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Abstract

We propose combining intrinsic exploration with extrinsic motivations to inspire RL
agents to develop strategies at both macro and micro levels, enhancing adaptability.

Introduction and Related Work DeepMind recognizes StarCraft II (SC2) as having an immense
action space, approximately 102¢ [[10, 9, 8]. One challenge of SC2 is its hierarchical action space
constrained by game rules, demanding complex planning to compensate for long-horizon delayed
rewards; players typically learn these rules through in-game tutorials rather than discovery through
trial and error. Moreover, SC2 includes numerous trivial choices that minimally impact game
outcomes, an inefficient use of learning resources. RL algorithms lacking higher-level abstractions
face substantial challenges due to inefficient exploration [12]], and the sparse, delayed feedback
(win/loss at the game’s end) [4} 6] extends training time and unnecessarily complicates learning.

One way to address SC2’s challenges is via shaping rewards [1H3} [11], which risks suboptimal
solutions. Alternatively, incorporating human knowledge through a set of macro-actions composed of
micro-actions can streamline the learning process [7]. This encodes the game’s intrinsic rules directly
into the agent’s knowledge, reducing reliance on trial and error.

Current RL problems operate within a predefined state-action space, so then the problem becomes to
find good actions to take in each state. However, humans naturally seek to discover new actions. For
example, having learned a recipe to make a Salad and Fried Rice, a cooking agent might recombine
the micro actions to make Stir-Fried Veggies. Alternatively, the agent might add a new micro action
to make Roast Veggies (see Appendix). For the agent to learn intrinsically, it should explore the
environment and the state-action space in a way that it discovers new groupings of micro-actions,
effectively forming new macro-actions.

Proposed Framework and Challenges Intrinsic motivation in artificial agents is inherently limited;
they do not spontaneously develop new goals. For example, a fully autonomous car does not
independently decide “I want to drive” [S]]; it follows programmed instructions to perform its tasks.
Therefore, we propose modifying the agent’s objective by introducing extrinsic motivations that
mimic intrinsic motivation. With objectives like “learn a large, diverse set of actions,” we provide the
agent with a multi-objective goal: not only to win the game but also to master an ever-expanding
set of macro-actions. When the agent successfully assembles a set of micro-actions into a new
macro-action, it should incorporate this new macro-action into its knowledge base and continue
learning. The Appendix contains examples illustrating how the proposed approach influences the
progression of the knowledge base.
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Exploration strategies, such as epsilon-greedy, help an agent explore/exploit existing macro-actions;
however, the agent needs to learn (1) new micro-actions and (2) new macro-actions by combining
micro-actions. We also need to incorporate the multi-objective goal into the reward signal. Depending
on the specific agent architecture, we may face challenges incorporating new actions into its policy,
value function, and model.
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Appendix

Example: Learning New Macro-Actions and Micro-Actions in a Cooking
Scenario

In this example, we illustrate the concept of the agent starting with an initial knowledge base of
macro-actions composed of pre-defined micro-actions. Over time, the agent learns new macro-actions
by combining existing micro-actions and, with extended training, discovers new micro-actions to
build more complex macro-actions.

1. Initial Knowledge Base

The agent starts with the following set of macro-actions and their associated micro-actions:

Salad Fried Rice Stir-Fried Veggies
1. Chop Veggies | 1. Make Rice | 1. Chop Veggies

2. Add Dressing | 2. Pan Fry 2. Add Dressing

3. Mix 3. Stir-fry

Table 1: Initial knowledge base of macro-actions and their corresponding micro-actions

2. Updated Knowledge Base (Learning a New Macro-Action)

The agent then learns a new macro-action, Veggie Fried Rice, by combining existing micro-actions
from the previously known actions. This shows how the agent can explore the space of available
actions to form new, more useful combinations.

Salad Fried Rice Stir-Fried Veggies | Veggie Fried Rice
1. Chop Veggies | 1. Make Rice | 1. Chop Veggies 1. Chop Veggies
2. Add Dressing | 2. Pan Fry 2. Add Dressing 2. Make Rice

3. Mix 3. Stir-fry 3. Stir-fry

Table 2: Knowledge base after learning a new macro-action

3. Expanded Knowledge Base (Discovering a New Micro-Action)

After prolonged training, the agent discovers a new micro-action, Roast. This newly discovered
micro-action allows the agent to form more complex macro-actions, such as Roast Veggies.

Salad Fried Rice Stir-Fried Veggies | Veggie Fried Rice | Roast Veggies
1. Chop Veggies | 1. Make Rice | 1. Chop Veggies 1. Chop Veggies 1. Chop Veggies
2. Add Dressing | 2. Pan Fry 2. Add Dressing 2. Make Rice 2. Add Dressing
3. Mix 3. Stir-fry 3. Stir-fry 3. Roast

Table 3: Knowledge base after discovering new micro-actions

This example demonstrates how the agent can start with a predefined set of micro-actions and macro-
actions, then incrementally learn new macro-actions by reusing existing micro-actions, and eventually
discover entirely new micro-actions that further expand the agent’s knowledge and decision-making
capabilities.

Example: Learning New Macro-Actions and Micro-Actions in StarCraft 11

StarCraft II involves three general action categories: Build, Harvest, and Attack. These categories are
comprised of different combinations of micro-actions. For this example, we will focus on building,



for simplicity. Initially, the agent starts with a predefined set of macro-actions formed by these
micro-actions:

Worker
1. Select Hatchery
2. Build Worker

Extractor

1. Select Worker
2. Move Camera
3. Select Location
4. Build Extractor

Hatchery

1. Select Worker
2. Move Camera
3. Select Location
4. Build Hatchery

Table 4: Initial knowledge base of macro-actions and their corresponding micro-actions

Over time, the agent learns to combine existing micro-actions into a new macro-action. For example,
after exploration, the agent discovers a new macro-action formed by a sequence of existing micro-
actions from all three categories. In this case, the new macro-action is composed of all three whole
macro-actions, which we do not expand to micro-actions for brevity. The updated knowledge base is:

Hatchery Extractor Worker Expansion
1. Select Worker 1. Select Worker 1. Select Hatchery | 1. Hatchery
2. Move Camera 2. Move Camera 2. Build Worker 2. Extractor
3. Select Location | 3. Select Location 3. Workers
4. Build Hatchery | 4. Build Extractor

Table 5: Knowledge base after learning a new macro-action

As the agent continues to train and learn, it may discover entirely new micro-actions, which can then
be used to form even more macro-actions. For instance, the agent might learn a new micro-action,
Build a Tower, which it incorporates into a new macro-action Build Tower (omitted from the table,
but it has the same ‘“‘select worker, move camera, select location, build” structure as the others).
Subsequently, the agent creates a new macro-action Build a Defended Expansion, which we again
represent with only macro-actions in the table, but the only new ingredient is the micro-action Build
a Tower. The extended knowledge base is:

Hatchery Extractor Worker Expansion Def. Expansion
1. Select Worker 1. Select Worker 1. Select Hatchery | 1. Hatchery | 1. Hatchery

2. Move Camera 2. Move Camera 2. Build Worker 2. Extractor | 2. Extractor

3. Select Location | 3. Select Location 3. Workers 3. Workers

4. Build Hatchery | 4. Build Extractor 4. Build Tower

Table 6: Knowledge base after discovering new micro-actions

This example demonstrates how the agent’s knowledge base evolves as it explores the environment,
learns new combinations of actions, and even discovers entirely new micro-actions.



