

NON-REPLACEMENT FUNCTION SPACE SAMPLING FOR BAYESIAN OPTIMIZATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Bayesian optimization (BO) is a probabilistic framework for global optimization
 012 of expensive black-box functions, typically guided by an acquisition function that
 013 balances exploration and exploitation. We propose a novel acquisition strategy—
 014 Non-Replacement Function Space Sampling (NRFS). Instead of explicitly bal-
 015 ancing the exploration–exploitation trade-off as in traditional BO methods, NRFS
 016 implicitly achieves this balance by prioritizing sampling functions from the func-
 017 tion space that have not been involved in previous acquisition decisions. By es-
 018 tablishing a correspondence between each candidate and the set of functions that
 019 consider it as the corresponding optimizer, we derive a principled and efficient
 020 searching strategy in the design space. We provide strong empirical evidence
 021 demonstrating that NRFS achieves state-of-the-art performance across a range of
 022 benchmark tasks, consistently improving optimization performance in all settings,
 023 particularly in challenging settings that demand both broad exploration and pre-
 024 cise exploitation.

1 INTRODUCTION

027 Bayesian Optimization (BO) is one of sample-efficient strategies to optimize black-box functions
 028 that are often expensive to query. BO strives for the balance between exploration and exploita-
 029 tion to efficiently identify optimal solutions (Jalali et al., 2012; Candelieri, 2023), where explo-
 030 ration encourages querying in regions of high uncertainty to improve understanding of function
 031 responses globally, while exploitation favors regions with promising predicted values to quickly
 032 find optima (de Ath et al., 2021). Classical acquisition functions in BO, such as Expected Improve-
 033 ment (EI) (Jones et al., 1998) and Probability of Improvement (PI) (Kushner, 1964; Snoek et al.,
 034 2012), primarily focus on quantifying potential performance gains. Entropy-based approaches,
 035 including Predictive Entropy Search (PES) (Hernández-Lobato et al., 2014) and Max-value En-
 036 tropy Search (MES) (Wang & Jegelka, 2017), focus on reducing uncertainty about the location
 037 of the global optimum. Other uncertainty-reduction approaches, such as Expected Information
 038 Gain (EIG) (Tsilifis et al., 2017) and step-wise uncertainty reduction (Villemonteix et al., 2009),
 039 aim to clarify the black-box function itself, thereby enhancing the reliability of the surrogate model.
 040 Methods that emphasize performance gains may suffer from oversampling when the surrogate is
 041 biased or mis-specified (Wang & de Freitas, 2014), whereas uncertainty-reduction approaches do
 042 not directly target the optimizer location, potentially leading to inefficiency in identifying pre-
 043 cise optima. To balance these two objectives, hybrid methods such as Upper Confidence Bound
 044 (UCB) (Auer et al., 2002) and Variational Entropy Search (VES) (Cheng et al., 2025) combine per-
 045 formance gain and uncertainty into a single reward to guide optimization. Other strategies adaptively
 switch between exploration and exploitation based on current observations (Bian et al., 2021).

046 These existing BO acquisition strategies share two common features: 1) they are typically based on
 047 human-defined subjective acquisition functions that may deviate from finding true optima: Whether
 048 they are framed in terms of the surrogate model or optimizer location uncertainty, iterative improve-
 049 ment with respect to specified criteria, or a combination of both, the corresponding acquisitions can
 050 be biased instead of fully aligned with the ground-truth optimizer. 2) The estimation of the acqui-
 051 sition functions can also introduce biases based on the chosen surrogate model space. Researchers
 052 often interpret the surrogate as a collection of candidate functions, any of which could represent the
 053 true objective function. However, this assumption may not lead to fast identification of optima in
 practice. For instance, the goal of BO is to identify the true optimum beyond the current best, while

Figure 1: Acquisition behavior comparison for different acquisition strategies over two iterations: the first plot shows the initial state, and the second plot shows the state after adding the NRFS acquisition candidate to the training samples. The colormap highlights the exploration/exploitation tendencies of different acquisition strategies, where red indicates exploration and blue indicates exploitation.

during BO iterations, many sampled functions could not reach the true optimum, particularly those that already assigned the current best observation as their optimizer. This can lead to redundancy and bias towards inefficient acquisition function estimation without focusing quickly on the underlying true objective function and its optimal solution(s).

To develop a more efficient BO acquisition strategy, we focus on two key aspects: (1) what is the most suitable objective target to guide the acquisition, and (2) what is the most effective method to estimate this objective target. We develop a new probabilistic reasoning framework via Probability of Optimality (PO), which directly characterizes the likelihood of a candidate being the optimizer without relying on human-defined heuristics. Furthermore, we employ a non-replacement sampling strategy to estimate PO precisely.

Within this framework, we propose a new acquisition strategy, Non-Replacement Function Space Sampling (NRFS), which adopts a unified strategy that directly connects optimizer probability to function space coverage, consistently ensuring convergence to the global optimum. In our formulation, the surrogate model is treated as a pool of functions that contain the true objective. We iteratively identify the optimizers of functions sampled from this pool and remove these functions without replacement until the pool is fully depleted. The key advantage of this approach is that, even if the fitted surrogate is over represented in certain regions, as long as the surrogate contains the true objective, non-replacement sampling guarantees convergence once the pool is exhausted. With this strategy, no subjective reward is defined or used during the acquisition process.

Assume that we have collected observations \mathcal{D} , to which we fit a Gaussian process and denote the corresponding function space as $\mathcal{F}_{\mathcal{GP}}^{\mathcal{D}}$. We then take each design point \mathbf{x} to define a *bucket*:

$$\mathcal{F}_{\mathbf{x}}^{\mathcal{D}} = \left\{ f \in \mathcal{F}_{\mathcal{GP}}^{\mathcal{D}} \mid \mathbf{x} = \arg \min_{\mathbf{x}' \in \mathcal{X}} f(\mathbf{x}') \right\}, \quad (1)$$

which contains all functions with \mathbf{x} being their optimizer. This definition guarantees that each function, including the objective function, belongs to at least one bucket. For functions with multiple global optima, we assign them randomly to one of their valid buckets to have one-to-one mappings between \mathbf{x} and $\mathcal{F}_{\mathbf{x}}^{\mathcal{D}}$. If we could identify the bucket containing the true objective function, the BO task would be solved. Our approach selects the bucket containing the largest number of functions, thereby maximizing the probability that the true objective resides within the bucket. Once a bucket is selected, we remove all functions assigned to it from future consideration, ensuring that no function is selected more than once and thereby improving search efficiency.

Figure 1 illustrates a motivating example demonstrating the effectiveness of our NRFS strategy directly focusing on the global optimizer without tuning exploration-exploitation trade-off as in many existing methods. The objective is to locate the global optimum in the rightmost valley. In the initial state, EI and PO remain focused on local optima (left two valleys), where the surrogate already exhibits high confidence. This observation suggests that relying solely on PO, without incorporating NRFS, still suffers from the oversampling issue observed in EI. PES and NRFS demonstrate stronger performance on avoiding oversampling; however, after new acquisition, PES continues to target high-uncertainty areas. In contrast, NRFS shifts attention towards the promising region as shown by the pink curve in the right plot of Figure 1, enabling successful identification of the global optimum.

108 As we have briefly introduced the limitations of existing acquisition strategies in BO and how our
 109 proposed NRFS addresses them, we will present more details of our contribution based on the fol-
 110 lowing organization: Section 2 provides a more detailed overview of commonly used acquisition
 111 functions in BO; Section 3 introduces our NRFS-based BO formulation; Section 4 reports empirical
 112 results, and Section 5 concludes the paper.

114 2 BACKGROUND

116 2.1 BAYESIAN OPTIMIZATION

118 Let \mathbf{x} be a d -dimensional vector of decision variables in the feasible design space $\mathcal{X} \subset \mathbb{R}^d$; and
 119 $f^*(\cdot) : \mathcal{X} \rightarrow \mathbb{R}$ a continuous black-box objective function, with any evaluation $f^*(\mathbf{x})$ being an
 120 expensive process with respect to time and/or cost. We aim to approach the global minimizer $\mathbf{x}_{f^*}^*$
 121 within a limited number of evaluations by a given function evaluation budget:

$$122 \quad \mathbf{x}_{f^*}^* = \arg \min_{\mathbf{x} \in \mathcal{X}} f^*(\mathbf{x}). \quad (2)$$

124 In BO, the unknown black-box objective function is often modeled by a Gaussian process (GP),
 125 $p(f)$, characterized by its mean function $\mu(\cdot) : \mathcal{X} \rightarrow \mathbb{R}$ and covariance kernel function $k(\cdot, \cdot) : \mathcal{X}^2 \rightarrow \mathbb{R}$. BO sequentially selects a sequence of observed samples for their corresponding eval-
 126 uations (Frazier, 2018). Given the observation data set until the n -th iteration $\mathcal{D}_n = \{\mathbf{X}_n, Y_n\}$,
 127 the GP posterior of f is updated (Rasmussen, 2003). We denote the posterior belief of f as
 128 $p(y | \mathbf{x}, \mathcal{D}_n) = P(y = f^*(\mathbf{x}) | \mathcal{D}_n)$. In each BO iteration, the next query point is chosen by
 129 optimizing an acquisition function:
 130

$$131 \quad \mathbf{x} = \arg \max_{\mathbf{x}' \in \mathcal{X}} u_n(\mathbf{x}'), \quad (3)$$

133 where $u_n(\mathbf{x})$ is the expected utility of evaluating \mathbf{x} based on the updated GP posterior. The ac-
 134 quisition function should avoid oversampling and unnecessary exploration, which means that the
 135 resulting sequential queries should favor both the points with potential good values with respect to
 136 the objective and the informative points from the unexplored regions for learning better optimizer
 137 distribution.

138 2.2 RELATED WORK

140 A commonly used strategy in BO is to estimate the potential improvement obtained by evaluating a
 141 candidate point \mathbf{x} . Expected Improvement (EI) is a widely used acquisition function that accounts
 142 for potential improvements in objective value (Jones et al., 1998). A well-known limitation of EI is
 143 its tendency to oversample near local optima, particularly when the probabilistic model’s prior is the
 144 initialization is biased or mis-specified (Wang & de Freitas, 2014). Probability of Improvement (PI),
 145 which targets the likelihood of improvement, exhibits similar behavior (Kushner, 1964; Snoek et al.,
 146 2012). Oversampling usually happens when the acquisition is close to the evaluated training points,
 147 and the updated surrogate model will show minimal differences compared to the previous iteration.
 148 Consequently, the acquisition is repeatedly computed from a function set resembling the previous
 149 one, which results in nearly identical acquisition decisions iteratively.

150 Beyond acquisition functions that target improvement-based rewards, some strategies instead em-
 151 phasize uncertainty reduction. These methods can be grouped into two categories. The first category
 152 aims to reduce uncertainty about the optimizer’s location. For example, Entropy Search (ES) and
 153 PES (Villemonteix et al., 2009; Hernández-Lobato et al., 2014) explicitly model the posterior distri-
 154 bution over the unknown minimizer, denoted by:

$$155 \quad P(\mathbf{x} = \mathbf{x}_{f^*}^* | \mathcal{D}_n) \approx \mathbb{E}_{f \sim \mathcal{GP}}[P(\mathbf{x} = \mathbf{x}_{f^*}^* | \mathcal{D}_n)] = \mathbb{E}_{f \sim \mathcal{GP}}[P(\mathbf{x} = \arg \min_{\mathbf{x}'} f(\mathbf{x}') | \mathcal{D}_n)]. \quad (4)$$

157 Since ES aims to reduce the uncertainty in the location of the true optimizer $\mathbf{x}_{f^*}^*$, the observation
 158 sequence selected is not necessarily close to $\mathbf{x}_{f^*}^*$, which may not provide promising candidates
 159 with optimal objective value under limited evaluation budget. In the extreme scenario where the
 160 optimizer’s location is already known, PES still cannot determine the next acquisition point because
 161 the entropy contributions for optimal impossible candidates and the definitive optimizer are both 0.
 The second category targets reduction of function uncertainty, as in EIG or step-wise uncertainty

162 reduction methods, which aim to shrink the set of possible functions over the entire search space.
 163 However, this strategy can also be inefficient, since it expends extra effort distinguishing between
 164 functions that share the same optimizer.

165 To mitigate oversampling in a single region and suboptimal suggestions from uncertainty reduction,
 166 researchers have explored hybrid approaches, such as UCB, Moment Generating Function
 167 (MGF) (Wang et al., 2017), Truncated Variance Reduction (TVR) (Bogunovic et al., 2016) and
 168 VES, aim to balance exploration and exploitation with hyperparameters that guide acquisitions to-
 169 ward regions of high uncertainty when the process gets trapped in local optima. These methods
 170 typically favor either exploitation-driven or uncertainty-reduction-driven decisions in specific it-
 171 erations, but rarely balance both simultaneously. Alternative hybrid methods, such as ϵ -EI, enforce
 172 exploration in random iterations with a fixed probability ϵ . Researchers also design schedules that
 173 decrease exploration as iterations progress. However, the optimal balance between exploration and
 174 exploitation is problem-dependent, making it challenging to predefine a universally effective sched-
 175 ule for diverse unknown objectives. To address this challenge, online tuning strategies are employed
 176 to dynamically adjust hyperparameters or schedules. Unfortunately, these strategies usually require
 177 at least 50 to 100 iterations to converge to optimal settings and can be even more computationally
 178 expensive for problems of high complexity.

179 In summary, most popular acquisition functions are driven by subjective rewards such as objective
 180 improvement, entropy reduction, variance minimization, or their combinations. While some of these
 181 strategies can yield strong empirical performance in certain cases, there still lacks a single unified
 182 policy strategy that works universally. This leads to an awkward situation in practice: identifying
 183 the most appropriate acquisition strategy often requires testing multiple options, merging existing
 184 ones, or constructing new hybrids. Rather than investing effort in developing a universal principle,
 185 the prevailing trend is to combine heuristics in the hope of achieving a better lower bound of the
 186 convergence rate, more focusing on *ad-hoc* engineering attempts by testing empirical performances.
 187 However, as long as acquisition is guided by subjective rewards, the process will remain biased
 188 towards human-designed targets rather than the true optimizer location, regardless of how much
 189 effort is spent on merging and tuning engineering heuristics.

190 3 NON-REPLACEMENT FUNCTION SPACE SAMPLING

192 3.1 OPTIMIZER PROBABILITY

194 To avoid redundant and/or biased BO acquisitions from subjective rewards, our new acquisition
 195 strategy, NRFS, adopts PO as our utility function, which focuses on maximizing the probability that
 196 the next acquisition corresponds to the true optimizer:

$$198 \quad \mathbf{x} = \arg \max_{\mathbf{x}' \in \mathcal{X}} P(\mathbf{x}' = \mathbf{x}_{f^*}^*). \quad (5)$$

200 Compared to methods based on specific evaluation criteria, such as EI or PES, (5) expresses the
 201 objective of BO more directly and accurately, as it is derived from the ultimate goal in (2) and does
 202 not depend on any additional, subjectively defined rewards. However, as we do not have the un-
 203 derlying objective function f^* , the key challenge here becomes reliably estimating this probability
 204 by replacing f^* in (2) with f drawn from the surrogate function distribution, so that the fixed opti-
 205 mizer location on the left-hand side becomes a distribution over optimizer locations. The objective is
 206 then to identify the most probable optimizer location within this iteratively updated surrogate model
 207 space via this optimizer distribution.

208 Direct estimation of the probability $P(\mathbf{x} = \mathbf{x}_{f^*}^*)$ is nontrivial when each $\mathbf{x} \in \mathcal{X}$ is treated merely
 209 as an observed input location. Following the formulation strategy of Hennig & Schuler (2012), we
 210 reformulate PO as:

$$211 \quad P(\mathbf{x} = \mathbf{x}_{f^*}^*) = p_{min}(\mathbf{x}) = \int_{f: \mathcal{X} \rightarrow \mathcal{Y}} p(f) \prod_{\substack{\tilde{\mathbf{x}} \in \mathcal{X} \\ \tilde{\mathbf{x}} \neq \mathbf{x}}} \theta[f(\tilde{\mathbf{x}}) - f(\mathbf{x})] df, \quad (6)$$

214 where $\theta[\cdot]$ is the Heaviside step function. The term $\prod_{\substack{\tilde{\mathbf{x}} \in \mathcal{X} \\ \tilde{\mathbf{x}} \neq \mathbf{x}}} \theta[f(\tilde{\mathbf{x}}) - f(\mathbf{x})]$ acts as an indicator
 215 of whether the function f regards \mathbf{x} as its global optimizer. The above equation (6) denotes the

expected probability that \mathbf{x} is the optimizer over all sampled functions within the surrogate model space. By combining (6) with the definition in (1), we can estimate the size of $\mathcal{F}_{\mathbf{x}}^{\mathcal{D}}$ as follows:

$$|\mathcal{F}_{\mathbf{x}}^{\mathcal{D}}| = |\mathcal{F}_{\mathcal{GP}}^{\mathcal{D}}| \int_{f: \mathcal{X} \rightarrow \mathcal{Y}} p(f) \prod_{\substack{\tilde{\mathbf{x}} \in \mathcal{X} \\ \tilde{\mathbf{x}} \neq \mathbf{x}}} \theta[f(\tilde{\mathbf{x}}) - f(\mathbf{x})] df, \quad (7)$$

where $|\mathcal{F}_{\mathcal{GP}}^{\mathcal{D}}|$ represents the cardinality of the surrogate model space. Based on (6) and (7), we establish the connection between PO and the function space coverage ratio (6), as shown:

$$P(\mathbf{x} = \mathbf{x}_{f^*}^*) = \frac{|\mathcal{F}_{\mathbf{x}}^{\mathcal{D}}|}{|\mathcal{F}_{\mathcal{GP}}^{\mathcal{D}}|}, \quad (8)$$

which transforms a nontrivial probability into a quantity that can be estimated by sampling functions from the surrogate GP. Note that $|\mathcal{F}_{\mathcal{GP}}^{\mathcal{D}}|$ is typically determined by how many functions are sampled from the surrogate model space, which is usually fixed. Consequently, optimizing PO is equivalent to identifying the maximizer of the numerator $|\mathcal{F}_{\mathbf{x}}^{\mathcal{D}}|$.

3.2 COVERAGE CONTRIBUTION ESTIMATION

Equation (8) suggests that increasing the probability of selecting the true optimizer can be achieved by enlarging the set of functions included in the future function bucket. However, (8) only describes a one-step strategy conditioned on some observation data \mathcal{D} . Since BO is inherently sequential, incorporating the acquisitions \mathcal{D}_n from previous iterations is necessary. Thus, we extend (8) into its cumulative form, defined as:

$$P(\mathbf{x}_{f^*}^* \in \mathbf{X}_{n+1}) = P(\mathbf{x}_{f^*}^* \in \mathbf{X}_n) + P(\mathbf{x}_{n+1} = \mathbf{x}_{f^*}^* \mid \mathbf{x}_{f^*}^* \notin \mathbf{X}_n)P(\mathbf{x}_{f^*}^* \notin \mathbf{X}_n). \quad (9)$$

Notice that $P(\mathbf{x}_{f^*}^* \in \mathbf{X}_n)$ and $P(\mathbf{x}_{f^*}^* \notin \mathbf{X}_n)$ are fixed after n iterations, optimization of (9) can be achieved by maximization on term $P(\mathbf{x}_{n+1} = \mathbf{x}_{f^*}^* \mid \mathbf{x}_{f^*}^* \notin \mathbf{X}_n)$. Unlike the one-step maximization target defined in (8), $P(\mathbf{x}_{n+1} = \mathbf{x}_{f^*}^* \mid \mathbf{x}_{f^*}^* \notin \mathbf{X}_n)$ is conditioned on the event $\mathbf{x}_{f^*}^* \notin \mathbf{X}_n$. Intuitively, this is reasonable: if $\mathbf{x}_{f^*}^* \in \mathbf{X}_n$, the BO process would already be completed. Thus, (9) formalizes that continuing BO requires conditioning on $\mathbf{x}_{f^*}^* \notin \mathbf{X}_n$.

To the best of our knowledge, no prior work has used $\mathbf{x}_{f^*}^* \notin \mathbf{X}_n$ as a condition to guide BO, since this condition appears to merely shrink the design space. However, we observe that $\mathbf{x}_{f^*}^* \notin \mathbf{X}_n$ also influences the objective space, thereby exerting a broader impact on the function space. From $\mathbf{x}_{f^*}^* \notin \mathbf{X}_n$, we obtain a corresponding condition in function space: $f^*(\mathbf{x}_{f^*}^*) \notin \mathbf{Y}_n$. For a minimization problem, this is equivalent to $f^*(\mathbf{x}_{f^*}^*) < \mathbf{Y}_n^* = \min\{\mathbf{Y}_n\}$. This inequality condition is crucial, as it indicates that the true optimum must improve upon the current best. Consequently, any sampled function that cannot achieve a value better than the current best cannot be the true objective function. When sampling the function space to estimate (9), such functions should be excluded, as their probability $p(f)$ is zero.

Thus to maximize (9), we must consider how many functions from $\mathcal{F}_{\mathbf{x}}^{\mathcal{D}}$ are from the objective function impossible region and remove them from future consideration. We partition the candidate's function cluster into two subsets:

$$\mathcal{F}_{\mathbf{x}}^{\mathcal{D}_n} = \mathcal{F}_{\mathbf{x}, f(\mathbf{x}) \geq \mathbf{Y}_n^*}^{\mathcal{D}_n} \cup \mathcal{F}_{\mathbf{x}, f(\mathbf{x}) < \mathbf{Y}_n^*}^{\mathcal{D}_n} \quad (10)$$

For all functions in $\mathcal{F}_{\mathbf{x}, f(\mathbf{x}) \geq \mathbf{Y}_n^*}^{\mathcal{D}_n}$, their optima do not surpass the current best observation \mathbf{Y}_n^* . As discussed earlier, the true objective function cannot belong to this set. Consequently, functions from set $\mathcal{F}_{\mathbf{x}, f(\mathbf{x}) \geq \mathbf{Y}_n^*}^{\mathcal{D}_n}$ contribute only ineffective coverage. Therefore, the effective coverage can be computed as:

$$|\mathcal{F}_{\mathbf{x}}^{\mathcal{D}_n}| = |\mathcal{F}_{\mathbf{x}, f(\mathbf{x}) < \mathbf{Y}_n^*}^{\mathcal{D}_n}| + |\mathcal{F}_{\mathbf{x}, f(\mathbf{x}) \geq \mathbf{Y}_n^*}^{\mathcal{D}_n}| = |\mathcal{F}_{\mathbf{x}, f(\mathbf{x}) < \mathbf{Y}_n^*}^{\mathcal{D}_n}|. \quad (11)$$

To accurately estimate the coverage contribution of each candidate point \mathbf{x} , we restrict sampling optimizers that overwhelm the current best for all $\mathbf{x} \in \mathcal{X}$. This constraint ensures unbiased estimation of coverage improvement across all possible candidates. Under this setup we sample from a Truncated Gaussian Process (TGP), defined as $\mathcal{TGP}(\mu, k, t)$, where t is the threshold. For minimization problems, we sample from $\mathcal{TGP}^-(\mu, k, \mathbf{Y}_n^*)$, indicating that the sampling is restricted to

270 the function space lying below the threshold \mathbf{Y}_n^* . The final utility function is estimated by a variant
 271 of (6) with the samples from $\mathcal{TGP}^-(\mu, k, \mathbf{Y}_n^*)$, shown as:
 272

$$273 \mathbb{E}_{f \sim \mathcal{TGP}^-(\mu, k, \mathbf{Y}_n^*)} [P(\mathbf{x} = \mathbf{x}_f^* \mid \mathcal{D}_n)] = \int_{-\infty}^{\mathbf{Y}_n^*} \prod_{\substack{\tilde{\mathbf{x}} \in \mathcal{X} \\ \tilde{\mathbf{x}} \notin \{\mathbf{X}_n \cup \mathbf{x}\}}} \theta[f(\tilde{\mathbf{x}}) - f(\mathbf{x})] p(f) df. \quad (12)$$

276 In summary, we maximize (9) by identifying the maximizer of (12). From (12), we can illustrate
 277 how NRFS avoids the exploration-exploitation dilemma based on joint distribution of probability of
 278 optimality and function distribution. Compared with the original probability of optimality without
 279 any conditioning, our method by NRFS mitigates oversampling by filtering out all functions that
 280 have been identified with an optimizer whose $p(f) = 0$ in future steps. Meanwhile, the threshold
 281 condition \mathbf{Y}_n^* also prevents redundancy by acquisitions for uncertainty reduction in regions where
 282 the optimizer cannot exist, thereby enhancing acquisition efficiency.
 283

284 3.3 ONE-STEP-LOOK-AHEAD VARIANT DEVELOPMENT

285 To further increase sample efficiency in BO, here we develop a one-step-look-ahead(OSLA) variant
 286 of (12). After T evaluations, the probability that the optimizer has been identified is
 287

$$288 R_T = P(\mathbf{x}_{f^*}^* \in \mathbf{X}_T) = 1 - \prod_{t=1}^T (1 - P(\mathbf{x}_{f^*}^* = \mathbf{x}_t)). \quad (13)$$

290 We refer to R_T as the cumulative success probability. The corresponding incremental contribution
 291 of iteration t is
 292

$$293 r_t = P(\mathbf{x}_{f^*}^* = \mathbf{x}_t) \prod_{s=1}^{t-1} (1 - P(\mathbf{x}_{f^*}^* = \mathbf{x}_s)), \quad (14)$$

294 i.e., the probability of discovering the optimizer at iteration t given it has not been selected before.
 295 At iteration n , maximizing the defined cumulative success probability is equivalent to maximizing
 296 the following one-step-look-ahead value function:
 297

$$298 V_n \approx r_n + r_{n+1} = \prod_{s=1}^{n-1} (1 - P(\mathbf{x}_{f^*}^* = \mathbf{x}_s)) [P(\mathbf{x}_{f^*}^* = \mathbf{x}_n) + (1 - P(\mathbf{x}_{f^*}^* = \mathbf{x}_n)) P(\mathbf{x}_{f^*}^* = \mathbf{x}_{n+1})]. \quad (15)$$

300 Since $\prod_{s=1}^{n-1} (1 - P(\mathbf{x}_{f^*}^* = \mathbf{x}_s))$ is fixed after iteration $n - 1$, optimization of the value function
 301 reduces to maximizing $P(\mathbf{x}_{f^*}^* = \mathbf{x}_n) + (1 - P(\mathbf{x}_{f^*}^* = \mathbf{x}_n)) P(\mathbf{x}_{f^*}^* = \mathbf{x}_{n+1})$. We therefore define
 302 the corresponding one-step-look-ahead utility function as:
 303

$$305 u_n(\mathbf{x}) = P(\mathbf{x}_{f^*}^* = \mathbf{x} \mid \mathcal{D}_n) + (1 - P(\mathbf{x}_{f^*}^* = \mathbf{x} \mid \mathcal{D}_n)) \mathbb{E}_{y \mid \mathcal{D}_n, \mathbf{x}} \left[\max_{\mathbf{x}' \in \mathcal{X}} P(\mathbf{x}_{f^*}^* = \mathbf{x}' \mid \mathcal{D}_n \cup (\mathbf{x}, y)) \right], \quad (16)$$

306 where $P(\mathbf{x}_{f^*}^* = \mathbf{x} \mid \mathcal{D}_n)$ and $\max_{\mathbf{x}' \in \mathcal{X}} P(\mathbf{x}_{f^*}^* = \mathbf{x}' \mid \mathcal{D}_n \cup (\mathbf{x}, y))$ are estimated by (12).
 307

308 In contrast to one-step-look-ahead variants of other acquisition functions, which typically require
 309 tuning a hyperparameter γ to balance immediate and future rewards, our one-step-look-ahead NRFS
 310 directly sets $\gamma = 1 - P(\mathbf{x}_{f^*}^* = \mathbf{x} \mid \mathcal{D}_n)$. This choice avoids potential probability gaps across
 311 different problem settings, eliminating the need to search for task-dependent hyperparameters.
 312

313 Another advantage is that the one-step-look-ahead NRFS variant has the potential to achieve the
 314 maximum convergence rate. Traditionally, the convergence rate is defined by how quickly an error
 315 term, or a probability gap, decays to zero (Ryzhov, 2016; Bull, 2011). In our setting, this probability
 316 gap corresponds to the cumulative regret $R_T^{\text{reg}} = 1 - R_T$. Note that maximizing the value function
 317 V_n at each step is equivalent to minimizing cumulative regret, so each acquisition step can be
 318 interpreted as directly advancing the convergence rate.
 319

4 EMPIRICAL RESULTS

320 4.1 EXPERIMENTAL SETUP

321 We follow the practice in PES (Hernández-Lobato et al., 2014), to estimate (12) and (16). Specifi-
 322 cally, we first sample M (1000) functions from $\mathcal{TGP}^-(\mu, k, \mathbf{Y}_n^*)$ to obtain a function set $\{f_j(\cdot)\}_{j=1}^M$.
 323

When $M = 1$, the approach degrades to a variant of Thompson sampling (Russo et al., 2018), but with samples drawn from a TGP instead of the full surrogate. For each sampled function $f_j(\cdot)$, we identify its optimizer location and then aggregate these optimizers to estimate the distribution over the design space. In continuous domains, NRFS can be implemented by applying density estimation techniques such as Kernel Density Estimation (KDE) (Chen, 2017), Gaussian Mixture Models (GMM), k -Nearest Neighbors (KNN), or any other strategies to approximate the optimizer distribution. In our implementation, we apply Parzen estimator (Silverman, 2018), resulting in a continuous density function. The acquisition is selected as the most probable optimizer location under this estimated distribution.

4.2 SEARCHING BEHAVIOR

To understand the search behavior of NRFS intuitively, we test an illustrative example with a Gaussian mixture (GM) objective function to minimize: $-\mathcal{N}(-\mu_1, \sigma_1^2) - \mathcal{N}(\mu_2, \sigma_1^2) - 0.55\mathcal{N}(\mu_1, \sigma_2^2) + 1$. We set $\mu_1 = 0.3$, $\mu_2 = -0.1$, $\sigma_1 = 0.05$ and $\sigma_2 = \frac{0.3}{\sqrt{2}}$ (Figure 1). The objective function has two local minima and one global minimum far from local minima. The searching behavior comparison detailed discussion can be found in Section 1 and more empirical performance comparison can be found in Section 4.3.

Besides the search behavior analysis on 1D GM example, we apply NRFS on other benchmark objective functions which are more commonly used in evaluating BO methods, including 1) Branin (Branin, 1972); 2) BraninRcos2 (Al-Roomi, 2015); 3) Himmelblau’s (Himmelblau et al., 2018) and 4) Forrester2D (Forrester et al., 2008) to check the convergence. Figure 2 demonstrates that, given a sufficient number of iterations, NRFS converges to all global optima. The distribution of training samples shows high density near the true optima and lower density elsewhere, indicating that acquisition is guided by the potential to identify global optima in given regions. Oversampling occurs rarely and primarily when the search is already close to an optimum. At the same time, later iterations still allocate some acquisitions in high uncertainty regions, which avoids missing possible global optimum which has extreme objective value. Additional behavioral analysis on other objective functions is provided in Section A.1 of the *Appendix*.

Figure 2: Convergence performance on different objective functions with multiple local optima: (a) Branin; (b) BraninRcos2; (c) Himmelblau’s; and (d) Forrester2D. Darker regions indicate lower values, which are more desirable for minimization task. White dots mark the iterative acquisitions.

4.3 ACQUISITION FUNCTION EVALUATION

We compare NRFS and its one-step-look-ahead variant against several baselines including EI (Jones et al., 1998), PES (Villemonteix et al., 2009; Hernández-Lobato et al., 2014), ϵ -EI, UCB (Srinivas et al., 2009), Tree-structured Parzen Estimator (TPE) (Bergstra et al., 2011; Watanabe, 2023), PI (Kushner, 1964; Snoek et al., 2012), Knowledge Gradient (KG) (Frazier et al., 2008), and Latin Hypercube random sampling (RS) (McKay et al., 2000). EI, ϵ -EI, PI, UCB, PES, KG are implemented within the BOTorch framework (Balandat et al., 2020), while TPE is based on Optuna (Akiba et al., 2019). More discussion of these previous acquisition function is in *Appendix A.2*.

We have evaluated all acquisition functions on four known objective functions: the GM function introduced in Section 4.2, the 2D Forrester function (Forrester et al., 2008), a modified Rosenbrock function (Al-Roomi, 2015; Rosenbrock, 1960), and the Shekel function (Molga & Smutnicki, 2005).

378 These known objective functions are selected because they require a balance of exploration and ex-
 379 ploitation to effectively locate the global optimum. Visualizations of the objective landscapes and
 380 analyses of search behaviors under different BO strategies are provided in Section A.1 of the *Ap-
 381 pendix*. These four functions represent three types of multi-modal objective landscapes: 1) The GM
 382 and modified Rosenbrock functions exhibit large, smooth local optima along with a sharp global
 383 optimum distant to local optima; 2) The 2D Forrester function contains large, smooth local optima
 384 and a similarly smooth global optimum; 3) The Shekel function features multiple sharp peaks, with
 385 all optima being narrow and distinct. In addition to the four known objective functions, we consider
 386 two real-world case studies aimed at identifying the optimal composition of six elemental materi-
 387 als (Hastings et al., 2025). The first case targets the highest stacking fault energy (SFE), while the
 388 second focuses on maximizing heat capacity (HC). In both cases, the mapping from composition to
 389 property is unknown.

417 Figure 3: Performance comparison of 20 independent trials on different objective functions: (a) 2D
 418 Gaussian mixture model; (b) Forrester2D; (c) Shekel; (d) Modified Rosenbrock; (e) SFE and (f) HC

419 In the cases of GM, the modified Rosenbrock function and SFE, our NRFS consistently outperforms
 420 all other competing methods, not only consistently achieving better objective function values across
 421 iterations but also exhibiting greater stability. These objective functions require BO to escape lo-
 422 cal optima and effectively exploit the global optimal region to achieve faster convergence. In the
 423 Forrester2D case, ϵ -EI and UCB also demonstrate competitive performance compared to NRFS and
 424 one-step-look-ahead NRFS. This is because the global optimal region is relatively large and smooth,
 425 unlike previous three examples. As a result, ϵ -EI and UCB can more easily acquire points in the
 426 global optimal region via random sampling or uncertainty reduction. However, achieving the per-
 427 formance shown in Figure 3b requires sweeping ϵ from 0.1 to 0.9 to identify the best-performing
 428 hyperparameter, resulting in significantly higher evaluation cost compared to NRFS and one-step-
 429 look-ahead NRFS. For UCB, even when using a self-adjusting schedule $\beta = 0.5d \cdot \log(n + 1) \cdot c$,
 430 selecting the constant c remains challenging due to the lack of prior knowledge about the scale
 431 and smoothness of the objective function, making it difficult to define a reasonable hyperparameter
 range. In contrast, our NRFS-based BO methods do not require hyperparameter tuning compared

to these methods. In the Shekel and HC cases, NRFS-based methods are initially outperformed by other acquisition functions in the early iterations. However, as the number of BO iterations increases, they achieve the best overall performance. The strong early performance of value improvement based methods can be attributed to their rapid convergence toward local minima. Nevertheless, as the optimization progresses, these methods eventually fail to provide meaningful acquisitions due to their inherently unbalanced acquisition strategies.

More importantly, the landscape of the objective function is unknown before evaluation. Consequently, our NRFS-based methods offer the most robust BO strategy among all the alternatives, as they consistently demonstrate stable performance improvements and reliably converge to the global optimum regardless the landscape of the objective function. A clearer presentation of their standard deviation (std) performance in Section A.3 of the *Appendix* further highlights their reliability.

In addition to the sequential NRFS strategy, we also evaluate a batch variant NRFS on the four synthetic objective functions. For batch selection, we continue to follow a non-replacement strategy: once the candidate with the highest probability of being the optimizer (per 12) is identified, we remove all sampled function realizations that designate this candidate as their optimizer. From the remaining realizations, we then select the next most probable optimizer location. This process is repeated until we obtain a full batch of acquisition points. To ensure fairness, we fix the evaluation budget to be identical to that of the sequential acquisition and assess how varying the batch size impacts optimization performance under the same evaluation limit.

Figure 4: Batch performance comparison of 20 independent trials on different objective functions: (a) 2D Gaussian mixture model; (b) Forrester2D; (c) Shekel and (d) Modified Rosenbrock

As shown in Figure 4, sequential optimization usually has the best performance. The only exception is the Shekel function, where large batch methods perform better. This difference comes from the structure of the Shekel objective: the global optimum is located in a very sharp and narrow region. Once this region is identified, batch acquisition functions tend to place many points directly around that area because the optimizer distribution becomes highly concentrated there, allowing batches to exploit the optimum quickly. In contrast, sequential acquisition updates the surrogate and the current best after each evaluation, which smooths the optimizer distribution and reduces the likelihood of repeatedly sampling the same small region.

To further assess NRFS characteristics, we extend our study to high dimensional variants of the Forrester function. We benchmark the same 14 acquisition strategies used in Figure 3 across 5D, 10D, 20D, and 50D. The initialization number (5d) is adjusted according to dimensionality to ensure optimization efficiency. As Figure 5 shows, the performance gap between acquisition strategies shrinks as the dimensionality increases. By the time the dimension reaches 50, all methods struggle to discover substantially better objective values. Nevertheless, NRFS and NRFS(OSLA) maintain superior performance compared to the other strategies. We have also performed benchmarking on other commonly used objective functions, real case applications and robustness test against noise with different levels for all of the acquisition methods mentioned above. The results could be found in Sections A.4 and A.5 of the *Appendix*. Section A.6 includes the complexity analysis and computational cost comparison for different acquisition methods.

Beyond empirical performance comparison, we further analyze the acquisition behaviors of EI, PES, and NRFS on the SFE task, highlighting how NRFS can facilitate real-world material discovery. The top 5% performing materials are distributed across three regions, with only one region containing the global optimizer. We compare the performance of our NRFS with the BO methods using EI

Figure 5: Optimization performance comparison of 20 independent trials on Forrester functions with different dimensions: (a) 5D; (b) 10D; (c) 20D and (d) 50D

and PES acquisition functions. Figure 6 illustrates the BO performance difference, where NRFS successfully finds the global minimum but EI and PES fail within 40 iterations. As illustrated, EI gets trapped in the local minimum; PES fails to identify the exact global minimum after getting close, suffering from its focus on information gain instead of acquisition in potential optimal region.

Figure 6: Acquisition behavior comparison of different strategies on the SFE material rediscovery task over 40 iterations. Darker candidates correspond to higher SFE values. Global optimizer is marked with a black star. Black numbers in red disks represent the iteration of acquisitions by three different strategies, among which only NRFS reaches the global optimizer at iteration 27 while EI and PES fails to identify it within 40 iterations.

5 CONCLUSION & FUTURE RESEARCH

We have proposed a novel BO strategy, NRFS, which acquires the query candidate that has the maximum probability to be the true optimizer. To further enhance acquisition efficiency, we transform the estimation of this probability to estimating function space coverage by focusing on surrogate functions whose optima are likely to be the true optimum. We provide strong empirical evidence that NRFS can converge to all global optima for a diverse family of benchmark objective functions and demonstrate superior empirical advantages of NRFS over existing BO baselines. Moreover, NRFS not only provides a new BO strategy, but also opens a new research direction on how one should utilize the surrogate models more efficiently. The computation of other acquisition functions in other BO methods can also be based on the sampled functions from NRFS.

A natural extension of NRFS is to multi-objective optimization, where truncation is defined by the Pareto front rather than a single threshold, making sampling substantially more challenging. Another promising direction is improving NRFS’s computational efficiency through analytical formulations, which could also enable explicit convergence-rate guarantees and strengthen its theoretical foundation.

540 REFERENCES
541

- 542 Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
543 A next-generation hyperparameter optimization framework. In *Proceedings of the 25th ACM
544 SIGKDD international conference on knowledge discovery & data mining*, pp. 2623–2631, 2019.
- 545 Ali R. Al-Roomi. Unconstrained Single-Objective Benchmark Functions Repository, 2015. URL
546 <https://www.al-roomi.org/benchmarks/unconstrained>.
- 547 Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
548 problem. *Machine learning*, 47:235–256, 2002.
- 549 Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wilson,
550 and Eytan Bakshy. BoTorch: A framework for efficient Monte-Carlo Bayesian optimization.
551 *Advances in neural information processing systems*, 33:21524–21538, 2020.
- 552 James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
553 optimization. *Advances in neural information processing systems*, 24, 2011.
- 554 Chao Bian, Xiaofang Wang, Changjun Liu, Xinyu Xie, and Liu Haitao. Impact of exploration-
555 exploitation trade-off on UCB-based Bayesian optimization. In *IOP Conference Series: Materials
556 Science and Engineering*, volume 1081, pp. 012023. IOP Publishing, 2021.
- 557 Ilija Bogunovic, Jonathan Scarlett, Andreas Krause, and Volkan Cevher. Truncated variance reduction:
558 A unified approach to Bayesian optimization and level-set estimation. *Advances in neural
559 information processing systems*, 29, 2016.
- 560 Franklin H Branin. Widely convergent method for finding multiple solutions of simultaneous non-
561 linear equations. *IBM Journal of Research and Development*, 16(5):504–522, 1972.
- 562 Adam D Bull. Convergence rates of efficient global optimization algorithms. *Journal of Machine
563 Learning Research*, 12(10), 2011.
- 564 Antonio Candelieri. Mastering the exploration-exploitation trade-off in Bayesian optimization.
565 *arXiv preprint arXiv:2305.08624*, 2023.
- 566 Yen-Chi Chen. A tutorial on kernel density estimation and recent advances. *Biostatistics & Epi-
567 demiology*, 1(1):161–187, 2017.
- 568 Nuojin Cheng, Leonard Papenmeier, Stephen Becker, and Luigi Nardi. A unified frame-
569 work for entropy search and expected improvement in Bayesian optimization. *arXiv preprint
570 arXiv:2501.18756*, 2025.
- 571 George de Ath, Richard M Everson, Alma AM Rahat, and Jonathan E Fieldsend. Greed is good:
572 Exploration and exploitation trade-offs in Bayesian optimisation. *ACM Transactions on Evolu-
573 tionary Learning and Optimization*, 1(1):1–22, 2021.
- 574 Laurence Charles Ward Dixon. The global optimization problem: an introduction. *Towards Global
575 Optimisation* 2, pp. 1–15, 1978.
- 576 Alexander Forrester, Andras Sobester, and Andy Keane. *Engineering design via surrogate mod-
577 elling: a practical guide*. John Wiley & Sons, 2008.
- 578 Peter I Frazier. A tutorial on bayesian optimization. *arXiv preprint arXiv:1807.02811*, 2018.
- 579 Peter I Frazier, Warren B Powell, and Savas Dayanik. A knowledge-gradient policy for sequential
580 information collection. *SIAM Journal on Control and Optimization*, 47(5):2410–2439, 2008.
- 581 Trevor Hastings, Mrinalini Mulukutla, Danial Khatamsaz, Daniel Salas, Wenle Xu, Daniel Lewis,
582 Nicole Person, Matthew Skokan, Braden Miller, James Paramore, et al. Accelerated multi-
583 objective alloy discovery through efficient bayesian methods: Application to the fcc high entropy
584 alloy space. *Acta Materialia*, pp. 121173, 2025.
- 585 Philipp Hennig and Christian J Schuler. Entropy search for information-efficient global optimiza-
586 tion. *The Journal of Machine Learning Research*, 13(1):1809–1837, 2012.

- 594 José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive entropy
 595 search for efficient global optimization of black-box functions. In *Advances in neural information*
 596 *processing systems*, pp. 918–926, 2014.
- 597
- 598 David M Himmelblau et al. *Applied nonlinear programming*. McGraw-Hill, 2018.
- 599
- 600 Ali Jalali, Javad Azimi, and Xiaoli Fern. Exploration vs exploitation in Bayesian optimization.
 601 *CoRR*, 2012.
- 602
- 603 Donald R Jones. Large-scale multi-disciplinary mass optimization in the auto industry. In *MOPTA*
 604 *2008 Conference (20 August 2008)*, volume 64, 2008.
- 605
- 606 Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive
 607 black-box functions. *Journal of Global optimization*, 13(4):455–492, 1998.
- 608
- 609 Harold J Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in
 610 the presence of noise. 1964.
- 611
- 612 Michael D McKay, Richard J Beckman, and William J Conover. A comparison of three methods for
 613 selecting values of input variables in the analysis of output from a computer code. *Technometrics*,
 614 42(1):55–61, 2000.
- 615
- 616 Marcin Molga and Czesław Smutnicki. Test functions for optimization needs. *Test functions for*
 617 *optimization needs*, 101(48):32, 2005.
- 618
- 619 Carl Edward Rasmussen. Gaussian processes in machine learning. In *Summer School on Machine*
 620 *Learning*, pp. 63–71. Springer, 2003.
- 621
- 622 HoHo Rosenbrock. An automatic method for finding the greatest or least value of a function. *The*
 623 *computer journal*, 3(3):175–184, 1960.
- 624
- 625 Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on
 626 thompson sampling. *Foundations and Trends® in Machine Learning*, 11(1):1–96, 2018.
- 627
- 628 Ilya O Ryzhov. On the convergence rates of expected improvement methods. *Operations Research*,
 629 64(6):1515–1528, 2016.
- 630
- 631 Kenan Šehić, Alexandre Gramfort, Joseph Salmon, and Luigi Nardi. Lassobench: A high-
 632 dimensional hyperparameter optimization benchmark suite for lasso. In *International Conference*
 633 *on Automated Machine Learning*, pp. 2–1. PMLR, 2022.
- 634
- 635 Michael D Shields and Jiaxin Zhang. The generalization of latin hypercube sampling. *Reliability*
 636 *Engineering & System Safety*, 148:96–108, 2016.
- 637
- 638 Bernard W Silverman. *Density estimation for statistics and data analysis*. Routledge, 2018.
- 639
- 640 Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine
 641 learning algorithms. *Advances in neural information processing systems*, 25, 2012.
- 642
- 643 Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian pro-
 644 cess optimization in the bandit setting: No regret and experimental design. *arXiv preprint*
 645 *arXiv:0912.3995*, 2009.
- 646
- 647 Panagiotis Tsilifis, Roger G Ghanem, and Paris Hajali. Efficient Bayesian experimentation using an
 648 expected information gain lower bound. *SIAM/ASA Journal on Uncertainty Quantification*, 5(1):
 649 30–62, 2017.
- 650
- 651 Julien Villemonteix, Emmanuel Vazquez, and Eric Walter. An informational approach to the global
 652 optimization of expensive-to-evaluate functions. *Journal of Global Optimization*, 44(4):509,
 653 2009.
- 654
- 655 Hao Wang, Bas van Stein, Michael Emmerich, and Thomas Back. A new acquisition function for
 656 Bayesian optimization based on the moment-generating function. In *2017 IEEE International*
 657 *Conference on Systems, Man, and Cybernetics (SMC)*, pp. 507–512. IEEE, 2017.

- 648 Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian optimization. In
 649 *International conference on machine learning*, pp. 3627–3635. PMLR, 2017.
 650
- 651 Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched large-scale bayesian
 652 optimization in high-dimensional spaces. In *International Conference on Artificial Intelligence
 653 and Statistics*, pp. 745–754. PMLR, 2018.
- 654 Ziyu Wang and Nando de Freitas. Theoretical analysis of Bayesian optimisation with unknown
 655 Gaussian process hyper-parameters. *arXiv preprint arXiv:1406.7758*, 2014.
 656
- 657 Shuhei Watanabe. Tree-structured Parzen estimator: Understanding its algorithm components and
 658 their roles for better empirical performance. *arXiv preprint arXiv:2304.11127*, 2023.
 659
- 660

A APPENDIX

A.1 SEARCHING BEHAVIORS

In addition to the search behavior analysis on the illustrative Gaussian Mixture (GM) example in Section 4.2 and stacking fault energy (SFE) real case presented in Section 4.3 of the main text, we provide additional analyses based on the BO results on different objective functions discussed in Section 4.3. This extended comparison highlights the differences in search behavior dynamics among commonly used non-hybrid acquisition strategies: Expected Improvement (EI) (Jones et al., 1998), Predictive Entropy Search (PES) (Hernández-Lobato et al., 2014), and our proposed NRFS.

697 Figure 7: Search behavior comparison between EI-, PES- and NRFS-based BO. Red stars: Next
 698 acquisitions; White dots: Previous acquisitions.
 699

700 For the three minimization cases in Figure 7 above, EI tends to oversample regions near local optima,
 701 highly likely to continue until those regions are thoroughly exploited. In contrast, PES exhibits
 the opposite behavior: even after identifying a candidate in a region likely to contain the global

702 optimum, it continues to explore points that reduce uncertainty about the optimizer’s location, rather
 703 than concentrating on the regions with high potential. NRFS demonstrates a more balanced search
 704 strategy. Its acquisition distribution is closely aligned with the objective landscape, assigning higher
 705 acquisition frequency to regions closer to the optimum.

706

707 A.2 BASELINE METHODS DISCUSSION

708

709 In this section, we review the existing acquisition functions and explain why they are used as our
 710 comparison baselines. We start with EI. As illustrated in Fig. 1, EI and PO exhibit similar per-
 711 formance, both being affected by the oversampling issue. Many prior studies (Hennig & Schuler,
 712 2012) also use EI for GP global PO estimation, however, the underlying principles of PO and EI are
 713 fundamentally different. Consider a simple case with two candidate buckets. While most functions
 714 identify the first bucket as containing the optimizer, its expected improvement is lower than that of
 715 the second bucket because the second buckets contains optimum with extreme value. As a result,
 716 EI selects the second bucket due to the higher expected improvement. However, from an intuitive
 717 perspective, the first bucket should be preferred since it has a higher likelihood of containing the
 718 true objective function. This misstep arises because EI prioritizes potential magnitude over the like-
 719 lihood of containing the true optimum which is an inherent property of the objective that remains
 720 fixed regardless of human-defined expectations. The difference between EI and PO in Fig. 1 is not
 721 pronounced because the objective values follow a Gaussian distribution with small variance, differ-
 722 ent from the earlier examples with those following extreme-value distributions. When the Gaussian
 723 distribution has larger variance their difference becomes more apparent, especially in the design
 724 space boundary region (Hennig & Schuler, 2012).

725 For uncertainty reduction based methods, PES aims to reduce the number of remaining candidate
 726 buckets rather than directly selecting the most probable one. Methods with function uncertainty re-
 727 duction ability like UCB, TVR and Expected Information Gain (EIG) (Tsilifis et al., 2017), primarily
 728 focus on decreasing the total number of possible functions across all buckets. This approach can be
 729 inefficient, as it devotes unnecessary effort to keep reducing the number of functions including the
 730 buckets that have already been considered.

731 Besides the most popular acquisition functions such as EI, PES and UCB. TPE is a variant of EI, and
 732 we include it in our comparison because it also incorporates both truncated modeling and density
 733 estimation over the design space. Given a minimization problem, TPE sets the threshold above the
 734 current best value, and uses candidate locations with objective values below this threshold to esti-
 735 mate the optimizer density. Our goal is to evaluate how its truncation strategy compares to ours. KG,
 736 a popular one-step-look-ahead strategy, that estimates the expected value of information from eval-
 737 uating a candidate point, which we include as a baseline to compare with our one-step-look-ahead
 738 NRFS. PI, a replacement function space sampling strategy, that focuses solely on the likelihood of
 739 improving over the current best observation rather than targeting global optimality, is used as the
 740 baseline to compare the difference between Non-replacement and replacement sampling, objective
 741 improvement and optimality. RS is included as a non-informative baseline to assess optimization
 742 performance.

743

744 A.3 PERFORMANCE CONSISTENCY

745

746 We further extract the standard deviation values to illustrate the performance consistency explicitly
 747 in this section.

748 We observe that, across all six case studies with different objective functions as discussed in the main
 749 text, our NRFS exhibits the most stable performance among the cases with GM, Forrester2D and
 750 Shekel. For Modified Rosenbrock, as Fig. 8d shows, EI, TPE, and PI demonstrate more consistent
 751 behavior than NRFS, likely due to their tendency to oversample in local optima across all 20 trials.
 752 By combining the mean performance reported in the main text with the observed standard deviation
 753 values, we find that NRFS exhibits low variability only when it converges to the global optimum.
 754 This behavior suggests that std can serve as a reliable indicator of proximity to the global optimum:
 755 since NRFS does not suffer from oversampling, a near-zero std implies that the current best is close
 to the global optimum.

Figure 8: Std performance comparison on different objective functions: (a) 2D Gaussian mixture model; (b) Forrester2D; (c) Shekel; (d) Modified Rosenbrock; (e) SFE and (f) HC

A.4 ADDITIONAL BENCHMARKING RESULTS

Besides the objective functions that require a balanced strategy, we also consider Branin (Dixon, 1978) as a purely exploitation-driven case, and BraninRcos2 (Al-Roomi, 2015) as an exploration-driven case, to evaluate NRFS under these extremes. Branin contains three global optima, and identifying any one of them suffices to achieve optimal performance. In contrast, BraninRcos2 resembles the Shekel function, characterized by many local optima and a relatively narrower global optimum region. This implies that once the global optimum region is explored, the optimal solution is nearly recovered.

Figure 9: Performance comparison of BO methods on 2 extra objectives: (a, b) current best of 20 trials for Branin and BraninRcos2; (d, e) std of the current best on the same benchmarks.

As Figure 10 shows, in the Branin case, NRFS appears to require more iterations to converge to the global optimum compared to EI. As illustrated in Figure 2a (Section 4.2), this slower convergence can be interpreted as the inherent trade-off for acquiring all global optima rather than focusing on a single one. This observation indicates that a current limitation of NRFS: it may not outperform some existing methods when the problem contains only one optimal region or multiple optimal regions with the same optimal values. In such cases, identifying one region is sufficient to guarantee the global optimum, thus there is no need to acquire candidates from other high potential regions. In the BraninRcos2 setting, the performance trend aligns with that observed in the Shekel function (Figure 3c, Section 4.3). Specifically, PES is able to identify the global optimum region more quickly

in the initial iterations. However, once the optimal region is located, NRFS starts to outperform PES in subsequent acquisitions.

We further evaluate our method on three real-world benchmark tasks: (1) a 124-dimensional soft-constrained variant of the Mopta08 automotive design problem, originally introduced by (Jones, 2008); (2) the 180-dimensional Lasso-DNA objective selection task, proposed by (Šehić et al., 2022), which involves optimizing hyperparameters of a sparse regression model used to recover underlying genetic signal patterns; and (3) a 60-dimensional rover trajectory-planning benchmark from (Wang et al., 2018), where the optimizer must choose spline-parameterized way points to minimize traversal cost in the presence of obstacles.

Figure 10: Performance comparison of BO methods on three objectives: (a, b) current best of 20 trials for Branin and BraninRcos2; (d, e) std of the current best on the same benchmarks.

A.5 ROBUSTNESS ANALYSIS

We have also evaluated robustness by adding varying levels of Gaussian noise to the four objective functions described in the main text. For hybrid acquisition strategies such as UCB and ϵ -EI, hyperparameters were further tuned to ensure optimal performance under different noise levels.

Figure 11: Performance comparison for the GM example with different signal-to-noise ratio (SNR) levels.

Based on the results, we conclude that NRFS is robust to different noise levels corresponding to SNR values above 16 across all four objective functions. It even demonstrates robustness with high

Figure 12: Performance comparison on Forrester2D function with different SNR levels.

Figure 13: Performance comparison on modified Rosenbrock function with different SNR levels.

noise (SNR = 4) in the Modified Rosenbrock and Forrester2D cases. For NRFS, adding noise to the surrogate model broadens the effective function space, which is not necessarily detrimental. In fact, as shown in Figures. 12b and 13b, small amount of noise can improve performance compared to the noise-free cases. The primary negative impact of noise arises from inaccurate estimation of the previous best values. When the noise level is high, overestimation of the incumbent solution may cause the true optimum to be bypassed, and our non-replacement sampling strategy may consequently skip the global optimum.

While one-step-look-ahead NRFS is occasionally outperformed by standard NRFS, as shown in Figures. 12b, 12d and 13b, this degradation in performance can be attributed to the fact that the one-step-look-ahead strategy may increase the risk of overestimating the current best.

Among the remaining methods, TPE demonstrates the most stable performance, showing no significant degradation or improvement across all four objective functions under varying noise levels. This

Figure 14: Performance comparison on modified Shekel function with different SNR levels.

robustness arises from TPE’s use of a percentile-based threshold over top-performing observations, rather than relying solely on the previously observed best. In other words, with a given noise level, the deviation in the lower bound of the top-performing set is smaller than that of the previous best values. For instance, if the mean of observations is used as the threshold, the deviation between the noisy threshold and the true threshold becomes zero. However, this stability also reduces its ability to escape local optimal regions, thereby lowering the chance of identifying the global optimum.

The other methods are affected by noise in different ways. An interesting observation is that, after introducing noise, methods such as EI and PI can escape from regions of local optima. This is because the surrogate model becomes smoother with noise compared to the one learned in the corresponding noise-free case. This results in wider modes, making it easier for these methods to enter or escape such regions. However, the limitation is clear: only a small amount of noise helps prevent from oversampling. When the noise level is too high, it still leads to degraded performance. Since we are dealing with a black-box objective function, it is not possible to determine whether the added noise is within a safe or effective range. As a result, introducing noise cannot be considered a stable or reliable strategy to avoid oversampling.

A.6 COMPUTATIONAL COST

For all objective functions, the experimental runs were distributed across 8 Intel(R) Xeon(R) Gold 6248R CPUs.

For the non-one-step-look-ahead methods, we optimize the acquisition function by evaluating it over all candidates and selecting the one with the maximum value.

For KG and one-step-look-ahead NRFS, if we denote the number of fantasy samples in the one-step-look-ahead step as M , then the computational complexity becomes d^2M , which incurs a high cost when computed over the entire design space. To mitigate this, we first use Latin Hypercube Sampling (LHS) (Shields & Zhang, 2016) to generate evenly distributed acquisition evaluation points (100) in the design space. The acquisition function is then computed on these points to identify the maximizer. Finally, we select the nearest neighbor of this maximizer from all the grid candidates and use the selected candidate as the next evaluation point. This strategy reduces computational resource consumption to a level comparable with other methods such as PES.

Table 1 reports the per-iteration computation time for each BO method with the corresponding acquisition function. The computational cost of NRFS is comparable to that of EI and remains stable across iterations. The additional overhead of the one-step-look-ahead NRFS arises primarily from

972 Table 1: Run-time (seconds) per iteration on different objective functions with different BO methods
973

Acquisition function	GM	Modified Rosen-brock	Forrester2D	Shekel	Branin	BraninRcos2
RS	0.0003	0.0004	0.0003	0.0003	0.0003	0.0003
TPE	0.004	0.021	0.018	0.021	0.019	0.018
ϵ -EI	1.073	0.721	0.703	0.654	0.699	0.711
EI	1.150	1.017	1.132	0.985	1.007	1.185
PI	0.372	0.942	0.739	0.724	0.846	0.730
UCB	0.256	0.776	0.592	0.603	0.702	0.659
NRFS	0.221	1.792	1.437	1.398	0.816	1.131
PES	8.014	11.245	10.458	9.671	8.931	10.120
KG	9.356	10.167	8.134	9.871	10.776	8.804
NRFS (OSLA)	5.432	7.114	5.437	5.557	5.981	5.102

982
983
984 repeated model updates. In our setup, we use $M = 5$ fantasy samples, resulting in the runtime
985 approximately five times that of NRFS.

986 Among all methods, random sampling (RS) is the fastest, as expected. TPE exhibits relatively
987 lower computation time compared to EI, primarily due to the efficiency of kernel density estimation
988 relative to Gaussian process updates. PES incurs significantly higher computational cost; this is
989 consistent with what has been reported in previous work, as PES typically relies on expectation
990 propagation (EP) (Hennig & Schuler, 2012) to derive an analytical approximation of the utility
991 function. For KG, the computational time increases over iterations: it starts at approximately 1
992 second per iteration and grows to around 15 seconds by iteration 60.

993
994 **A.7 USE OF LARGE LANGUAGE MODELS**

995 Large Language Models are only used to check vocabulary and grammar for polishing purpose.
996

997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025