1 13.5 18.9 11.2 18.4
std 2.5 2.5 5.1 5.0 3.6 3.2 2.2 0.6 2.9 1.5 3.0 0.9

7
mean 38.7 40.9 72.9 74.7 40.8 43.8 14.5 20.3 22.9 26.6 15.9 21.9
std 3.5 3.4 6.7 6.5 3.3 3.2 3.3 1.5 7.1 5.8 3.4 1.8

125

3
mean 16.7 19.6 30.8 33.0 26.9 29.3 7.9 14.6 10.5 16.1 9.2 15.9
std 2.1 1.9 4.0 3.8 3.9 3.6 2.0 0.8 2.3 1.2 2.3 1.0

5
mean 34.9 37.3 65.1 66.9 39.1 42.1 12.1 18.3 17.2 21.4 14.8 20.3
std 3.1 2.9 5.9 5.7 3.6 3.2 2.4 1.0 3.8 2.5 3.6 1.9

7
mean 47.9 50.1 89.8 91.7 50.6 53.5 19.7 23.7 32.5 35.1 21.7 26.1
std 3.2 3.1 6.8 6.7 3.8 3.6 4.2 3.3 8.7 8.3 4.5 3.7

150

3
mean 20.3 22.9 36.9 38.9 31.8 34.2 8.6 15.2 11.1 16.7 9.8 16.4
std 2.4 2.3 4.7 4.7 4.2 3.9 2.1 0.8 2.2 1.1 2.5 1.1

5
mean 41.4 43.6 76.9 78.6 49.1 51.7 14.6 19.7 21.2 24.7 18.6 22.8
std 3.3 3.1 7.4 7.2 6.3 5.8 2.9 1.8 5.3 4.5 4.0 3.2

7
mean 56.7 58.7 106.7 108.2 60.6 63.3 22.5 26.1 36.8 39.3 25.6 29.4
std 4.1 3.8 8.1 7.9 3.6 3.5 4.8 3.9 9.6 9.1 5.1 4.5

200

3
mean 25.8 28.2 47.2 49.1 42.9 44.8 10.7 16.4 13.6 18.3 12.3 17.9
std 2.5 2.5 4.9 4.9 5.4 5.2 2.9 1.5 2.9 1.5 3.2 1.9

5
mean 55.1 57.2 102.4 104.0 65.7 68.0 19.9 23.8 29.5 32.3 26.0 29.4
std 3.6 3.5 7.8 7.6 7.0 6.8 4.2 3.3 8.1 7.6 6.1 5.3

7
mean 75.3 77.4 141.5 143.1 80.4 82.7 34.3 37.1 57.5 59.8 39.0 42.3
std 4.1 3.9 8.4 8.2 4.3 4.1 4.8 4.7 10.2 10.2 5.1 4.8

250

3
mean 31.6 34.0 58.1 60.0 55.7 57.4 12.1 17.4 15.0 19.5 14.1 19.2
std 3.1 2.9 6.1 6.0 6.4 6.2 2.8 1.5 3.1 2.1 3.2 2.0

5
mean 68.6 70.5 128.5 129.9 84.9 86.8 25.8 28.9 38.9 41.3 36.1 38.9
std 4.1 3.8 7.9 7.7 9.9 9.6 4.7 4.4 9.4 9.2 7.5 7.1

7
mean 95.6 97.4 180.3 181.7 102.7 104.7 44.2 46.7 74.6 76.6 49.5 52.7
std 4.9 4.7 10.1 9.9 5.5 5.3 6.5 6.3 13.2 13.1 6.8 6.7

300

3
mean 40.1 42.3 73.9 75.6 69.9 71.5 13.9 18.4 17.4 21.2 16.3 20.5
std 3.9 3.6 7.6 7.3 8.0 7.9 2.7 1.8 3.9 3.3 3.4 2.7

5
mean 82.4 84.1 153.3 154.5 104.8 106.4 32.8 35.7 50.1 52.3 46.1 48.6
std 4.7 4.5 9.7 9.6 14.6 14.3 5.4 5.3 10.4 10.2 8.8 8.5

7
mean 114.3 116.0 215.9 217.1 123.4 125.2 55.5 58.0 95.2 97.1 62.2 65.3
std 4.1 4.0 8.4 8.4 5.8 5.6 7.2 7.2 14.3 14.2 7.5 7.3

Table 1: Widths (wd) and normalized widths (nwd) of various twin jointrees under rNET [11]. Refer
to the main paper for the details of different jointree construction methods. All the thinned jointrees
are constructed by bounding the functional chain lengths by 10; see [6] for details.
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num
vars

max
pars

stats
BASE-

MF
TWIN-
ALG1

TWIN-
MF

BASE-
MF-RLS

TWIN-
THM3

TWIN-
MF-RLS

wd nwd wd nwd wd nwd wd nwd wd nwd wd nwd

50

3
mean 7.5 11.9 14.4 17.4 14.0 17.1 11.1 15.6 14.7 18.3 14.2 18.3
std 1.4 0.7 2.8 2.2 2.7 2.3 2.5 2.0 3.0 2.3 2.6 2.2

5
mean 14.3 17.4 26.9 29.3 26.4 28.9 19.0 22.7 23.5 26.5 22.9 26.2
std 2.0 1.7 4.0 3.8 3.9 3.7 2.5 2.2 3.3 2.9 2.8 2.4

7
mean 19.5 22.4 37.0 39.3 37.0 39.1 24.3 27.7 31.0 33.5 29.4 32.4
std 2.0 1.9 4.1 3.9 4.2 4.0 2.6 2.2 3.5 3.2 3.4 2.9

75

3
mean 10.2 14.0 18.9 21.6 18.5 21.3 14.9 18.5 19.1 22.1 18.1 21.5
std 1.9 1.3 3.6 3.4 3.6 3.4 3.2 2.8 4.1 3.6 3.7 3.2

5
mean 21.3 23.9 39.1 41.1 38.5 40.7 26.9 29.7 33.5 35.8 31.8 34.5
std 2.3 2.2 5.1 4.9 5.1 4.9 2.7 2.5 3.8 3.6 3.7 3.3

7
mean 28.8 31.4 54.1 56.2 53.9 55.9 34.5 36.9 44.9 46.9 42.3 44.5
std 2.6 2.5 5.3 5.3 5.2 5.1 3.4 3.1 5.5 5.2 4.9 4.6

100

3
mean 13.7 16.8 25.1 27.5 24.4 26.9 19.5 22.4 24.9 27.1 23.1 25.9
std 2.4 2.0 4.7 4.4 4.7 4.4 3.6 3.2 4.6 4.2 4.0 3.8

5
mean 27.1 29.7 50.8 52.9 50.8 52.8 34.6 37.0 43.9 45.8 40.5 42.8
std 2.5 2.5 5.4 5.2 5.1 5.0 3.9 3.7 5.4 5.2 4.8 4.5

7
mean 38.7 40.9 73.0 74.8 72.8 74.5 45.8 47.8 61.3 62.9 57.4 59.4
std 3.5 3.4 6.7 6.5 6.8 6.7 4.7 4.5 7.9 7.7 7.4 7.1

125

3
mean 16.7 19.6 30.8 33.0 30.5 32.7 23.8 26.5 29.5 31.8 28.0 30.6
std 2.1 1.8 4.0 3.8 3.7 3.5 2.8 2.6 4.0 3.6 3.6 3.3

5
mean 34.9 37.3 65.1 66.9 64.9 66.6 44.4 46.5 56.5 58.1 51.8 54.0
std 3.1 2.9 5.9 5.7 6.1 6.0 5.0 4.7 7.0 6.7 5.6 5.4

7
mean 47.9 50.1 90.1 91.9 89.9 91.6 55.4 57.5 76.1 77.6 71.2 73.2
std 3.2 3.1 6.7 6.6 6.6 6.4 3.9 3.7 7.3 7.0 6.5 6.2

150

3
mean 20.3 22.9 36.9 38.9 36.2 38.2 27.3 30.0 34.0 36.1 31.9 34.3
std 2.4 2.3 4.7 4.7 4.4 4.3 3.5 3.3 4.4 4.2 4.5 4.2

5
mean 41.4 43.6 76.9 78.6 76.3 77.9 50.6 52.5 65.3 66.8 60.6 62.5
std 3.3 3.1 7.4 7.2 6.9 6.9 4.3 4.2 7.3 7.1 6.5 6.2

7
mean 56.7 58.7 106.7 108.2 106.0 107.5 65.7 67.4 91.1 92.4 83.2 85.0
std 4.1 3.8 8.1 7.9 7.5 7.4 4.5 4.4 8.0 7.9 7.0 6.9

200

3
mean 25.8 28.3 47.2 49.1 46.2 48.2 35.5 37.6 44.2 45.9 40.7 42.8
std 2.5 2.5 5.0 4.9 4.9 4.9 4.5 4.3 6.4 6.1 5.6 5.3

5
mean 55.0 57.2 102.5 104.1 102.0 103.5 67.7 69.4 88.7 90.0 82.6 84.1
std 3.6 3.5 7.3 7.2 7.6 7.5 5.5 5.4 8.8 8.6 7.8 7.6

7
mean 75.3 77.4 141.5 143.1 75.3 77.4 87.0 88.6 124.6 125.8 115.2 116.7
std 4.1 3.9 8.4 8.2 4.1 3.9 4.6 4.4 9.2 9.2 8.4 8.3

250

3
mean 31.6 34.0 58.1 60.0 57.5 59.4 43.8 45.8 54.3 55.9 49.8 51.9
std 3.1 3.0 6.0 6.0 6.6 6.5 5.2 4.9 7.7 7.4 6.3 6.0

5
mean 68.6 70.5 128.5 129.9 127.1 128.5 82.1 83.6 110.3 111.5 101.7 103.2
std 4.1 3.8 7.9 7.7 7.2 7.1 5.6 5.5 8.9 8.8 7.2 7.1

7
mean 95.7 97.4 180.4 181.7 179.3 180.7 109.1 110.4 157.5 158.7 146.6 147.9
std 4.9 4.7 10.1 9.9 8.9 8.8 6.0 5.9 12.2 12.2 10.9 10.8

300

3
mean 40.1 42.3 73.9 75.6 72.4 74.1 54.1 55.8 66.7 68.1 61.8 63.6
std 3.9 3.6 7.6 7.3 7.5 7.4 5.1 5.1 6.8 6.7 7.1 7.0

5
mean 82.5 84.1 153.3 154.5 152.7 154.0 99.1 100.4 135.0 136.2 124.3 125.8
std 4.7 4.5 9.7 9.6 10.4 10.3 6.3 6.2 10.3 10.2 9.9 9.8

7
mean 114.4 116.0 215.9 217.2 215.1 216.3 131.5 132.7 194.1 195.2 178.8 180.1
std 4.1 4.0 8.4 8.3 9.1 9.1 5.7 5.6 12.8 12.7 11.2 11.1

Table 2: Widths (wd) and normalized widths (nwd) of various twin jointrees under rSCM [11]. Refer
to the main paper for the details of different jointree construction methods. All the thinned jointrees
are constructed by bounding the functional chain lengths by 10; see [6] for details.
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num
vars

max
pars

stats
BASE-

MF
TWIN-
ALG1

TWIN-
MF

BASE-
MF-RLS

TWIN-
THM3

TWIN-
MF-RLS

wd nwd wd nwd wd nwd wd nwd wd nwd wd nwd

50

5
mean 20.0 22.4 37.3 39.0 20.3 23.6 8.7 14.5 13.5 17.1 8.7 15.5
std 1.3 1.1 3.3 3.1 1.3 1.1 1.4 0.6 2.9 1.8 1.4 0.7

10
mean 32.9 35.4 55.5 57.7 32.9 36.4 13.7 18.6 21.6 24.7 13.7 19.6
std 1.0 0.9 11.9 11.3 1.0 0.9 1.8 1.0 6.0 4.5 1.8 1.0

15
mean 38.1 40.7 62.5 64.9 38.1 41.7 19.7 23.4 30.6 33.1 19.7 24.4
std 1.1 0.9 15.6 14.8 1.1 0.9 2.1 1.6 8.3 7.2 2.1 1.6

100

5
mean 40.0 41.8 76.7 78.1 40.1 42.7 14.5 18.4 23.5 25.8 14.6 19.4
std 1.2 1.4 6.1 5.9 1.7 1.5 2.1 1.6 5.0 4.6 2.1 1.6

10
mean 65.1 67.4 110.6 112.7 65.5 68.6 33.0 35.9 52.3 54.5 33.0 36.9
std 1.7 1.5 25.1 24.3 1.8 1.5 2.5 2.4 11.8 11.2 2.5 2.4

15
mean 75.1 77.5 114.7 117.1 75.2 78.5 45.3 48.0 66.0 68.5 45.3 49.0
std 1.8 1.6 33.0 32.2 1.8 1.6 3.1 3.1 18.7 17.7 3.1 3.1

150

5
mean 59.7 61.2 110.6 112.0 60.3 62.4 21.5 24.5 36.6 38.6 21.5 25.5
std 2.6 2.3 17.2 16.8 2.5 2.3 2.5 2.3 7.8 7.4 2.5 2.3

10
mean 97.1 99.0 159.6 161.7 97.3 100.1 49.8 52.5 80.9 83.1 49.8 53.5
std 2.0 1.8 37.0 36.7 2.0 1.8 3.6 3.6 20.1 19.3 3.6 3.6

15
mean 109.7 111.8 168.9 171.3 109.8 112.8 66.7 69.1 92.7 95.3 72.3 75.6
std 2.5 2.2 49.8 49.2 2.5 2.3 4.2 4.2 28.4 27.6 4.2 4.2

200

3
mean 109.7 111.8 168.9 171.3 109.8 112.8 66.7 69.1 92.7 95.3 72.3 75.6
std 3.0 2.8 23.3 22.9 2.6 2.5 3.3 3.3 10.0 9.6 3.2 3.2

5
mean 127.0 128.5 193.6 195.8 127.2 129.6 65.0 67.4 97.2 99.6 65.0 68.4
std 2.8 2.7 56.4 55.9 3.0 2.9 4.7 4.6 27.8 27.0 4.7 4.6

7
mean 141.1 142.7 210.8 212.9 141.3 143.9 82.9 85.2 121.3 123.7 82.9 86.3
std 3.2 3.1 61.0 60.6 3.3 3.1 4.8 4.7 33.9 33.2 4.8 4.7

Table 3: Widths (wd) and normalized widths (nwd) of various twin jointrees under rNET2 [22]. Refer
to the main paper for the details of different jointree construction methods. All the thinned jointrees
are constructed by bounding the functional chain lengths by 10; see [6] for details.

num
vars

max
pars

stats
BASE-

MF
TWIN-
ALG1

TWIN-
MF

BASE-
MF-RLS

TWIN-
THM3

TWIN-
MF-RLS

wd nwd wd nwd wd nwd wd nwd wd nwd wd nwd

50

5
mean 20.0 22.4 36.2 39.9 37.2 39.2 27.9 30.2 39.6 41.3 37.1 39.1
std 1.3 1.1 2.4 2.3 2.7 2.4 2.0 2.0 3.4 3.1 2.9 2.6

10
mean 32.9 35.4 64.8 66.7 64.9 66.8 37.4 39.8 54.0 55.8 50.6 52.9
std 1.0 0.9 2.4 2.3 2.5 2.5 1.5 1.2 3.1 2.9 2.3 2.3

15
mean 38.1 40.7 75.3 77.4 76.4 78.5 40.8 43.4 61.1 63.2 60.3 62.5
std 1.1 0.9 2.4 2.3 3.4 3.1 1.3 1.2 3.5 3.4 3.4 3.4

100

5
mean 40.1 41.7 78.4 79.8 77.7 79.1 54.8 56.2 80.6 81.8 74.3 75.7
std 1.5 1.4 3.6 3.5 3.5 3.3 3.1 3.1 6.2 6.1 4.7 4.6

10
mean 65.1 67.4 129.3 131.0 128.6 130.4 75.1 76.6 116.2 117.5 106.4 108.2
std 1.7 1.5 3.6 3.4 3.9 3.6 2.5 2.3 5.6 5.4 4.1 4.0

15
mean 75.1 77.5 149.6 151.5 149.3 151.2 81.2 83.1 131.0 132.5 125.7 127.8
std 1.8 1.6 3.8 3.5 3.4 3.3 2.2 2.0 5.0 4.9 4.9 4.8

150

5
mean 59.7 61.1 118.5 119.7 118.1 119.4 83.0 84.3 125.1 126.2 113.8 115.0
std 2.5 2.3 4.8 4.7 4.9 4.8 3.7 3.6 6.1 6.0 4.5 4.4

10
mean 97.1 99.0 193.4 194.9 193.3 194.8 111.1 112.5 174.7 175.8 161.1 162.7
std 2.0 1.8 4.2 4.0 4.2 4.0 2.3 2.2 5.5 5.5 5.0 4.9

15
mean 109.7 91.8 218.8 220.4 218.8 220.4 120.3 121.9 196.6 197.9 186.0 187.7
std 2.5 2.2 5.2 5.0 5.4 5.1 2.9 2.7 6.0 5.9 5.4 5.3

200

5
mean 75.6 76.6 150.7 151.8 150.8 151.9 102.5 103.6 155.0 156.1 143.3 144.4
std 2.8 2.6 5.6 5.5 5.3 5.2 4.9 4.8 7.2 7.1 5.4 5.4

10
mean 127.0 128.5 253.4 254.6 252.7 254.0 149.4 148.6 233.0 234.2 212.9 214.3
std 2.8 2.7 5.5 5.5 4.5 4.4 3.4 3.4 7.7 7.7 6.2 6.1

15
mean 141.1 142.7 281.7 283.0 281.5 282.8 156.3 159.6 255.6 256.7 238.6 240.2
std 3.2 3.1 6.4 6.2 6.5 6.4 4.3 4.2 9.7 9.7 7.0 7.0

Table 4: Widths (wd) and normalized widths (nwd) of various twin jointrees under rSCM2 [22].
Refer to the main paper for the details of different jointree construction methods. All the thinned
jointrees are constructed by bounding the functional chain lengths by 10; see [6] for details.
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