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ABSTRACT

Meta-learning methods learn the meta-knowledge among various training tasks1

and aim to promote the learning of new tasks under the task similarity assumption.2

Such meta-knowledge is often represented as a fixed distribution; this, however,3

may be too restrictive to capture various specific task information because the4

discriminative patterns in the data may change dramatically across tasks. In this5

work, we aim to equip the meta learner with the ability to model and produce6

task-specific meta knowledge and, accordingly, present a localized meta-learning7

framework based on the PAC-Bayes theory. In particular, we propose a Local8

Coordinate Coding (LCC) based prior predictor that allows the meta learner to9

generate local meta-knowledge for specific tasks adaptively. We further develop a10

practical algorithm with deep neural network based on the bound. Empirical results11

on real-world datasets demonstrate the efficacy of the proposed method.12

1 INTRODUCTION13

Task 1 Instances

Task 2 Instances

Global Meta-knowledge Localized Meta-knowledge

Adaptation

Figure 1: Illustration of the localized meta-
learning framework. Instead of using global
meta-knowledge for all tasks, we tailor the
meta-knowledge for various specific task.

Recent years have seen a resurgence of interest in the14

field of meta-learning, or learning-to-learn (Thrun15

& Pratt, 2012), especially for empowering deep neu-16

ral networks with the capability of fast adapting to17

unseen tasks just as humans (Finn et al., 2017; Ravi18

& Larochelle, 2017). More concretely, the neural19

networks are trained from a sequence of datasets,20

associated with different tasks sampled from a meta-21

distribution (also called task environment (Baxter,22

2000; Maurer, 2005)). The principal aim of meta23

learner is to extract transferable meta-knowledge24

from observed tasks and facilitate the learning of25

new tasks sampled from the same meta-distribution.26

The performance is measured by the generalization27

ability from a finite set of observed tasks, which is28

evaluated by learning related unseen tasks. For this reason, there has been considerable interest in29

theoretical bounds on the generalization for meta-learning algorithms (Denevi et al., 2018b;a).30

One typical line of work (Pentina & Lampert, 2014; Amit & Meir, 2018) uses PAC-Bayes bound to31

analyze the generalization behavior of the meta learner and quantify the relation between the expected32

loss on new tasks and the average loss on the observed tasks. In this setup, it formulates meta-learning33

as hierarchical Bayes. For each task, the base learner produces a posterior based on the associated34

task data and the prior. Each prior is a reference w.r.t. base model that is generated by the meta leaner35

and must be chosen before observing task data. Accordingly, meta-knowledge is formulated as a36

global distribution over all possible priors. Initially, it is called as hyperprior since it is chosen before37

observing training tasks. To learn versatile meta-knowledge across tasks, the meta learner observes a38

sequence of training tasks and adjusts its hyperprior into a hyperposterior distribution over the set of39

priors. The prior generated by the hyperposterior is then used to solve new tasks.40

Despite of its great success, such global hyperposterior is rather generic, typically not well tailored41

to various specific tasks. In contrast, in many scenarios the related tasks may require task-specific42

meta-knowledge. Consequently, traditional meta-knowledge may lead to sub-optimal performance43

for any individual prediction task. As a motivational example, suppose we have two different44
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tasks: distinguishing motorcycle versus bicycle and distinguishing motorcycle versus car. Intuitively,45

each task uses distinct discriminative patterns and thus the desired meta-knowledge is required46

to extract these patterns simultaneously. It could be a challenging problem to represent it with a47

global hyperposterior since the most significant patterns in the first task could be irrelevant or even48

detrimental to the second task. Figure schematically illustrates this notion. Therefore, customized49

meta-knowledge such that the patterns are most discriminative for a given task is urgently desired.50

Can the meta-knowledge be adaptive to tasks? How can one achieve it? Intuitively, we could51

implement this idea by reformulating the meta-knowledge as a maping function. Leveraging the52

samples in the target task, the meta model produces tasks specific meta-knowledge.53

Naturally yet interestingly, one can see quantitatively how customized prior knowledge improves54

generalization capability, in light of the PAC-Bayes literature on the data distribution dependent-priors55

(Catoni, 2007; Parrado-Hernández et al., 2012; Dziugaite & Roy, 2018). Specifically, PAC-Bayes56

bounds control the generalization error of Gibbs Classifiers. They usually depend on a tradeoff57

between the empirical error of the posterior Q and a KL-divergence term KL(Q‖P ), where P is the58

prior. Since this KL-divergence term forms part of the generalization bound and is typically large in59

standard PAC-Bayes approaches (Lever et al., 2013), the choice of posterior is constrained by the60

need to minimize the KL-divergence between prior P and posterior Q. Thus, choosing an appropriate61

prior for each task which is close to the related posterior could yield improved generalization bounds.62

This encourages the study of data distribution-dependent priors for the PAC-Bayes analysis and gives63

rise to principled approaches to localized PAC-Bayes analysis. Previous related work are mainly64

discussed in Appendix A.65

Inspired by this, we propose a Localized Meta-Learning (LML) framework by formulating meta-66

knowledge as a conditional distribution over priors. Given task data distribution, we allow a meta67

learner to adaptively generate an appropriate prior for a new task. The challenges of developing this68

model are three-fold. First, the task data distribution is not explicitly given, and our only perception69

for it is via the associated sample set. Second, it should be permutation invariant — the output of70

model should not change under any permutation of the elements in the sample set. Third, the learned71

model could be used for solving unseen tasks. To address these problems, we further develop a prior72

predictor using Local Coordinate Coding (LCC)(Yu et al., 2009). In particular, if the classifier in73

each task is specialized to a parametric model, e.g. deep neural network, the proposed LCC-based74

prior predictor predicts base model parameters using the task sample set. The main contributions75

include: (1) A localized meta-learning framework which provides a means to tighten the original76

PAC-Bayes meta-learning bound (Pentina & Lampert, 2014; Amit & Meir, 2018) by minimizing77

the task-complexity term by choosing data-dependent prior; (2) An LCC-based prior predictor, an78

implementation of conditional hyperposterior, which generates local meta-knowledge for specific79

task; (3) A practical algorithm for probabilistic deep neural networks by minimizing the bound80

(though the optimization method can be applied to a large family of differentiable models); (4)81

Experimental results which demonstrate improved performance over meta-learning method in this82

field.83

2 PRELIMINARIES84

Our prior predictor was implemented by Local Coordinate Coding (LCC). The LML framework85

was inspired by PAC-Bayes theory for meta learning. In this section we briefly review the related86

definitions and formulations.87

2.1 LOCAL COORDINATE CODING88

Definition 1. (Lipschitz Smoothness Yu et al. (2009).) A function f(x) in Rd is a (α, β)-Lipschitz89

smooth w.r.t. a norm ‖ · ‖ if ‖f(x)−f(x′)‖ ≤ α‖x−x′‖ and ‖f(x′)−f(x)−∇f(x)>(x′−x)‖ ≤90

β‖x− x′‖2.91

Definition 2. (Coordinate Coding Yu et al. (2009).) A coordinate coding is a pair (γ, C), where92

C ⊂ Rd is a set of anchor points(bases), and γ is a map of x ∈ Rd to [γu(x)]u∈C ∈ R|C| such that93 ∑
u γu(x) = 1. It induces the following physical approximation of x in Rd : x̄ =

∑
u∈C γu(x)u.94

Definition 3. (Latent Manifold Yu et al. (2009).) A subsetM ⊂ Rd is called a smooth manifold
with an intrinsic dimension |C| := dM if there exists a constant cM such that given any x ∈ M,
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there exists |C| anchor points u1(x), . . . ,u|C|(x) ∈ Rd so that ∀x′ ∈M:

inf
γ∈R|C|

‖x′ − x−
|C|∑
j=1

γjuj(x)‖2 ≤ cM‖x′ − x‖22,

where γ = [γ1, . . . , γ|C|]
> are the local codings w.r.t. the anchor points.b95

Definition 2 and 3 imply that any point in Rd can be expressed as a linear combination of a set96

of anchor points. Later, we will show that a high dimensional nonlinear prior predictor can be97

approximated by a simple linear function w.r.t. the coordinate coding, and the approximation quality98

is ensured by the locality of such coding (each data point can be well approximated by a linear99

combination of its nearby anchor points).100

2.2 PAC-BAYES REGULAR META-LEARNING101

In order to present the advances proposed in this paper, we recall some definitions in PAC-Bayes102

theory for single-task learning and meta-learning (Catoni, 2007; Baxter, 2000; Pentina & Lampert,103

2014; Amit & Meir, 2018). In the context of classification, we assume all tasks share the same input104

space X , output space Y , space of classifiers (hypotheses) H ⊂ {h : X → Y} and loss function105

` : Y × Y → [0, 1]. The meta learner observes n tasks in the form of sample sets S1, . . . , Sn. The106

number of samples in task i is denoted by mi. Each observed task i consists of a set of i.i.d. samples107

Si = {(xj , yj)}mi
j=1, which is drawn from a data distribution Si ∼ Dmi

i . Following the meta-learning108

setup in (Baxter, 2000), we assume that each data distribution Di is generated i.i.d. from the same109

meta distribution τ . Let h(x) be the prediction of x, the goal of each task is to find a classifier h110

that minimizes the expected loss Ex∼D`(h(x), y). Since the underlying ‘true’ data distribution Di is111

unknown, the base learner receives a finite set of samples Si and produces an “optimal” classifier112

h = Ab(Si) with a learning algorithm Ab(·) that will be used to predict the labels of unseen inputs.113

PAC-Bayes theory studies the properties of randomized classifier, called Gibbs classifier. Let Q be a114

posterior distribution overH. To make a prediction, the Gibbs classifier samples a classifier h ∈ H115

according to Q and then predicts a label with the chosen h. The expected error under data distribution116

D and empirical error on the sample set S are then given by averaging over distribution Q, namely117

er(Q) = Eh∼QE(x,y)∼D`(h(x), y) and êr(Q) = Eh∼Q 1
m

∑m
j=1 `(h(xj), yj), respectively.118

In the context of meta-learning, the goal of the meta learner is to extract meta-knowledge contained in
the observed tasks that will be used as prior knowledge for learning new tasks. In each task, the prior
knowledge P is in the form of a distribution over classifiersH. The base learner produces a posterior
Q = Ab(S, P ) over H based on a sample set S and a prior P . All tasks are learned through the
same learning procedure. The meta learner treats the prior P itself as a random variable and assumes
the meta-knowledge is in the form of a distribution over all possible priors. Let hyperprior P be an
initial distribution over priors, meta learner uses the observed tasks to adjust its original hyperprior P
into hyperposterior Q from the learning process. Given this, the quality of the hyperposterior Q is
measured by the expected task error of learning new tasks using priors generated from it, which is
formulated as:

er(Q) = EP∼QE(D,m)∼τ,S∼Dmer(Q = Ab(S, P )). (1)
Accordingly, the empirical counterpart of the above quantity is given by:

êr(Q) = EP∼Q
1

n

n∑
i=1

êr(Q = Ab(Si, P )). (2)

2.3 PAC-BAYES REGULAR META-LEARNING BOUND WITH GAUSSIAN RANDOMIZATION119

Based on the above definitions, Pentina & Lampert (2014) and Amit & Meir (2018) present regular120

meta-learning PAC-Bayes generalization bounds w.r.t. hyperposteriorQ. Notably, the proof technique121

in Amit & Meir (2018) allows to incorporate different single task bounds. Consider the benefit of122

Catoni’s bound (Catoni, 2007) (the minimization problem derived from the bound is a simple linear123

combination of empirical risk plus a regularizer), here we instantiate a regular meta-learning bound124

with Gaussian randomization based on that. To make fair comparison, we will adopt the same Catoni’s125

bound to analysis the proposed LML framework later. Particularly, the classifier h is parameterized126

as hw with w ∈ Rdw . The prior and posterior are a distribution over the set of all possible parameters127

w. We choose both the prior P and posterior Q to be spherical Gaussians, i.e. P = N (wP , σ2
wIdw)128
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Figure 2: Comparison between PAC-Bayes regular meta-learning (left) and LML (right) . In
regular meta-learning, the mean of prior wP is sampled from a global hyperposterior distribution
Q = N (wQ, σ2

wIdw). In LML, wP is produced by a prior predictor Φv(Dm
new).

and Q = N (wQ, σ2
wIdw). The mean wP is a random variable distributed first according to the129

hyperprior P , which we formulate as N (0, σ2
wIdw), and later according to hyperposterior Q, which130

we model as N (wQ, σ2
wIdw). When encountering a new task i, we first sample the mean of prior131

wP
i from the hyperposterior N (wQ, σ2

wIdw), and then use it as a basis to learn the mean of posterior132

wQ
i = Ab(Si, P ), as shown in Figure 2(left). Then, we could derive the following PAC-Bayes133

meta-learning bound.134

Theorem 1. Consider the regular meta-learning framework, given the hyperpriorP = N (0, σ2
wIdw).

Then for any hyperposterior Q, any c1, c2 > 0 and any δ ∈ (0, 1] with probability ≥ 1− δ we have,

er(Q) ≤c′1c′2êr(Q) + (

n∑
i=1

c′1c
′
2

2c2nmiσ2
w

+
c′1

2c1nσ2
w

)‖wQ‖2 +

n∑
i=1

c′1c
′
2

2c2nmiσ2
w
‖ E
wP

wQ
i −wQ‖2

+

n∑
i=1

c′1c
′
2

c2nmiσ2
w

(
1

2
+ log

2n

δ
) +

c′1
c1nσ2

w
log

2

δ
, (3)

where c′1 = c1
1−e−c1

and c′2 = c2
1−e−c2

. To get a better understanding, we further simplify the notation
and obtain that

er(Q) ≤c′1c′2êr(Q) + (

n∑
i=1

c′1c
′
2

2c2nmiσ2
w

+
c′1

2c1nσ2
w

)‖wQ‖2 +

n∑
i=1

c′1c
′
2

2c2nmiσ2
w
‖ E
wP

wQ
i −wQ‖2︸ ︷︷ ︸

task−complexity

+ const(δ, n,mi, σw, c1, c2). (4)

See Appendix D.4 for the proof. Notice that the expected task generalization error is bounded by the135

empirical multi-task error plus two complexity terms which measures the environment-complexity136

and the task-complexity, respectively.137

3 PAC-BAYES LOCALIZED META-LEARNING138

3.1 MOTIVATION AND OVERALL FRAMEWORK139

Our motivation stems from a core challenge in PAC-Bayes meta-learning bound in (4), wherein140

the task-complexity term
∑n
i=1

c′1c
′
2

2c2nmiσ2
w
‖EwQ

i −wQ‖2, which measures the closeness between141

the mean of posterior and the mean of global hyperposterior for each task, is typically vital to the142

generalization bound. Finding the tightest possible bound generally depends on minimizing this143

term. It is obvious that the optimal wQ is
∑n
i=1

c′1c
′
2Ew

Q
i

2c2nmiσ2
w

. This solution for global hyperposterior is144

required to satisfy the task similarity assumption that the optimal posteriors for each task are close145

together and lie within a small subset of the model space. Under this circumstance, there exists a146

global hyperposterior from which a good prior for any individual task is reachable. However, if the147

optimal posteriors for each task are not related or even mutually exclusive, i.e., one optimal posterior148

has a negative effect on another task, the global hyperposterior may impede the learning of some149

tasks. Moreover, this complexity term could be inevitably large and incur large generalization error.150

Note that wQ is the mean of hyperposterior Q and this complexity term naturally indicates the151

divergence between the mean of prior wP
i sampled from the hyperposterior Q and the mean of152

posterior wQ
i in each task. Therefore, we propose to adaptively choose the mean of prior wP

i153

according to task i. It is obvious that the complexity term vanishes if we set wP
i = wQ

i , but the prior154

Pi in each task has to be chosen independently of the sample set Si. Fortunately, the PAC-Bayes155
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theorem allows us to choose prior upon the data distribution Di. Therefore, we propose a prior156

predictor Φ : Dm → wP which receives task data distribution Dm and outputs the mean of prior157

wP . In this way, the generated priors could focus locally on those regions of model parameters that158

are of particular interest in solving specific tasks.159

Particularly, the prior predictor is parameterized as Φv with v ∈ Rdv . We assume v to be a random160

variable distributed first according to the hyperprior P , which we reformulate as N (0, σ2
vIdv), and161

later according to hyperposteriorQ, which we reformulate asN (vQ, σ2
vIdv). Given a new task i, we162

first sample v from hyperposterior N (vQ, σ2
vIdv) and estimate the mean of prior wP

i by leveraging163

prior predictor wP
i = Φv(Dm

i ). Then, the base learner utilizes the sample set Si and the prior164

Pi = N (wP
i , σ

2
wIdw) to produce a mean posterior wQ

i = Ab(Si, Pi), as shown in Figure 2(right).165

To make wP close to wQ in each task, what properties are the prior predictor is expected to exhibit?166

Importantly, it is required to (i) uncover the tight relationship between the sample set and model167

parameters. Intuitively, features and parameters yield similar local and global structures in their168

respective spaces in the classification problem. Features in the same category tend to be spatially169

clustered together while maintaining the separation between different classes. Take linear classifiers170

as an example, let wk be the parameters w.r.t. category k, the separability between classes is171

implemented as x · wk, which also explicitly encourages intra-class compactness. A reasonable172

choice of wk is to maximize the inner product distance with the input features in the same category173

and minimize the distance with the input features of the non-belonging categories. Besides, the prior174

predictor should be (ii) category-agnostic since it will be used continuously as new tasks and hence175

new categories become available. Lastly, it should be (iii) invariant under permutations of its inputs.176

3.2 LCC-BASED PRIOR PREDICTOR177

There exists many implementations, such as set transformer (Lee et al., 2018), relation network (Rusu178

et al., 2019), task2vec(Achille et al., 2019), that satisfy the above conditions. We follow the idea of179

nearest class mean classifier (Mensink et al., 2013), which represents class parameter by averaging180

its feature embeddings. This idea has been explored in transductive few-shot learning problems (Snell181

et al., 2017; Qiao et al., 2018). Snell et al. (2017) learn a metric space across tasks such that when182

represented in this embedding, prototype (centroid) of each class can be used for label prediction183

in the new task. Qiao et al. (2018) directly predict the classifier weights using the activations by184

exploiting the close relationship between the parameters and the activations in a neural network185

associated with the same category. In summary, the classification problem of each task is transformed186

as a generic metric learning problem which is shared across tasks. Once this mapping has been187

learned on observed tasks, due to the structure-preserving property, it could be easily generalized to188

new tasks. Formally, consider each task as a K-class classification problem, and the parameter of the189

classifier in task i denoted as wi = [wi[1], . . . ,wi[k], . . . ,wi[K]], the prior predictor for class k can190

be defined as:191

wP
i [k] = Φv(Dmik

ik ) = E
Sik∼D

mik
ik

1

mik

∑
xj∈Sik

φv(xj), (5)

where φv(·) : Rd → Rdw is the feature embedding function, mik is the number of samples belonging
to category k, Sik and Dik are the sample set and data distribution for category k in task i. We call
this function the expected prior predictor. Since data distribution Dik is considered unknown and our
only insight as to Dik is through the sample set Sik, we approximate the expected prior predictor by
its empirical counterpart. Note that if the prior predictor is relatively stable to perturbations of the
sample set, then the generated prior could still reflect the underlying task data distribution, rather
than the data, resulting in a generalization bound that still holds perhaps with smaller probability
(Dziugaite & Roy, 2018). Formally, the empirical prior predictor is defined as:

ŵP
i [k] = Φ̂v(Sik) =

1

mik

∑
xj∈Sik

φv(xj). (6)

Although we can implement the embedding function φv(·) with a multilayer perceptron (MLP), both
input x ∈ Rd and model parameter w ∈ Rdw are high-dimensional, making the empirical prior
predictor Φ̂v(·) difficult to learn. Inspired by the local coordinate coding method, if the anchor points
are sufficiently localized, the embedding function φv(xj) can be approximated by a linear function
w.r.t. a set of codings, [γu(xj)]u∈C . Accordingly, we propose an LCC-based prior predictor, which
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is defined as:
w̄P
i [k] = Φ̄v(Sik) =

1

mik

∑
xj∈Sik

∑
u∈C

γu(xj)φv(u), (7)

where φv(u) ∈ Rdw is the embedding of the corresponding anchor point u ∈ C. As such,192

the parameters of LCC-based prior predictor w.r.t. category k can be represented as vk =193

[φvk
(u1), φvk

(u2), . . . , φvk
(u|C|)]. Lemma 1 illustrates the approximation error between empirical194

prior predictor and LCC-based prior predictor.195

Lemma 1. (Empirical Prior Predictor Approximation) Given the definition of ŵP
i [k] and w̄P

i [k]
in Eq. (6) and Eq. (7), let (γ,C) be an arbitrary coordinate coding on Rd and φv(·) be an
(α, β)-Lipschitz smooth function. We have for all x ∈ Rd

‖ŵP
i [k]− w̄P

i [k]‖ ≤ Oα,β(γ,C) (8)

whereOα,β(γ,C) = 1
mik

∑
xj∈Sik

(
α‖xj− x̄j‖+β

∑
u∈C ‖x̄j−u‖2

)
and x̄j =

∑
u∈C γu(xj)u.196

See Appendix D.1 for the proof. Lemma 1 shows that a good LCC-based prior predictor should make197

x close to its physical approximation x̄ and should be localized. The complexity of LCC coding198

scheme depends on the number of anchor points |C|. We follow the optimization method in Yu et al.199

(2009) to find the coordinate coding (γ,C), which is presented in Appendix B.200

3.3 PAC-BAYES LOCALIZED META-LEARNING BOUND WITH GAUSSIAN RANDOMIZATION201

In order to derive a PAC-Bayes generalization bound for localized meta-learning, we first bound the202

approximation error between expected prior predictor and LCC-based prior predictor.203

Lemma 2. Given the definition of wP and w̄P in Eq. (5) and (7), let X be a compact set with radius
R, i.e., ∀x,x′ ∈ X , ‖x− x′‖ ≤ R. For any δ ∈ (0, 1] with probability ≥ 1− δ, we have

‖wP − w̄P ‖2 ≤
K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

1

δ
)) +Oα,β(γ,C)

)2

.

See Appendix D.2 for the proof. Lemma 2 shows that the approximation error between expected204

prior predictor and LCC-based prior predictor depends on (i) the concentration of prior predictor205

and (ii) the quality of LCC coding scheme. The first term implies the number of samples for each206

category should be larger for better approximation. This is consistent with the results of estimating207

the center of mass (Cristianini & Shawe-Taylor, 2004). Based on Lemma 2, using the same Catoni’s208

bound. we have the following PAC-Bayes LML bound.209

Theorem 2. Consider the localized meta-learning framework. Given the hyperprior P =
N (0, σ2

vIdv), then for any hyperposterior Q, any c1, c2 > 0 and any δ ∈ (0, 1] with probabil-
ity ≥ 1− δ we have,

er(Q) ≤c′1c′2êr(Q) + (

n∑
i=1

c′1c
′
2

2c2nmiσ2
v

+
c′1

2c1nσ2
v

)‖vQ‖2 +

n∑
i=1

c′1c
′
2

c2nmiσ2
w
‖E
v
wQ
i − Φ̄vQ(Si)‖2

+

n∑
i=1

c′1c
′
2

c2nmiσ2
w

(
1

σ2
w

K∑
k=1

( αR√
mik

(1 +

√
1

2
log(

4n

δ
)) +Oα,β(γ,C)

)2
+ dwK(

σv

σw
)2
)

+

n∑
i=1

c′1c
′
2

c2nmiσ2
w

log
4n

δ
+

c′1
2c1nσ2

v
log

2

δ
, (9)

where c′1 = c1
1−e−c1

and c′2 = c2
1−e−c2

. To get a better understanding, we further simplify the notation
and obtain that

er(Q) ≤c′1c′2êr(Q) + (

n∑
i=1

c′1c
′
2

2c2nmiσ2
v

+
c′1

2c1nσ2
v

)‖vQ‖2 +

n∑
i=1

c′1c
′
2

c2nmiσ2
w
‖E
v
wQ
i − Φ̄vQ(Si)‖2︸ ︷︷ ︸

task−complexity

+ const(α, β,R, δ, n,mi, σv, σw, c1, c2). (10)

See appendix D.3 for the proof. Similarly to the regular meta-learning bound in Theorem 1, the210

expected task error er(Q) is bounded by the empirical task error êr(Q) plus the task-complexity and211

environment-complexity terms. The main innovation here is to exploit the potential to choose the212

mean of prior wP adaptively, based on task data S. Intuitively, if the selection of the LCC-based213

prior predictor is appropriate, it will narrow the divergence between the mean of prior wP
i sampled214
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from the hyperposterior Q and the mean of posterior wQ
i in each task. Therefore, the bound can be215

tighter than the ones in the regular meta-learning (Pentina & Lampert, 2014; Amit & Meir, 2018).216

Our empirical study in Section 4 will illustrate that the algorithm derived from this bound can217

reduce task-complexity and thus achieve better performance than the methods derived from regular218

meta-learning bounds.219

When one is choosing the number of anchor points |C|, there is a balance between accuracy and220

simplicity of prior predictor. As we increase |C|, it will essentially increase the expressive power of221

Φ̄v(·) and reduce the task-complexity term ‖E
v
wQ − Φ̄vQ(S)‖2. However, at the same time, it will222

increase the enviornment-complexity term ‖vQ‖2 and make the bound loose. If we set |C| to 1, it223

degenerates to the regular meta-learning framework.224

3.4 LOCALIZED META-LEARNING ALGORITHM225

Since the bound in (9) holds uniformly w.r.t. Q, the guarantees of Theorem 2 also hold for the resulting
learned hyperposterior Q = N (vQ, σ2

vIdv), so the mean of prior wP sampled from the learned
hyperposterior work well for future tasks. The PAC-Bayes localized meta-learning bound in (9) can
be compactly written as

∑n
i=1 Ev êri(Qi = Ab(Si, P )) +α1‖vQ‖2 +

∑n
i=1

α2

mi
‖E
v
wQ
i − Φ̄vQ(Si)‖2,

where α1, α2 > 0 are hyperparameters. For task i, the learning algorithm Ab(·) can be formulated as
w?
i = arg min

wQ
i

E
v
êri(Qi = N (wQ

i , σ
2
wIdw)). To make fair comparison and guarantee the benefit of

the proposed LML is not from using an improved optimization method, we follow the same learning
algorithm in (Amit & Meir, 2018). Specifically, we jointly optimize the parameters of LCC-based
prior predictor v and the parameters of classifiers in each task w1,w2, . . . ,wn, which is formulated
as

arg min
v,w1,...,wn

n∑
i=1

E
v
êri(wi) + α1‖vQ‖2 +

n∑
i=1

α2

mi
‖E
v
wQ
i − Φ̄vQ(Si)‖2. (11)

We can optimize v and w via mini-batch SGD. The details of the localized meta-learning algorithm226

is given in Appendix F. The expectation over Gaussian distribution and its gradient can be efficiently227

estimated by using the re-parameterization trick Kingma & Welling (2014); Rezende et al. (2014).228

For example, to sample w from the posterior Q = N (wQ, σ2
wIdw), we first draw ξ ∼ N (0, Idw)229

and then apply the deterministic function wQ + ξ � σ, where � is an element-wise multiplication.230

4 EXPERIMENTS231

Datasets and Setup. We use CIFAR-100 and Caltech-256 in our experiments. CIFAR-100232

Krizhevsky (2009) contains 60,000 images from 100 fine-grained categories and 20 coarse-level233

categories. As in Zhou et al. (2018), we use 64, 16, and 20 classes for meta-training, meta-validation,234

and meta-testing, respectively. Caltech-256 has 30,607 color images from 256 classes Griffin et al.235

(2007). Similarly, we split the dataset into 150, 56 and 50 classes for meta-training, meta-validation,236

and meta-testing. We consider 5-way classification problem. Each task is generated by randomly237

sampling 5 categories and each category contains 50 samples. The base model uses the convolutional238

architecture in Finn et al. (2017), which consists of 4 convolutional layers, each with 32 filters and a239

fully-connected layer mapping to the number of classes on top. High dimensional data often lies on240

some low dimensional manifolds. We utilize an auto-encoder to extract the semantic information of241

image data and then construct the LCC scheme based on the embeddings. The parameters of prior242

predictor and base model are random perturbations in the form of Gaussian distribution.243

We design two different meta-learning environment settings to validate the efficacy of the proposed244

method. The first one uses the pre-trained base model as an initialization, which utilizes all the245

meta-training classes (64-class classification in CIFAR-100 case) to train the feature extractor. The246

second one uses the random initialization. We compare the proposed LML method with ML-PL247

method Pentina & Lampert (2014), ML-AM method Amit & Meir (2018) and ML-A which is248

derived from Theorem 1. In all these methods, we use their main theorems about the generalization249

upper bound to derive the objective of the algorithm. To ensure a fair comparison, all approaches250

adopt the same network architecture and pre-trained feature extractor (more details can be found in251

Appendix E).252
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Figure 3: Average test accuracy of learning a new task for varied numbers of training tasks (|C| = 64).

Results. In Figure 3, we demonstrate the average test error of learning a new task based on the253

number of training tasks, together with the standard deviation, in different settings (with or without254

a pre-trained feature extractor). It is obvious that the performance continually increases as we255

increase the number of training tasks for all the methods. This is consistent with the generalization256

bounds that the complexity term converges to zero if large numbers of tasks are observed. ML-A257

consistently outperforms ML-PL and ML-AM since the single-task bound used in Theorem 1(ML-A)258

converges at the rate of O( 1
m ) while the bounds w.r.t. ML-PL and ML-AM converge at the rate259

of O( 1√
m

). This demonstrates the importance of using tight generalization bound. Moreover, our260

proposed LML significantly outperforms the baselines, which validates the effectiveness of the261

proposed LCC-based prior predictor. This confirms that LCC-based prior predictor is a more suitable262

representation for meta-knowledge than the traditional global hyperposterior in ML-A, ML-AM,263

and ML-PL. Finally, we observe that if the pre-trained feature extractor is provided, all of these264

methods do better than meta-training with random initialization. This is because the pre-trained265

feature extractor can be regarded as a data-dependent hyperpior. It is closer to the hyperposteior than266

the randomly initialized hyperprior. Therefore, it is able to reduce the environment complexity term267

and improves the generalization performance.
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Figure 4: (a) The impact of the number of anchor points |C| in LCC. (b) The divergence value
(normalized) between the mean generated prior wP and the mean of learned posterior wQ.268

In Figure 4(b), we show the divergence between the mean of generated prior wP from meta model269

and the mean of learned posterior wQ for LML and ML-A. This further validates the effectiveness of270

the LCC-based prior predictor which could narrow down the divergence term and thus tighten the271

bound. In Figure 4(a), we vary the number of anchor points |C| in LCC scheme from 4 to 256, the272

optimal value is around 64 in both datasets. This indicates that LML is sensitive to the number of273

anchor points |C|, which further affects the quality of LCC-based prior predictor and the performance274

of LML.275

5 CONCLUSION276

This work contributes a novel localized meta-learning framework from both the theoretical and277

computational perspectives. In order to tailor meta-knowledge to various individual task, we formulate278

meta model as a mapping function that leverages the samples in target set and produces task specific279

meta-knowledge as a prior. Quantitatively, this idea essentially provides a means to theoretically280

tighten the PAC-Bayes meta-learning generalization bound. We propose a LCC-based prior predictor281

to output localized meta-knowledge by using task information and further develop a practical282

algorithm with deep neural networks by minimizing the generalization bound. An interesting283

topic for future work would be to explore other principles to construct the prior predictor and apply284

the localized meta-learning framework to more realistic scenarios where tasks are sampled non-i.i.d.285

from an environment. Another challenging problem is to extend our techniques to derive localized286

meta-learning algorithms for regression and reinforcement learning problems.287
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Supplementary Materials for Localized Meta-381

Learning: A PAC-Bayes Analysis for Meta-Learning382

Beyond Global Prior383

This supplementary document contains the discussion of previous work, the technical proofs of384

theoretical results and details of experiments. It is structured as follows: Appendix A gives a detailed385

discussion of previous work. Appendix B presents the optimization method for LCC. Appendix C386

presents notations for prior predictor. Appendix D gives the proofs of the main results. Appendix387

D.1 and D.2 show the approximation error between LCC-based prior predictor and empirical prior388

predictor, expected prior predictor, respectively. They are used in the proof of Theorem 2. Next, in389

Appendix D.3 and D.4 we show the PAC-Bayes generalization bound of localized meta-learning390

in Theorem 2 and also provides the PAC-Bayes generalization bound of regular meta-learning in391

Theorem 1. Details of experiments and more empirical results are presented in Appendix E. Finally,392

we summarize the localized meta-learning algorithm in Appendix F.393

A RELATED WORK394

Meta-Learning. Meta-learning literature commonly considers the empirical task error by directly395

optimizing a loss of meta learner across tasks in the training data. Recently, this has been successfully396

applied in a variety of models for few-shot learning Ravi & Larochelle (2017); Snell et al. (2017);397

Finn et al. (2017); Vinyals et al. (2016). Although Vuorio et al. (2018); Rusu et al. (2019); Zintgraf398

et al. (2019); Wang et al. (2019) consider task adaptation when using meta-knowledge for specific399

tasks, all of them are not based on generalization error bounds, which is the in the same spirit as400

our work. Meta-learning in the online setting has regained attention recently Denevi et al. (2018b;a;401

2019); Balcan et al. (2019), in which online-to-batch conversion results could imply generalization402

bounds. Galanti et al. (2016) analyzes transfer learning in neural networks with PAC-Bayes tools.403

Most related to our work are Pentina & Lampert (2014); Amit & Meir (2018), which provide a404

PAC-Bayes generalization bound for meta-learning framework. In contrast, neither work provides a405

principled way to derive localized meta-knowledge for specific tasks.406

Localized PAC-Bayes Learning. There has been a prosperous line of research for learning priors407

to improve the PAC-Bayes bounds Catoni (2007); Guedj (2019). Parrado-Hernández et al. (2012)408

showed that priors can be learned by splitting the available training data into two parts, one for409

learning the prior, one for learning the posterior. Lever et al. (2013) bounded the KL divergence by a410

term independent of data distribution and derived an expression for the overall optimal prior, i.e. the411

prior distribution resulting in the smallest bound value. Recently, Rivasplata et al. (2018) bounded412

the KL divergence by investigating the stability of the hypothesis. Dziugaite & Roy (2018) optimized413

the prior term in a differentially private way. In summary, theses methods construct some quantities414

that reflect the underlying data distribution, rather than the sample set, and then choose the prior P415

based on these quantities. These works, however, are only applicable for single-task problem and416

could not transfer knowledge across tasks in meta-learning setting.417

B OPTIMIZATION OF LCC418

We minimize the inequality in (8) to obtain a set of anchor points. As with Yu et al. (2009), we
simplify the localization error term by assuming x̄ = x, and then we optimize the following objective
function:

arg min
γ,C

n∑
i=1

∑
xj∈Si

α‖xj − x̄j‖2 + β
∑
u∈C
‖xj − u‖2 s.t.∀x,

∑
u∈C

γu(x) = 1, (12)

where x̄ =
∑

u∈C γu(x)u. In practice, we update C and γ by alternately optimizing a LASSO419

problem and a least-square regression problem, respectively.420

C NOTATIONS421

Let φv(·) : Rd → Rdw be the feature embedding function. mik denotes the number of samples
belonging to category k. Sik and Dik are the sample set and data distribution for category k in task i,
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respectively. Then, the expected prior predictor w.r.t. class k in task i is defined as:

wP
i [k] = Φv(Dmik

ik ) = E
Sik∼D

mik
ik

1

mik

∑
xj∈Sik

φv(xj).

The empirical prior predictor w.r.t. class k in task i is defined as:

ŵP
i [k] = Φ̂v(Sik) =

1

mik

∑
xj∈Sik

φv(xj).

The LCC-based prior predictor w.r.t. class k in task i is defined as:

w̄P
i [k] = Φ̄v(Sik) =

1

mik

∑
xj∈Sik

∑
u∈C

γu(xj)φv(u).

D THEORETICAL RESULTS422

D.1 PROOF OF LEMMA 1423

This lemma bounds the error between the empirical prior predictor ŵP
i [k] and the LCC-based prior424

predictor w̄P
i [k].425

Lemma 1 Given the definition of ŵP
i [k] and w̄P

i [k] in Eq. (6) and Eq. (7), let (γ,C) be an arbitrary
coordinate coding on Rdx and φ be an (α, β)-Lipschitz smooth function. We have for all x ∈ Rdx

‖ŵP
i [k]− w̄P

i [k]‖ ≤ 1

mik

∑
xj∈Sik

(
α‖xj − x̄j‖+ β

∑
u∈C
‖x̄j − u‖2

)
= Oα,β(γ,C), (13)

where x̄j =
∑

u∈C γu(xj)u.426

Proof. Let x̄j =
∑

u∈C γu(xj)u. We have
‖Φ̂v(Sik)− Φ̄v(Sik)‖2

=
1

mik

∑
xj∈Sik

‖φv(xj)−
∑
u∈C

γu(xj)φv(u)‖2

≤ 1

mik

∑
xj∈Sik

(
‖φv(xj)− φv(x̄j)‖2 + ‖

∑
u∈C

γu(xj)(φv(u)− φv(x̄j)‖2
)

=
1

mik

∑
xj∈Sik

(
‖φv(xj)− φv(x̄j)‖2 + ‖

∑
u∈C

γu(xj)(φv(u)− φv(
∑
u∈C

γu(xj)u))−∇φv(x̄j)(u− x̄j)‖2
)

≤ 1

mik

∑
xj∈Sik

(
‖φv(xj)− φv(x̄j)‖2 +

∑
u∈C
|γu(xj)|‖(φv(u)− φv(

∑
u∈C

γu(xj)u))−∇φv(x̄j)(u− x̄j)‖2
)

≤ 1

mik

∑
xj∈Sik

(
α‖xj − x̄j‖2 + β

∑
u∈C
‖x̄j − u‖22

)
= Oα,β(γ,C)

In the above derivation, the first inequality holds by the triangle inequality. The second equality427

holds since
∑

u∈C γu(xj) = 1 for all xj . The last inequality uses the assumption of (α, β)-Lipschitz428

smoothness of φv(·). This implies the desired bound.429

This lemma demonstrates that the quality of LCC approximation is bounded by two terms: the
first term ‖xj − x̄j‖2 indicates x should be close to its physical approximation x̄, the second term
‖x̄j −u‖ implies that the coding should be localized. According to the Manifold Coding Theorem in
Yu et al. (2009), if the data points x lie on a compact smooth manifoldM. Then given any ε > 0,
there exists anchor points C ⊂M and coding γ such that

1

mik

∑
xj∈Sik

(
α‖xj − x̄j‖2 + β

∑
u∈C
‖x̄j − u‖22

)
≤ [αcM + (1 + 5

√
dM)β]ε2. (14)

It shows that the approximation error of local coordinate coding depends on the intrinsic dimension430

of the manifold instead of the dimension of input.431
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D.2 PROOF OF LEMMA 2432

In order to proof Lemma 2, we first introduce a relevant theorem.433

Theorem 3. (Vector-valued extension of McDiarmid’s inequality Rivasplata et al. (2018)) Let
X1, . . . ,Xm ∈ X be independent random variables, and f : Xm → Rdw be a vector-valued
mapping function. If, for all i ∈ {1, . . . ,m}, and for all x1, . . . ,xm,x

′
i ∈ X , the function f satisfies

sup
xi,x′i

‖f(x1:i−1,xi,xi+1:m)− f(x1:i−1,x
′
i,xi+1:m)‖ ≤ ci (15)

Then E‖f(X1:m) − E[f(X1:m)]‖ ≤
√∑m

i=1 c
2
i . For any δ ∈ (0, 1) with probability ≥ 1 − δ we

have

‖f(X1:m)− E[f(X1:m)]‖ ≤

√√√√ m∑
i=1

c2i +

√∑m
i=1 c

2
i

2
log(

1

δ
). (16)

The above theorem indicates that bounded differences in norm implies the concentration of f(X1:m)434

around its mean in norm, i.e., ‖f(X1:m)− E[f(X1:m)]‖ is small with high probability.435

Then, we bound the error between expected prior predictor wP
i and the empirical prior predictor ŵP

i .436

Lemma 3. Given the definition of wP
i [k] and ŵP

i [k] in (5) and (6), let X be a compact set with
radius R, i.e., ∀x,x′ ∈ X , ‖x− x′‖ ≤ R. For any δ ∈ (0, 1] with probability ≥ 1− δ, we have

‖wP
i [k]− ŵP

i [k]‖ ≤ αR
√
mik

(1 +

√
1

2
log(

1

δ
)). (17)

Proof. According to the definition of Φ̂v(·) in (6), for all points x1, . . . ,xj−1,xj+1, . . . ,xmk
,x′j in

the sample set Sik, we have
sup
xi,x′i

‖Φ̂v(x1:j−1,xj ,xj+1:mk
)− Φ̂v(x1:j−1,x

′
j ,xj+1:mk

)‖

=
1

mik
sup
xj ,x′j

‖φv(xj)− φv(x′j)‖ ≤
1

mik
sup
xj ,x′j

α‖xj − x′j‖ ≤
αR

mik
, (18)

where R denotes the domain of x, say R = supx ‖x‖. The first inequality follows from the Lipschitz
smoothness condition of Φv(·) and the second inequality follows by the definition of domain X .
Utilizing Theorem 3, for any δ ∈ (0, 1] with probability ≥ 1− δ we have

‖wP
i [k]− ŵP

i [k]‖ = ‖Φ̂v(Sik)− E[Φ̂v(Sik)]‖ ≤ αR
√
mik

(1 +

√
1

2
log(

1

δ
)). (19)

This implies the bound.437

Lemma 3 shows that the bounded difference of function Φv(·) implies its concentration, which can438

be further used to bound the differences between empirical prior predictor w̄P
i [k] and expected prior439

predictor wP
i [k]. Now, we bound the error between expected prior predictor wP

i and the LCC-based440

prior predictor w̄P
i .441

Lemma 2 Given the definition of wP
i and w̄P

i in (5) and (7), let X be a compact set with radius R,
i.e., ∀x,x′ ∈ X , ‖x− x′‖ ≤ R. For any δ ∈ (0, 1] with probability ≥ 1− δ, we have

‖wP
i − w̄P

i ‖2 ≤
K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

1

δ
)) +Oα,β(γ,C)

)2

. (20)
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Proof According to the definition of wP , w̄P and ŵP , we have
‖wP

i − w̄P
i ‖2

=

K∑
k=1

‖wP
i [k]− w̄P

i [k]‖2

=

K∑
k=1

‖E[Φ̂v(Sik)]− Φ̂v(Sik) + Φ̂v(Sik)− Φ̄v(Sik)‖2

=

K∑
k=1

(
‖E[Φ̂v(Sik)]− Φ̂v(Sik)‖2 + ‖Φ̂v(Sik)− Φ̄v(Sik)‖2 + 2(E[Φ̂v(Sik)]− Φ̂v(Sik))>(Φ̂v(Sik)− Φ̄v(Sik))

)
≤

K∑
k=1

(
‖E[Φ̂v(Sik)]− Φ̂v(Sik)‖2 + ‖Φ̂v(Sik)− Φ̄v(Sik)‖2 + 2‖E[Φ̂v(Sik)]− Φ̂v(Sik)‖‖Φ̂v(Sik)− Φ̄v(Sik)‖

)
.

(21)

Substitute Lemma 3 and Lemma 1 into the above inequality, we can derive

PSik∼D
mk
k

‖wP − w̄P ‖2 ≤
K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

1

δ
)) +Oα,β(γ,C)

)2
 ≥ 1− δ. (22)

This gives the assertion.442

Lemma 2 shows that the approximation error between expected prior predictor and LCC-based prior443

predictor depends on the number of samples in each category and the quality of the LCC coding444

scheme.445

D.3 PROOF OF THEOREM 2446

Theorem 3 Let Q be the posterior of base learner Q = N (wQ, σ2
wIdw) and P be the prior

N (Φ̄v(S), σ2
wIdw). The mean of prior is produced by the LCC-based prior predictor Φ̄v(S) in

Eq. (7) and its parameter v is sampled from the hyperposterior of meta learner Q = N (vQ, σ2
vIdv).

Given the hyperprior P = N (0, σ2
vIdv), then for any hyperposterior Q, any c1, c2 > 0 and any

δ ∈ (0, 1] with probability ≥ 1− δ we have,

er(Q) ≤c′1c′2êr(Q) + (

n∑
i=1

c′1c
′
2

2c2nmiσ2
v

+
c′1

2c1nσ2
v

)‖vQ‖2 +

n∑
i=1

c′1c
′
2

c2nmiσ2
w

‖E
v
wQ
i − Φ̄vQ(Si)‖2

+

n∑
i=1

c′1c
′
2

c2nmiσ2
w

 1

σ2
w

K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

4n

δ
)) +Oα,β(γ,C)

)2

+ dwK(
σv
σw

)2


+

n∑
i=1

c′1c
′
2

c2nmiσ2
w

log
4n

δ
+

c′1
2c1nσ2

v

log
2

δ
, (23)

where c′1 = c1
1−e−c1

and c′2 = c2
1−e−c2

. We can simplify the notation and obtain that

er(Q) ≤c′1c′2êr(Q) + (

n∑
i=1

c′1c
′
2

2c2nmiσ2
v

+
c′1

2c1nσ2
v

)‖vQ‖2 +

n∑
i=1

c′1c
′
2

c2nmiσ2
w

‖E
v
wQ
i − Φ̄vQ(Si)‖2

+ const(α, β,R, δ, n,mi). (24)

Proof Our proof contains two steps. First, we bound the error within observed tasks due to observing447

a limited number of samples. Then we bound the error on the task environment level due to observing448

a finite number of tasks. Both of the two steps utilize Catoni’s classical PAC-Bayes bound Catoni449

(2007) to measure the error. We give here a general statement of the Catoni’s classical PAC-Bayes450

bound.451

Theorem 4. (Classical PAC-Bayes bound, general notations) Let X be a sample space and X be
some distribution over X , and let F be a hypotheses space of functions over X . Define a loss function
g(f,X) : F × X → [0, 1], and let XG

1 , {X1, . . . , XG} be a sequence of G independent random
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variables distributed according to X. Let π be some prior distribution over F (which must not
depend on the samples X1, . . . , XG). For any δ ∈ (0, 1], the following bounds holds uniformly for
all posterior distribution ρ over F (even sample dependent),

PXG
1 ∼i.i.dX

{
E

X∼X
E
f∼ρ

g(f,X) ≤ c

1− e−c

[
1

G

G∑
g=1

E
f∼ρ

g(f,Xg) +
KL(ρ||π) + log 1

δ

G× c

]
,∀ρ

}
≥ 1− δ. (25)

First step We utilize Theorem 4 to bound the generalization error in each of the observed tasks.452

Let i ∈ 1, . . . , n be the index of task. For task i, we substitute the following definition into the453

Catoni’s PAC-Bayes Bound. Specifically, Xg , (xij , yij),K , mi denote the samples and X , Di454

denotes the data distribution. We instantiate the hypotheses with a hierarchical model f , (v,w),455

where v ∈ Rdv and w ∈ Rdw are the parameters of meta learner (prior predictor) Φv(·) and456

base learner h(·) respectively. The loss function only considers the base learner, which is defined457

as g(f,X) , `(hw(x), y). The prior over model parameter is represented as π , (P, P ) ,458

(N (0, σ2
vIdv),N (wP , σ2

wIdw)), a Gaussian distribution (hyperprior of meta learner) centered at 0459

and a Gaussian distribution (prior of base learner) centered at wP , respectively. We set the posterior460

to ρ , (Q, Q) , (N (vQ, σ2
vIdv),N (wQ, σ2

wIdw)), a Gaussian distribution (hyperposterior of461

meta learner) centered at vQ and a Gaussian distribution (posterior of base learner) centered at wQ.462

According to Theorem 4, the generalization bound holds for any posterior distribution including463

the one generated in our localized meta-learning framework. Specifically, we first sample v from464

hyperposteriorN (vQ, σ2
vIdv) and estimate wP by leveraging expected prior predictor wP = Φv(D).465

The base learner algorithm Ab(S, P ) utilizes the sample set S and the prior P = N (wP , σ2
wIdw)466

to produce a posterior Q = Ab(S, P ) = N (wQ, σ2
wIdw). Then we sample base learner parameter467

w from posterior N (wQ, σ2
wIdw) and compute the incurred loss `(hw(x), y). On the whole, meta-468

learning algorithmAm(S1, . . . , Sn,P) observes a series of tasks S1, . . . , Sn and adjusts its hyperprior469

P = N (vP , σ2
vIdv) into hyperposterior Q = Am(S1, . . . , Sn,P) = N (vQ, σ2

vIdv).470

The KL divergence term between prior π and posterior ρ is computed as follows:

KL(ρ‖π) = E
f∼ρ

log
ρ(f)

π(f)
= E

v∼N (vQ,σ2
vIdv )

E
w∼N (wQ,σ2

wIdw )
log
N (vQ, σ2

vIdv)N (wQ, σ2
wIdw)

N (0, σ2
vIdv)N (wP , σ2

wIdw)

= E
v∼N (vQ,σ2

vIdv )
log
N (vQ, σ2

vIdv)

N (0, σ2
vIdv)

+ E
v∼N (vQ,σ2

vIdv )
E

w∼N (wQ,σ2
wIdw )

log
N (wQ, σ2

wIdw)

N (wP , σ2
wIdw)

=
1

2σ2
v

‖vQ‖2 + E
v∼N (vQ,σ2

vIdv )

1

2σ2
w

‖wQ −wP ‖2. (26)

In our localized meta-learning framework, in order to make KL(Q||P ) small, the center of prior
distribution wP is generated by the expected prior predictor wP = Φv(D). However, the data
distribution D is considered unknown and our only insight as to Dik is through the sample set
Sik. In this work, we approximate the expected prior predictor Φv(D) with the LCC-based prior
predictor w̄P = Φ̄v(S). Denote the term E

v∼N (vQ,σ2
vIdv )

1
2σ2

w
‖wQ −wP ‖2 by E

v

1
2σ2

w
‖wQ −wP ‖2

for convenience, we have

E
v

1

2σ2
w

‖wQ −wP ‖2 =E
v

1

2σ2
w

‖wQ − w̄P + w̄P −wP ‖2

=E
v

1

2σ2
w

[‖wQ − w̄P ‖2 + ‖w̄P −wP ‖2 + 2(wQ − w̄P )>(w̄P −wP )]

≤E
v

1

2σ2
w

[‖wQ − w̄P ‖2 + ‖w̄P −wP ‖2 + 2‖wQ − w̄P ‖‖w̄P −wP ‖]

≤ 1

σ2
w

E
v
‖wQ − Φ̄v(S)‖2 +

1

σ2
w

E
v
‖w̄P −wP ‖2. (27)
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Since w̄P
i = Φ̄v(Si) = [Φ̄v(Si1), . . . , Φ̄v(Sik), . . . , Φ̄v(SiK)], we have

E
v
‖wQ

i − Φ̄v(Si)‖2 =

K∑
k=1

E
v
‖wQ

i [k]− Φ̄v(Sik)‖2

=

K∑
k=1

(
E
v
‖wQ

i [k]‖2 − 2(E
v
wQ
i [k])>(Φ̄vQ(Sik)) + ‖Φ̄vQ(Sik)‖2 + V

v
[‖Φ̄v(Sik)‖]

)
=

K∑
k=1

(
‖E
v
wQ
i [k]− Φ̄vQ(Sik)‖2 +

dv
|C|

σ2
v

)
=‖E

v
wQ
i − Φ̄vQ(Si)‖2 + dwKσ

2
v, (28)

where V
v

[‖Φ̄v(Sik)‖] denotes the variance of ‖Φ̄v(Sik)‖. The last equality uses the fact that dv =

|C|dw. Combining Lemma 2, for any δ′ ∈ (0, 1] with probability ≥ 1− δ′ we have

E
v

1

2σ2
w

‖wQ
i −wP

i ‖2

≤ 1

σ2
w

‖E
v
wQ
i − Φ̄vQ(Si)‖2 + dwK(

σv
σw

)2 +
1

σ2
w

K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

1

δ
)) +Oα,β(γ,C)

)2

(29)

Then, according to Theorem 4, we obtain that for any δi
2 > 0

PSi∼D
mi
i

{
E

(x,y)∼Di

E
v∼N (vQ,σ2

vIdv )
E

w∼N (wQ,σ2
wIdw )

`(hw(x), y)

≤ c2
1− e−c2

· 1

mi

mi∑
j=1

E
v∼N (vQ,σ2

vIdv )
E

w∼N (wQ,σ2
wIdw )

`(hw(xj), yj)

+
1

(1− e−c2) ·mi

(
1

2σ2
v

‖vQ‖2 + E
v∼N (vQ,σ2

vIdv )

1

2σ2
w

‖wQ
i −wP

i ‖2 + log
2

δi

)
,∀Q

}
≥ 1− δi

2
,

(30)
for all observed tasks i = 1, . . . , n. Define δ′ = δi

2 and combine inequality (29), we obtain

PSi∼D
mi
i

{
E

(x,y)∼Di

E
v∼N (vQ,σ2

vIdv )
E

w∼N (wQ,σ2
wIdw )

`(hw(x), y)

≤ c2
1− e−c2

· 1

mi

mi∑
j=1

E
v∼N (vQ,σ2

vIdv )
E

w∼N (wQ,σ2
wIdw )

`(hw(xj), yj)

+
1

(1− e−c2)mi
·
(

1

2σ2
v

‖vQ‖2 +
1

σ2
w

‖E
v
wQ
i − Φ̄vQ(Si)‖2 + log

2

δi
+ dwK(

σv
σw

)2

+
1

σ2
w

K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

2

δi
)) +Oα,β(γ,C)

)2
)
,∀Q

}
≥ 1− δi, (31)

Using the notations in Section 3, the above bound can be simplified as

PSi∼D
mi
i

{
E

v∼N (vQ,σ2
vIdv ),wP =Φv(D),Pi=N (wP ,σ2

wIdw )
er(Ab(Si, Pi))

≤ c2
1− e−c2

E
v∼N (vQ,σ2

vIdv ),wP =Φv(D),Pi=N (wP ,σ2
wIdw )

êr(Ab(Si, Pi))

+
1

(1− e−c2)mi

(
1

2σ2
v

‖vQ‖2 +
1

σ2
w

‖E
v
wQ
i − Φ̄vQ(Si)‖2 + log

2

δi
+ dwK(

σv
σw

)2

+
1

σ2
w

K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

2

δi
)) +Oα,β(γ,C)

)2
)
,∀Q

}
≥ 1− δi. (32)

Second step Next we bound the error due to observing a limited number of tasks from the environment.
We reuse Theorem 4 with the following substitutions. The samples are (Di,mi, Si), i = 1, . . . , n,
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where (Di,mi) are sampled from the same meta distribution τ and Si ∼ Dmi
i . The hyposthe-

sis is parameterized as Φv(D) with meta learner parameter v. The loss function is g(f,X) ,
E

(x,y)∼D
E

w∼N (wQ,σ2
wIdw )

`(hw(x), y), where wQ = Ab(Si, Pi). Let π , N (0, σ2
vIdv) be the prior

over meta learner parameter, the following holds for any δ0 > 0,

P(D
mi
i )∼τ,Si∼D

mi
i ,i=1,...,n

{
E

(D,m)∼τ
E

S∼Dm
E

v∼N (vQ,σ2
vIdv )

E
w∼N (wQ,σ2

wIdw )
E

(x,y)∼Di

`(hw(x), y)

≤ c1
1− e−c1

· 1

n

n∑
i=1

E
v∼N (vQ,σ2

vIdv )
E

w∼N (wQ,σ2
wIdw )

E
(x,y)∼Di

`(hw(x), y)

+
1

(1− e−c1)n

(
1

2σ2
v

‖vQ‖2 + log
1

δ0

)
,∀Q

}
≥ 1− δ0. (33)

Using the term in Section 3, the above bound can be simplified as

P(D
mi
i )∼τ,Si∼D

mi
i ,i=1,...,n

{
er(Q)

≤ c1
1− e−c1

· 1

n

n∑
i=1

E
v∼N (vQ,σ2

vIdv ),wP =Φv(D),Pi=N (wP ,σ2
wIdw )

er(Ab(Si, Pi))

+
1

(1− e−c1)n

(
1

2σ2
v

‖vQ‖2 + log
1

δ0

)
,∀Q

}
≥ 1− δ0, (34)

Finally, by employing the union bound, we could bound the probability of the intersection of the
events in (32) and (34) For any δ > 0, set δ0 , δ

2 and δi , δ
2n for i = 1, . . . , n, we have

P(D
mi
i )∼τ,Si∼D

mi
i ,i=1,...,n

{
er(Q)

≤ c1c2
(1− e−c1)(1− e−c2)

· 1

n

n∑
i=1

E
v∼N (vQ,σ2

vIdv ),wP =Φv(D),Pi=N (wP ,σ2
wIdw )

êr(Ab(Si, Pi))

+
c1

1− e−c1
· 1

n

n∑
i=1

1

(1− e−c2)mi

(
1

2σ2
v

‖vQ‖2 +
1

σ2
w

‖E
v
wQ
i − Φ̄vQ(Si)‖2 + log

4n

δ

+
1

σ2
w

K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

4n

δ
)) +Oα,β(γ,C)

)2

+ dwK(
σv
σw

)2


+

1

(1− e−c1)n

(
1

2σ2
v

‖vQ‖2 + log
2

δ

)
,∀Q

}
≥ 1− δ. (35)

We can further simplify the notation and obtain that

P(D
mi
i )∼τ,Si∼D

mi
i ,i=1,...,n

{
er(Q) ≤ c′1c′2êr(Q)

+(

n∑
i=1

c′1c
′
2

2c2nmiσ2
v

+
c′1

2c1nσ2
v

)‖vQ‖2 +

n∑
i=1

c′1c
′
2

c2nmiσ2
w

‖E
v
wQ
i − Φ̄vQ(Si)‖2

+const(α, β,R, δ, n,mi),∀Q

}
≥ 1− δ, (36)

where c′1 = c1
1−e−c1

and c′2 = c2
1−e−c2

. This completes the proof.471

D.4 PROOF OF THEOREM 1472

Theorem 2 Let Q be the posterior of base learner Q = N (wQ, σ2
wIdw) and P be the prior

N (wP , σ2
wIdw). The mean of prior is sampled from the hyperposterior of meta learner Q =

N (wQ, σ2
wIdw). Given the hyperprior P = N (0, σ2

wIdw), then for any hyperposterior Q, any
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c1, c2 > 0 and any δ ∈ (0, 1] with probability ≥ 1− δ we have,

er(Q) ≤c′1c′2êr(Q) + (

n∑
i=1

c′1c
′
2

2c2nmiσ2
w

+
c′1

2c1nσ2
w

)‖wQ‖2 +

n∑
i=1

c′1c
′
2

2c2nmiσ2
w

‖ E
wP

wQ
i −wQ‖2

+

n∑
i=1

c′1c
′
2

c2nmiσ2
w

(
1

2
+ log

2n

δ
) +

c′1
c1nσ2

w

log
2

δ
, (37)

where c′1 = c1
1−e−c1

and c′2 = c2
1−e−c2

.473

Proof Instead of generating the mean of prior with a prior predictor, the vanilla meta-learning frame-
work directly produces the mean of prior wP by sampling from hyperposteriorQ = N (wQ, σ2

wIdw).
Then the base learner algorithmAb(S, P ) utilizes the sample set S and the prior P = N (wP , σ2

wIdw)
to produce a posterior Q = Ab(S, P ) = N (wQ, σ2

wIdw). Similarly with the two-steps proof in
Theorem 2, we first get an intra-task bound by using Theorem 4. For any δi > 0, we have

PSi∼D
mi
i

{
E

(x,y)∼Di

E
wP∼N (wQ,σ2

wIdw )
E

w∼N (wQ,σ2
wIdw )

`(hw(x), y)

≤ c2
1− e−c2

· 1

mi

mi∑
j=1

E
wP∼N (wQ,σ2

wIdw )
E

w∼N (wQ,σ2
wIdw )

`(hw(xj), yj)

+
1

(1− e−c2) ·mi

(
1

2σ2
w

‖wQ‖2 + E
wP

i ∼N (wQ,σ2
wIdw )

1

2σ2
w

‖wQ
i −wP

i ‖2 + log
1

δi

)
,∀Q

}
≥ 1− δi,

(38)
The term E

wP
i ∼N (wQ,σ2

wIdw )

1
2σ2

w
‖wQ

i −wP
i ‖2 can be simplified as

E
wP

i ∼N (wQ,σ2
wIdw )

1

2σ2
w

‖wQ
i −wP

i ‖2

=
1

2σ2
w

(
E
wP
‖wQ

i ‖
2 − 2( E

wP
wQ
i )>wQ + ‖wQ‖2 + V

wP
i

[‖wP
i ‖]
)

=
1

2σ2
w

(
‖ E
wP

wQ
i −wQ‖2 + σ2

w

)
, (39)

where V
wP

i

[‖wP
i ‖] denotes the variance of ‖wP

i ‖. Then we get an inter-task bound. For any δ0 > 0,

we have

P(D
mi
i )∼τ,Si∼D

mi
i ,i=1,...,n

{
E

(D,m)∼τ
E

S∼Dm
E

wP∼N (wQ,σ2
wIdw )

E
w∼N (wQ,σ2

wIdw )
E

(x,y)∼Di

`(hw(x), y)

≤ c1
1− e−c1

· 1

n

n∑
i=1

E
wP∼N (wQ,σ2

wIdw )
E

w∼N (wQ,σ2
wIdw )

E
(x,y)∼Di

`(hw(x), y)

+
1

(1− e−c1)n

(
1

2σ2
w

‖wQ‖2 + log
1

δ0

)
,∀Q

}
≥ 1− δ0. (40)

For any δ > 0, set δ0 , δ
2 and δi , δ

2n for i = 1, . . . , n. Using the union bound, we finally get

P(D
mi
i )∼τ,Si∼D

mi
i ,i=1,...,n

{
er(Q)

≤ c1c2
(1− e−c1)(1− e−c2)

· 1

n

n∑
i=1

E
v∼N (vQ,σ2

vIdv ),wP =Φv(D),Pi=N (wP ,σ2
wIdw )

êr(Ab(Si, Pi))

+
c1

1− e−c1
· 1

n

n∑
i=1

1

(1− e−c2) ·mi

(
1

2σ2
w

‖wQ‖2 +
1

2σ2
w

‖ E
wP

wQ
i −wQ‖2 +

1

2
+ log

2n

δ

)

+
1

(1− e−c1)n

(
1

2σ2
w

‖wQ‖2 + log
2

δ

)
,∀Q

}
≥ 1− δ. (41)
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Similarly, we can further simplify the notation and obtain that

P(D
mi
i )∼τ,Si∼D

mi
i ,i=1,...,n

{
er(Q) ≤ c′1c′2êr(Q)

+(

n∑
i=1

c′1c
′
2

2c2nmiσ2
w

+
c′1

2c1nσ2
w

)‖wQ‖2 +

n∑
i=1

c′1c
′
2

2c2nmiσ2
w

‖ E
wP

wQ
i −wQ‖2

+const(δ, n,mi),∀Q

}
≥ 1− δ, (42)

where c′1 = c1
1−e−c1

and c′2 = c2
1−e−c2

. This completes the proof.474

E DETAILS OF EXPERIMENTS475

While the theorems consider bounded-loss, we use an unbounded loss in our experiments, we can476

have theoretical guarantees on a variation of the loss which is clipped to [0; 1]. Besides, in practice477

the loss function is almost always smaller than one.478

E.1 DATA PREPARATION479

We used the 5-way 50-shot classification setups, where each task instance involves classifying480

images from 5 different categories sampled randomly from one of the meta-sets. We did not employ481

any data augmentation or feature averaging during meta-training, or any other data apart from the482

corresponding training and validation meta-sets.483

E.2 NETWORK ARCHITECHTURE484

Auto-Encoder for LCC For CIFAR100, the encoder is 7 layers with 16-32-64-64-128-128-256485

channels. Each convolutional layer is followed by a LeakyReLU activation and a batch normalization486

layer. The 1st, 3rd and 5th layer have stride 1 and kernel size (3, 3). The 2nd, 4th and 6th layer have487

stride 2 and kernel size (4, 4). The 7th layer has stride 1 and kernel size (4, 4). The decoder is the488

same as encoder except that the layers are in reverse order. The input is resized to 32 × 32. For489

Caltech-256, the encoder is 5 layers with 32-64-128-256-256 channels. Each convolutional layer is490

followed by a LeakyReLU activation and a batch normalization layer. The first 4 layers have stride 2491

and kernel size (4, 4). The last layer has stride 1 and kernel size (6, 6). The decoder is the same as492

encoder except that the layers are in reverse order. The input is resized to 96× 96.493

Base Model The network architecture used for the classification task is a small CNN with 4 con-494

volutional layers, each with 32 filters, and a linear output layer, similar to Finn et al. (2017). Each495

convolutional layer is followed by a Batch Normalization layer, a Leaky ReLU layer, and a max-496

pooling layer. For CIFAR100, the input is resized to 32× 32. For Caltech-256, the input is resized to497

96× 96.498

E.3 OPTIMIZATION499

Auto-Encoder for LCC As optimizer we used AdamKingma & Ba (2015) with β1 = 0.9 and500

β2 = 0.999. The initial learning rate is 1× 10−4. The number of epochs is 100. The batch size is501

512.502

LCC Training We alternatively train the coefficients and bases of LCC with Adam with β1 = 0.9503

and β2 = 0.999. In specifics, for both datasets, we alternatively update the coefficients for 60 times504

and then update the bases for 60 times. The number of training epochs is 3.The number of bases is505

64. The batch size is 256.506

Pre-Training of Feature Extractor We use a 64-way classification in CIFAR-100 and 150-way507

classification in Caltech-256 to pre-train the feature embedding only on the meta-training dataset. For508

both CIFAR100 and Caltech-256, an L2 regularization term of 5e−4 was used. We used the Adam509

optimizer. The initial learning rate is 1× 10−3, β1 is 0.9 and β2 is 0.999. The number of epochs is510

50. The batch size is 512.511
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Meta-Training We use the cross-entropy loss as in Amit & Meir (2018). Although this is inconsistent512

with the bounded loss setting in our theoretical framework, we can still have a guarantee on a variation513

of the loss which is clipped to [0, 1]. In practice, the loss is almost always smaller than one. For514

CIFAR100 and Caltech-256, the number of epochs of meta-training phase is 12; the number of epochs515

of meta-testing phase is 40. The batch size is 32 for both datasets. As optimizer we used Adam with516

β1 = 0.9 and β2 = 0.999. In the setting with a pre-trained base model, the learning rate is 1× 10−5517

for convolutional layers and 5× 10−4 for the linear output layer. In the setting without a pre-trained518

base model, the learning rate is 1× 10−3 for convolutional layers and 5× 10−3 for the linear output519

layer. The confidence parameter is chosen to be δ = 0.1. The variance hyper-parameters for prior520

predictor and base model are σw = σv = 0.01. The hyperparameters α1, α2 in LML and ML-A are521

set to 0.01.522

E.4 MORE EXPERIMENTAL RESULTS523

We also compare with two typical meta-learning few-shot learning methods: MAML (Finn et al.,524

2017) and MatchingNet (Vinyals et al., 2016). Both two methods use the Adam optimizer with initial525

learning rate 0.0001. In the meta-training phase, we randomly split the samples of each class into526

support set (5 samples) and query set (45 samples). The number of epochs is 100. For MAML, the527

learning rate of inner update is 0.01.528
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Figure 5: Average test accuracy of learning a new task for varied numbers of training tasks (|C| = 64).

In Figure 5, we demonstrate the average test error of learning a new task based on the number of529

training tasks, together with the standard deviation, in different settings (with or without a pre-trained530

feature extractor). We can find that all PAC-Bayes baselines outperform MAML and MatchingNet.531

Note that MAML and MatchingNet adopt the episodic training paradigm to solve the few-shot532

learning problem. The meta-training process requires millions of tasks and each task contains limited533

samples, which is not the case in our experiments. Scarce tasks in meta-training leads to severely534

meta-overfitting. In our method, the learned prior serves both as an initialization of base model and535

as a regularizer which restricts the solution space in a soft manner while allowing variation based on536

specific task data. It yields a model with smaller error than its unbiased counterpart when applied to a537

similar task.538

F PSEUDO CODE539
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Algorithm 1 Localized Meta-Learning (LML) algorithm
Input: Data sets of observed tasks: S1, . . . , Sn.
Output: Learned prior predictor Φ̄ parameterized by v.
Initialize v ∈ Rdv and wi ∈ Rdw for i = 1 . . . , n.
Construct LCC scheme (γ,C) from the whole training data by optimizing Eq. (12).
while not converged do

for each task i ∈ {1, . . . , n} do
Sample a random mini-batch from the data S′i ⊂ Si.
Approximate E

v
êri(wi) using S′i.

end for
Compute the objective in (11), i.e. J ←

∑n
i=1 Ev êri(wi) + α1‖vQ‖2 +

∑n
i=1

α2

mi
‖E
v
wQ
i −

Φ̄vQ(Si)‖2.
Evaluate the gradient of J w.r.t. {v,w1, . . . ,wn} using backpropagation.
Take an optimization step.

end while
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