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Abstract

A significant approach in natural language processing involves large-scale pre-
training models on general domain data followed by their adaptation to specific
tasks or domains. As models grow in size, full fine-tuning all of their parameters
becomes increasingly impractical. To address this, some methods for low-rank task
adaptation of language models have been proposed, e.g., LoRA and FLoRA. These
methods keep the pre-trained model weights fixed and incorporate trainable low-
rank decomposition matrices into some layers of the transformer architecture, called
adapters. This approach significantly reduces the number of trainable parameters
required for downstream tasks compared to full fine-tuning all parameters. In
this work, we look at low-rank adaptation from the lens of data privacy. We
show theoretically that the low-rank adaptation used in LoRA and FLoRA is
equivalent to injecting some random noise into the batch gradients w.r.t the adapter
parameters, and we quantify the variance of the injected noise. By establishing a
Berry-Esseen type bound on the total variation distance between distribution of
the injected noise and a Gaussian distribution with the same variance, we show
that the dynamics of low-rank adaptation is close to that of differentially private
fine-tuning of the adapters. Finally, using Johnson-Lindenstrauss lemma, we show
that when augmented with gradient scaling, low-rank adaptation is very close to
performing DPSGD algorithm with a fixed noise scale to fine-tune the adapters.
These theoretical findings suggest that unlike other existing fine-tuning algorithms,
low-rank adaptation provides privacy w.r.t the fine-tuning data implicitly.

1 Introduction

Stochastic Gradient Descent (SGD) is the power engine of training deep neural networks, which
updates parameters of a model by using a noisy estimation of the gradient. Modern deep learning
models, e.g., GPT-3 [Brown et al., 2020] and Stable Diffusion [Rombach et al., 2022], have a large
number of parameters, which induces a large space complexity for their training with SGD. Using
more advanced methods, which track various gradient statistics to stabilize and accelerate training,
exacerbates this space complexity [Duchi et al., 2011]. For instance, momentum technique reduces
variance by using an exponential moving average of gradients [Cutkosky and Orabona, 2019]. Also,
gradient accumulation [Wang et al., 2013] reduces variance by computing the average of gradients in
the last few batches, which simulates a larger effective batch size. Both the methods suffer from an
extra space complexity during training/fine-tuning time.

Some works try to reduce the space complexity of fine-tuning large models by tuning a subset of
parameters and storing the information about only a portion of them [Houlsby et al., 2019, Ben Zaken
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et al., 2022]. LoRA [Hu et al., 2021] is such an algorithm, which only updates some of the parameter
matrices, called adapters, by restricting their updates to be a low-rank matrix. This low-rank restriction
considerably reduces the number of trainable parameters, at the cost of limiting the optimization
space of the adapter parameters. Another parameter-efficient training technique, called ReLoRA
[Lialin et al., 2023], utilizes low-rank updates to train high-rank networks to eliminate the constraint
of LoRA mentioned above. Similarly, the work in [Hao et al., 2024] identifies that the dynamics of
LoRA can be approximated by a random matrix projection. Based on this interesting finding, the
work proposes FLoRA to achieve high-rank updates by resampling the random projection matrices,
which enables achieving higher utility while still enjoying the sublinear space complexity of LoRA.

On the other hand, from the lens of data privacy, the fine-tuning data often happens to be privacy
sensitive. In such scenarios, Differentially Private (DP) fine-tuning algorithms have been used to
provide rigorous privacy guarantees w.r.t the data. DP full fine-tuning runs DPSGD [Abadi et al.,
2016] on the the fine-tuning data to update all the existing parameters in a model. However, due to
computing gradients and clipping them for every data sample, running DPSGD on all parameters
induces high space complexities, even higher than non-private full fine-tuning of all parameters.

In this work, we draw a connection between low-rank adaptation and differentially private fine-tuning
of the adapters. We show that the random projection existing in the dynamics of LoRA/FLoRA
is equivalent to injecting some random noise into the batch gradients w.r.t the adapters, which is
very close to what DPSGD does for fine-tuning adapters privately. We also quantify the variance of
the injected noise as a function of the rank of adaptation, and show that it increases as the rank of
adaptation decreases: the smaller the rank of adaptation, the larger the variance of the injected noise.
Furthermore, in order to evaluate the closeness of this injected noise to Gaussian noise with the same
variance, we bound the total variation (TV) distance between the distribution of the injected noise
and the pure Gaussian noise used in DPSGD and show that this bound (dissimilarity) decreases as the
rank used in LoRA/FLoRA increases. Our derivations suggest that, although not being exactly the
same, low-rank adaptation and DP fine-tuning of the adapters are very close to each other in terms
of their dynamics. This implies that, besides reducing the space complexity for task adaptation of
language models, low rank adaptation can provide privacy w.r.t the fine-tuning data implicitly without
inducing the high space complexity of running DPSGD on adapters or all parameters.

The highlights of our contributions are the followings:

• We show that low-rank adaptation with LoRA/FLoRA is equivalent to injection of some
random noise into the batch gradients w.r.t the adapters (eq. (12)).

• We find the variance of the noise injected into the adapters’ gradients, and show that the
injected noise approaches a Gaussian distribution as the input dimension of the adaptation
layer increases (lemma 3.1).

• We bound the total variation distance between the distribution of the injected noise and a
pure Gaussian noise with the same variance. The bound decreases as the input dimension of
the adaptation layer and the adaptation rank increase (lemma 4.2).

• Finally, we show that the dynamics of low-rank adaptation is close to DP fine-tuning of the
adapters, and this similarity increases when low-rank adaptation is augmented with gradient
scaling. This implies an implicit connection between low-rank adaptation and DPSGD.
Indeed, the former is very close to DPSGD with a fixed noise scale, which depends on
the adaptation rank, the batch size used during adaptation and the output dimension of the
adaptation layer (section 5).

2 Dynamics of Low-Rank Task Adaptation

We start by studying the dynamics of low-rank adaptation [Hao et al., 2024]. In order to update
a pre-trained adapter weight W ∈ Rn×m, LoRA incorporates low-rank decomposition matrices
B ∈ Rn×r and A ∈ Rr×m, where r ≪ min{n,m}, and performs the forward pass in a layer as:

y = (W +BA)x = Wx+BAx, (1)

where x ∈ Rm is the input of the current layer and y ∈ Rn is the pre-activation output of the current
layer (see fig. 1). It is common to initialize B with an all-zero matrix and A with a normal distribution.
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Figure 1: Low-rank decomposition of LoRA/FLoRA for task adaptation.

More specifically, the entries of A are sampled fromN (0, σ2) with σ2 = 1
r . When back-propagating,

gradient of the used loss function L w.r.t the matrix W is

∇WL =
∂L
∂y
· ∂y

∂W
=

∂L
∂y
· x⊤, (2)

where ∂L
∂y ∈ Rn×1 and x⊤ ∈ R1×m. LoRA calculates the gradients w.r.t only A and B, which can be

found as follows:

∂L
∂A

=
∂BA

∂A
· ∂L
∂BA

= B⊤ · ∂L
∂y
· ∂y

∂BA
= B⊤ · ∂L

∂y
· x⊤ = B⊤(∇WL). (3)

Similarly,

∂L
∂B

=
∂L
∂BA

· ∂BA

∂B
=

∂L
∂y
· ∂y

∂BA
·A⊤ =

∂L
∂y
· x⊤ ·A⊤ = (∇WL)A⊤. (4)

Hence, ∂L
∂A ∈ Rr×m and ∂L

∂B ∈ Rn×r. As observed in eq. (3) and eq. (4), LoRA down-projects the
batch gradient∇WL from Rn×m to a lower dimension, and updates the matrices A and B with the
resulting projections of ∇WL. In fact, it was found in [Hao et al., 2024] that LoRA recovers the
well-known random projection method [Dasgupta, 2000, Bingham and Mannila, 2001]. We restate
the following thorem from [Hao et al., 2024] without restating the proof:
Theorem 2.1 ([Hao et al., 2024], Theorem 2.1). Let LoRA update matrices A and B with SGD:

At+1 ← At − η
∂L
∂At

= At − ηBt⊤(∇WLt), (5)

Bt+1 ← Bt − η
∂L
∂Bt

= Bt − η(∇WLt)At⊤, (6)

where η is the learning rate. We assume ∥
∑T

t=0∇WLt∥F ≤ L for every T , which implies that the
model stays within a finite Euclidean ball. In this case, the dynamics of At and Bt are given by

At = A0 + ηA0fA(t), Bt = ηfB(t)A
0⊤, (7)

where the forms of fA(t) ∈ Rm×m and fB(t) ∈ Rn×m are expressed in the proof. In particular,

∥fA(t)∥2 ≤
ηL2

(
1−(η2L2)t

)
1−η2L2 for every t.
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Let’s denote the total changes of A and B after T steps as ∆A and ∆B, respectively. Then, the
forward pass in eq. (1) changes to:

(
W + (B0 +∆B)(A0 +∆A)

)
x =

(
W +∆BA0 +∆B∆A

)
x, (8)

where we have substituted B0 = 0 ∈ Rn×r. From eq. (7) and substituting the values of ∆A and ∆B
after T rounds of updating A and B, we have:

W +∆BA0 +∆B∆A = W + ηfB(T )A
0⊤A0 + η2fB(T )A

0⊤A0fA(T ). (9)

Also, from theorem 2.1, we have ∥fA(T )∥2 ≤ ∥fA(T )∥F ≤
ηL2

(
1−(η2L2)T

)
1−η2L2 . Hence, if η ≪ 1/L,

we have limT→∞ η∥fA(T )∥2 = limT→∞
(ηL)2

(
1−(ηL)(2T )

)
1−(ηL)2 ≪ 1. Therefore, the last term in eq. (9)

is significantly smaller than the second term. Hence, the second term dominates the final update
weight. Therefore, as suggested in [Hao et al., 2024] and confirmed with their experimental results,
we can closely approximate LoRA by freezing A at its initialized value A0 and training only the
matrix B. In this case,

W +∆BA0 +∆B∆A = W +∆BA0 = W + ηf̃B(T )A
0⊤A0, (10)

where f̃B(0) = 0 and f̃B(t + 1) = f̃B(t) − ∇WLt. Equivalently, f̃B(T ) = −
∑T−1

t=0 ∇WLt.
Substituting this into the equation above, we get:

W +∆BA0 +∆B∆A = W +∆BA0 = W − η

T−1∑
t=0

[
(∇WLt)A0⊤A0

]
, (11)

where the last term shows the exact parameter change after T rounds of performing SGD on the
adapter matrix B. Therefore, low rank adaptation with LoRA can be viewed as performing a random
projection of stochastic batch gradient∇WLt in every step t by matrix A0⊤ and projecting it back
by matrix A0. FLoRA [Hao et al., 2024] proposes to resample the random matrix A0 at each step
to get a high rank update ∆B for the matrix B. Hence, FLoRA can also be viewed as performing a
random projection of stochastic batch gradient∇WLt in every step t by a different random matrix
A⊤ and projecting it back by its transpose.

Having understood the connection between low-rank adaptation in LoRA/FLoRA and random
projection, in the next section, we show that this random projection and back projection performed in
each time step is equivalent to adding some random noise to each element of∇WLt. This is our first
step towards establishing the connection between low-rank adaptation and differential privacy.

3 Random Noise Injected by Low-Rank Adaptation

In this section, we present our analysis based on LoRA, which employs a fixed projection matrix
A0. Our analysis holds for various LoRA variants, including FLoRA. As illustrated in eq. (12), the
parameter update after T rounds of stochastic gradient descent (SGD) is given by:

W +∆BA0 +∆B∆A = W − η

T−1∑
t=0

[
(∇WLt)A0⊤A0

]

= W − η

T−1∑
t=0

[
∇WLt︸ ︷︷ ︸

fine-tuning adapters

−∇WLt(A0⊤A0 − Im)︸ ︷︷ ︸
noise ∈ Rn×m

]
, (12)
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The first term in the sum represents the batch gradient that would be obtained through fine-tuning the
adapter W using SGD. The second term represents the noise introduced by the low-rank adaptation.
Thus, the low-rank adaptation introduces noise to each batch gradient ∇WLt, and the gradient step
is taken with this noisy gradient. We are now particularly interested in the behavior of this noise
term, which is added to each batch gradient ∇WLt in every step t. Recall that the entries of A0

were sampled from N (0, 1
r ) (see fig. 1), and that each of the r columns of A0⊤ is an m-dimensional

Gaussian random variable. Consequently, A0⊤A0 follows a Wishart distribution with r degrees of
freedom [Bhattacharya and Burman, 2016], which is the multivariate generalization of the chi-squared
distribution. Therefore, for any q ∈ R1×m, q · (A⊤

0 A0 − Im) is a weighted sum of multiple chi-
squared random variables, which implies that the result follows a Gaussian distribution approximately,
according to the Central Limit Theorem (CLT) [Bhattacharya et al., 2016]. We prove the following
lemma concerning the noise term in eq. (12).
Lemma 3.1. Let A ∈ Rr×m be a matrix with i.i.d entries sampled from N (0, 1

r ). Given a fixed
q ∈ R1×m, the distributions of elements of q · (A⊤A − Im) ∈ R1×m approach the Gaussian
distribution N (0, ∥q∥2

r ), as m increases.

The result above can be extended to matrices multiplication, as in eq. (12): for a matrix Q ∈ Rn×m

and as m grows, the product G = Q · (A⊤A − Im) ∈ Rn×m approaches a Gaussian distribution,
where Gi,j (1 ≤ i ≤ n) has distributionN (0,

∥[Q]i,:∥2

r ), where [Q]i,: is the i-th row of Q. The lemma
above shows that the last term in eq. (12) can indeed be looked at as a random noise term. As a weak
assumption, hereafter, we assume that all the rows of ∇wLt have a non-zero norm, which results in
all the elements in the noise term having a variance greater than zero.

Although lemma 3.1 was proved for when m approaches infinity, in practical scenarios m is limited.
Hence, the distribution of the injected noise in not pure Gaussian. In the next section, we bound the
deviation of the noise distribution from a pure Gaussian distribution.

4 Bounding the Distance to the Normal Law

Despite having proved lemma 3.1 when m approaches infinity, yet we need to quantify the distance
between the distribution of q · (A⊤A− Im) ∈ R1×m to the bona fide Gaussian distribution for limited
values of m in practical scenarios. In this section, we derive a closed form upper-bound for the total
variation distance between the distribution of each element of q · (A⊤A − Im) ∈ R1×m and the
Gaussian distribution with the same mean and variance.

Consistent with the notations in Theorem A.4 in the appendix, suppose X1, . . . , Xn are n independent
random variables with E[Xi] = 0 (mean) and Var[Xi] = σ2

i > 0 (variance). Define Sn =∑n
i=1 Xi and let s2n =

∑n
i=1 σ

2
i . Assuming Zn = Sn

sn
, and having Lindeberg’s condition satisfied

(see theorem A.3 and theorem A.4 in the appendix), the normalized sum Zn has standard normal
distribution in a weak sense for a bounded n. More precisely, the closeness of the cumulative
distribution function (CDF) Fn(x) = Pr{Zn ≤ x} to the standard normal CDF

Φ(x) =
1√
2π

∫ x

−∞
e−

y2

2 dy (13)

has been studied intensively in terms of the Lyapounov ratios

Lt =

∑n
i=1 E[|Xi|t]

stn
. (14)

Particularly, if all Xi have a finite third absolute moment E[|Xi|3], the classical Berry-Esseen theorem
[gustav Esseen, 1945, Feller, 1971, Petrov, 1975] bounds the Kolmogrov distance between Fn(x)
and Φ(x):

sup
x
|Fn(x)− Φ(x)| ≤ CL3, (15)
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where C is an absolute constant. In the more general case of sum of independent random variables
(and not necessarily i.i.d random variables), which we are interested in, the number of summand
variables n implicitly affects the value of L3, and for this case, the work in [Bobkov et al., 2011]
bounds the difference between Fn(x) and Φ(x) in terms of generally stronger distances of total
variation and entropic distance. Considering the Xi above, let D(Xi) denote the KL divergence
between distribution of Xi and Gaussian distribution N (0, σ2

i ), i.e., the KL divergence between Xi

and a Gaussian with the same variance. We have the following theorem about the total variation
distance between Fn and Φ:
Theorem 4.1 ([Bobkov et al., 2011], theorem 1.1). Assume that the independent random variables
X1, . . . , Xn have finite third absolute moments, and that D(Xi) ≤ D, where D is a non-negative
number. Then,

∥Fn(x)− Φ(x)∥TV ≤ CDL3, (16)

where the constant CD depends on D only and ∥Fn(x)− Φ(x)∥TV = supA
∣∣ ∫

A
dFn −

∫
A
dΦ

∣∣ is
the total variation distance between Fn and Φ.

Having the theorem above, we can now derive a Berry-Esseen type bound for the total variation
distance between each element of q · (A⊤A − Im) ∈ R1×m in lemma 3.1 and the normal law
N (0, ∥q∥2

r ): we need to find the third Lyapounov ratio for the summands contributing to each
element, as in eq. (16). To this end, we state and prove the following lemma:
Lemma 4.2. Let A ∈ Rr×m be a matrix with i.i.d entries sampled from N (0, 1

r ). Given a fixed
q ∈ R1×m with elements 0 < c ≤ |qi| ≤ C, let u = q · (A⊤A − Im) ∈ R1×m. Let ui be the i-th
element of u and Qm(x) = Pr{ui ≤ x}. Also, let Φ(x) be the CDF of z ∼ N (0, ∥q∥2

r ). Then:

∥Qm(x)− Φ(x)∥TV ∈ O
(

1√
mr

)
. (17)

The lemma above states that the distribution of each element of q · (A⊤A− Im) ∈ R1×m approaches
to N (0, ∥q∥2

r ) with rate 1√
mr

in terms of their total variation distance. This result shows the elements

of q · (A⊤A − Im) ∈ R1×m approach to Gaussian N (0, ∥q∥2

r ) as m and r increase. Having the
interesting result above, we can now benefit from the useful coupling characterization of the total
variation distance to establish a more understandable relation between each element of the product
above and the Gaussian distribution N (0, ∥q∥2

r ).

The coupling characterization of the total variation distance. For two distributions P and Q, a
pair of random variables (X,Y ), which are defined on the same probability space, is called a coupling
for P and Q if X ∼ P and Y ∼ Q [Levin et al., 2008, Devroye et al., 2023]. A very useful property
of total variation distance is the coupling characterization (see proposition 4.7 in [Levin et al., 2008]):

∥P −Q∥TV ≤ t if and only if there exists a coupling (X,Y ) for them such that Pr{X ̸= Y } ≤ t.

Hence, we can use the coupling characterization above and get to the following lemma directly from
from lemma 4.2.
Lemma 4.3. Let A ∈ Rr×m be a matrix with i.i.d entries sampled from N (0, 1

r ). Given a fixed
q ∈ R1×m with elements 0 < c ≤ |qi| ≤ C, let u = q · (A⊤A − Im) ∈ R1×m. Let ui be the i-th
element of u. Then there exists a coupling (ui, z), where z ∼ N (0, ∥q∥2

r ) and

Pr{ui ̸= z} ∈ O
(

1√
mr

)
. (18)

The lemma above means that each element ui follows a mixture of distributions: N (0, ∥q∥2

r ) with
weight wg and another distribution M , which we dont know, with weight (1− wg) ∈ O

(
1√
mr

)
. The

larger mr, the closer the mixture distribution gets to pure Gaussian distribution N (0, ∥q∥2

r ). Having
the results above, we can now draw a clear connection between low-rank adaptation and DP.
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5 Connecting Low Rank Adaptation to DP with Gradient Scaling

Based on eq. (12) and our understandings from lemma 4.3, low rank adaptation (with rank r) of
adapter parameter W ∈ Rn×m at time step t is equivalent to fine-tuning it with the noisy stochastic
batch gradients ∇̃WLt = ∇WLt + N t, where N t ∈ Rn×m is a noise-term with Gaussian-like
distribution: Pr{N t

i,j ̸= zti} ∈ O
(

1√
mr

)
, where zti ∼ N (0,

∥[∇WLt]i,:∥2

r ). In other words, low-rank
adaptation adds noise to each row of batch gradient ∇WLt, and the standard deviation of the noise
added to the elements of the row i is proportional to the ℓ2 norm of row i. Also, as mr grows, i.e., the
input dimension of the adaptation layer (m) increases or the adaptation rank increases (r < m), the
distribution of noise element N t

i,j gets closer to N (0,
∥[∇WLt]i,:∥2

r ). This operation is very similar
to what DPSGD [Abadi et al., 2016] does for adding noise to each element of the clipped batch
gradients w.r.t the adapter parameters: at the t-th gradient update step on a current adapter parameter
W , DPSGD computes the following noisy batch gradient on a batch Bt with size b:

∇̃WLt =
1

b

[( ∑
i∈Bt

∇̄WLt
i

)
+N (0, σ2

DP)

]
, (19)

where ∇̄WLt
i = clip(∇WLt

i, c), c is a clipping threshold, and Bt is the batch of samples at time
step t. Also, σDP = c · z, where z is the noise scale determining the resulting privacy guaranty
parameters. The main difference between the noise addition mechanism in low-rank adaptation
(eq. (12)) and that in DPSGD (eq. (19)) is that DPSGD adds a noise with a fixed variance σ2

DP to all
elements of the clipped batch gradient, and also there is no sample gradient clipping happening in
low rank adaptation. In the following, we show that how this clipping can be introduced in low rank
adaptation with almost no cost by using Johnson-Lindenstrauss Lemma. This also leads to the same
noise variance for all elements. We first state a version of the lemma in the following.
Theorem 5.1 ([Matousek, 2008], Theorem 3.1). Let m be an integer, ∆ ∈ (0, 1

2 ], and p ∈ (0, 1).
Also, let r = ∆−2log( 2p ). Let us define a random linear map T : Rm → Rr by

T (x)i =
1√
r

m∑
j=1

Rijxj , i = 1, · · · , r (20)

where the Rij are independent standard normal variables. Then, for every x ∈ Rm, we have:

Pr[∥T (x)∥ ≥ (1 + ∆)∥x∥] ≤ p

2
,

Pr[∥T (x)∥ ≤ (1−∆)∥x∥] ≤ p

2
. (21)

Also, as a direct consequence of the above inequalities:

Pr

[
∥T (x)∥
(1 + ∆)

≤ ∥x∥ ≤ ∥T (x)∥
(1−∆)

]
≥ 1− p. (22)

The theorem above directly relates to the random projection mapping A⊤ observed in LoRA/FLoRA:
let us define the mapping T in theorem 5.1 to be T (x) = xA⊤. Then, we know that for a sample i in
a batch of samples with size b, ∇BtLt

i = T (∇W tLt
i). More precisely, let’s fix ∆ ∈ (0, 1

2 ] and define
p implicitly with r = ∆−2 log( 2p ) (r is the adaptation rank). Then, according to eq. (22), for every
sample i in a batch Bt and every row l ∈ [1, n], we have:

∥∥[∇BtLt
i]l,:

∥∥ = (1−∆)
√
rc ⇒ Pr

[
(1−∆)

(1 + ∆)

√
rc ≤

∥∥[∇W tLt
i]l,:

∥∥ ≤ √rc] ≥ 1− p. (23)

Assuming a non-zero norm for all rows of∇BtLt
i (for a sample i), we can always scale its rows so

that the left condition is satisfied for all its rows. Then, the result on the right holds for the same
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sample i and all its rows separately. If we do the same row scaling for all samples in a batch of size b,
the right bound holds for all the samples simultaneously with probability at least (1− nbp):

∥∥[∇BtLt
i]l,:

∥∥ = (1−∆)
√
rc (∀ l ∈ [1, n],∀i ∈ Bt)

⇒ Pr

[
(1−∆)

(1 + ∆)

√
nrc ≤ ∥∇W tLt

i∥F ≤
√
nrc,∀i ∈ Bt

]
≥ 1− nbp. (24)

In other words, if we scale all the rows of sample gradients∇BtLt
i in a batch to have norm (1−∆)

√
rc,

then with probability at least 1−nbp, all the sample gradients∇W tLt
i in a batch have bounded frobe-

nious norm
√
nrc. On the other hand, according to lemma 3.1, low rank adaptation adds a random

noise to each row of ∇W tLt
i based on the norm of the row. More precisely, according to eq. (23),

low-rank adaptation adds a Gaussian-like noise with variance at least
(
(1−∆)
(1+∆)

√
rc)2

r = (1−∆)2

(1+∆)2 c
2

to each element of the clipped sample gradient ∇W tLt
i, whose frobenious norm was bounded in

eq. (24). Also, according to lemma 4.3, this noise follows Gaussian distributionN (0, (1−∆)2

(1+∆)2 c
2) with

probability wg , where (1− wg) ∈ O
(

1√
mr

)
.

5.1 Connecting LoRA/FLoRA to DPSGD Algorithm

As described above, when augmented with gradient scaling, the dynamics of LoRA/FLoRA is very
close to DPSGD. However, it is not exactly the same: first, the distribution that the injected noise
is sampled from is not exactly the pure Gaussian N (0, (1−∆)2

(1+∆)2 c
2). Also, as seen in eq. (24), the

gradient scaling is probabilistic, while in DPSGD, the sample gradient clipping is deterministic, as
if the upper-bound in eq. (24) always holds. Despite this, we can think of an intuitive relation to
DPSGD. If we assume that the noise distribution is very close to Gaussian distribution (i.e., wg ≈ 1),
and also nbp≪ 1, then we can consider the following interpretation of the low-rank adaptation of
LoRA/FLoRA:

When scaling all the rows of sample gradients∇BtLt
i to have norm (1−∆)

√
rc, low-rank adaptation

adds a Gaussian noise with variance at least (1−∆)2

(1+∆)2 c
2 to each element of the clipped sample gradients

∇W tLt
i, whose frobenious norm is bounded by

√
nrc. This is equivalent to having a noise scale

z ≥
√
b (1−∆)2

(1+∆)2 c
2/
√
nrc = (1−∆)

(1+∆)

√
b
nr for each batch of size b. The DP privacy parameters ϵ and

δ resulting from this noise scale, which can be found by using a privacy accountant, e.g., moments
accountant [Abadi et al., 2016], depend on the used batch size ratio (ratio of the batch size b and the
fine-tuning dataset size) and the number of steps T taken during fine-tuning.

The connection drawn above is an approximate, yet meaningful, connection between LoRA/FLoRA
and DPSGD, which provides a clear interpretation of what low-rank adaptation does. In fact, low-rank
adaptation secretly mimics the mechanism of DPSGD approximately during fine-tuning. Hence, we
expect it to provide robustness against privacy attacks against the fine-tuning data. Indeed, such a
behavior has been observed implicitly in [Liu et al., 2024] for low-rank adaptation.

6 Conclusion

In this study, we establish an implicit connection between low-rank adaptation and differential privacy.
We show that low-rank adaptation can be viewed as introducing random noise into the gradients
w.r.t adapters coming from their fine-tuning with SGD. By quantifying the variance of this noise
and bounding its deviation from pure Gaussian noise with the same variance, we demonstrate that
low-rank adaptation, when combined with gradient clipping, approximates fine-tuning adapters with
differential privacy. Although our theoretical analysis suggests that low-rank adaptation can provide
implicit privacy similar to those of fine-tuning with differential privacy at a lower computational cost,
empirical evaluation is necessary to fully validate these claims. In our ongoing future work, we will
explore whether low-rank adaptation can effectively balance data privacy, security, and fine-tuning
efficiency. Specifically, we aim to assess the practical performance of low-rank adaptation against
security threats such as membership inference attacks [Zarifzadeh et al., 2024, Ye et al., 2022] and
data extraction attacks [Carlini et al., 2019].
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Appendix for on the Implicit Relation between Low-Rank
Adaptation and Differential Privacy

A Useful Theorems

In this section, we mention some theorems, which we will use in our proofs.
Theorem A.1 (Chi-Squared distribution: [Mood and Franklin, 1974], Section 4.3, Theorem 7). If the
random variables Xi, i = 1, . . . , k, are normally and independently distributed with means µi and
variances σ2

i , then

U =

k∑
i=1

(Xi − µi

σi

)2
(25)

has a chi-squared distribution with k degrees of freedom: U ∼ X 2
k . Also, E[U ] = k and Var[U ] =

2k.

The theorem above states that sum of the squares of k standard normal random variables is a
chi-squared distribution with k degrees of freedom.
Lemma A.2 (Raw moment of Chi-Squared distribution). Suppose X ∼ X 2

k . Then, the m-th raw
moment of X can be found as follows;

E[Xm] =

m−1∏
i=0

(k + 2i) (26)

Proof. From the definition of Chi-Squared distribution with r degrees of reddom, U has the following
probability density function:

fX(x) =
1

2
k
2 Γ(k2 )

x
k
2−1e−

x
2 (27)

Therefore, we have:

E[Xm] =
1

2
k
2 Γ(k2 )

∫ +∞

0

x
k
2+m−1e−

x
2 dx =

2

2
k
2 Γ(k2 )

∫ +∞

0

(2u)
k
2+m−1e−udu

=
2

k
2+m−1+1

2
k
2 Γ(k2 )

∫ +∞

0

u
k
2+m−1e−udu =

2m

Γ(k2 )
Γ(

k

2
+m) =

2mΓ(k2 )

Γ(k2 )

m−1∏
i=0

(
k

2
+ i)

=

m−1∏
i=0

(k + 2i). (28)

Note that the fifth equality directly results from the property of gamma function that for z > 0,
Γ(1 + z) = zΓ(z).

Theorem A.3 (Classical Central Limit Theorem: [Billingsley, 1995], Theorem 27.1). Suppose that
{Xi}ni=1, is an independent sequence of random variables having the same distribution with mean µ
and positive variance σ2. Define Sn =

∑n
i=1 Xi as their sum. Let Zn be defined by

Zn =
Sn − nµ√

nσ
. (29)

Then, the distribution of Zn approaches standard normal distribution as n approaches infinity.
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The theorem above states that Sn is approximately, or asymptotically, distributed as a normal
distribution with mean nµ and variance nσ2.

The next theorem is about the Lindeberg’s condition, which is a sufficient (and under certain conditions
also a necessary condition) for the Central Limit Theorem (CLT) to hold for a sequence of independent
random variables {Xi}ni=1. Unlike the classical CLT stated above, which requires the sequence
of random variables to have a finite variance and be both independent and identically distributed
(i.i.d), Lindeberg’s CLT only requires the sequence of random variables to have finite variance, be
independent and also satisfy the Lindeberg’s condition. The following states the theorem.
Theorem A.4 (Lindeberg and Lyapounov Theorem: [Billingsley, 1995], Theorem 27.2). Suppose
X1, . . . , Xn are n independent random variables with E[Xi] = µi and Var[Xi] = σ2

i > 0. Define
Sn =

∑n
i=1 Xi and let s2n =

∑n
i=1 σ

2
i . Also assume the following condition holds for all ϵ > 0:

Lindeberg’s condition: lim
n→∞

n∑
i=1

1

s2n

∫
|x−µi|≥ϵsn

(x− µi)
2PXi

(x)dx = 0. (30)

where PXi
is the pdf of variable Xi. Assuming Zn =

Sn−
∑n

i=1 µi

sn
, the distribution of Zn approaches

standard normal distribution as n approaches infinity.

The theorem above states that, given that Lindeberg’s condition is satisfied, Sn is approximately, or
asymptotically, distributed as a normal distribution with mean

∑n
i=1 µi and variance s2n, even if the

sequence of variables are not identically distributed.

B Proofs

Using the theorems above, we are now able to prove lemma 3.1.
Lemma 3.1. Let A ∈ Rr×m be a matrix with i.i.d entries sampled from N (0, 1

r ). Given a fixed
q ∈ R1×m, the distributions of elements of q · (A⊤A − Im) ∈ R1×m approach the Gaussian
distribution N (0, ∥q∥2

r ), as m increases.

Proof. From the theorem’s assumption, we know that elements of A are from N (0, 1
r ). Therefore,

we can rewrite the product q · (A⊤A− Im) ∈ R1×m as the following product:

q · (A
⊤A

r
− Im) ∈ R1×m (31)

where the elements of A are now from standard normal distribution. Let ai,j denote the element
in i-th row and j-th column of this new A. Therefore, for all i and j, ai,j has distribution N (0, 1).
Let B = A⊤A

r − Im. Also, let Ai,: and A:,j denote the i-th row and j-th column of the new A,
respectively. We have:

Bi,i =
1

r
[A⊤A]i,i − 1 =

1

r
A⊤

:,iA:,i − 1 =
1

r
∥A:,i∥22 − 1 = (

1

r

r∑
l=1

a2l,i)− 1 (32)

From eq. (31), we know that al,i is from standard normal distribution. Hence, a2l,i is a chi-squared with
1 degree of freedom: a2l,i ∼ X 2

1 . Therefore,
∑r

l=1 a
2
l,i, which is the sum of r independent chi-squared

variables with 1 degree of freedom, is a chi-squared with r degrees of freedom:
∑r

l=1 a
2
l,i ∼ X 2

r (see
theorem A.1). Therefore, for i ∈ {1, . . . ,m}, we have:

E[Bi,i] = E
[∑r

l=1 a
2
l,i

r

]
− 1 =

r

r
− 1 = 0,

Var[Bi,i] = Var[

∑r
l=1 a

2
l,i

r
] =

Var(X 2
r )

r2
=

2r

r2
=

2

r
. (33)
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Similarly, we find the mean and variance of the non-diagonal elements Bi,j(i ̸= j) of B. We have:

Bi,j =
1

r
[A⊤A]i,j =

1

r
A⊤

:,iA:,j =
1

r

r∑
l=1

al,ial,j , (34)

where al,i and al,j are independent and standard normal. Therefore, al,i + al,j ∼ N (0, 2). Similarly,
al,i − al,j ∼ N (0, 2). So we can rewrite al,ial,j as:

al,ial,j =
1

4
(al,i + al,j)

2 − 1

4
(al,i − al,j)

2 =
1

2
z21 −

1

2
z22 , (35)

where z1 and z2 are from standard normal. Therefore, al,ial,j = ν1−ν2

2 , where ν1, ν2 ∼ X 2
1 . Also,

al,i + al,j and al,i − al,j are independent variables. Hence, z1 and z2 are independent, and likewise
ν1 and ν2 are independent. We conclude that:

al,ial,j =
1

2
(ν1 − ν2), (36)

where ν1, ν2 ∼ X 2
1 , and are independent.

Now, lets assume ν1, ν2 ∼ X 2
k (a more general case), and let Mν1(t) = E[etν1 ] be the moment

generating function (MGF) of ν1. In this case, we know that Mν1
(t) = Mν2

(t) = (1 − 2t)−
k
2

(MGF of X 2
k ). Hence, Mν1−ν2

(t) = Mν1
(t) ·Mν2

(−t) = (1 − 4t2)−
k
2 =

( 1
4

1
4−t2

) k
2 , which is the

MGF of a symmetric about origin variance-gamma distribution with parameters λ = k
2 , α = 1

2 , β =

0, µ = 0, γ = 1
2 . Therefore, when ν1, ν2 ∼ X 2

k , then ν1 − ν2 has this distribution, which has mean
µ+ 2βλ/γ2 = 0 and variance 2λ(1 + 2β2/γ2)/γ2 = 4k.

In eq. (36), we had k = 1, as we had ν1, ν2 ∼ X 2
1 . Hence, based on the discussion above, we have:

E[al,ial,j ] = 0 (37)

Var[al,ial,j ] =
1

4
Var[ν1 − ν2] =

4k

4
= 1 (38)

Consequently, based on eq. (34) and from the results above, we can compute the mean and variance
of the non-diagonal elements of B (i ̸= j):

E[Bi,j ] = E
[∑r

l=1 al,ial,j
r

]
=

∑r
l=1 E[al,ial,j ]

r
= 0,

Var[Bi,j ] = Var[

∑r
l=1 al,ial,j

r
] =

∑r
l=1 Var[al,ial,j ]

r2
=

r

r2
=

1

r
. (39)

So far, we have computed the mean and variance of each entry in B = A⊤A
r − Im ∈ Rm×m in

eq. (33) and eq. (39). Now, for a given q ∈ R1×m, we have:

q ·B =

m∑
l=1

qlBl,:, (40)

where Bl,: is row l of B. Let ui denote the i-th element of q · B. Hence, for each element ui

(i ∈ {1, . . . ,m}), we have:
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E[ui] = E
[ m∑

l=1

qlBl,i

]
=

m∑
l=1

qlE[Bl,i] = 0,

Var[ui] = Var

[ m∑
l=1

qlBl,i

]
=

m∑
l=1

q2l Var[Bl,i] = q2i Var[Bi,i] +
∑
l ̸=i

q2l Var[Bl,i]

= q2i
2

r
+
∑
l ̸=i

q2l
1

r
=

q2i
r

+

m∑
l=1

q2l
1

r
=

q2i +
∑m

l=1 q
2
l

r
≈

∑m
l=1 q

2
l

r
=
∥q∥22
r

, (41)

where the approximation is indeed valid because m, which is the dimension of the input of the
current layer (see fig. 1), is a large integer. Finally, according to eq. (40), each element ui of qB is
the sum of m random variables, for which the Lindeberg’s condition is also satisfied: as m→∞,
s2m =

∥q∥2
2

r →∞ (m is the dimension of q, and sm is the sum of variances of the m random variables,
which we found in eq. (41)). Hence, [|ui − 0| > ϵsm] ↓ ∅ as m→∞. Therefore, from theorem A.4,
we also conclude that as m → ∞, each element of qB approaches a Gaussian with the mean and
variance found in eq. (41). Therefore, we conclude that having an A, where the elements of A are i.i.d
and from N (0, 1

r ), then as m→∞, q · (A⊤A− Im) ∈ R1×m approaches a Gaussian N (0, ∥q∥2

r ),
which completes the proof.

Lemma 4.2. Let A ∈ Rr×m be a matrix with i.i.d entries sampled from N (0, 1
r ). Given a fixed

q ∈ R1×m with elements 0 < c ≤ |qi| ≤ C, let u = q · (A⊤A − Im) ∈ R1×m. Let ui be the i-th
element of u and Qm(x) = Pr{ui ≤ x}. Also, let Φ(x) be the CDF of z ∼ N (0, ∥q∥2

r ). Then:

∥Qm(x)− Φ(x)∥TV ∈ O
(

1√
mr

)
. (17)

Proof. From eq. (40), we had:

ui =

m∑
l ̸=i,l=1

qlBl,i + qiBi,i, (42)

where Bl,i =
1
rA

⊤
:,lA:,i =

1
2r

∑r
t=1 Vt, where Vt ∼ Variance-Gamma(ν, α, β, µ) with ν = β =

µ = 0 and α = 1
2 . Also Bi,i =

1
rA

⊤
:,iA:,i − 1 = X

r − 1, where X ∼ X 2
r . Therefore, we can rewrite

the equation above for ui as:

ui =

m∑
l ̸=i,l=1

ql
2r

r∑
t=1

Vt + qi(
X

r
− 1) =

m∑
l ̸=i,l=1

r∑
t=1

ql
2r

Vt +
qi
r
(X− r), (43)

where Vt ∼ Variance-Gamma(ν, α, β, µ) with ν = β = µ = 0 and α = 1
2 and X ∼ X 2

r . Hence,
Vt has mean 0 and variance 4 and (X−r) has mean 0 and variance 2r. Also note that X can be written
as the summation of r independent variables with distribution X 2

1 . Therefore, ui is the weighted sum
of mr independent random variables with mean 0. Also, from eq. (41) in the proof of lemma 3.1,
we know that ui has mean 0 and variance ∥q∥2

2

r . Now, in order to bound the TV distance between

the distribution of ui and N (0,
∥q∥2

2

r ), we have to use theorem 4.1 and eq. (14). More specifically,

we have to find the third Lyapounov ratio L3 =
∑

i E[|Xi|3]
s3n

=
∑

i E[|Xi|3](∑
i Var[Xi]

)3 =
∑

i E[|Xi|3](∑
i E[X2

i ]
)3 , where

Xi is each of the 1 + (m − 1)r summands in eq. (43). First we note that, based on eq. (41),
s3n = (

∥q∥2
2

r )
3
2 =

∥q∥3
2

r
√
r

. Now, we find the numerator
∑

i E[|Xi|3]. From [Gaunt, 2024], we know that
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for Vt ∼ Variance-Gamma(ν, α, 0, 0),E[|Vt|r] = 2r√
παr

Γ(ν+(r+1)/2)Γ((r+1)/2)
Γ(ν+1/2) . Therefore, for

Vt ∼ Variance-Gamma(0, 1
2 , 0, 0),E[|Vt|3] = 26

π . On the other hand, we know that the skewness

of X ∼ X 2
r is equal to E[(X−E[X])3]

Var[X]
3
2

= E[(X−r)3]

(2r)
3
2

=
√

8
r . Hence, E[(X − r)3] = (2r)

3
2

√
8
r = 8r.

Hence for X ∼ X 2
r , E[|X − r|3] ≥ E[(X − r)3] = 8r. Now, we can find the numerator

∑
i E[|Xi|3]

as:

∑
i

E[|Xi|3] =
m∑

l ̸=i,l=1

r∑
t=1

|ql|3

8r3
E[|Vt|3] +

|qi|3

r3
E[|X− r|3]

=

m∑
l ̸=i,l=1

|ql|3

8r2
· 2

6

π
+
|qi|3

r3
E[|X− r|3]

≈
m∑

l ̸=i,l=1

8|ql|3

πr2
+

8|qi|3

r2
≈

m∑
l=1

8|ql|3

πr2
=

8

πr2
∥q∥33. (44)

Therefore, for the sum ui in eq. (43), we have the third Lyapounov ratio:

L3 =
8

πr2
∥q∥33 ×

r
√
r

∥q∥32
=

8

π
√
r

(
∥q∥3
∥q∥2

)3

. (45)

Therefore, based on theorem 4.1, we have:

∥Qm(x)− Φ(x)∥TV ≤
8CD

π
√
r

(
∥q∥3
∥q∥2

)3

, (46)

where CD ≤ π
√
r

8 is a constant, which depends only on D, where D is an upperbound for the KL
divergence between each of the random variable summands in eq. (43) and a Gaussian with the
same mean and variance. Now, assuming 0 < c ≤ |qi| ≤ C for the elements qi in q, we have(

∥q∥3

∥q∥2

)3

≤
(

|C|
|c|

)3
1√
m

. Therefore:

∥Qm(x)− Φ(x)∥TV ≤
8CD

π

(
|C|
|c|

)3
1√
mr

. (47)

Therefore,

∥Qm(x)− Φ(x)∥TV ∈ O
(

1√
mr

)
. (48)
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