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Abstract

A significant approach in natural language processing involves large-scale pre-1

training on general domain data followed by adaptation to specific tasks or domains.2

As models grow in size, full fine-tuning all parameters becomes increasingly3

impractical. To address this, some methods for low-rank task adaptation of language4

models have been proposed, e.g. LoRA and FLoRA. These methods keep the pre-5

trained model weights fixed and incorporate trainable low-rank decomposition6

matrices into some layers of the transformer architecture, called adapters. This7

approach significantly reduces the number of trainable parameters required for8

downstream tasks compared to full fine-tuning all parameters. In this work, we9

look at low-rank adaptation from the lens of data privacy. We show theoretically10

that the low-rank adaptation used in LoRA and FLoRA is equivalent to injecting11

some random noise into the batch gradients w.r.t the adapter parameters coming12

from their full fine-tuning, and we quantify the variance of the injected noise. By13

establishing a Berry-Esseen type bound on the total variation distance between the14

noise distribution and a Gaussian distribution with the same variance, we show15

that the dynamics of LoRA and FLoRA are very close to differentially private16

full fine-tuning the adapters, which suggests that low-rank adaptation implicitly17

provides privacy w.r.t the fine-tuning data. Finally, using Johnson-Lindenstrauss18

lemma, we show that when augmented with gradient clipping, low-rank adaptation19

is almost equivalent to differentially private full fine-tuning adapters with a fixed20

noise scale.21

1 Introduction22

Stochastic Gradient Descent (SGD) is the power engine of training deep neural networks, which23

updates parameters of a model by using a noisy estimation of the gradient. Modern deep learning24

models, e.g. GPT-3 [Brown et al., 2020] and Stable Diffusion [Rombach et al., 2022], have a large25

number of parameters, which induces a large space complexity for their training with SGD. Using26

more advanced methods, which track various gradient statistics to stabilize and accelerate training,27

exacerbates this space complexity [Duchi et al., 2011]. For instance, momentum technique reduces28

variance by using an exponential moving average of gradients [Cutkosky and Orabona, 2019]. Also,29

gradient accumulation [Wang et al., 2013] reduces variance by computing the average of gradients in30

the last few batches, which simulates a larger effective batch size. All these methods suffer from high31

space complexity during training/fine-tuning time.32

Addressing the space complexity, some works try to reduce it by training a subset of parameters,33

and storing the information about only a portion of the existing parameters [Houlsby et al., 2019,34

Ben Zaken et al., 2022]. LoRA is such an algorithm, which only updates some of the parameter35

matrices (called adapters), by restricting their update to be a low-rank matrix. This low-rank restriction36
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considerably reduces the number of trainable parameters, at the cost of limiting the optimization37

space of the adapter parameters. Another parameter-efficient training technique, called ReLoRA38

[Lialin et al., 2023], utilizes low-rank updates to train high-rank networks to eliminate the constraint39

of LoRA mentioned above. Similarly, the work in [Hao et al., 2024] identifies that the dynamics of40

LoRA can be approximated by a random matrix projection. Based on this interesting finding, the41

work proposes to achieve high-rank updates by resampling the random projection matrices, while42

still enjoying the sublinear space complexity of LoRA.43

On the other hand, from the lens of data privacy, the fine-tuning data often happens to be privacy44

sensitive. In such scenarios, Differentially Private (DP) fine-tuning algorithms have been used to45

provide rigorous privacy guarantees w.r.t the data. DP full fine-tuning runs DPSGD [Abadi et al.,46

2016] on the the fine-tuning data to update all the existing parameters in a model. However, due to47

the necessity of computing gradients and clipping them for every data sample, DPSGD also induces48

high space complexities, even worse than non-private full fine-tuning of all parameters. Despite this,49

DPSGD full fine-tuning provides rigorous privacy guarantees w.r.t the fine-tuning data.50

In this work, we draw a connection between LoRA/FLoRA and DP full fine-tuning the adapters.51

We show that the random projection existing in the dynamics of LoRA/FLoRA is equivalent to52

injecting some random noise to the batch gradients coming from full fine-tuning adapters, which is53

very close to what DPSGD does for full fine-tuning adapters privately. We also quantify the variance54

of the injected noise, and show that it increases as the rank of adaptation decreases: the smaller the55

rank of adaptation, the larger the variance of the injected noise. Furthermore, in order to evaluate56

the closeness of this injected noise to Gaussian noise with the same variance, we bound the total57

variation (TV) distance between the distribution of the injected noise and the pure Gaussian noise58

used in DPSGD and show that this bound (dissimilarity) decreases as the rank used in LoRA/FLoRA59

increases. Our derivations suggest that, although not being exactly the same, low-rank adaptation and60

DP full fine-tuning adapters are very close to each other in terms of their dynamics. This implies that,61

besides reducing the space complexity for task adaptation of language models, low rank adaptation62

can provide privacy w.r.t the fine-tuning data implicitly without inducing the high space complexity63

of DP full-fine tuning all parameters.64

The highlights of our contributions are the followings:65

• We show that low-rank adaptation with LoRA/FLoRA is equivalent to injection of some66

random noise into the adapters’ batch gradients coming from their full fine-tuning (eq. (3)).67

• We find the variance of the noise injected into each row of the adapters’ full gradient matrix,68

and show that it approaches a Gaussian distribution as the number of inputs of the adaptation69

layer and the adaptation rank increase (lemma 3.1).70

• We bound the total variation distance between the distribution of the injected noise and the71

pure Gaussian noise with the same mean and variance. The bound decreases as the number72

of inputs of the adaptation layer and the adaptation rank increase (lemma 4.1).73

• Finally, we show that the dynamics of low-rank adaptation is very close to DP full fine-tuning74

adapters, and when it is augmented with gradient clipping, they are almost the same. This75

implies an implicit connection between LoRA/FLoRA and DPSGD: they are very close to76

DPSGD with a fixed noise scale, which depends on the adaptation rank, and the batch size77

used during fine-tuning (section 5).78

2 Dynamics of Low-Rank Task Adaptation79

We start by studying the dynamics of low-rank adaptation, and restate some of the findings in [Hao80

et al., 2024]. In order to update a pre-trained adapter weight W ∈ Rn×m, LoRA incorporates81

low-rank decomposition matrices B ∈ Rn×r and A ∈ Rr×m, where r ≪ min{n,m}, and performs82

the forward pass in an adapter layer as:83

y = (W +BA)x = Wx+BAx, (1)

where x ∈ Rm is the input of the current layer and y ∈ Rn is the pre-activation output of the current84

layer (see fig. 1). It is common to initialize B with an all-zero matrix and A with a normal distribution.85

2



Figure 1: Low-rank decomposition of LoRA/FLoRA for task adaptation.

More specifically, the entries of A are sampled from N (0, σ2) with σ2 = 1
r . As suggested in [Hao86

et al., 2024] and confirmed with their experimental results, we can closely approximate LoRA by87

freezing A at its initialized value A0 and training only the matrix B. In this case, the update in the88

adapter W after T gradient updates can be approximated as (see appendix B):89

W +∆BA0 +∆B∆A = W +∆BA0 = W − η

T−1∑
t=0

[
(∇WLt)A0⊤A0

]
. (2)

Therefore, low rank adaptation with LoRA can be viewed as performing a random projection of90

stochastic batch gradient∇WLt in every step t by matrix A0⊤ and projecting it back by matrix A0.91

FLoRA [Hao et al., 2024] proposes to resample the random matrix A0 at each step to get a high rank92

update ∆B for the matrix B. Hence, FLoRA can also be viewed as performing a random projection93

of stochastic batch gradient∇WLt in every step t by a different random matrix A⊤ and projecting it94

back by its transpose.95

Having understood the connection between low-rank adaptation in LoRA/FLoRA and random96

projection, in the next section, we show that this random projection and back projection performed in97

each time step is equivalent to adding some random noise to each element of∇WLt. This is our first98

step towards establishing the connection between low-rank adaptation and differential privacy.99

3 Random Noise Injected by Low-Rank Adaptation100

In this section, we present our analysis based on LoRA, which employs a fixed projection matrix101

A0. Our analysis holds for various LoRA variants, including FLoRA. As illustrated in eq. (3), the102

parameter update after T rounds of stochastic gradient descent (SGD) is given by:103

W +∆BA0 +∆B∆A = W − η

T−1∑
t=0

[
(∇WLt)A0⊤A0

]

= W − η

T−1∑
t=0

[
∇WLt︸ ︷︷ ︸

full fine-tuning

−∇WLt(A0⊤A0 − Im)︸ ︷︷ ︸
noise ∈ Rn×m

]
, (3)

The first term in the sum represents the batch gradient that would be obtained through full fine-tuning104

the adapter W . The second term represents the noise introduced by the low-rank adaptation. Thus,105

the low-rank adaptation introduces noise to each batch gradient ∇WLt, and the gradient step is106

taken with this noisy gradient. We are now particularly interested in the behavior of this noise term,107
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which is added to each batch gradient ∇WLt in every step t. Recall that the entries of A0 were108

sampled from N (0, 1
r ) (see fig. 1), and that each of the r columns of A0⊤ is an m-dimensional109

Gaussian random variable. Consequently, A0⊤A0 follows a Wishart distribution with r degrees of110

freedom [Bhattacharya and Burman, 2016], which is the multivariate generalization of the chi-squared111

distribution. Therefore, for any q ∈ R1×m, q · (A⊤
0 A0 − Im) is a weighted sum of multiple chi-112

squared random variables, which implies that the result follows a Gaussian distribution approximately,113

according to the Central Limit Theorem (CLT) [Bhattacharya et al., 2016]. We prove the following114

lemma concerning the noise term in eq. (3).115

Lemma 3.1. Let A ∈ Rr×m be a matrix with i.i.d entries sampled from N (0, 1
r ). Given a fixed116

q ∈ R1×m, the distributions of elements of q · (A⊤A − Im) ∈ R1×m approach the Gaussian117

distribution N (0, ∥q∥2

r ), as m approaches infinity.118

The result above can be extended to matrices multiplication, as in eq. (3): for a matrix Q ∈ Rn×m119

and as m → ∞, the product G = Q · (A⊤A − Im) ∈ Rn×m approaches a Gaussian distribution,120

where Gi,j (1 ≤ i ≤ n) has distributionN (0,
∥[Q]i,:∥2

r ), where [Q]i,: is the i-th row of Q. The lemma121

above shows that the last term in eq. (3) can indeed be looked at as a random noise term with mean 0122

and a variance depending on∇wLt.123

Although lemma 3.1 was proved for when m approaches infinity, in practical scenarios it is limited.124

Hence, the distribution of the injected noise in not pure Gaussian. In the next section, we bound the125

deviation of the noise distribution from a pure Gaussian distribution.126

4 Bounding the Distance to the Normal Law127

Despite having proved lemma 3.1 when m approaches infinity, yet we need to quantify the distance128

between the distribution of q · (A⊤A− Im) ∈ R1×m to the bona fide Gaussian distribution for limited129

values of m in practical scenarios. In this section, we derive a Berry-Esseen type upper-bound for the130

total variation distance between the distribution of each element of q · (A⊤A− Im) ∈ R1×m and the131

normal law N (0, ∥q∥2

r ). We have the following lemma, with the proof in appendix D.132

Lemma 4.1. Let A ∈ Rr×m be a matrix with i.i.d entries sampled from N (0, 1
r ). Given a fixed133

q ∈ R1×m with elements 0 < c ≤ |qi| ≤ C, let u = q · (A⊤A − Im) ∈ R1×m. Let ui be the134

i-th element of u and Qm(x) = Pr{ui ≤ x}. Also, let Φ(x) be the CDF of normal variable135

z ∼ N (0, ∥q∥2

r ). Then:136

∥Qm(x)− Φ(x)∥TV ∈ O
(

1√
mr

)
, (4)

where ∥Qm(x)− Φ(x)∥TV = supA
∣∣ ∫

A
dQm −

∫
A
dΦ

∣∣ is the total variation distance. This result137

shows the elements of q · (A⊤A − Im) ∈ R1×m indeed approach to Gaussian N (0, ∥q∥2

r ) as m138

and r increase. Having the interesting result above, we can now benefit from the useful coupling139

characterization of the total variation distance (see appendix A) to establish a more understandable140

relation between each element of the product above and the Gaussian distribution N (0, ∥q∥2

r ).141

Lemma 4.2. Let A ∈ Rr×m be a matrix with i.i.d entries sampled from N (0, 1
r ). Given a fixed142

q ∈ R1×m with elements 0 < c ≤ |qi| ≤ C, let u = q · (A⊤A − Im) ∈ R1×m. Let ui be the i-th143

element of u. Then there exists a random variable z, where z ∼ N (0, ∥q∥2

r ), and144

Pr{ui ̸= z} ∈ O
(

1√
mr

)
. (5)

The lemma above means that each element ui follows a mixture of distributions: N (0, ∥q∥2

r ) with145

weight wg and another distribution M , which we dont know, with weight (1− wg) ∈ O
(

1√
mr

)
. The146

larger mr, the closer the mixture distribution gets to pure Gaussian distribution N (0, ∥q∥2

r ). Having147

the results above, we can now draw a clear connection between low-rank adaptation and DP.148
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5 Connecting Low Rank Adaptation to DP with Gradient Clipping149

Based on eq. (3) and our understandings from lemma 4.2, low rank adaptation (with rank r) of adapter150

parameter W ∈ Rn×m at time step t is equivalent to full fine-tuning it with the noisy stochastic151

batch gradients ∇̃WLt = ∇WLt + N t, where N t ∈ Rn×m is a noise-term with Gaussian-like152

distribution: Pr{N t
i,j ̸= zti} ∈ O

(
1√
mr

)
, where zti ∼ N (0,

∥[∇WLt]i,:∥2

r ), and [∇WLt]i,: is the i-th153

row of∇WLt (1 ≤ i ≤ n). Asymptotically, as mr grows, i.e. the input dimension of the adaptation154

layer (m) increases or the adaptation rank increases (r < m), the distribution of noise element N t
i,j155

gets closer to N (0,
∥[∇WLt]i,:∥2

r ). In other words, low-rank adaptation adds noise to each row of156

batch gradient ∇WLt, and the standard deviation of the noise added to the elements of the row i is157

proportional to the ℓ2 norm of row i. This operation is very similar to what DPSGD [Abadi et al.,158

2016] does for adding noise to each element of the batch gradients w.r.t the adapter parameters: at the159

t-th gradient update step on a current adapter parameter W , DPSGD computes the following noisy160

batch gradient on a batch of size b:161

∇̃WLt =
1

b

[( ∑
i∈Bt

∇̄WLt
i

)
+N (0, σ2

DP)

]
, (6)

where ∇̄WLt
i = clip(∇WLt

i, c), c is a clipping threshold, and Bt is the batch of samples at time162

step t. Also, σDP = c · z, where z is the noise scale determining the resulting privacy guaranty163

parameters. The main difference between the noise addition mechanism in low-rank adaptation164

(eq. (3)) and that in DPSGD (eq. (6)) is that DPSGD adds noise with a fixed variance σ2
DP to all165

elements of the clipped batch gradient, and also there is no sample gradient clipping happening in166

low rank adaptation. In the following, we show that how this clipping can be introduced in low rank167

adaptation with almost no cost by using Johnson-Lindenstrauss Lemma. This also leads to the same168

noise variance for all elements. We first state a version of the lemma in the following.169

Theorem 5.1 ([Matousek, 2008], Theorem 3.1). Let m be an integer, ∆ ∈ (0, 1
2 ], and p ∈ (0, 1).170

Also, let us set r = ∆−2log(p2 ). Let us define a random linear map T : Rm → Rr by171

T (x)i =
1√
r

m∑
j=1

Rijxj , i = 1, · · · , r (7)

where the Rij are independent standard normal variables. Then for every x ∈ Rm, we have:172

Pr[(1−∆)∥x∥ ≤ ∥T (x)∥ ≤ (1 + ∆)∥x∥] ≥ 1− p. (8)

or equivalently173

Pr

[
∥T (x)∥
(1 + ∆)

≤ ∥x∥ ≤ ∥T (x)∥
(1−∆)

]
≥ 1− p. (9)

The theorem above directly relates to the random projection mapping A⊤ observed in LoRA/FLoRA:174

let us define the mapping T in theorem 5.1 to be T (x) = xA⊤. Then we know that for a sample i in175

a batch of samples with size b, ∇BtLt
i = T (∇W tLt

i). Therefore, if we clip a row l of ∇BtLt
i with a176

clipping threshold, it is almost equivalent to clipping the same row of ∇W tLt
i with the same clipping177

threshold. More precisely, let’s fix ∆. Then, according to eq. (9), for every sample i in a batch Bt178

and every row l ∈ [1, n], we have:179

∥∥[∇BtLt
i]l,:

∥∥ = (1−∆)
√
rc ⇒ Pr

[
(1−∆)

(1 + ∆)

√
rc ≤

∥∥[∇W tLt
i]l,:

∥∥ ≤ √rc] ≥ 1− p, (10)

where r = ∆−2 log( 2p ). Therefore, if the left condition is satisfied for all samples i in a batch of size180

b and all rows l, then with probability at least (1− nbp), the right bound holds for all samples i and181

rows l. Equivalently, we have the following :182
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∥∥[∇BtLt
i]l,:

∥∥ = (1−∆)
√
rc (∀ l, i)⇒ Pr

[
(1−∆)

(1 + ∆)

√
nrc ≤ ∥∇W tLt

i∥F ≤
√
nrc

]
≥ 1− nbp,

(11)

for all samples i in a batch of size b. In other words, if we clip all the rows of sample gradients∇BtLt
i183

in a batch to have norm (1−∆)
√
rc, then with probability at least 1− nbp, all the sample gradients184

∇W tLt
i in a batch have bounded frobenious norm

√
nrc. In that case, according to lemma 3.1, low185

rank adaptation of LoRA/FLoRA adds a random noise to each row of ∇W tLt
i based on the norm186

of the row. More precisely, low-rank adaptation adds a Gaussian-like noise with variance at least187

(
(1−∆)
(1+∆)

√
rc)2

r = (1−∆)2

(1+∆)2 c
2 to each element of the clipped sample gradient ∇W tLt

i, whose frobenious188

norm was bounded in eq. (11). Also, according to lemma 4.2, the noise added to each element follows189

Gaussian distribution N (0, (1−∆)2

(1+∆)2 c
2) with probability wg , where (1− wg) ∈ O

(
1√
mr

)
.190

5.1 Connecting LoRA/FLoRA to DPSGD Algorithm191

As described above, when augmented with clipping of the rows of sample gradients ∇BtLt
i (i ∈ Bt),192

the dynamics of LoRA/FLoRA is very close to DPSGD. However, it is not exactly the same: first, the193

distribution that the injected noise is sampled from is not exactly the pure Gaussian N (0, (1−∆)2

(1+∆)2 c
2).194

Second, as seen in eq. (11), the gradient clipping is probabilistic, while in DPSGD, the sample195

gradient clipping is deterministic, as if p = 0 in eq. (11). Despite this, we can think of an intuitive196

relation to DPSGD. If we assume that the noise distribution is very close to Gaussian distribution197

(i.e. wg ≈ 1), and also nbp≪ 1, then we can consider the following interpretation of the low-rank198

adaptation of LoRA/FLoRA:199

When clipping all the rows of sample gradients∇BtLt
i to have norm (1−∆)

√
rc, low-rank adaptation200

adds a Gaussian noise with variance at least ( (1−∆)
(1+∆)

√
rc)2/r = (1−∆)2

(1+∆)2 c
2 to each element of the201

clipped sample gradients∇W tLt
i, whose frobenious norm is bounded by

√
nrc. This is equivalent to202

having a noise scale z ≥
√
b (1−∆)2

(1+∆)2 c
2/
√
nrc = (1−∆)

(1+∆)

√
b
nr for each batch of size b. The DP privacy203

parameters ϵ and δ resulting from this noise scale, which can be found by using a privacy accountant,204

e.g. moments accountant [Abadi et al., 2016], depend on the used batch size ratio (ratio of the batch205

size b and the fine-tuning dataset size) and the number of steps T taken during fine-tuning.206

The connection drawn above is an approximate, yet meaningful, connection between LoRA/FLoRA207

and DPSGD, which provides a clear interpretation of what low-rank adaptation does. In fact, low-rank208

adaptation secretly approximates the mechanism of DPSGD during fine-tuning. Hence, we expect it209

to provide robustness against privacy attacks to the data used for fine-tuning large models. Indeed,210

such a behavior for low-rank adaptation has been observed implicitly in [Liu et al., 2024].211

6 Conclusion212

In this study, we establish an implicit connection between low-rank adaptation and differential privacy.213

We show that low-rank adaptation can be viewed as introducing random noise into the gradients w.r.t214

adapters coming from their full fine-tuning. By quantifying the variance of this noise and bounding its215

deviation from pure Gaussian noise with the same variance, we demonstrate that low-rank adaptation,216

when combined with gradient clipping, approximates full fine-tuning adapters with differential217

privacy. Although our theoretical analysis suggests that low-rank adaptation can provide implicit218

privacy similar to those of full fine-tuning with differential privacy at a lower computational cost,219

empirical evaluation is necessary to fully validate these claims. In our ongoing future direction,220

we will explore whether low-rank adaptation can effectively balance data privacy, security, and221

fine-tuning efficiency. Specifically, we aim to assess the practical performance of low-rank adaptation222

against security threats such as membership inference attacks [Zarifzadeh et al., 2024, Ye et al., 2022]223

and secret sharing scenarios [Carlini et al., 2019].224

6



References225

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and226

Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC227

Conference on Computer and Communications Security, 2016. URL http://dx.doi.org/10.1145/228

2976749.2978318.229

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple parameter-efficient fine-tuning230

for transformer-based masked language-models. In Proceedings of the 60th Annual Meeting231

of the Association for Computational Linguistics (Volume 2: Short Papers), 2022. URL https:232

//aclanthology.org/2022.acl-short.1.233

P.K. Bhattacharya and Prabir Burman. Multivariate analysis. In Theory and Methods of Statistics,234

pages 383–429. Academic Press, 2016. ISBN 978-0-12-802440-9. URL https://www.sciencedirect.235

com/science/article/pii/B9780128024409000126.236

R. Bhattacharya, L. Lin, and V. Patrangenaru. A Course in Mathematical Statistics and Large Sample237

Theory. Springer Texts in Statistics. Springer New York, 2016. URL https://books.google.ca/238

books?id=AgTWDAAAQBAJ.239

Patrick Billingsley. Probability and Measure. John Wiley & Sons, Inc., 1995. ISBN 0471007102.240

URL https://www.colorado.edu/amath/sites/default/files/attached-files/billingsley.pdf.241

Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction: applications242

to image and text data. In Proceedings of ACM Conference on Knowledge Discovery and Data243

Mining (KDD), 2001. URL https://doi.org/10.1145/502512.502546.244

Sergey G. Bobkov, Gennadiy P. Chistyakov, and Friedrich Götze. Berry–esseen bounds in the245

entropic central limit theorem. Probability Theory and Related Fields, pages 435–478, 2011. URL246

https://link.springer.com/content/pdf/10.1007/s00440-013-0510-3.pdf.247

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,248

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel249

Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,250

Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,251

Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,252

and Dario Amodei. Language models are few-shot learners. In Advances in Neural Informa-253

tion Processing Systems, 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/254

1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.255

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:256

Evaluating and testing unintended memorization in neural networks, 2019. URL https://arxiv.org/257

abs/1802.08232.258

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in259

non-convex sgd. In Advances in Neural Information Processing Systems. Curran260

Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/261

b8002139cdde66b87638f7f91d169d96-Paper.pdf.262

Sanjoy Dasgupta. Experiments with random projection. In Proceedings of the 16th Conference on263

Uncertainty in Artificial Intelligence, 2000. URL https://arxiv.org/pdf/1301.3849.264

Luc Devroye, Abbas Mehrabian, and Tommy Reddad. The total variation distance between high-265

dimensional gaussians with the same mean, 2023. URL https://arxiv.org/abs/1810.08693.266

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and267

stochastic optimization. Journal of Machine Learning Research, 2011. URL http://jmlr.org/papers/268

v12/duchi11a.html.269

William Feller. An introduction to probability theory and its applications. John Wiley & Sons, Inc.,270

1971. URL https://www.google.ca/books/edition/An_Introduction_to_Probability_Theory_an/271

rxadEAAAQBAJ?hl=en&gbpv=0.272

7

http://dx.doi.org/10.1145/2976749.2978318
http://dx.doi.org/10.1145/2976749.2978318
http://dx.doi.org/10.1145/2976749.2978318
https://aclanthology.org/2022.acl-short.1
https://aclanthology.org/2022.acl-short.1
https://aclanthology.org/2022.acl-short.1
https://www.sciencedirect.com/science/article/pii/B9780128024409000126
https://www.sciencedirect.com/science/article/pii/B9780128024409000126
https://www.sciencedirect.com/science/article/pii/B9780128024409000126
https://books.google.ca/books?id=AgTWDAAAQBAJ
https://books.google.ca/books?id=AgTWDAAAQBAJ
https://books.google.ca/books?id=AgTWDAAAQBAJ
https://www.colorado.edu/amath/sites/default/files/attached-files/billingsley.pdf
https://doi.org/10.1145/502512.502546
https://link.springer.com/content/pdf/10.1007/s00440-013-0510-3.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/1802.08232
https://arxiv.org/abs/1802.08232
https://arxiv.org/abs/1802.08232
https://proceedings.neurips.cc/paper_files/paper/2019/file/b8002139cdde66b87638f7f91d169d96-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/b8002139cdde66b87638f7f91d169d96-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/b8002139cdde66b87638f7f91d169d96-Paper.pdf
https://arxiv.org/pdf/1301.3849
https://arxiv.org/abs/1810.08693
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
https://www.google.ca/books/edition/An_Introduction_to_Probability_Theory_an/rxadEAAAQBAJ?hl=en&gbpv=0
https://www.google.ca/books/edition/An_Introduction_to_Probability_Theory_an/rxadEAAAQBAJ?hl=en&gbpv=0
https://www.google.ca/books/edition/An_Introduction_to_Probability_Theory_an/rxadEAAAQBAJ?hl=en&gbpv=0


Robert E. Gaunt. Absolute moments of the variance-gamma distribution, 2024. URL https://arxiv.273

org/abs/2404.13709.274

Carl gustav Esseen. Fourier analysis of distribution functions. a mathematical study of the laplace-275

gaussian law. Acta Mathematica, 77, 1945. URL https://link.springer.com/article/10.1007/276

BF02392223.277

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient278

compressors. In Proceedings of the 41st International Conference on Machine Learning (ICML),279

2024. URL https://proceedings.mlr.press/v235/hao24a.html.280

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,281

Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for282

NLP. In Proceedings of the 36th International Conference on Machine Learning, pages 2790–2799.283

PMLR, 2019. URL https://proceedings.mlr.press/v97/houlsby19a.html.284

David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains and mixing times.285

American Mathematical Society, 2008. URL https://www.cs.cmu.edu/~15859n/RelatedWork/286

MarkovChains-MixingTimes.pdf.287

Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-rank288

training through low-rank updates, 2023. URL https://arxiv.org/abs/2307.05695.289

Ruixuan Liu, Tianhao Wang, Yang Cao, and Li Xiong. Precurious: How innocent pre-trained290

language models turn into privacy traps, 2024. URL https://arxiv.org/abs/2403.09562.291

Jiri Matousek. On variants of the johnson–lindenstrauss lemma. Random Structures & Algorithms,292

2008. URL https://eclass.uoa.gr/modules/document/file.php/MATH506/03.%20ÎŸÎ ÎijÎśÏĎÎś%293
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Appendix for on the Implicit Relation between Low-Rank314

Adaptation and Differential Privacy315

A Useful Theorems316

In this section, we mention some theorems, which we will use in our proofs.317

Theorem A.1 (Chi-Squared distribution: [Mood and Franklin, 1974], Section 4.3, Theorem 7). If the318

random variables Xi, i = 1, . . . , k, are normally and independently distributed with means µi and319

variances σ2
i , then320

U =

k∑
i=1

(Xi − µi

σi

)2
(12)

has a chi-squared distribution with k degrees of freedom: U ∼ X 2
k . Also, E[U ] = k and Var[U ] =321

2k.322

The theorem above states that sum of the squares of k standard normal random variables is a323

chi-squared distribution with k degrees of freedom.324

Lemma A.2 (Raw moment of Chi-Squared distribution). Suppose X ∼ X 2
k . Then, the m-th raw325

moment of X can be found as follows;326

E[Xm] =

m−1∏
i=0

(k + 2i) (13)

Proof. From the definition of Chi-Squared distribution with r degrees of reddom, U has the following327

probability density function:328

fX(x) =
1

2
k
2 Γ(k2 )

x
k
2−1e−

x
2 (14)

Therefore, we have:329

E[Xm] =
1

2
k
2 Γ(k2 )

∫ +∞

0

x
k
2+m−1e−

x
2 dx =

2

2
k
2 Γ(k2 )

∫ +∞

0

(2u)
k
2+m−1e−udu

=
2

k
2+m−1+1

2
k
2 Γ(k2 )

∫ +∞

0

u
k
2+m−1e−udu =

2m

Γ(k2 )
Γ(

k

2
+m) =

2mΓ(k2 )

Γ(k2 )

m−1∏
i=0

(
k

2
+ i)

=

m−1∏
i=0

(k + 2i). (15)

Note that the fifth equality directly results from the property of gamma function that for z > 0,330

Γ(1 + z) = zΓ(z).331

Theorem A.3 (Classical Central Limit Theorem: [Billingsley, 1995], Theorem 27.1). Suppose that332

{Xi}ni=1, is an independent sequence of random variables having the same distribution with mean µ333

and positive variance σ2. Define Sn =
∑n

i=1 Xi as their sum. Let Zn be defined by334

Zn =
Sn − nµ√

nσ
. (16)

Then, the distribution of Zn approaches standard normal distribution as n approaches infinity.335
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The theorem above states that Sn is approximately, or asymptotically, distributed as a normal336

distribution with mean nµ and variance nσ2.337

The next theorem is about the Lindeberg’s condition, which is a sufficient (and under certain conditions338

also a necessary condition) for the Central Limit Theorem (CLT) to hold for a sequence of independent339

random variables {Xi}ni=1. Unlike the classical CLT stated above, which requires the sequence340

of random variables to have a finite variance and be both independent and identically distributed341

(i.i.d), Lindeberg’s CLT only requires the sequence of random variables to have finite variance, be342

independent and also satisfy the Lindeberg’s condition. The following states the theorem.343

Theorem A.4 (Lindeberg and Lyapounov Theorem: [Billingsley, 1995], Theorem 27.2). Suppose344

X1, . . . , Xn are n independent random variables with E[Xi] = µi and Var[Xi] = σ2
i > 0. Define345

Sn =
∑n

i=1 Xi and let s2n =
∑n

i=1 σ
2
i . Also assume the following condition holds for all ϵ > 0:346

Lindeberg’s condition: lim
n→∞

n∑
i=1

1

s2n

∫
|x−µi|≥ϵsn

(x− µi)
2PXi

(x)dx = 0. (17)

where PXi
is the pdf of variable Xi. Assuming Zn =

Sn−
∑n

i=1 µi

sn
, the distribution of Zn approaches347

standard normal distribution as n approaches infinity.348

The theorem above states that, given that Lindeberg’s condition is satisfied, Sn is approximately, or349

asymptotically, distributed as a normal distribution with mean
∑n

i=1 µi and variance s2n, even if the350

sequence of variables are not identically distributed.351

The coupling characterization of the total variation distance. For two distributions P and Q, a352

pair of random variables (X,Y ), which are defined on the same probability space, is called a coupling353

for P and Q if X ∼ P and Y ∼ Q [Levin et al., 2008, Devroye et al., 2023]. A very useful property354

of total variation distance is the coupling characterization:355

∥P −Q∥TV ≤ t if and only if there exists a coupling (X,Y ) for them such that Pr{X ̸= Y } ≤ t356

(see proposition 4.7 in [Levin et al., 2008]).357

B Dynamics of Low-Rank Task Adaptation in Details358

According to fig. 1 and eq. (1), when back-propagating, gradient of the used loss function L w.r.t the359

matrix W is360

∇WL =
∂L
∂y
· ∂y

∂W
=

∂L
∂y
· x⊤, (18)

where ∂L
∂y ∈ Rn×1 and x⊤ ∈ R1×m. However, LoRA calculates the gradients w.r.t only A and B,361

which can be found as follows:362

∂L
∂A

=
∂BA

∂A
· ∂L
∂BA

= B⊤ · ∂L
∂y
· ∂y

∂BA
= B⊤ · ∂L

∂y
· x⊤ = B⊤(∇WL). (19)

Similarly,363

∂L
∂B

=
∂L
∂BA

· ∂BA

∂B
=

∂L
∂y
· ∂y

∂BA
·A⊤ =

∂L
∂y
· x⊤ ·A⊤ = (∇WL)A⊤. (20)

Hence, ∂L
∂A ∈ Rr×m and ∂L

∂B ∈ Rn×r. As observed in eq. (19) and eq. (20) and discussed in [Hao364

et al., 2024], LoRA down-projects the full gradient ∇WL from Rn×m to a lower dimension, and365

updates the matrices A and B with the resulting projections of ∇WL. In fact, it was found in366

[Hao et al., 2024] that LoRA recovers the well-known random projection method [Dasgupta, 2000,367

Bingham and Mannila, 2001]. We restate the following theorem from [Hao et al., 2024] without368

restating the proof:369
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Theorem B.1 ([Hao et al., 2024], Theorem 2.1). Let LoRA update matrices A and B with SGD for370

every step t by371

At+1 ← At − η
∂L
∂At

= At − ηBt⊤(∇WLt), (21)

Bt+1 ← Bt − η
∂L
∂Bt

= Bt − η(∇WLt)At⊤, (22)

where η is the learning rate. We assume ∥
∑T

t=0∇WLt∥F ≤ L for every T during training, which372

implies that the model stays within a finite Euclidean ball. In this case, the dynamics of At and Bt373

are given by374

At = A0 + ηA0fA(t), Bt = ηfB(t)A
0⊤, (23)

where the forms of fA(t) ∈ Rm×m and fB(t) ∈ Rn×m are expressed in the proof. In particular,375

∥fA(t)∥2 ≤
ηL2

(
1−(η2L2)t

)
1−η2L2 for every t.376

Let’s denote the total changes of A and B after T steps as ∆A and ∆B, respectively. Then, the377

forward pass eq. (1) changes to:378

(
W + (B0 +∆B)(A0 +∆A)

)
x =

(
W +∆BA0 +∆B∆A

)
x, (24)

where we have substituted B0 = 0 ∈ Rn×r. From eq. (23) and substituting the values of ∆A and379

∆B after T rounds of updating A and B, we have:380

W +∆BA0 +∆B∆A = W + ηfB(T )A
0⊤A0 + η2fB(T )A

0⊤A0fA(T ). (25)

Also, from theorem B.1, we have ∥fA(T )∥2 ≤ ∥fA(T )∥F ≤
ηL2

(
1−(η2L2)T

)
1−η2L2 , for every T . Hence,381

if η ≪ 1/L, we have limT→∞ η∥fA(T )∥2 = limT→∞
(ηL)2

(
1−(ηL)(2T )

)
1−(ηL)2 ≪ 1. Therefore, the last382

term in eq. (25) is significantly smaller than the second term. Hence, the second term dominates383

the final update weight. Therefore, as suggested in [Hao et al., 2024] and confirmed with their384

experimental results, we can closely approximate LoRA by freezing A at its initialized value A0 and385

training only the matrix B. In this case,386

W +∆BA0 +∆B∆A = W +∆BA0 = W + ηf̃B(T )A
0⊤A0, (26)

where f̃B(0) = 0 and f̃B(t + 1) = f̃B(t) − ∇WLt. Equivalently, f̃B(T ) = −
∑T−1

t=0 ∇WLt.387

Substituting this into the equation above, we get:388

W +∆BA0 +∆B∆A = W +∆BA0 = W − η

T−1∑
t=0

[
(∇WLt)A0⊤A0

]
, (27)

where the last term shows the exact parameter change after T rounds of performing SGD on the389

adapter matrix B. Therefore, low rank adaptation with LoRA can be viewed as performing a random390

projection of stochastic batch gradient∇WLt in every step t by matrix A0⊤ and projecting it back391

by matrix A0. FLoRA [Hao et al., 2024] proposes to resample the random matrix A0 at each step392

to get a high rank update ∆B for the matrix B. Hence, FLoRA can also be viewed as performing a393

random projection of stochastic batch gradient∇WLt in every step t by a different random matrix394

A⊤ and projecting it back by its transpose.395

Having understood the connection between low-rank adaptation in LoRA/FLoRA and random396

projection, in the next section, we show that this random projection and back projection performed in397

each time step is equivalent to adding some random noise to each element of∇WLt. This is our first398

step towards establishing the connection between low-rank adaptation and differential privacy.399
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C Proof of lemma lemma 3.1400

Using the theorems above, we are now able to prove lemma 3.1.401

Lemma 3.1. Let A ∈ Rr×m be a matrix with i.i.d entries sampled from N (0, 1
r ). Given a fixed402

q ∈ R1×m, the distributions of elements of q · (A⊤A − Im) ∈ R1×m approach the Gaussian403

distribution N (0, ∥q∥2

r ), as m approaches infinity.404

Proof. From the theorem’s assumption, we know that elements of A are from N (0, 1
r ). Therefore,405

we can rewrite the product q · (A⊤A− Im) ∈ R1×m as the following product:406

q · (A
⊤A

r
− Im) ∈ R1×m (28)

where the elements of A are now from standard normal distribution. Let ai,j denote the element407

in i-th row and j-th column of this new A. Therefore, for all i and j, ai,j has distribution N (0, 1).408

Let B = A⊤A
r − Im. Also, let Ai,: and A:,j denote the i-th row and j-th column of the new A,409

respectively. We have:410

Bi,i =
1

r
[A⊤A]i,i − 1 =

1

r
A⊤

:,iA:,i − 1 =
1

r
∥A:,i∥22 − 1 = (

1

r

r∑
l=1

a2l,i)− 1 (29)

From eq. (28), we know that al,i is from standard normal distribution. Hence, a2l,i is a chi-squared with411

1 degree of freedom: a2l,i ∼ X 2
1 . Therefore,

∑r
l=1 a

2
l,i, which is the sum of r independent chi-squared412

variables with 1 degree of freedom, is a chi-squared with r degrees of freedom:
∑r

l=1 a
2
l,i ∼ X 2

r (see413

theorem A.1). Therefore, for i ∈ {1, . . . ,m}, we have:414

E[Bi,i] = E
[∑r

l=1 a
2
l,i

r

]
− 1 =

r

r
− 1 = 0,

Var[Bi,i] = Var[

∑r
l=1 a

2
l,i

r
] =

Var(X 2
r )

r2
=

2r

r2
=

2

r
. (30)

Similarly, we find the mean and variance of the non-diagonal elements Bi,j(i ̸= j) of B. We have:415

Bi,j =
1

r
[A⊤A]i,j =

1

r
A⊤

:,iA:,j =
1

r

r∑
l=1

al,ial,j , (31)

where al,i and al,j are independent and standard normal. Therefore, al,i + al,j ∼ N (0, 2). Similarly,416

al,i − al,j ∼ N (0, 2). So we can rewrite al,ial,j as:417

al,ial,j =
1

4
(al,i + al,j)

2 − 1

4
(al,i − al,j)

2 =
1

2
z21 −

1

2
z22 , (32)

where z1 and z2 are from standard normal. Therefore, al,ial,j = ν1−ν2

2 , where ν1, ν2 ∼ X 2
1 . Also,418

al,i + al,j and al,i − al,j are independent variables. Hence, z1 and z2 are independent, and likewise419

ν1 and ν2 are independent. We conclude that:420

al,ial,j =
1

2
(ν1 − ν2), (33)

where ν1, ν2 ∼ X 2
1 , and are independent.421
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Now, lets assume ν1, ν2 ∼ X 2
k (a more general case), and let Mν1(t) = E[etν1 ] be the moment422

generating function (MGF) of ν1. In this case, we know that Mν1
(t) = Mν2

(t) = (1 − 2t)−
k
2423

(MGF of X 2
k ). Hence, Mν1−ν2

(t) = Mν1
(t) ·Mν2

(−t) = (1 − 4t2)−
k
2 =

( 1
4

1
4−t2

) k
2 , which is the424

MGF of a symmetric about origin variance-gamma distribution with parameters λ = k
2 , α = 1

2 , β =425

0, µ = 0, γ = 1
2 . Therefore, when ν1, ν2 ∼ X 2

k , then ν1 − ν2 has this distribution, which has mean426

µ+ 2βλ/γ2 = 0 and variance 2λ(1 + 2β2/γ2)/γ2 = 4k.427

In eq. (33), we had k = 1, as we had ν1, ν2 ∼ X 2
1 . Hence, based on the discussion above, we have:428

E[al,ial,j ] = 0 (34)

Var[al,ial,j ] =
1

4
Var[ν1 − ν2] =

4k

4
= 1 (35)

Consequently, based on eq. (31) and from the results above, we can compute the mean and variance429

of the non-diagonal elements of B (i ̸= j):430

E[Bi,j ] = E
[∑r

l=1 al,ial,j
r

]
=

∑r
l=1 E[al,ial,j ]

r
= 0,

Var[Bi,j ] = Var[

∑r
l=1 al,ial,j

r
] =

∑r
l=1 Var[al,ial,j ]

r2
=

r

r2
=

1

r
. (36)

So far, we have computed the mean and variance of each entry in B = A⊤A
r − Im ∈ Rm×m in431

eq. (30) and eq. (36). Now, for a given q ∈ R1×m, we have:432

q ·B =

m∑
l=1

qlBl,:, (37)

where Bl,: is row l of B. Let ui denote the i-th element of q · B. Hence, for each element ui433

(i ∈ {1, . . . ,m}), we have:434

E[ui] = E
[ m∑

l=1

qlBl,i

]
=

m∑
l=1

qlE[Bl,i] = 0,

Var[ui] = Var

[ m∑
l=1

qlBl,i

]
=

m∑
l=1

q2l Var[Bl,i] = q2i Var[Bi,i] +
∑
l ̸=i

q2l Var[Bl,i]

= q2i
2

r
+
∑
l ̸=i

q2l
1

r
=

q2i
r

+

m∑
l=1

q2l
1

r
=

q2i +
∑m

l=1 q
2
l

r
≈

∑m
l=1 q

2
l

r
=
∥q∥22
r

, (38)

where the approximation is indeed valid because m, which is the dimension of the input of the435

current layer (see fig. 1), is a large integer. Finally, according to eq. (37), each element ui of qB is436

the sum of m random variables, for which the Lindeberg’s condition is also satisfied: as m→∞,437

s2m =
∥q∥2

2

r →∞ (m is the dimension of q, and sm is the sum of variances of the m random variables,438

which we found in eq. (38)). Hence, [|ui − 0| > ϵsm] ↓ ∅ as m→∞. Therefore, from theorem A.4,439

we also conclude that as m → ∞, each element of qB approaches a Gaussian with the mean and440

variance found in eq. (38). Therefore, we conclude that having an A, where the elements of A are i.i.d441

and from N (0, 1
r ), then as m→∞, q · (A⊤A− Im) ∈ R1×m approaches a Gaussian N (0, ∥q∥2

r ),442

which completes the proof.443

444
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D Proof of lemma lemma 4.1445

Consistent with the notations in Theorem A.4, suppose X1, . . . , Xn are n independent random446

variables with E[Xi] = 0 and Var[Xi] = σ2
i > 0. Define Sn =

∑n
i=1 Xi and let s2n =

∑n
i=1 σ

2
i .447

Assuming Zn = Sn

sn
, and having Lindeberg’s condition satisfied (see theorem A.3 and theorem A.4),448

the normalized sum Zn has standard normal distribution in a weak sense for a bounded n. More449

precisely, the closeness of the cumulative distribution function (CDF) Fn(x) = Pr{Zn ≤ x} to the450

standard normal CDF451

Φ(x) =
1√
2π

∫ x

−∞
e−

y2

2 dy (39)

has been studied intensively in terms of the Lyapounov ratios452

Lt =

∑n
i=1 E[|Xi|t]

stn
. (40)

Particularly, if all Xi have a finite third absolute moment E[|Xi|3], the classical Berry-Esseen theorem453

bounds the Kolmogrov distance between Fn(x) and Φ(x):454

sup
x
|Fn(x)− Φ(x)| ≤ CL3, (41)

where c is an absolute constant (see [gustav Esseen, 1945, Feller, 1971, Petrov, 1975]). In the general455

case of sum of independent random variables (and not necessarily i.i.d random variables), which456

we are interested in, the number of summand variables n implicitly affects the value of L3. For457

the sum of independent random variables, the work in [Bobkov et al., 2011] bounds the difference458

between Fn(x) and Φ(x) in terms of generally stronger distances of total variation and entropic459

distances. Considering the Xi above, let D(Xi) denote the KL divergence between distribution of460

Xi and Gaussian distribution N (0, σ2
i ), i.e. the KL divergence between Xi and a Gaussian with the461

same variance. We have the following theorem about the total variation distance between Fn and Φ:462

Theorem D.1 ([Bobkov et al., 2011], theorem 1.1). Assume that the independent random variables463

X1, . . . , Xn have finite third absolute moments, and that D(Xi) ≤ D, where D is a non-negative464

number. Then,465

∥Fn(x)− Φ(x)∥TV ≤ CDL3, (42)

where the constant CD depends on D only and ∥Fn(x)− Φ(x)∥TV = supA
∣∣ ∫

A
dFn −

∫
A
dΦ

∣∣ is466

the total variation distance between Fn and Φ.467

Having the theorem above, we can derive a Berry-Esseen type bound for the total variation distance468

between each element of q · (A⊤A− Im) ∈ R1×m in lemma 3.1 and the normal lawN (0, ∥q∥2

r ): we469

need to find the third Lyapounov ratio for the summands contributing to each element, as in eq. (42).470

In the following, we prove lemma 4.1.471

Lemma 4.1. Let A ∈ Rr×m be a matrix with i.i.d entries sampled from N (0, 1
r ). Given a fixed472

q ∈ R1×m with elements 0 < c ≤ |qi| ≤ C, let u = q · (A⊤A − Im) ∈ R1×m. Let ui be the473

i-th element of u and Qm(x) = Pr{ui ≤ x}. Also, let Φ(x) be the CDF of normal variable474

z ∼ N (0, ∥q∥2

r ). Then:475

∥Qm(x)− Φ(x)∥TV ∈ O
(

1√
mr

)
, (4)

Proof. From eq. (37), we had:476
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ui =

m∑
l ̸=i,l=1

qlBl,i + qiBi,i, (43)

where Bl,i =
1
rA

⊤
:,lA:,i =

1
2r

∑r
t=1 Vt, where Vt ∼ Variance-Gamma(ν, α, β, µ) with ν = β =477

µ = 0 and α = 1
2 . Also Bi,i =

1
rA

⊤
:,iA:,i − 1 = X

r − 1, where X ∼ X 2
r . Therefore, we can rewrite478

the equation above for ui as:479

ui =

m∑
l ̸=i,l=1

ql
2r

r∑
t=1

Vt + qi(
X

r
− 1) =

m∑
l ̸=i,l=1

r∑
t=1

ql
2r

Vt +
qi
r
(X− r), (44)

where Vt ∼ Variance-Gamma(ν, α, β, µ) with ν = β = µ = 0 and α = 1
2 and X ∼ X 2

r . Hence,480

Vt has mean 0 and variance 4 and (X−r) has mean 0 and variance 2r. Also note that X can be written481

as the summation of r independent variables with distribution X 2
1 . Therefore, ui is the weighted sum482

of mr independent random variables with mean 0. Also, from eq. (38) in the proof of lemma 3.1,483

we know that ui has mean 0 and variance ∥q∥2
2

r . Now, in order to bound the TV distance between484

the distribution of ui and N (0,
∥q∥2

2

r ), we have to use theorem D.1 and eq. (40). More specifically,485

we have to find the third Lyapounov ratio L3 =
∑

i E[|Xi|3]
s3n

=
∑

i E[|Xi|3](∑
i Var[Xi]

)3 =
∑

i E[|Xi|3](∑
i E[X2

i ]
)3 , where486

Xi is each of the 1 + (m − 1)r summands in eq. (44). First we note that, based on eq. (38),487

s3n = (
∥q∥2

2

r )
3
2 =

∥q∥3
2

r
√
r

. Now, we find the numerator
∑

i E[|Xi|3]. From [Gaunt, 2024], we know that488

for Vt ∼ Variance-Gamma(ν, α, 0, 0),E[|Vt|r] = 2r√
παr

Γ(ν+(r+1)/2)Γ((r+1)/2)
Γ(ν+1/2) . Therefore, for489

Vt ∼ Variance-Gamma(0, 1
2 , 0, 0),E[|Vt|3] = 26

π . On the other hand, we know that the skewness490

of X ∼ X 2
r is equal to E[(X−E[X])3]

Var[X]
3
2

= E[(X−r)3]

(2r)
3
2

=
√

8
r . Hence, E[(X − r)3] = (2r)

3
2

√
8
r = 8r.491

Hence for X ∼ X 2
r , E[|X − r|3] ≥ E[(X − r)3] = 8r. Now, we can find the numerator

∑
i E[|Xi|3]492

as:493

∑
i

E[|Xi|3] =
m∑

l ̸=i,l=1

r∑
t=1

|ql|3

8r3
E[|Vt|3] +

|qi|3

r3
E[|X− r|3]

=

m∑
l ̸=i,l=1

|ql|3

8r2
· 2

6

π
+
|qi|3

r3
E[|X− r|3]

≈
m∑

l ̸=i,l=1

8|ql|3

πr2
+

8|qi|3

r2
≈

m∑
l=1

8|ql|3

πr2
=

8

πr2
∥q∥33. (45)

Therefore, for the sum ui in eq. (44), we have the third Lyapounov ratio:494

L3 =
8

πr2
∥q∥33 ×

r
√
r

∥q∥32
=

8

π
√
r

(
∥q∥3
∥q∥2

)3

. (46)

Therefore, based on theorem D.1, we have:495

∥Qm(x)− Φ(x)∥TV ≤
8CD

π
√
r

(
∥q∥3
∥q∥2

)3

, (47)

where CD ≤ π
√
r

8 is a constant, which depends only on D, where D is an upperbound for the KL496

divergence between each of the random variable summands in eq. (44) and a Gaussian with the497
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same mean and variance. Now, assuming 0 < c ≤ |qi| ≤ C for the elements qi in q, we have498 (
∥q∥3

∥q∥2

)3

≤
(

|C|
|c|

)3
1√
m

. Therefore:499

∥Qm(x)− Φ(x)∥TV ≤
8CD

π

(
|C|
|c|

)3
1√
mr

. (48)

Therefore,500

∥Qm(x)− Φ(x)∥TV ∈ O
(

1√
mr

)
. (49)

501
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