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Abstract

Pneumonia is a serious health problem affecting the world and affecting heavily low-resource
areas, where timely diagnostic facilities are vital. This paper, in turn, presents liteXrayNet,
an advanced convolutional neural network (CNN) that is tailored specifically to detect pneu-
monia on chest radiographs with high accuracy and is designed to run under conditions of
limited computer resources. This network structure uses the inverted residual MBConv
blocks of MobileNetV3 that can help extract features effectively, a quantum-inspired phase
shift layer that can be used to enhance the detection of complex patterns, and a simplified
recognizer, which will guarantee strong binary classification. With 179,646 trainable param-
eters, liteXrayNet achieves a test-level accuracy of 97%, has a small model size of 0.7 MB,
and inference latency of 0.60 ms/sample, liteXrayNet can achieve diagnostic accuracy in real
time on resource-constrained systems. The model has minimal computing requirements with
little impact on diagnostic quality achieved through integrating depthwise separable convo-
lutions, hard-swish activations and quantum-inspired feature modulation. The liteXrayNet
has been demonstrated to be a efficient solution to scalable, point-of-care pneumonia diagno-
sis, allowing significantly more people to access and obtain healthcare and undo disparities
by diagnosis in underserved populations globally, due to its lightweight construction and
high diagnostic accuracy.

Figure 1: liteXrayNet’s diagnostic prowess is demonstrated through this Grad-CAM visualization, showcas-
ing its ability to accurately localize pneumonia-affected regions in a chest X-ray. The model generates a
heatmap that precisely highlights pathological areas, achieving a confidence score of 0.999. This underscores
liteXrayNet’s exceptional precision and efficiency, making it a robust solution for real-time pneumonia diag-
nosis in resource-constrained settings

1



Under review as submission to TMLR

1 Introduction

Pneumonia remains a formidable global health threat, claiming approximately 2.5 million lives annually,
including over 700,000 children under five, according to the World Health Organization (World Health Orga-
nization, 2023). This acute respiratory illness, caused by bacterial, viral, or fungal pathogens, disproportion-
ately affects low-resource settings where access to trained radiologists and advanced imaging infrastructure is
scarce (Liu et al., 2023). Chest X-rays, recognized as a cost-effective and widely available imaging modality,
serve as the gold standard for diagnosing pneumonia by revealing lung lesions such as consolidation and
pleural effusion (Rajpurkar et al., 2017). However, manual interpretation is prone to subjective bias (Brady,
2017), and the lack of skilled personnel in underserved regions often delays life-saving interventions (Kundu
et al., 2021). The advent of artificial intelligence (AI), particularly deep learning, offers a transformative so-
lution by enabling rapid, reliable, and automated detection on resource-limited platforms, addressing critical
time constraints in clinical decision-making (He et al., 2016).

The application of deep learning to pneumonia detection via chest X-rays has progressed significantly since
2016, driven by advancements in convolutional neural networks (CNNs) and the availability of public datasets.
Pioneering work by Rajpurkar et al. Rajpurkar et al. (2017) introduced CheXNet, a 121-layer DenseNet,
achieving radiologist-level performance with an area under the curve (AUC) of 0.76 for pneumonia detection
across 14 thoracic diseases. Subsequent studies refined this approach: Rahman et al. Rahman et al. (2020)
employed transfer learning with VGG-16 and ResNet-50, attaining 96% accuracy on binary classification,
while Kundu et al. Kundu et al. (2021) proposed ensemble methods combining GoogLeNet, ResNet-18,
and DenseNet-121, reporting an F1-score of 0.95. The COVID-19 pandemic (2020–2023) further accelerated
research, with Singh et al. Singh et al. (2023) exploring quantum-inspired networks (QCSA) to achieve 97%
accuracy through attention mechanisms. Optimization techniques such as pruning and quantization have
also gained traction, with Das et al. Das et al. (2022) reducing model complexity while preserving 97.6%
AUC, highlighting the trade-offs between accuracy and computational efficiency (Han et al., 2015).

Despite these advancements, challenges persist in balancing diagnostic precision with operational feasibility
on resource-constrained platforms. Heavyweight models like DenseNet excel in accuracy but are ill-suited
for real-time deployment due to high memory and energy demands, whereas lightweight architectures such
as MobileNetV3 prioritize speed at the cost of reduced precision (Howard et al., 2019). This necessitates the
development of tailored solutions that integrate cutting-edge techniques—such as quantum-inspired layers
and efficient convolutions—to meet the dual requirements of high performance and scalability (Saranya &
Jaichandran, 2024). Our study addresses this gap by introducing liteXrayNet, a novel CNN designed to
optimize pneumonia detection. Building on MobileNetV3’s MBConv blocks, liteXrayNet incorporates a
quantum-inspired phase shift layer and a fine-tuned classifier, achieving a test accuracy of 97% (±0.01), a
compact size of 0.7 MB with 179,646 trainable parameters, and an inference latency of 0.60 ms per sample.
These attributes position liteXrayNet as a practical tool for point-of-care diagnostics, particularly in remote
or underserved areas.

This paper provides a comprehensive exploration of pneumonia detection through deep learning, blending
a review of existing methodologies with the innovative contribution of liteXrayNet. The introduction in
Section 1 outlines the clinical and technical context, followed by a literature review in Section 2 examining
prior work. The methodology section in Section 4 describes the model’s architecture, training protocols,
and evaluation metrics. The results section in Section 5 presents quantitative outcomes, including accuracy,
model size, and latency, while the discussion in Section 7 analyzes liteXrayNet’s strengths and limitations,
supported by visual insights. The conclusion in Section 10 synthesizes key findings, proposing future research
directions to further enhance diagnostic capabilities in global health.

2 Related Work

The integration of deep learning into medical imaging has significantly transformed the landscape of pneu-
monia detection, paving the way for the development of automated diagnostic tools tailored for resource-
constrained environments. A foundational milestone was achieved by Rajpurkar et al. (2017), who introduced
CheXNet, a 121-layer convolutional neural network (CNN) trained on the extensive ChestX-ray14 dataset
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Figure 2: Flowchart of State-of-the-Art Deep Learning Approaches for Pneumonia Detection: This figure
provides a comprehensive overview of the progression of deep learning methodologies, detailing the datasets
utilized, performance metrics achieved, and the pivotal contributions of seminal studies that have shaped
the landscape of automated pneumonia diagnosis.

comprising 112,120 frontal-view X-rays. This model demonstrated radiologist-level performance, achieving
an F1 score of 0.435 for pneumonia detection among 14 thoracic disease classes, thereby establishing deep
learning as a robust and scalable approach for enhancing diagnostic accuracy in clinical settings (Rajpurkar
et al., 2017). Building upon this breakthrough, subsequent research has focused on refining model archi-
tectures and optimization strategies to address both accuracy and computational efficiency. Stephen et al.
(2019) leveraged DenseNet-121 with transfer learning on the RSNA Pneumonia Detection dataset, which
includes 26,684 labeled chest X-rays, attaining a 95% accuracy rate. Their work underscored the value of
fine-tuning pre-trained models to adapt to medical imaging tasks, offering a practical framework for resource-
limited healthcare facilities (Stephen et al., 2019). Similarly, Liang and Zheng (2020) explored MobileNetV2,
enhancing it with quantization techniques to reduce model complexity, and achieved 90% accuracy on the
ChestX-ray8 dataset. This contribution highlighted the viability of lightweight architectures for deployment
in settings with limited computational resources (Liang & Zheng, 2020).

3



Under review as submission to TMLR

The field has seen further innovation with the adoption of attention mechanisms and transformer-based
architectures, which have improved the interpretability and precision of pneumonia detection. Oh et al.
(2020) developed an attention-based CNN, trained on a private dataset from a hospital network, and reported
an AUC of 0.98 by prioritizing clinically significant regions in chest X-rays, thus enhancing the model’s
diagnostic relevance (Oh et al., 2020). Concurrently, Ke et al. (2021) introduced Chexformers, an adaptation
of Vision Transformers (ViTs) tailored for chest X-ray analysis, achieving an AUC of 0.95 on the ChestX-ray14
dataset. This work marked a significant shift toward transformer-based models, offering improved feature
extraction capabilities over traditional CNNs (Ke et al., 2021). Additionally, Hu et al. (2021) pioneered LoRA
(Low-Rank Adaptation), a parameter-efficient fine-tuning technique that reduces the number of trainable
parameters by incorporating low-rank matrices. This approach has proven particularly advantageous for
deploying large vision models in resource-constrained environments, enabling efficient adaptation without
extensive retraining (Hu et al., 2021).

Recent advancements have increasingly emphasized lightweight vision transformers to reconcile the trade-
offs between diagnostic accuracy and computational efficiency, especially for deployment in medical imaging.
Mehta and Rastegari (2021) proposed MobileViT, a hybrid architecture that synergizes the local feature
extraction strengths of CNNs with the global context awareness of transformers. This model demonstrated
superior parameter efficiency while maintaining competitive accuracy on general vision tasks, laying the
groundwork for its adaptation to medical applications (Mehta & Rastegari, 2021). Building on this, Samra
et al. (2024) evaluated MobileViT Small for pneumonia detection, achieving high accuracy with significantly
reduced computational demands, thus validating its suitability for real-time diagnostics (Samra et al., 2024).
Touvron et al. (2020) introduced DeiT (Data-efficient Image Transformers), a framework that facilitates
transformer training on smaller datasets through knowledge distillation from CNN teachers. The resulting
DeiT-Tiny model, with its compact design, has emerged as a viable option for resource-limited settings
(Touvron et al., 2020). Wu et al. (2022) further advanced this domain with TinyViT, a family of small vision
transformers pre-trained via fast distillation on large-scale datasets, offering models with under 21 million
parameters that excel in efficiency for image classification tasks (Wu et al., 2022). Alaskar et al. (2023)
leveraged vision transformer architectures for pneumonia classification, demonstrating superior performance
compared to CNN baselines by effectively capturing hierarchical features in chest X-rays (Alaskar et al.,
2023). Similarly, Alaskar et al. (2024) explored Swin Transformer V2, utilizing its hierarchical feature
extraction to enhance pneumonia detection accuracy, achieving robust results on diverse chest X-ray datasets
(Alaskar et al., 2024).

To facilitate deployment in resource-constrained environments, researchers have pursued strategies to mini-
mize model complexity. Zhang et al. (2022) applied network pruning to ResNet-50 on the COVIDx dataset,
reducing the parameter count while preserving 94% accuracy, thereby enhancing its applicability for edge
computing (Zhang et al., 2022). Parallel efforts in quantum-inspired techniques have also gained traction.
Landnan et al. (2022) integrated quantum density matrices into classical CNNs to improve feature repre-
sentation, while Houssein et al. (2022) developed a hybrid classical-quantum CNN for pneumonia detection,
reporting statistically significant performance gains over conventional models (Landman et al., 2022; Hous-
sein et al., 2022a). An adaptive hybrid quantum CNN (HQCNN) study (2023) achieved an impressive
98.07% accuracy within 70 epochs on medical image datasets, highlighting enhanced convergence and effi-
ciency through quantum-classical integration. Efficient architectures have played a critical role in enabling
edge computing applications. Tan and Le (2019) introduced EfficientNet-B0, employing compound scal-
ing to optimize network depth, width, and resolution, which provided a balanced approach to performance
and resource use (Tan & Le, 2019). Howard et al. (2019) proposed MobileNetV3 Small, designed for low-
latency performance and minimal computational load, making it a cornerstone for mobile health applications
(Howard et al., 2019). More recently, Chowdhury et al. (2024) developed a hybrid CNN-Vision Transformer
model that integrates transformer attention mechanisms with CNN efficiency, improving diagnostic precision
for pneumonia detection (Chowdhury et al., 2024).

Despite these advancements, a critical research gap remains in developing models that seamlessly integrate
high diagnostic accuracy with the computational efficiency required for real-time deployment in low-resource
settings. Heavyweight models like CheXNet and full-scale transformers achieve high accuracy but are com-
putationally intensive, making them impractical for edge devices (Rajpurkar et al., 2017; Ke et al., 2021).
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Conversely, lightweight models like MobileNetV2 and MobileNetV3 often sacrifice precision for efficiency
(Liang & Zheng, 2020; Howard et al., 2019). Moreover, class imbalance in datasets like the Chest X-ray
dataset, coupled with limited generalizability to diverse populations, poses additional challenges (Mooney,
2018). LiteXrayNet addresses these issues by combining MobileNetV3’s MBConv blocks, a quantum-inspired
phase shift layer, and a compact classifier, achieving a balance of 97% accuracy, 0.7 MB model size, and 0.60
ms inference latency. This positions LiteXrayNet as a novel solution for scalable, point-of-care pneumonia
diagnosis, as detailed in the subsequent sections.

3 Data

This study uses the “Chest X-ray Images (Pneumonia)” dataset from Kaggle, which includes 5,863 anterior-
posterior pediatric chest radiographs from the Guangzhou Women and Children’s Medical Center, China,
collected from patients aged one to five during routine clinical care. The dataset is labeled by clinical ex-
perts as “Normal” (1,583 images, ∼27%) or “Pneumonia” (4,273 images, ∼73%), reflecting an imbalanced
class distribution typical of hospital settings, with pneumonia cases encompassing both bacterial and viral
etiologies. The images, originally organized into train, test, and validation directories, were pooled and
repartitioned using stratified random sampling (70% train, 15% validation, 15% test) to preserve the preva-
lence ratio (Shorten & Khoshgoftaar, 2019). Labels were assigned by two radiology experts and validated
by a third, with poor-quality or non-diagnostic images excluded. The dataset’s single-center and pediatric
focus may limit generalizability to adults or other clinical settings, but it remains a widely utilized resource
in medical imaging research (Mooney, 2018; Liu et al., 2023).

4 Methodology

4.1 Overview

The primary objective of this study is to design, develop, and evaluate deep learning architectures for accu-
rate and real-time pneumonia detection from chest radiographs, while ensuring computational and memory
efficiency for deployment on edge devices. Our approach is informed by a comprehensive literature survey
that explored state-of-the-art deep learning methodologies, identifying effective strategies such as lightweight
architectures, quantum-inspired techniques, and parameter-efficient fine-tuning methods like LoRA (Howard
et al., 2019; Tan & Le, 2019; Hu et al., 2021; Kulkarni et al., 2022; Saranya & Jaichandran, 2024). These
insights guided our exploration of a diverse set of baseline models, including ResNet-18, MobileNetV3,
EfficientNet-B0, and Vision Transformers, to establish performance and efficiency benchmarks under edge-
device constraints. Drawing inspiration from these baselines, we propose a custom convolutional neural
network tailored for high diagnostic precision and low-latency inference. Our methodological framework
comprises three synergistic components. First, we conduct a comparative analysis of the baselines, opti-
mized via pruning, quantization, and LoRA, to ensure fair and robust comparisons. Second, we introduce
our proposed model, which integrates efficient feature extraction and quantum-inspired enhancements for
superior performance in resource-constrained settings. Third, we incorporate rigorous evaluation and explain-
ability mechanisms, using metrics such as accuracy, precision, recall, AUC-ROC, model size, and inference
latency, alongside Gradient-weighted Class Activation Mapping (Grad-CAM) for visual interpretability (Sel-
varaju et al., 2017). This holistic, performance-aware, and transparency-driven methodology positions our
model as a trustworthy and practical tool for real-world adoption in healthcare environments with limited
computational infrastructure.

4.2 Model Selection and Baselines

To develop a high-performance, resource-efficient model for pneumonia detection on chest radiographs, we
conducted a comprehensive evaluation of state-of-the-art deep learning architectures, guided by our literature
survey, to identify the most suitable baseline for inspiring our custom model (He et al., 2016; Howard et al.,
2019; Tan & Le, 2019; Dosovitskiy et al., 2020; Hu et al., 2021; Mehta & Rastegari, 2021; Touvron et al., 2020;
Han et al., 2015). The selection criteria prioritized diagnostic accuracy, computational efficiency, and deploy-
ability on resource-constrained edge devices, essential for point-of-care diagnostics in low-resource settings.
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We explored a diverse set of baselines, including convolutional neural networks (CNNs) and transformer-
based architectures, to assess their trade-offs and inform the design of our proposed model. Quantitative
comparison results, including accuracy, model size, and inference latency, are detailed in Section 5.

ResNet-18, a foundational CNN with approximately 11.18 million parameters, was selected for its robust
feature extraction and widespread use in medical imaging (He et al., 2016). It leverages residual connections
to mitigate vanishing gradients, enabling deeper networks. For an input feature map x, a residual block
computes:

y = x + F(x, {Wi}) (1)

where F is the residual function with weights {Wi}, and y is the output after ReLU activation. Its large
model size (42.68 MB) and computational complexity, however, pose challenges for edge deployment. To
address this, we evaluated pruned and quantized versions, applying weight pruning to remove redundant
connections and quantization to use 8-bit integers. Detailed results of these optimizations are provided in
the Appendix section, but the high resource demands persisted, making ResNet-18 less suitable for our needs.

MobileNetV3-Small, with 0.93 million parameters and a model size of 3.59 MB, is designed for low-latency,
low-resource environments (Howard et al., 2019). It employs depthwise separable convolutions, factorizing
a standard convolution into a depthwise convolution (single filter per input channel) and a pointwise 1×1
convolution, reducing computational cost. For a standard convolution with input channels Cin, output
channels Cout, and kernel size K, the cost is Cin · Cout · K2 · H · W , while depthwise separable convolutions
reduce this to:

Cin · K2 · H · W + Cin · Cout · H · W (2)

where H and W are the feature map dimensions. It also incorporates squeeze-and-excitation (SE) modules
for channel-wise attention and hard-swish (HSwish) activations for efficient non-linearity (Hu et al., 2018).

EfficientNet-B0, with 4.01 million parameters and a model size of 15.46 MB, uses compound scaling to
optimize network depth, width, and resolution (Tan & Le, 2019). It employs MBConv blocks and scales
dimensions via a coefficient ϕ:

d = αϕ, w = βϕ, r = γϕ (3)

where α, β, γ are constants from neural architecture search. Its balanced design supports strong performance
but requires higher computational resources than some alternatives.

ViT-LoRA, a Vision Transformer with Low-Rank Adaptation, captures global context through self-attention
(Dosovitskiy et al., 2020; Hu et al., 2021). It processes images as patch sequences, computing:

Attention(Q, K, V ) = softmax
(

QKT

√
dk

)
V (4)

where Q, K, V are query, key, and value matrices, and dk is the key dimension. LoRA reduces trainable
parameters to 148,994, but the model size (327.86 MB) and inference latency remain high, limiting edge
applicability.

MobileViT, with 4.94 million parameters and a model size of 18.89 MB, combines CNNs’ local feature
extraction with transformers’ global context (Mehta & Rastegari, 2021). Its hybrid design offers robust
performance but incurs higher computational overhead compared to lightweight CNNs.

TinyDeiT, a compact vision transformer with 5.52 million parameters and a model size of 21.08 MB, uses
knowledge distillation for efficient training (Touvron et al., 2020). It achieves reasonable performance but is
less efficient than some CNN-based models for real-time applications.

After evaluating these baselines, we selected MobileNetV3-Small as the inspiration for our custom CNN
due to its optimal balance of high accuracy (95.90%, Section 5), low inference latency (0.26 ms/sample),
and compact model size (3.59 MB). Its advantages include: (1) depthwise separable convolutions, signif-
icantly reducing computational cost; (2) squeeze-and-excitation modules, enhancing feature recalibration
with minimal overhead; (3) hard-swish activations, providing efficient non-linearity; and (4) an architecture
optimized via neural architecture search for mobile devices (Howard et al., 2019; Hu et al., 2018). These
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features outperform ResNet-18’s high resource demands, EfficientNet-B0’s increased latency, and the trans-
former models’ computational complexity, making MobileNetV3-Small ideal for inspiring a model tailored
for real-time pneumonia diagnosis in resource-constrained settings, as validated in Section 5.

4.3 Proposed LiteXrayNet Architecture

The proposed LiteXrayNet model is constructed to address the dual challenge of high diagnostic accuracy
and operational efficiency on edge devices with limited computational resources. The design philosophy of
LiteXrayNet centers on leveraging proven architectural patterns from state-of-the-art lightweight convolu-
tional neural networks, supplemented by a quantum-inspired feature enhancement module, to achieve robust
and scalable performance in resource-constrained environments.

Figure 3: LiteXrayNet

LiteXrayNet’s backbone is inspired by MobileNetV3, adopting a sequence of Mobile Inverted Bottleneck
Convolutional (MBConv) blocks as the foundational unit for efficient and expressive feature extraction
(Howard et al., 2019; Sandler et al., 2018). Each MBConv block integrates depthwise separable convolutions
and, in select layers, channel-wise squeeze-and-excitation (SE) modules to recalibrate feature maps adaptively
with minimal computational overhead (Hu et al., 2018). The non-linear activation function used throughout
these blocks is hard-swish (HSwish), which has been empirically shown to provide improved performance for
mobile and embedded networks with negligible computational cost increase.

A distinctive element of LiteXrayNet is the inclusion of a lightweight quantum-inspired phase shift module,
positioned subsequent to the primary feature extraction stages. This module draws conceptual motivation
from quantum computing, specifically the phase shift operations that enable complex spatial encoding and
entanglement. In LiteXrayNet, the quantum phase shift layer is implemented as a sequence of learnable phase
parameterizations that modulate the feature maps, thereby enhancing the model’s capacity to capture subtle
spatial and textural cues that are often critical for the discrimination of pneumonia in chest radiographs.
This approach mimics the representation enrichment typically observed in quantum neural networks, while
maintaining strict parameter and memory efficiency compatible with deployment constraints.

Following the quantum-inspired enhancement, the architecture employs adaptive average pooling to condense
spatial feature maps, which are then passed through a compact classifier head composed of fully connected
layers, batch normalization, HSwish activations, and dropout for regularization. The final output layer
predicts the class probability for binary classification (Normal vs Pneumonia).

In total, LiteXrayNet contains approximately 179,646 trainable parameters, resulting in a model size 0.7 MB,
substantially smaller than traditional architectures such as ResNet-18, MobileNetV3-Small and competitive
lightweight models. This compactness, combined with its efficient block-wise structure and quantum-inspired
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layer, enables real-time inference with low memory usage and high energy efficiency, thus fulfilling the
requirements of point-of-care and mobile healthcare applications.

4.3.1 Feature Extraction Backbone

The backbone of LiteXrayNet comprises a sequence of Mobile Inverted Bottleneck Convolutional (MBConv)
blocks, a design paradigm introduced in MobileNetV2 and refined in MobileNetV3 (Sandler et al., 2018;
Howard et al., 2019). These blocks are engineered to minimize computational complexity while extracting
rich spatial and contextual features from chest X-ray images. Each MBConv block consists of three stages:
an expansion phase using a 1×1 convolution to increase channel dimensionality, a depthwise separable 3×3
convolution for spatial feature extraction, and a projection phase to reduce channel dimensionality. This
structure leverages depthwise separable convolutions to significantly reduce the number of parameters and
floating-point operations (FLOPs) compared to standard convolutions, making it ideal for edge devices.
When input and output channel dimensions match and the stride is 1, residual connections are incorporated
to facilitate gradient flow and stabilize training, following the principles established in ResNet (He et al.,
2016).

For an input tensor X ∈ RCin×H×W , where Cin is the number of input channels, H is the height, and W
is the width, the MBConv block operates as follows. The expansion phase employs a 1×1 convolution to
increase the channel count by an expansion factor t, typically set to 2:

Xexp = BN(Conv1×1(X; Cin, t · Cin)), (5)

producing Xexp ∈ Rt·Cin×H×W . The depthwise convolution applies a 3×3 convolution to each channel
independently:

Xdw = BN(Convdw
3×3(Xexp; t · Cin, t · Cin, groups = t · Cin)), (6)

where Convdw
3×3 preserves spatial dimensions with padding or reduces them with a stride greater than 1. The

projection phase reduces the channel count:

Xout = BN(Conv1×1(Xdw; t · Cin, Cout)). (7)

If applicable (Cin = Cout, stride = 1), a residual connection is added:

Xout = X + Xout. (8)

This structure reduces the parameter count from Cin · Cout · k2 for a standard k × k convolution to Cin · k2 +
Cin · Cout, where k = 3, achieving significant computational efficiency.

The backbone begins with an initial 3×3 convolution that reduces spatial dimensions and expands channels
to 16:

X0 = HSwish(BN(Conv3×3(Xin; 3, 16, stride = 2))), (9)
where Xin ∈ R3×224×224 for RGB input images resized to 224×224. This is followed by six MBConv blocks
with channel counts increasing from 16 to 128, selectively applying strides of 2 to create a hierarchical feature
representation optimized for chest X-ray analysis.

4.3.2 Hard-Swish (HSwish) Activation

To introduce non-linearity while maintaining computational efficiency, LiteXrayNet employs the Hard-Swish
(HSwish) activation function across the backbone and subsequent layers. Introduced in MobileNetV3
(Howard et al., 2019; Ramachandran et al., 2017), HSwish approximates the Swish activation (x · σ(x))
using a piecewise linear function, avoiding the computational cost of the sigmoid function. The HSwish
function is defined as:

HSwish(x) = x · ReLU6(x + 3)
6 , (10)

where ReLU6(x) = min(max(x, 0), 6). This activation provides a smooth non-linearity that enhances conver-
gence and accuracy compared to ReLU, particularly in deep networks, while being compatible with hardware
accelerators (Howard et al., 2019). Its use ensures that LiteXrayNet maintains efficiency without sacrificing
representational power, making it ideal for edge deployment.
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4.3.3 Squeeze-and-Excitation (SE) Modules

LiteXrayNet incorporates Squeeze-and-Excitation (SE) modules in selected MBConv blocks to enhance fea-
ture discriminability (Hu et al., 2018). These modules recalibrate channel-wise feature responses by modeling
interdependencies, enabling the network to focus on diagnostically relevant features such as localized opac-
ities or textural patterns in chest X-rays. For an input tensor X ∈ RC×H×W , the SE module performs a
squeeze operation via global average pooling:

zc = 1
H · W

H∑
i=1

W∑
j=1

Xc(i, j), z ∈ RC . (11)

This descriptor is processed through a two-layer fully connected network with a reduction factor r = 4:

s = σ(W2 · ReLU(W1 · z)), (12)

where W1 ∈ RC
r ×C , W2 ∈ RC× C

r , and σ is the sigmoid function. The channel weights s ∈ RC rescale the
input tensor:

Xout = X · s, (13)

with s broadcast across spatial dimensions. In LiteXrayNet, SE modules are applied in MBConv blocks
with strides of 2 (at channel counts of 32, 48, and 96), balancing computational cost with improved feature
selection.

4.3.4 Quantum-Inspired Phase Shift Layer

A defining innovation of LiteXrayNet is the quantum-inspired phase shift layer, positioned after the MBConv
backbone to enhance feature representation. Inspired by phase shift gates in quantum neural networks
(Saranya & Jaichandran, 2024; Kulkarni et al., 2022; Houssein et al., 2022b), this layer modulates feature
tensors to capture complex spatial and textural relationships critical for pneumonia detection. For an input
tensor X ∈ RC×H×W with C = 128, a 1×1 convolution reduces the channel count:

z = Conv1×1(X; C,
C

r
), (14)

producing z ∈ RC
r ×H×W , where r = 4 and C

r = 32. Two learnable phase parameters, Φ1, Φ2 ∈ R1× C
r ×1×1,

initialized with ∼ N (0, 0.01), modulate the features:

z′ = z ⊙ cos(Φ1) + z ⊙ sin(Φ1), (15)

z′′ = z′ ⊙ cos(Φ2) + z′ ⊙ sin(Φ2), (16)

where ⊙ denotes elementwise multiplication. These operations mimic quantum phase gates, enhancing
representational capacity. A 1×1 convolution restores the channel count:

y = Conv1×1(z′′; C

r
, C), (17)

followed by a residual connection, batch normalization, and HSwish activation:

Xout = HSwish(BN(X + y)). (18)

This layer enables LiteXrayNet to capture subtle radiographic patterns with minimal parameter overhead.

4.3.5 Aggregation and Classification Head

After feature extraction and quantum-inspired modulation, an adaptive average pooling layer aggregates
spatial information:

Xpool = AvgPool2d(Xout, output_size = 1) (19)
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producing Xpool ∈ R128×1×1, flattened to R128. The classification head processes this vector through a
two-layer fully connected network. The first linear layer maps to a higher-dimensional space:

h1 = BN(Linear(Xpool; 128, 512)), (20)

followed by HSwish activation:
h2 = HSwish(h1). (21)

A dropout layer with a rate of 0.2 mitigates overfitting:

h3 = Dropout(h2; p = 0.2), (22)

and a second linear layer produces logits for the two classes:

logits = Linear(h3; 512, 2). (23)

This lightweight head ensures efficient and robust prediction for binary classification.

4.3.6 Layerwise Architecture Specification

The layerwise architecture of LiteXrayNet is detailed in Table 1, specifying each layer’s operation, output
shape, and parameter count for an input image of R3×224×224. The initial convolution reduces spatial di-
mensions and expands channels, followed by six MBConv blocks with increasing channel counts and selective
spatial downsampling. The quantum phase shift layer processes the final feature tensor, and adaptive average
pooling produces a global feature vector. The classification head generates logits for the two classes. The
total parameter count is 179,646, yielding a model size of approximately 0.7 MB.

Table 1: Layerwise Architecture Specification of LiteXrayNet
Layer Name/Block Configuration Output Shape
Input RGB Image (3 Channels) 224 × 224 (3, 224, 224)
Conv-BN-HSwish Conv2d: 3→16, kernel 3×3, stride 2, padding

1; BatchNorm2d; HSwish activation
(16, 112, 112)

MBConv Block 1 In: 16, Out: 24; Expand ratio: 2; stride 1; no
SE

(24, 112, 112)

MBConv Block 2 In: 24, Out: 32; Expand ratio: 2; stride 2; SE
block

(32, 56, 56)

MBConv Block 3 In: 32, Out: 48; Expand ratio: 2; stride 2; SE
block

(48, 28, 28)

MBConv Block 4 In: 48, Out: 64; Expand ratio: 2; stride 1; no
SE

(64, 28, 28)

MBConv Block 5 In: 64, Out: 96; Expand ratio: 2; stride 2; SE
block

(96, 14, 14)

MBConv Block 6 In: 96, Out: 128; Expand ratio: 2; stride 1;
no SE

(128, 14, 14)

Quantum Phase Shift Layer 1×1 Conv: 128→32 (squeeze); 2× Phase
Shifts (learnable); 1×1 Conv: 32→128 (ex-
cite); BatchNorm2d; HSwish

(128, 14, 14)

AdaptiveAvgPool2d Output size=1 (128, 1, 1)
Flatten - (128,)
Classifier Head Linear: 128→512, BatchNorm1d, HSwish,

Dropout(0.2), Linear: 512→2
(2,)

10
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4.3.7 Theoretical and Practical Justification

LiteXrayNet’s architecture is designed to optimize the accuracy-efficiency tradeoff for chest X-ray classi-
fication on resource-constrained edge devices, integrating established and novel components grounded in
theoretical principles and practical requirements. The Mobile Inverted Bottleneck Convolutional (MBConv)
blocks, inspired by MobileNetV3 (Howard et al., 2019), leverage depthwise separable convolutions to re-
duce computational complexity by an order of magnitude compared to standard convolutions, enabling effi-
cient feature extraction (Sandler et al., 2018). Hard-Swish (HSwish) activations provide smooth, hardware-
friendly non-linearity, enhancing convergence without significant computational overhead (Howard et al.,
2019). Squeeze-and-Excitation (SE) modules adaptively recalibrate channel responses, improving feature
discriminability for subtle radiographic patterns with minimal parameter increase (Hu et al., 2018). The
quantum-inspired phase shift layer, drawing on quantum neural network principles, introduces non-linear
feature modulation to capture complex textural relationships critical for pneumonia detection, maintaining
a low parameter count. The lightweight classification head, with batch normalization and dropout, ensures
robust generalization. Practically, LiteXrayNet’s compact size (approximately 0.75 MB, 179,646 parameters)
and low computational requirements make it ideal for edge deployment in clinical settings, addressing the
need for rapid, accurate diagnosis on resource-limited hardware. These design choices collectively ensure
that LiteXrayNet achieves high diagnostic performance while meeting the stringent efficiency demands of
edge-based medical imaging.

4.4 Training and Evaluation Configuration

The training and evaluation pipeline for LiteXrayNet and baseline architectures was designed to ensure a
robust, reproducible, and comprehensive assessment of chest X-ray classification performance, distinguishing
“Normal” from “Pneumonia” cases on edge devices, with a focus on interpretability through feature map
visualization and Gradient-weighted Class Activation Mapping (Grad-CAM). Implemented in PyTorch 2.0.1
(Paszke et al., 2019) with NumPy 1.24.3 and torchvision 0.15.2, the pipeline encompasses dataset loading,
preprocessing, feature engineering, class imbalance handling, training, evaluation, and visualization, tailored
for medical imaging applications.

The dataset, sourced from Kaggle’s chest X-ray pneumonia dataset, comprises 5,856 pediatric RGB images
(1,341 “Normal,” 4,515 “Pneumonia”). Patient-level separation was verified to prevent data leakage, and the
original splits were recombined into 70% training (4,099 images), 15% validation (878 images), and 15% test
(879 images) sets via stratified random sampling, preserving the class ratio (22.9% “Normal,” 77.1% “Pneu-
monia”) (He & Garcia, 2009). Preprocessing resized images to 224 × 224 using bilinear interpolation and
normalized pixel values with mean µ = [0.485, 0.456, 0.406] and standard deviation σ = [0.229, 0.224, 0.225].
Quality checks removed corrupted images (<0.1% of the dataset). Feature engineering applied training-set
augmentations, including random horizontal flips (probability 0.5), rotations (±10◦), brightness adjustments
(±20%), contrast variations (±10%), and scaling (±10%), to enhance robustness and mitigate class imbal-
ance. Shearing and synthetic data generation (e.g., SMOTE) were evaluated but excluded due to marginal
gains and increased complexity.

Class imbalance was addressed through stratified splitting, augmentation, and a weighted cross-entropy loss
(He & Garcia, 2009; Johnson & Khoshgoftaar, 2019). Class weights were computed using inverse prevalence:

wNormal = Ntotal

2 · NNormal
, wPneumonia = Ntotal

2 · NPneumonia
, (24)

where Ntotal = 4, 099, NNormal ≈ 938, NPneumonia ≈ 3, 161, yielding wNormal ≈ 2.19, wPneumonia ≈ 0.65,
normalized to sum to 2. The loss was:

L = −
2∑

i=1
wi · yi log(ŷi), (25)

where yi is the true label and ŷi is the predicted probability for class i, prioritizing the minority “Normal”
class (He & Garcia, 2009). Oversampling and undersampling were tested but omitted to avoid overfitting
and information loss.
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Training used the Adam optimizer (learning rate 0.001, β1 = 0.9, β2 = 0.999, weight decay 1e-5) (He &
Garcia, 2009), with a StepLR scheduler decaying the learning rate by 0.5 every 20 epochs. Models trained
for up to 100 epochs, with early stopping after 10 epochs of stagnant validation accuracy. LiteXrayNet’s
classifier head applied a 0.2 dropout rate. Mixed-precision training via PyTorch’s AMP reduced memory
usage and accelerated computation (Micikevicius et al., 2018). A batch size of 32 balanced gradient accuracy
and efficiency. Baselines (e.g., MobileNetV3, ResNet-18) used identical augmentations, loss weighting, and
optimization settings, with architecture-specific hyperparameter tuning.

Evaluation assessed predictive performance, efficiency, and interpretability across 10 independent runs with
fixed seeds for NumPy, PyTorch, and CUDA. Metrics included accuracy, AUC-ROC, precision, recall, F1-
score, model size, and inference latency, reported as:

Metric = µ ± σ, µ = 1
10

10∑
i=1

mi, σ =

√√√√ 1
10

10∑
i=1

(mi − µ)2, (26)

where mi is the metric value for run i. Confusion matrices evaluated class-specific performance. Inference
used warm-started models (batch size 32), with GPU synchronization and minimal buffering to simulate
edge constraints (<100 ms latency, <1 MB memory). Experiments ran on an NVIDIA RTX A1000 GPU (4
GB VRAM), Intel Core i7 12th Gen CPU, 16 GB RAM, Ubuntu 22.04, Python 3.10, and CUDA 11.8, with
resource monitoring via psutil and pynvml.

Feature map visualization was implemented to analyze intermediate representations from convolutional and
quantum layers, using forward hooks to capture outputs from each MBConv block and the quantum phase
shift layer. Up to eight channels per layer were visualized using the viridis colormap, with spatial feature maps
displayed as 2D images and 1×1 feature maps (e.g., quantum layer outputs) as bar charts. Visualizations
compared “Normal” and “Pneumonia” X-rays to highlight differential feature activation, saved as PNG
files at 150 DPI. Grad-CAM was applied to generate heatmaps for interpretability (Selvaraju et al., 2017),
targeting the final MBConv block’s output. For an input image X, the gradient of the predicted class score
yc with respect to the feature map Ak of channel k was computed:

αc
k = 1

H · W

H∑
i=1

W∑
j=1

∂yc

∂Ak
ij

, (27)

where H and W are the feature map dimensions. The heatmap was formed as:

Lc
Grad-CAM = ReLU

(∑
k

αc
kAk

)
, (28)

resized to 224 × 224, normalized, and overlaid on the original image using the jet colormap to highlight
clinically relevant regions (e.g., lung opacities). Heatmaps for true positives and false negatives were analyzed
to verify model attention, enhancing trust in LiteXrayNet’s predictions for edge-based deployment.

5 Quantitative Results and Comparative Analysis

5.1 Overall Model Accuracy and Loss

The quantitative evaluation of LiteXrayNet and competing architectures, including ResNet-18 (Base),
MobileNetV3-Small, EfficientNet-B0, MobileViT, TinyDeiT, and ViT-LoRA, is presented in Table 2, which
summarizes accuracy and loss metrics across training, validation, and test sets. LiteXrayNet demonstrates
superior performance, achieving the highest accuracy (0.9790, 0.9738, and 0.9704 for train, validation, and
test sets, respectively) and the lowest loss values (0.0508, 0.1197, and 0.0917), indicating robust gener-
alization and minimal overfitting compared to baselines. ResNet-18 and MobileNetV3-Small follow with
competitive accuracies (0.9499–0.9590) and losses (0.1546–0.1789), while EfficientNet-B0, MobileViT, Tiny-
DeiT, and ViT-LoRA exhibit lower accuracies (0.9295–0.9431) and higher losses (0.2106–0.2660), reflecting
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their less efficient adaptation to the imbalanced chest X-ray dataset. These results underscore LiteXrayNet’s
effectiveness, particularly its lightweight design (179,646 parameters, approximately 0.7 MB), which supports
its suitability for resource-constrained environments.

Table 2: Comprehensive summary of training, validation, and test set accuracy and loss metrics for a range
of deep learning architectures, including ResNet-18 (Base), MobileNetV3-Small, EfficientNet-B0, MobileViT,
TinyDeiT, ViT-LoRA, and the proposed LiteXrayNet.

Model Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss
ResNet-18 (Base) 0.9595 0.1094 0.9556 0.1655 0.9499 0.1789
MobileNetV3-Small 0.9666 0.0865 0.9499 0.1621 0.9590 0.1546
EfficientNet-B0 0.9495 0.1690 0.9499 0.2195 0.9386 0.2179
MobileViT 0.9522 0.1547 0.9431 0.2041 0.9431 0.2185
TinyDeiT 0.9334 0.2011 0.9214 0.2660 0.9295 0.2301
ViT-LoRA 0.9356 0.1676 0.9294 0.2309 0.9317 0.2106
LiteXrayNet (Ours) 0.9790 0.0508 0.9738 0.1197 0.9704 0.0917

Figure 4 illustrates LiteXrayNet’s optimal performance with a plot of accuracy and loss metrics across all
sets, showing the lowest loss and highest accuracy compared to baselines, with a clear convergence trend and
minimal validation-test discrepancy indicating strong generalization. This highlights its potential for edge-
based medical imaging, balancing accuracy and efficiency, and, alongside Table 2, establishes LiteXrayNet
as a leading architecture for chest X-ray classification.

Figure 4: The chart illustrates LiteXrayNet’s optimal performance, characterized by the lowest loss values
and highest accuracy metrics across all evaluated sets, underscoring its effectiveness and potential for prac-
tical deployment in resource-constrained environments.

5.2 Classwise Precision, Recall, and F1-Score

Figure 5 presents a heatmap of classwise performance metrics for pneumonia detection across seven
deep learning models—ResNet-18 (Base), MobileNetV3-Small, EfficientNet-B0, MobileViT, TinyDeiT, ViT-
LoRA, and LiteXrayNet—evaluated on the test set, visualizing precision, recall, F1-score for “Normal” and
“Pneumonia” classes, and AUC-ROC values with color intensity (light to dark blue) where darker shades in-
dicate higher performance. Table 3 provides a quantitative summary of these metrics, showing LiteXrayNet
achieving the highest scores: precision (0.9393 for Normal, 0.9826 for Pneumonia), recall (0.9547 for Nor-
mal, 0.9764 for Pneumonia), F1-score (0.9469 for Normal, 0.9795 for Pneumonia), and AUC-ROC (0.9946),
reflecting its effective handling of class imbalance, especially for the minority “Normal” class. In contrast,
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baselines like TinyDeiT (recall 0.8807 for Normal) and ViT-LoRA (precision 0.8533 for Normal) underper-
form, while MobileNetV3-Small (recall 0.9095 for Normal) and ResNet-18 (recall 0.9136 for Normal) are
competitive but fall short of LiteXrayNet’s balanced accuracy. This combined visualization and data high-
light LiteXrayNet’s superior classwise performance and its lightweight design, reinforcing its potential for
efficient deployment in edge-based medical imaging.

Figure 5: Heatmap displaying classwise performance metrics for pneumonia detection across seven deep
learning models: ResNet-18 (Base), MobileNetV3-Small, EfficientNet-B0, MobileViT, TinyDeiT, ViT-LoRA,
and LiteXrayNet. The metrics include precision, recall, and F1-score for both Normal and Pneumonia classes,
as well as AUC-ROC values, evaluated on the test set. Color intensity (ranging from light to dark blue)
corresponds to metric values, with darker shades indicating higher values, facilitating visual comparison
across models and metrics.

Table 3: Classwise precision, recall, and F1-score metrics for pneumonia detection on the test set, evaluated
for seven deep learning models: ResNet-18 (Base), MobileNetV3-Small, EfficientNet-B0, MobileViT, Tiny-
DeiT, ViT-LoRA, and LiteXrayNet. The table lists precision (PN for Normal, PP for Pneumonia), recall
(RN for Normal, RP for Pneumonia), F1-score (F1N for Normal, F1P for Pneumonia), and AUC-ROC values,
providing a quantitative summary of model performance across the two classes.

Model PN PP RN RP F1N F1P AUC-ROC
ResNet-18 (Base) 0.9061 0.9669 0.9136 0.9638 0.9098 0.9654 0.9842
MobileNetV3-Small 0.9404 0.9658 0.9095 0.9780 0.9247 0.9719 0.9865
EfficientNet-B0 0.9091 0.9491 0.8642 0.9670 0.8861 0.9579 0.9733
MobileViT 0.9142 0.9536 0.8765 0.9686 0.8950 0.9610 0.9739
TinyDeiT 0.8664 0.9541 0.8807 0.9481 0.8735 0.9511 0.9594
ViT-LoRA 0.8533 0.9645 0.9095 0.9403 0.8805 0.9522 0.9753
LiteXrayNet (Ours) 0.9393 0.9826 0.9547 0.9764 0.9469 0.9795 0.9946

5.3 Model Size, Efficiency, and Resource Utilization

Figure 6 compares model size (in MB) and inference time (ms/sample) across seven deep learning
architectures—ResNet-18 (Base), MobileNetV3-Small, EfficientNet-B0, MobileViT, TinyDeiT, ViT-LoRA,
and LiteXrayNet—highlighting trade-offs between complexity and efficiency, with LiteXrayNet achieving
the smallest size (0.70 MB) and a competitive inference time (0.60 ms/sample) suitable for edge deployment
(Chen & Ran, 2020). Figure 7 further illustrates this efficiency by plotting total and trainable parameters
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on a logarithmic scale, showing LiteXrayNet’s minimal parameter count (179,646) compared to ViT-LoRA’s
85,947,650, underscoring its reduced computational footprint. Table 4 provides quantitative data, confirming
LiteXrayNet’s superiority with a model size of 0.70 MB, 179,646 total and trainable parameters, and an in-
ference time of 0.60 ms/sample, outperforming larger models like ViT-LoRA (327.86 MB, 12.55 ms/sample)
while remaining competitive with MobileNetV3-Small (3.59 MB, 0.26 ms/sample). Table 5 details resource
usage, showing LiteXrayNet’s lowest average CPU (5.6%) and RAM (69.2%) utilization, with maximums
of 16.1% and 71.3%, respectively, compared to peaks of 100% CPU for ResNet-18 and EfficientNet-B0,
reflecting its efficiency in constrained environments. These results collectively demonstrate LiteXrayNet’s
lightweight design and resource efficiency, making it ideal for edge-based medical imaging applications.

Figure 6: Comparison of model size (MB) and infer-
ence time (ms/sample) across selected deep learning
architectures.

Figure 7: Comparison of total and trainable param-
eters across different deep learning models.

Table 4: Model size, parameters, and inference latency for ResNet-18, MobileNetV3-Small, EfficientNet-B0,
MobileViT, TinyDeiT, ViT-LoRA, and LiteXrayNet.

Model Model Size (MB) ParamTotal ParamTrainable Inf Time (ms/sample)

ResNet-18 (Base) 42.68 11,177,538 11,177,538 0.68
MobileNetV3-Small 3.59 928,162 928,162 0.26
EfficientNet-B0 15.46 4,010,110 4,010,110 1.04
MobileViT 18.89 4,938,914 4,938,914 2.04
TinyDeiT 21.08 5,524,802 5,524,802 1.02
ViT-LoRA 327.86 85,947,650 148994 12.55
LiteXrayNet (Ours) 0.70 179,646 179,646 0.60

Table 5: Inference resource usage metrics for seven deep learning models: ResNet-18 (Base), MobileNetV3-
Small, EfficientNet-B0, MobileViT, TinyDeiT, ViT-LoRA, and LiteXrayNet. The table reports average and
maximum CPU usage (in percentage) and average and maximum RAM usage (in percentage) during active
inference, measured under a standardized experimental protocol to assess hardware efficiency in constrained
environments.

Model Avg CPU (%) Max CPU (%) Avg RAM (%) Max RAM (%)
ResNet-18 (Base) 6.6 100.0 72.0 73.8
MobileNetV3-Small 6.9 29.3 73.0 78.2
EfficientNet-B0 10.1 100.0 72.7 74.3
MobileViT 6.2 32.4 73.3 74.7
TinyDeiT 7.1 46.2 73.5 74.9
ViT-LoRA 12.3 86.4 75.3 86.4
LiteXrayNet (Ours) 5.6 16.1 69.2 71.3
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5.4 Visual Explanation and Interpretability through Grad-CAM

Gradient-weighted Class Activation Mapping (Grad-CAM) is employed as a post hoc visual explanation
technique to enhance the interpretability of the LiteXrayNet architecture, as described in (Selvaraju et al.,
2017; Chattopadhay et al., 2018). The method generates class-discriminative localization maps by highlight-
ing spatial regions in input X-ray images that contribute to the model’s predictions, supporting transparency
for clinical validation and trust among radiologists. The Grad-CAM pipeline integrates with LiteXrayNet
by capturing activations and gradients from a deeper convolutional layer, selected for its balance of semantic
abstraction and spatial resolution for localization. During the forward pass, intermediate activation maps
are stored; during backpropagation, gradients of the predicted class score with respect to these activations
are computed and globally average-pooled to derive channel importance weights. These weights are lin-
early combined with the feature maps, followed by a ReLU non-linearity and normalization, to produce a
heatmap. The heatmap is upsampled to match the input resolution and overlaid on the original X-ray image
for analysis. Grad-CAM analysis was applied to a stratified sample of test images across four categories:
true positives, true negatives, false positives, and false negatives, based on the model’s predicted class.

Figure 8 displays Grad-CAM heatmaps for true positive cases, where LiteXrayNet correctly identified pneu-
monia, showing activation focused on lung field regions with opacification, including posterior or basal
consolidations, bilateral interstitial markings, and segmental opacities, consistent with radiological features
of bacterial or viral pneumonia. Figure 9 presents heatmaps for true negative cases, where normal images
were correctly classified, exhibiting diffuse low-intensity gradients or no strong activation within lung regions,
with occasional attention on non-diagnostic structures such as the diaphragm or lateral thoracic borders.
Figure 10 shows heatmaps for false positive cases, where normal images were misclassified as pneumonia,
revealing elevated activation on structures adjacent to the heart silhouette or rib boundaries, potentially
influenced by imaging artifacts. Figure 11 illustrates heatmaps for false negative cases, where pneumonia
was missed, displaying weak or non-specific activation, often failing to highlight minor consolidations or early
interstitial changes.

The analysis of Grad-CAM maps across these categories confirms that LiteXrayNet’s predictions align with
clinically relevant lung regions in true positive cases, showing localized activation on pathological features
such as consolidations and opacities. In true negative cases, the absence of focal activation within lung fields
indicates the model’s ability to identify normal anatomy. In false positive cases, activation on non-diagnostic
areas suggests sensitivity to image artifacts, while false negative cases exhibit weak activation, correlat-
ing with missed subtle or atypical pneumonia manifestations. These observations validate LiteXrayNet’s
interpretability, with heatmaps providing spatially and diagnostically consistent outputs for real-world inte-
gration.

Figure 8: Grad-CAM heatmaps for true positive cases of pneumonia detection by LiteXrayNet, showing
activation on lung field regions with opacification, including consolidations and interstitial markings.
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Figure 9: Grad-CAM heatmaps for true negative cases of normal classification by LiteXrayNet, displaying
diffuse low-intensity gradients or activation on non-diagnostic structures.

Figure 10: Grad-CAM heatmaps for false positive cases of normal misclassified as pneumonia by LiteXrayNet,
indicating activation on regions adjacent to the heart silhouette or rib boundaries.

Figure 11: Grad-CAM heatmaps for false negative cases of missed pneumonia by LiteXrayNet, showing weak
or non-specific activation in lung regions.
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5.4.1 Clinical Implications

The Grad-CAM heatmaps for true positive and true negative cases demonstrate LiteXrayNet’s alignment
with radiologically significant features, supporting its diagnostic accuracy. In false positive and false negative
cases, the heatmaps identify activation patterns on non-informative or weakly activated regions, respectively,
providing insights into model behavior. These visualizations enable human-in-the-loop validation, enhancing
trust in clinical deployment. Example overlays for each category are included in supplementary material to
support reproducibility.

6 Feature Map Visualization

Figure 12: Feature map progression across LiteXrayNet layers for a sample X-ray, displaying activations
from initial convolutional layers, MBConv blocks, and the quantum-inspired phase shift layer.
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To enhance model interpretability and support clinical adoption of LiteXrayNet, intermediate feature maps
were visualized to reveal the internal representations learned from chest X-ray inputs, as outlined in (Selvaraju
et al., 2017). The analysis tracks the network’s progressive extraction and transformation of features, from
low-level edges to high-level semantic patterns associated with pneumonia, validating the model’s focus on
clinically relevant lung regions. A custom FeatureMapVisualizer class in PyTorch was implemented using
forward hooks to capture activations from key layers: initial convolutional layers, MBConv blocks, and the
quantum-inspired phase shift layer. Inputs were preprocessed to 224×224 grayscale images repeated across
three channels, normalized with ImageNet statistics, and visualizations were generated for sample cases,
displaying up to eight channels per layer using the ‘viridis’ colormap for heatmaps.

Figure 12 depicts the feature evolution for a sample X-ray across layers, with early layers (e.g., Layer 0
[1,16,112,112]) showing activations of low-level features such as lung contours and basic textures in channels
0–7. At increased depth (e.g., Layer 2 [1,32,56,56]), features transition to abstract representations, highlight-
ing structural anomalies like consolidations. The quantum-inspired phase shift layer [1,128,14,14] produces
refined activations, exhibiting enhanced intensity in affected lung regions, indicative of subtle pathological
cues.

The feature map visualizations demonstrate that LiteXrayNet’s hierarchical learning aligns with clinical
domain knowledge, concentrating on lung fields while minimizing attention to extraneous artifacts, thereby
supporting its interpretability and diagnostic relevance.

7 Discussion

The evaluation of LiteXrayNet against six baseline models: ResNet-18, MobileNetV3-Small, EfficientNet-B0,
MobileViT, TinyDeiT, and ViT-LoRA, demonstrates its superior performance in the context of pneumonia
detection from chest X-rays, particularly for edge-based medical imaging applications. In terms of overall
accuracy and loss, LiteXrayNet achieved the highest scores across training (0.9790 accuracy, 0.0508 loss),
validation (0.9738 accuracy, 0.1197 loss), and test sets (0.9704 accuracy, 0.0917 loss), outperforming ResNet-
18 (0.9499 test accuracy, 0.1789 loss) and MobileNetV3-Small (0.9590 test accuracy, 0.1546 loss), which
ranked second and third, respectively. This indicates robust generalization and minimal overfitting, at-
tributable to LiteXrayNet’s optimized architecture with 179,646 parameters and a model size of 0.70 MB,
designed to balance predictive power with computational efficiency. The classwise analysis further supports
this, with LiteXrayNet recording the highest precision (0.9393 for Normal, 0.9826 for Pneumonia), recall
(0.9547 for Normal, 0.9764 for Pneumonia), F1-score (0.9469 for Normal, 0.9795 for Pneumonia), and AUC-
ROC (0.9946), effectively addressing the class imbalance evident in the “Normal” category, where TinyDeiT
(0.8807 recall) and ViT-LoRA (0.8533 precision) underperformed.

The efficiency metrics reinforce LiteXrayNet’s suitability for resource-constrained environments, with a model
size of 0.70 MB and inference time of 0.60 ms/sample, significantly lower than ViT-LoRA’s 327.86 MB and
12.55 ms/sample, while remaining competitive with MobileNetV3-Small’s 3.59 MB and 0.26 ms/sample
(Chen & Ran, 2020). Resource utilization data further highlight LiteXrayNet’s advantage, with average
CPU usage of 5.6% and RAM usage of 69.2%, and maximums of 16.1% and 71.3%, respectively, compared
to peaks of 100% CPU for ResNet-18 and EfficientNet-B0. This efficiency stems from its lightweight design,
which reduces computational overhead without sacrificing accuracy, aligning with the aim of deploying AI
on edge devices with limited hardware capabilities. Interpretability analyses provide additional evidence of
LiteXrayNet’s strength, with Grad-CAM heatmaps for true positive cases showing focused activation on lung
regions with opacifications (e.g., consolidations, interstitial markings), consistent with radiological features
of pneumonia, and true negative cases exhibiting diffuse low-intensity gradients, indicating accurate normal
classification. In contrast, false positive and false negative cases reveal activation on non-diagnostic areas or
weak responses, respectively, suggesting areas for refinement but also underscoring the model’s transparency.

Feature map visualizations complement these findings, illustrating LiteXrayNet’s hierarchical learning pro-
cess, where early layers [1,16,112,112] capture lung contours and textures, intermediate MBConv blocks
[1,32,56,56] highlight structural anomalies like consolidations, and the quantum-inspired phase shift layer
[1,128,14,14] refines activations to emphasize subtle pathological cues. This progression aligns with clinical
domain knowledge, focusing on lung fields while minimizing attention to artifacts, a capability less evident in
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larger models like ViT-LoRA, which prioritizes parameter-heavy processing over targeted feature extraction.
The combined evidence: high accuracy, balanced classwise performance, low resource usage, and interpretable
outputs, positions LiteXrayNet as the best-performing model for the stated aim. Its lightweight architecture
(179,646 parameters) and efficiency (0.70 MB, 0.60 ms/sample) enable deployment on edge devices, while its
interpretability, validated by Grad-CAM and feature maps, ensures clinical trust, surpassing the trade-offs
observed in baseline models that either sacrifice accuracy (e.g., TinyDeiT) or efficiency (e.g., ViT-LoRA).

8 Limitations

The study of LiteXrayNet is subject to certain limitations that influence its practical applicability. The
performance metrics, such as the inference time of 0.60 ms/sample and resource utilization of 5.6% average
CPU, were evaluated under simulated conditions rather than on actual edge devices, which restricts the
assessment of its operational performance across diverse hardware platforms with varying computational
capabilities (Cao et al., 2021). Additionally, the dataset used for training and testing lacks detailed infor-
mation regarding its size, diversity, or representation of different patient populations, potentially limiting
the model’s robustness and generalizability to real-world clinical scenarios. Furthermore, the development
process did not incorporate direct input or validation from clinical experts, such as radiologists, which may
affect the alignment of the model’s predictions with established diagnostic criteria or clinical workflows.

The absence of comprehensive support from clinical experts also poses a challenge to the study’s inter-
pretability and validation efforts. The Grad-CAM and feature map visualizations, while informative, were
conducted without expert guidance to confirm the clinical relevance of highlighted regions, such as opacifica-
tions or non-diagnostic activations, potentially overlooking nuanced diagnostic features. This lack of expert
oversight, combined with the reliance on a single, unspecified dataset, underscores the need for enhanced col-
laboration to ensure the model’s outputs meet the expectations of healthcare professionals. These limitations
suggest areas where further refinement could strengthen LiteXrayNet’s readiness for clinical deployment.

9 Future Work

To address the identified limitations, future work will prioritize the deployment of LiteXrayNet on actual
edge devices to evaluate its performance under real-world conditions, including processing power, memory
constraints, and energy efficiency. This will involve testing across a variety of edge hardware platforms
to validate the reported efficiency metrics and ensure compatibility with the intended deployment environ-
ments, providing a more accurate assessment of its practical utility. Expanding the dataset with detailed
documentation of its size, diversity, and demographic representation will also be pursued, enabling a more
robust evaluation of the model’s generalizability across different clinical populations and imaging conditions.
Additionally, exploring ensemble models and recurrent neural networks (RNNs) will be investigated to en-
hance predictive performance, leveraging LiteXrayNet’s architecture as a foundation for improved accuracy
and temporal analysis of sequential X-ray data (Islam et al., 2021). Future research will further enhance
LiteXrayNet by integrating clinical expert guidance throughout the development and validation phases (Kelly
et al., 2019).

Future research will further enhance LiteXrayNet by integrating clinical expert guidance throughout the
development and validation phases. Collaboration with radiologists will facilitate the refinement of inter-
pretability analyses, such as Grad-CAM and feature map visualizations, ensuring that highlighted regions
align with clinically significant features and improving diagnostic accuracy. This expert input will also sup-
port the creation of a more representative dataset and the establishment of validation protocols that reflect
real-world clinical standards. Furthermore, building on LiteXrayNet as a baseline, a multi-disease detec-
tion convolutional neural network will be developed to extend its capability to identify multiple pathologies
beyond pneumonia, broadening its clinical utility while retaining its efficiency and interpretability.
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10 Conclusion

This study introduces LiteXrayNet, a lightweight convolutional neural network (CNN) engineered for
accurate and interpretable pneumonia detection from chest X-rays, specifically tailored for resource-
constrained environments. Benchmarked against established models such as ResNet-18, MobileNetV3-Small,
EfficientNet-B0, MobileViT, TinyDeiT, and ViT-LoRA, LiteXrayNet achieves superior performance in dis-
tinguishing normal from pneumonia cases, effectively addressing class imbalance through its optimized ar-
chitecture. By incorporating MobileNetV3-inspired Mobile Inverted Bottleneck Convolutional (MBConv)
blocks with depthwise separable convolutions, hard-swish activations, and squeeze-and-excitation modules,
alongside a novel quantum-inspired phase shift layer, the model strikes an optimal balance between diag-
nostic precision and computational efficiency. Its compact design, with a minimal parameter count and
small model size, enables rapid inference with low resource utilization, positioning LiteXrayNet as an ideal
solution for edge devices in point-of-care diagnostics, particularly in underserved regions with limited access
to advanced medical infrastructure.

The model’s interpretability is enhanced through Gradient-weighted Class Activation Mapping (Grad-CAM)
and feature map visualizations, which provide transparent insights into its decision-making process. These
visualizations demonstrate that LiteXrayNet focuses on clinically relevant lung regions, such as areas of
consolidation and interstitial markings, while minimizing attention to non-diagnostic artifacts, aligning with
radiological expectations and fostering trust among healthcare professionals. The hierarchical feature ex-
traction, progressing from low-level lung contours to refined pathological cues, further validates the model’s
ability to capture diagnostically significant patterns. Indeed, the theories and results support our model’s
performance in resource-constrained devices to be efficient; however, we are not claiming its efficiency until
proper tests are conducted, though our theories and results strongly support its potential. Evaluated under
simulated conditions, LiteXrayNet represents a significant advancement in medical imaging AI, offering a
scalable, interpretable, and resource-efficient solution with the potential to transform pneumonia diagnosis
and enhance healthcare equity in resource-limited global communities.
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A Ablation Study

To rigorously evaluate the individual contributions of key architectural components in our proposed
LiteXrayNet model, we conducted a comprehensive ablation study. This analysis systematically removes
or modifies specific elements of the model to quantify their impact on diagnostic performance, computa-
tional efficiency, and resource utilization. By isolating these components, we provide empirical evidence of
their necessity and effectiveness, ensuring the model’s design is both justified and optimized for edge-device
deployment in pneumonia detection, with particular emphasis on the superior performance of the original
LiteXrayNet configuration.

The ablation variants derived from the original LiteXrayNet architecture include the complete model with
all components serving as the baseline; a version without the quantum-inspired phase shift layer to assess
its role in enhancing feature representation; a version excluding squeeze-and-excitation (SE) blocks (Hu
et al., 2018) to evaluate their contribution to channel-wise recalibration; a version replacing the hard-swish
(HSwish) activation (Howard et al., 2019) with rectified linear unit (ReLU) (Nair & Hinton, 2010) to compare
activation function efficiency; a version substituting depthwise separable convolutions in MBConv blocks with
standard convolutions to measure the benefits of lightweight operations; and a version trained without data
augmentation or class weighting to highlight their importance in addressing class imbalance and overfitting.

All variants were trained and evaluated under identical conditions using the Chest X-ray dataset (Mooney,
2018), stratified splits (70% train, 15% validation, 15% test), AdamW optimizer (Loshchilov & Hutter,
2017) with a learning rate of 0.001, batch size of 32, and 50 epochs. Results are averaged over three
independent runs with different random seeds to ensure statistical robustness, reported as mean values.
Additionally, training dynamics were analyzed through mean training curves, which illustrate the convergence
behavior across variants over 50 epochs. The original LiteXrayNet consistently exhibits superior training
and validation accuracy (0.980 and 0.967, respectively), reinforcing its robustness and stability compared to
modified variants.

Table 6 presents the performance metrics, including accuracy, loss, F1-score, recall, precision, and AUC-
ROC. The original LiteXrayNet achieves the highest test accuracy (0.965) and AUC (0.992), underscoring the
synergistic benefits of all components and establishing it as the optimal configuration for superior diagnostic
precision. Removing the quantum layer results in the most significant accuracy drop (to 0.942), indicating its
crucial role in capturing complex patterns, consistent with prior quantum-inspired enhancements in medical
imaging (Landman et al., 2022). Excluding SE modules leads to a moderate decline (to 0.960), affirming
their importance for adaptive feature weighting. Replacing HSwish with ReLU yields lower accuracy (0.953)
but with faster inference (as shown later), suggesting HSwish’s non-linearity provides accuracy gains at
the cost of efficiency. Standard convolutions also reduce accuracy (to 0.953) while increasing parameters,
validating the efficiency of depthwise operations. Finally, omitting augmentation and class weights causes
notable degradation (to 0.956), emphasizing their critical role in handling dataset imbalance (Buda et al.,
2018).

Table 6: Comprehensive Ablation Study Results: Performance Metrics (Mean)
Model Variant Train Acc Val Acc Test Acc Test Loss F1 Recall Precision AUC

Original LiteXrayNet 0.980 0.967 0.965 0.139 0.976 0.975 0.977 0.992
Without Quantum Layer 0.952 0.957 0.942 0.182 0.960 0.957 0.963 0.983
Without SE Modules 0.962 0.959 0.960 0.157 0.973 0.978 0.968 0.988
With ReLU Activation 0.959 0.954 0.953 0.179 0.968 0.971 0.964 0.985
Standard Convolutions 0.959 0.960 0.953 0.127 0.967 0.959 0.977 0.991
No Aug + No Class Weights 0.979 0.959 0.956 0.134 0.970 0.977 0.963 0.983

Efficiency metrics, detailed in Table 7, highlight LiteXrayNet’s suitability for edge devices. The original
model balances reasonable inference time (0.60 ms) and compact size (0.70 MB) with 179,646 parameters,
demonstrating its efficiency advantages over modified variants. Removing components like the quantum layer
or SE modules slightly reduces size and time but at the expense of accuracy, while standard convolutions
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inflate parameters (295,074) and size (1.13 MB) despite faster inference. GPU utilization is notably high
across variants, with the original achieving balanced resource usage.

Table 7: Efficiency and Resource Usage Metrics (Mean)
Model Variant Inf Time (ms) Model Size (MB) Params CPU Avg % GPU Avg %

Original LiteXrayNet 0.60 0.70 179,646 10.3 45.9
Without Quantum Layer 0.58 0.67 171,134 10.3 62.7
Without SE Modules 0.58 0.66 167,954 10.2 64.3
With ReLU Activation 0.33 0.70 179,646 10.1 61.8
Standard Convolutions 0.21 1.13 295,074 6.7 42.0
No Aug + No Class Weights 0.59 0.70 179,646 5.4 17.6

Training resource usage, presented in Table 8, further illustrates the model’s efficiency during training. The
original LiteXrayNet shows moderate CPU and RAM utilization, with variants without augmentation and
class weights exhibiting the lowest demands due to simpler data handling.

Table 8: Training Resource Usage Metrics (Mean)
Model Variant Train CPU Avg Train CPU Max Train RAM Avg Train RAM Max

Original LiteXrayNet 11.2% 26.3% 73.7% 77.6%
Without Quantum Layer 11.1% 20.2% 73.9% 76.2%
Without SE Modules 11.1% 19.0% 74.5% 76.9%
With ReLU Activation 11.2% 17.3% 74.8% 76.7%
Standard Convolutions 9.1% 16.1% 75.2% 76.7%
No Aug + No Class Weights 5.8% 11.3% 75.0% 75.8%
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