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ABSTRACT

Bayesian optimization (BO) is a probabilistic framework for global optimization
of expensive black-box functions, typically guided by an acquisition function that
balances exploration and exploitation. We propose a novel acquisition strategy—
Non-Replacement Function Space Sampling (NRFS). Instead of explicitly bal-
ancing the exploration–exploitation trade-off as in traditional BO methods, NRFS
implicitly achieves this balance by prioritizing sampling functions from the func-
tion space that have not been involved in previous acquisition decisions. By es-
tablishing a correspondence between each candidate and the set of functions that
consider it as the corresponding optimizer, we derive a principled and efficient
searching strategy in the design space. We provide strong empirical evidence
demonstrating that NRFS achieves state-of-the-art performance across a range of
benchmark tasks, consistently improving optimization performance in all settings,
particularly in challenging settings that demand both broad exploration and pre-
cise exploitation.

1 INTRODUCTION

Bayesian Optimization (BO) is one of sample-efficient strategies to optimize black-box functions
that are often expensive to query. BO strives for the balance between exploration and exploita-
tion to efficiently identify optimal solutions (Jalali et al., 2012; Candelieri, 2023), where explo-
ration encourages querying in regions of high uncertainty to improve understanding of function
responses globally, while exploitation favors regions with promising predicted values to quickly
find optima (de Ath et al., 2021). Classical acquisition functions in BO, such as Expected Improve-
ment (EI) (Jones et al., 1998) and Probability of Improvement (PI) (Kushner, 1964; Snoek et al.,
2012), primarily focus on quantifying potential performance gains. Entropy-based approaches,
including Predictive Entropy Search (PES) (Hernández-Lobato et al., 2014) and Max-value En-
tropy Search (MES) (Wang & Jegelka, 2017), focus on reducing uncertainty about the location
of the global optimum. Other uncertainty-reduction approaches, such as Expected Information
Gain (EIG) (Tsilifis et al., 2017) and step-wise uncertainty reduction (Villemonteix et al., 2009),
aim to clarify the black-box function itself, thereby enhancing the reliability of the surrogate model.
Methods that emphasize performance gains may suffer from oversampling when the surrogate is
biased or mis-specified (Wang & de Freitas, 2014), whereas uncertainty-reduction approaches do
not directly target the optimizer location, potentially leading to inefficiency in identifying pre-
cise optima. To balance these two objectives, hybrid methods such as Upper Confidence Bound
(UCB) (Auer et al., 2002) and Variational Entropy Search (VES) (Cheng et al., 2025) combine per-
formance gain and uncertainty into a single reward to guide optimization. Other strategies adaptively
switch between exploration and exploitation based on current observations (Bian et al., 2021).

These existing BO acquisition strategies share two common features: 1) they are typically based on
human-defined subjective acquisition functions that may deviate from finding true optima: Whether
they are framed in terms of the surrogate model or optimizer location uncertainty, iterative improve-
ment with respect to specified criteria, or a combination of both, the corresponding acquisitions can
be biased instead of fully aligned with the ground-truth optimizer. 2) The estimation of the acqui-
sition functions can also introduce biases based on the chosen surrogate model space. Researchers
often interpret the surrogate as a collection of candidate functions, any of which could represent the
true objective function. However, this assumption may not lead to fast identification of optima in
practice. For instance, the goal of BO is to identify the true optimum beyond the current best, while
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Figure 1: Acquisition behavior comparison for different acquisition strategies over two iterations:
the first plot shows the initial state, and the second plot shows the state after adding the NRFS
acquisition candidate to the training samples. The colormap highlights the exploration/exploitation
tendencies of different acquisition strategies, where red indicates exploration and blue indicates
exploitation.

during BO iterations, many sampled functions could not reach the true optimum, particularly those
that already assigned the current best observation as their optimizer. This can lead to redundancy and
bias towards inefficient acquisition function estimation without focusing quickly on the underlying
true objective function and its optimal solution(s).

To develop a more efficient BO acquisition strategy, we focus on two key aspects: (1) what is the
most suitable objective target to guide the acquisition, and (2) what is the most effective method to
estimate this objective target. We develop a new probabilistic reasoning framework via Probability
of Optimality (PO), which directly characterizes the likelihood of a candidate being the optimizer
without relying on human-defined heuristics. Furthermore, we employ a non-replacement sampling
strategy to estimate PO precisely.

Within this framework, we propose a new acquisition strategy, Non-Replacement Function Space
Sampling (NRFS), which adopts a unified strategy that directly connects optimizer probability to
function space coverage, consistently ensuring convergence to the global optimum. In our formu-
lation, the surrogate model is treated as a pool of functions that contain the true objective. We
iteratively identify the optimizers of functions sampled from this pool and remove these functions
without replacement until the pool is fully depleted. The key advantage of this approach is that, even
if the fitted surrogate is over represented in certain regions, as long as the surrogate contains the true
objective, non-replacement sampling guarantees convergence once the pool is exhausted. With this
strategy, no subjective reward is defined or used during the acquisition process.

Assume that we have collected observations D, to which we fit a Gaussian process and denote the
corresponding function space as FD

GP . We then take each design point x to define a bucket:

FD
x =

{
f ∈ FD

GP

∣∣∣∣ x = arg min
x′∈X

f(x′)

}
, (1)

which contains all functions with x being their optimizer. This definition guarantees that each
function, including the objective function, belongs to at least one bucket. For functions with multiple
global optima, we assign them randomly to one of their valid buckets to have one-to-one mappings
between x and FDn

x . If we could identify the bucket containing the true objective function, the BO
task would be solved. Our approach selects the bucket containing the largest number of functions,
thereby maximizing the probability that the true objective resides within the bucket. Once a bucket is
selected, we remove all functions assigned to it from future consideration, ensuring that no function
is selected more than once and thereby improving search efficiency.

Figure 1 illustrates a motivating example demonstrating the effectiveness of our NRFS strategy
directly focusing on the global optimizer without tuning exploration-exploitation trade-off as in
many existing methods. The objective is to locate the global optimum in the rightmost valley. In the
initial state, EI and PO remain focused on local optima (left two valleys), where the surrogate already
exhibits high confidence. This observation suggests that relying solely on PO, without incorporating
NRFS, still suffers from the oversampling issue observed in EI. PES and NRFS demonstrate stronger
performance on avoiding oversampling; however, after new acquisition, PES continues to target
high-uncertainty areas. In contrast, NRFS shifts attention towards the promising region as shown by
the pink curve in the right plot of Figure 1, enabling successful identification of the global optimum.
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As we have briefly introduced the limitations of existing acquisition strategies in BO and how our
proposed NRFS addresses them, we will present more details of our contribution based on the fol-
lowing organization: Section 2 provides a more detailed overview of commonly used acquisition
functions in BO; Section 3 introduces our NRFS-based BO formulation; Section 4 reports empirical
results, and Section 5 concludes the paper.

2 BACKGROUND

2.1 BAYESIAN OPTIMIZATION

Let x be a d-dimensional vector of decision variables in the feasible design space X ⊂ Rd; and
f∗(·) : X → R a continuous black-box objective function, with any evaluation f∗(x) being an
expensive process with respect to time and/or cost. We aim to approach the global minimizer x∗

f∗

within a limited number of evaluations by a given function evaluation budget:

x∗
f∗ = arg min

x∈X
f∗(x). (2)

In BO, the unknown black-box objective function is often modeled by a Gaussian process (GP),
p(f), characterized by its mean function µ(·) : X → R and covariance kernel function k(·, ·) :
X 2 → R. BO sequentially selects a sequence of observed samples for their corresponding eval-
uations (Frazier, 2018). Given the observation data set until the n-th iteration Dn = {Xn, Yn},
the GP posterior of f is updated (Rasmussen, 2003). We denote the posterior belief of f as
p(y | x,Dn) = P (y = f∗(x) | Dn). In each BO iteration, the next query point is chosen by
optimizing an acquisition function:

x = arg max
x′∈X

un(x
′), (3)

where un(x) is the expected utility of evaluating x based on the updated GP posterior. The ac-
quisition function should avoid oversampling and unnecessary exploration, which means that the
resulting sequential queries should favor both the points with potential good values with respect to
the objective and the informative points from the unexplored regions for learning better optimizer
distribution.

2.2 RELATED WORK

A commonly used strategy in BO is to estimate the potential improvement obtained by evaluating a
candidate point x. Expected Improvement (EI) is a widely used acquisition function that accounts
for potential improvements in objective value (Jones et al., 1998). A well-known limitation of EI is
its tendency to oversample near local optima, particularly when the probabilistic model’s prior is the
initialization is biased or mis-specified (Wang & de Freitas, 2014) . Probability of Improvement (PI),
which targets the likelihood of improvement, exhibits similar behavior (Kushner, 1964; Snoek et al.,
2012). Oversampling usually happens when the acquisition is close to the evaluated training points,
and the updated surrogate model will show minimal differences compared to the previous iteration.
Consequently, the acquisition is repeatedly computed from a function set resembling the previous
one, which results in nearly identical acquisition decisions iteratively.

Beyond acquisition functions that target improvement-based rewards, some strategies instead em-
phasize uncertainty reduction. These methods can be grouped into two categories. The first category
aims to reduce uncertainty about the optimizer’s location. For example, Entropy Search (ES) and
PES (Villemonteix et al., 2009; Hernández-Lobato et al., 2014) explicitly model the posterior distri-
bution over the unknown minimizer, denoted by:

P (x = x∗
f∗ | Dn) ≈ Ef∼GP [P (x = x∗

f | Dn)] = Ef∼GP [P (x = argmin
x′

f(x′) | Dn)]. (4)

Since ES aims to reduce the uncertainty in the location of the true optimizer x∗
f∗ , the observation

sequence selected is not necessarily close to x∗
f∗ , which may not provide promising candidates

with optimal objective value under limited evaluation budget. In the extreme scenario where the
optimizer’s location is already known, PES still cannot determine the next acquisition point because
the entropy contributions for optimal impossible candidates and the definitive optimizer are both 0.
The second category targets reduction of function uncertainty, as in EIG or step-wise uncertainty
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reduction methods, which aim to shrink the set of possible functions over the entire search space.
However, this strategy can also be inefficient, since it expends extra effort distinguishing between
functions that share the same optimizer.

To mitigate oversampling in a single region and suboptimal suggestions from uncertainty reduc-
tion, researchers have explored hybrid approaches, such as UCB, Moment Generating Function
(MGF) (Wang et al., 2017), Truncated Variance Reduction (TVR) (Bogunovic et al., 2016) and
VES, aim to balance exploration and exploitation with hyperparameters that guide acquisitions to-
ward regions of high uncertainty when the process gets trapped in local optima. These methods
typically favor either exploitation-driven or uncertainty-reduction-driven decisions in specific iter-
ations, but rarely balance both simultaneously. Alternative hybrid methods, such as ϵ-EI, enforce
exploration in random iterations with a fixed probability ϵ. Researchers also design schedules that
decrease exploration as iterations progress. However, the optimal balance between exploration and
exploitation is problem-dependent, making it challenging to predefine a universally effective sched-
ule for diverse unknown objectives. To address this challenge, online tuning strategies are employed
to dynamically adjust hyperparameters or schedules. Unfortunately, these strategies usually require
at least 50 to 100 iterations to converge to optimal settings and can be even more computationally
expensive for problems of high complexity.

In summary, most popular acquisition functions are driven by subjective rewards such as objective
improvement, entropy reduction, variance minimization, or their combinations. While some of these
strategies can yield strong empirical performance in certain cases, there still lacks a single unified
policy strategy that works universally. This leads to an awkward situation in practice: identifying
the most appropriate acquisition strategy often requires testing multiple options, merging existing
ones, or constructing new hybrids. Rather than investing effort in developing a universal principle,
the prevailing trend is to combine heuristics in the hope of achieving a better lower bound of the
convergence rate, more focusing on ad-hoc engineering attempts by testing empirical performances.
However, as long as acquisition is guided by subjective rewards, the process will remain biased
towards human-designed targets rather than the true optimizer location, regardless of how much
effort is spent on merging and tuning engineering heuristics.

3 NON-REPLACEMENT FUNCTION SPACE SAMPLING

3.1 OPTIMIZER PROBABILITY

To avoid redundant and/or biased BO acquisitions from subjective rewards, our new acquisition
strategy, NRFS, adopts PO as our utility function, which focuses on maximizing the probability that
the next acquisition corresponds to the true optimizer:

x = arg max
x′∈X

P (x′ = x∗
f∗). (5)

Compared to methods based on specific evaluation criteria, such as EI or PES, (5) expresses the
objective of BO more directly and accurately, as it is derived from the ultimate goal in (2) and does
not depend on any additional, subjectively defined rewards. However, as we do not have the un-
derlying objective function f∗, the key challenge here becomes reliably estimating this probability
by replacing f∗ in (2) with f drawn from the surrogate function distribution, so that the fixed opti-
mizer location on the left-hand side becomes a distribution over optimizer locations. The objective is
then to identify the most probable optimizer location within this iteratively updated surrogate model
space via this optimizer distribution.

Direct estimation of the probability P (x = x∗
f∗) is nontrivial when each x ∈ X is treated merely

as an observed input location. Following the formulation strategy of Hennig & Schuler (2012), we
reformulate PO as:

P (x = x∗
f∗) = pmin(x) =

∫
f :X→Y

p(f)
∏
x̃∈X
x̸̃=x

θ[f(x̃)− f(x)] df, (6)

where θ[·] is the Heaviside step function. The term
∏

x̃∈I
x̃ ̸=x

θ[f(x̃) − f(x)] acts as an indicator

of whether the function f regards x as its global optimizer. The above equation (6) denotes the

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

expected probability that x is the optimizer over all sampled functions within the surrogate model
space. By combining (6) with the definition in (1), we can estimate the size of FD

x as follows:

| FD
x |=| FD

GP |
∫
f :X→Y

p(f)
∏
x̃∈X
x̃ ̸=x

θ[f(x̃)− f(x)] df, (7)

where | FD
GP | represents the cardinality of the surrogate model space. Based on (6) and (7), we

establish the connection between PO and the function space coverage ratio (6), as shown:

P (x = x∗
f∗) =

| FD
x |

| FD
GP |

, (8)

which transforms a nontrivial probability into a quantity that can be estimated by sampling functions
from the surrogate GP. Note that | FD

GP | is typically determined by how many functions are sampled
from the surrogate model space, which is usually fixed. Consequently, optimizing PO is equivalent
to identifying the maximizer of the numerator | FD

x |.

3.2 COVERAGE CONTRIBUTION ESTIMATION

Equation (8) suggests that increasing the probability of selecting the true optimizer can be achieved
by enlarging the set of functions included in the future function bucket. However, (8) only describes
a one-step strategy conditioned on some observation data D. Since BO is inherently sequential,
incorporating the acquisitions Dn from previous iterations is necessary. Thus, we extend (8) into its
cumulative form, defined as:

P (x∗
f∗ ∈ Xn+1) = P (x∗

f∗ ∈ Xn) + P (xn+1 = x∗
f∗ | x∗

f∗ ̸∈ Xn)P (x∗
f∗ ̸∈ Xn). (9)

Notice that P (x∗
f∗ ∈ Xn) and P (x∗

f∗ ̸∈ Xn) are fixed after n iterations, optimization of (9) can be
achieved by maximization on term P (xn+1 = x∗

f∗ | x∗
f∗ ̸∈ Xn). Unlike the one-step maximization

target defined in (8), P (xn+1 = x∗
f∗ | x∗

f∗ ̸∈ Xn) is conditioned on the event x∗
f∗ ̸∈ Xn.

Intuitively, this is reasonable: if x∗
f∗ ∈ Xn, the BO process would already be completed. Thus, (9)

formalizes that continuing BO requires conditioning on x∗
f∗ ̸∈ Xn.

To the best of our knowledge, no prior work has used x∗
f∗ ̸∈ Xn as a condition to guide BO,

since this condition appears to merely shrink the design space. However, we observe that x∗
f∗ ̸∈

Xn also influences the objective space, thereby exerting a broader impact on the function space.
From x∗

f∗ ̸∈ Xn, we obtain a corresponding condition in function space: f∗(x∗
f∗) ̸∈ Yn. For a

minimization problem, this is equivalent to f∗(x∗
f∗) < Y ∗

n = min{Yn}. This inequality condition
is crucial, as it indicates that the true optimum must improve upon the current best. Consequently,
any sampled function that cannot achieve a value better than the current best cannot be the true
objective function. When sampling the function space to estimate (9), such functions should be
excluded, as their probability p(f) is zero.

Thus to maximize (9), we must consider how many functions from FD
x are from the objective

function impossible region and remove them from future consideration. We partition the candidate’s
function cluster into two subsets:

FDn
x = FDn

x,f(x)≥Y ∗
n
∪ FDn

x,f(x)<Y ∗
n

(10)

For all functions in FDn

x,f(x)≥Y ∗
n

, their optima do not surpass the current best observation Y ∗
n . As

discussed earlier, the true objective function cannot belong to this set. Consequently, functions
from set FDn

x,f(x)≥Y ∗
n

contribute only ineffective coverage. Therefore, the effective coverage can be
computed as:

|FDn
x | = |FDn

x,f(x)<Y ∗
n
|+ |FDn

x,f(x)≥Y ∗
n
| = |FDn

x,f(x)<Y ∗
n
|. (11)

To accurately estimate the coverage contribution of each candidate point x, we restrict sampling
optimizers that overwhelm the current best for all x ∈ X . This constraint ensures unbiased esti-
mation of coverage improvement across all possible candidates. Under this setup we sample from
a Truncated Gaussian Process (TGP), defined as T GP(µ, k, t), where t is the threshold. For mini-
mization problems, we sample from T GP−(µ, k,Y ∗

n ), indicating that the sampling is restricted to
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the function space lying below the threshold Y ∗
n . The final utility function is estimated by a variant

of (6) with the samples from T GP−(µ, k,Y ∗
n ), shown as:

Ef∼T GP−(µ,k,Y ∗
n )

[
P
(
x = x∗

f | Dn

)]
=

∫ Y ∗
n

−∞

∏
x̃∈X

x̸̃∈{Xn∪x}

θ[f(x̃)− f(x)]p(f)df. (12)

In summary, we maximize (9) by identifying the maximizer of (12). From (12), we can illustrate
how NRFS avoids the exploration–exploitation dilemma based on joint distribution of probability of
optimality and function distribution. Compared with the original probability of optimality without
any conditioning, our method by NRFS mitigates oversampling by filtering out all functions that
have been identified with an optimizer whose p(f) = 0 in future steps. Meanwhile, the threshold
condition Y ∗

n also prevents redundancy by acquisitions for uncertainty reduction in regions where
the optimizer cannot exist, thereby enhancing acquisition efficiency.

3.3 ONE-STEP-LOOK-AHEAD VARIANT DEVELOPMENT

To further increase sample efficiency in BO, here we develop a one-step-look-ahead variant of (12).
After T evaluations, the probability that the optimizer has been identified is

RT = P (x∗
f∗ ∈ XT ) = 1−

T∏
t=1

(
1− P (x∗

f∗ = xt)
)
. (13)

We refer to RT as the cumulative success probability. The corresponding incremental contribution
of iteration t is

rt = P (x∗
f∗ = xt)

t−1∏
s=1

(
1− P (x∗

f∗ = xs)
)
, (14)

i.e., the probability of discovering the optimizer at iteration t given it has not been selected before.
At iteration n, maximizing the defined cumulative success probability is equivalent to maximizing
the following one-step-look-ahead value function:

Vn≈rn+rn+1=

n−1∏
s=1

(
1−P (x∗

f∗ =xs)
)[
P (x∗

f∗ =xn)+
(
1−P (x∗

f∗ =xn)
)
P (x∗

f∗ =xn+1)
]
. (15)

Since
∏n−1

s=1

(
1− P (x∗

f∗ = xs)
)

is fixed after iteration n − 1, optimization of the value function

reduces to maximizing P (x∗
f∗ = xn)+

(
1− P (x∗

f∗ = xn)
)
P (x∗

f∗ = xn+1). We therefore define
the corresponding one-step-look-ahead utility function as:

un(x)=P (x∗
f∗ =x | Dn) +

(
1− P (x∗

f∗ =x | Dn)
)
Ey|Dn,x

[
max
x′∈X

P
(
x∗

f∗ =x′ | Dn ∪ (x, y)
)]

, (16)

where P (x∗
f∗ = x | Dn) and maxx′∈X P

(
x∗
f∗ = x′ | Dn ∪ (x, y)

)
are estimated by (12).

In contrast to one-step-look-ahead variants of other acquisition functions, which typically require
tuning a hyperparameter γ to balance immediate and future rewards, our one-step-look-ahead NRFS
directly sets γ = 1 − P (x∗

f∗ = x | Dn). This choice avoids potential probability gaps across
different problem settings, eliminating the need to search for task-dependent hyperparameters.

Another advantage is that the one-step-look-ahead NRFS variant has the potential to achieve the
maximum convergence rate. Traditionally, the convergence rate is defined by how quickly an error
term, or a probability gap, decays to zero (Ryzhov, 2016; Bull, 2011). In our setting, this probability
gap corresponds to the cumulative regret Rreg

T = 1 − RT . Note that maximizing the value func-
tion Vn at each step is equivalent to minimizing cumulative regret, so each acquisition step can be
interpreted as directly advancing the convergence rate.

4 EMPIRICAL RESULTS

4.1 EXPERIMENTAL SETUP

We follow the practice in PES (Hernández-Lobato et al., 2014), to estimate (12) and (16). Specifi-
cally, we first sample M (1000) functions from T GP−(µ, k,Y ∗

n ) to obtain a function set {fj(·)}Mj=1.

6
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When M = 1, the approach degrades to a variant of Thompson sampling (Russo et al., 2018), but
with samples drawn from a TGP instead of the full surrogate. For each sampled function fj(·),
we identify its optimizer location and then aggregate these optimizers to estimate the distribution
over the design space. In continuous domains, NRFS can be implemented by applying density
estimation techniques such as Kernel Density Estimation (KDE) (Chen, 2017), Gaussian Mixture
Models (GMM), k-Nearest Neighbors (KNN), or any other strategies to approximate the optimizer
distribution. In our implementation, we apply Parzen estimator (Silverman, 2018), resulting in a
continuous density function. The acquisition is selected as the most probable optimizer location
under this estimated distribution.

4.2 SEARCHING BEHAVIOR

To understand the search behavior of NRFS intuitively, we test an illustrative example with a Gaus-
sian mixture (GM) objective function to minimize: −N (−µ1, σ

2
1)−N (µ2, σ

2
1)−0.55N (µ1, σ

2
2)+1.

We set µ1 = 0.3, µ2 = −0.1, σ1 = 0.05 and σ2 = 0.3√
2

(Figure 1). The objective function has two
local minima and one global minimum far from local minima. The searching behavior comparison
detailed discussion can be found in Section 1 and more empirical performance comparison can be
found in Section 4.3.

Besides the search behavior analysis on 1D GM example, we apply NRFS on other benchmark
objective functions which are more commonly used in evaluating BO methods, including 1)
Branin (Branin, 1972); 2) BraninRcos2 (Al-Roomi, 2015); 3) Himmelblau’s (Himmelblau et al.,
2018) and 4) HolderTable (Al-Roomi, 2015) to check the convergence. Figure 2 demonstrates that,
given a sufficient number of iterations, NRFS converges to all global optima. The distribution of
training samples shows high density near the true optima and lower density elsewhere, indicating
that acquisition is guided by the potential to identify global optima in given regions. Oversampling
occurs rarely and primarily when the search is already close to an optimum. Additional behavioral
analysis on other objective functions is provided in Section A.1 of the Appendix.

(a) Branin (b) BraninRcos2 (c) Himmelblau’s (d) HolderTable

Figure 2: Convergence performance on different objective functions with multiple local optima: (a)
Branin; (b) BraninRcos2; (c) Himmelblau’s; and (d) HolderTable. Darker regions indicate lower
values, which are more desirable for minimization task. White dots mark the iterative acquisitions.

4.3 ACQUISITION FUNCTION EVALUATION

We compare NRFS and its one-step-look-ahead variant against several baselines including EI (Jones
et al., 1998), PES (Villemonteix et al., 2009; Hernández-Lobato et al., 2014), ϵ-EI, UCB (Srini-
vas et al., 2009), Tree-structured Parzen Estimator (TPE) (Bergstra et al., 2011; Watanabe, 2023),
PI (Kushner, 1964; Snoek et al., 2012), Knowledge Gradient (KG) (Frazier et al., 2008), and Latin
Hypercube random sampling (RS) (McKay et al., 2000). EI, ϵ-EI, PI, UCB, PES, KG are imple-
mented within the BOTorch framework (Balandat et al., 2020), while TPE is based on Optuna (Akiba
et al., 2019). More discussion of these previous acquisition function is in Appendix A.2.

We have evaluated all acquisition functions on four known objective functions: the GM function
introduced in Section 4.2, the 2D Forrester function (Forrester et al., 2008), a modified Rosenbrock
function (Rosenbrock, 1960), and the Shekel function (Molga & Smutnicki, 2005). These known
objective functions are selected because they require a balance of exploration and exploitation to
effectively locate the global optimum. Visualizations of the objective landscapes and analyses of
search behaviors under different BO strategies are provided in Section A.1 of the Appendix. These
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four functions represent three types of multi-modal objective landscapes: 1) The GM and modified
Rosenbrock functions exhibit large, smooth local optima along with a sharp global optimum distant
to local optima; 2) The 2D Forrester function contains large, smooth local optima and a similarly
smooth global optimum; 3) The Shekel function features multiple sharp peaks, with all optima being
narrow and distinct. In addition to the four known objective functions, we consider two real-world
case studies aimed at identifying the optimal composition of six elemental materials (Hastings et al.,
2025). The first case targets the highest stacking fault energy (SFE), while the second focuses
on maximizing heat capacity (HC). In both cases, the mapping from composition to property is
unknown.

(a) GM (b) Forrester2D (c) Shekel

(d) Modified Rosenbrock (e) SFE (f) HC
Figure 3: Performance comparison on different objective functions: (a) 2D Gaussian mixture model;
(b) Forrester2D; (c) Shekel; (d) Modified Rosenbrock; (e) SFE and (f) HC

In the cases of GM, the modified Rosenbrock function and SFE, our NRFS consistently outperforms
all other competing methods, not only consistently achieving better objective function values across
iterations but also exhibiting greater stability. These objective functions require BO to escape lo-
cal optima and effectively exploit the global optimal region to achieve faster convergence. In the
Forrester2D case, ϵ-EI and UCB also demonstrate competitive performance compared to NRFS and
one-step-look-ahead NRFS. This is because the global optimal region is relatively large and smooth,
unlike previous three examples. As a result, ϵ-EI and UCB can more easily acquire points in the
global optimal region via random sampling or uncertainty reduction. However, achieving the per-
formance shown in Figure 3b requires sweeping ϵ from 0.1 to 0.9 to identify the best-performing
hyperparameter, resulting in significantly higher evaluation cost compared to NRFS and one-step-
look-ahead NRFS. For UCB, even when using a self-adjusting schedule β = 0.5d · log(n + 1) · c,
selecting the constant c remains challenging due to the lack of prior knowledge about the scale
and smoothness of the objective function, making it difficult to define a reasonable hyperparameter
range. In contrast, our NRFS-based BO methods do not require hyperparameter tuning compared
to these methods. In the Shekel and HC cases, NRFS-based methods are initially outperformed
by other acquisition functions in the early iterations. However, as the number of BO iterations in-
creases, they achieve the best overall performance. The strong early performance of value improve-
ment based methods can be attributed to their rapid convergence toward local minima. Nevertheless,
as the optimization progresses, these methods eventually fail to provide meaningful acquisitions due
to their inherently unbalanced acquisition strategies.
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More importantly, the landscape of the objective function is unknown before evaluation. Conse-
quently, our NRFS-based methods offer the most robust BO strategy among all the alternatives, as
they consistently demonstrate stable performance improvements and reliably converge to the global
optimum regardless the landscape of the objective function. A clearer presentation of their standard
deviation (std) performance in Section A.3 of the Appendix further highlights their reliability. We
have also performed benchmarking on other commonly used objective functions, high dimensional
case and robustness test against noise with different levels for all of the acquisition methods men-
tioned above. The results could be found in Sections A.4 and A.5 of the Appendix. Section A.6
includes the complexity analysis and computational cost comparison for different acquisition meth-
ods.

Beyond empirical performance comparison, we further analyze the acquisition behaviors of EI, PES,
and NRFS on the SFE task, highlighting how NRFS can facilitate real-world material discovery. The
top 5% performing materials are distributed across three regions, with only one region containing
the global optimizer. We compare the performance of our NRFS with the BO methods using EI
and PES acquisition functions. Figure 4 illustrates the BO performance difference, where NRFS
successfully finds the global minimum but EI and PES fail within 40 iterations. As illustrated, EI
gets trapped in the local minimum; PES fails to identify the exact global minimum after getting
close, suffering from its focus on information gain instead of acquisition in potential optimal region.

Figure 4: Acquisition behavior comparison of different strategies on the SFE material rediscovery
task over 40 iterations. Darker candidates correspond to higher SFE values. Global optimizer is
marked with a black star. Black numbers in red disks represent the iteration of acquisitions by three
different strategies, among which only NRFS reaches the global optimizer at iteration 27 while EI
and PES fails to identify it within 40 iterations.

5 CONCLUSION & FUTURE RESEARCH

We have proposed a novel BO strategy, NRFS, which acquires the query candidate that has the max-
imum probability to be the true optimizer. To further enhance acquisition efficiency, we transform
the estimation of this probability to estimating function space coverage by focusing on surrogate
functions whose optima are likely to be the true optimum. We provide strong empirical evidence
that NRFS can converge to all global optima for a diverse family of benchmark objective functions
and demonstrate superior empirical advantages of NRFS over existing BO baselines. Moreover,
NRFS not only provides a new BO strategy, but also opens a new research direction on how one
should utilize the surrogate models more efficiently. The computation of other acquisition functions
in other BO methods can also be based on the sampled functions from NRFS.

One direction for future research is to extend the NRFS framework to multi-objective optimization.
Unlike the single-objective case, where the GP is truncated by a scalar threshold, the multi-objective
setting involves truncation by a Pareto front, a complex and implicitly defined surface. Sampling
from a truncated GP under such a constraint is non-trivial and presents unique challenges. Another
promising direction is to improve the computational efficiency of NRFS through analytical formula-
tion. Beyond computational efficiency gains, we expect that an explicit analytical form would also
enable derivation of an exact convergence rate, further strengthening the theoretical foundation of
NRFS.
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A APPENDIX

A.1 SEARCHING BEHAVIORS

In addition to the search behavior analysis on the illustrative Gaussian Mixture (GM) example in
Section 4.2 and stacking fault energy (SFE) real case presented in Section 4.3 of the main text,
we provide additional analyses based on the BO results on different objective functions discussed
in Section 4.3. This extended comparison highlights the differences in search behavior dynamics
among commonly used non-hybrid acquisition strategies: Expected Improvement (EI) (Jones et al.,
1998), Predictive Entropy Search (PES) (Hernández-Lobato et al., 2014), and our proposed NRFS.

(a) EI Forrester2D (b) PES Forrester2D (c) NRFS Forrester2D

(d) EI Modified Rosenbrock (e) PES Modified Rosenbrock (f) NRFS Modified Rosenbrock

(g) EI Shekel (h) PES Shekel (i) NRFS Shekel

Figure 5: Search behavior comparison between EI-, PES- and NRFS-based BO. Red stars: Next
acquisitions; White dots: Previous acquisitions.

For the three minimization cases in Figure 5 above, EI tends to oversample regions near local optima,
highly likely to continue until those regions are thoroughly exploited. In contrast, PES exhibits
the opposite behavior: even after identifying a candidate in a region likely to contain the global
optimum, it continues to explore points that reduce uncertainty about the optimizer’s location, rather
than concentrating on the regions with high potential. NRFS demonstrates a more balanced search
strategy. Its acquisition distribution is closely aligned with the objective landscape, assigning higher
acquisition frequency to regions closer to the optimum.
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A.2 BASELINE METHODS DISCUSSION

In this section, we review the existing acquisition functions and explain why they are used as our
comparison baselines. We start with EI. As illustrated in Fig. 1, EI and PO exhibit similar per-
formance, both being affected by the oversampling issue. Many prior studies (Hennig & Schuler,
2012) also use EI for GP global PO estimation, however, the underlying principles of PO and EI are
fundamentally different. Consider a simple case with two candidate buckets. While most functions
identify the first bucket as containing the optimizer, its expected improvement is lower than that of
the second bucket because the second buckets contains optimum with extreme value. As a result,
EI selects the second bucket due to the higher expected improvement. However, from an intuitive
perspective, the first bucket should be preferred since it has a higher likelihood of containing the
true objective function. This misstep arises because EI prioritizes potential magnitude over the like-
lihood of containing the true optimum which is an inherent property of the objective that remains
fixed regardless of human-defined expectations. The difference between EI and PO in Fig. 1 is not
pronounced because the objective values follow a Gaussian distribution with small variance, differ-
ent from the earlier examples with those following extreme-value distributions. When the Gaussian
distribution has larger variance their difference becomes more apparent, especially in the design
space boundary region (Hennig & Schuler, 2012).

For uncertainty reduction based methods, PES aims to reduce the number of remaining candidate
buckets rather than directly selecting the most probable one. Methods with function uncertainty re-
duction ability like UCB, TVR and Expected Information Gain (EIG) (Tsilifis et al., 2017), primarily
focus on decreasing the total number of possible functions across all buckets. This approach can be
inefficient, as it devotes unnecessary effort to keep reducing the number of functions including the
buckets that have already been considered.

Besides the most popular acquisition functions such as EI, PES and UCB. TPE is a variant of EI, and
we include it in our comparison because it also incorporates both truncated modeling and density
estimation over the design space. Given a minimization problem, TPE sets the threshold above the
current best value, and uses candidate locations with objective values below this threshold to esti-
mate the optimizer density. Our goal is to evaluate how its truncation strategy compares to ours. KG,
a popular one-step-look-ahead strategy, that estimates the expected value of information from eval-
uating a candidate point, which we include as a baseline to compare with our one-step-look-ahead
NRFS. PI, a replacement function space sampling strategy, that focuses solely on the likelihood of
improving over the current best observation rather than targeting global optimality, is used as the
baseline to compare the difference between Non-replacement and replacement sampling, objective
improvement and optimality. RS is included as a non-informative baseline to assess optimization
performance.

A.3 PERFORMANCE CONSISTENCY

We further extract the standard deviation values to illustrate the performance consistency explicitly
in this section.

We observe that, across all six case studies with different objective functions as discussed in the main
text, our NRFS exhibits the most stable performance among the cases with GM, Forrester2D and
Shekel. For Modified Rosenbrock, as Fig. 6d shows, EI, TPE, and PI demonstrate more consistent
behavior than NRFS, likely due to their tendency to oversample in local optima across all 20 trials.
By combining the mean performance reported in the main text with the observed standard deviation
values, we find that NRFS exhibits low variability only when it converges to the global optimum.
This behavior suggests that std can serve as a reliable indicator of proximity to the global optimum:
since NRFS does not suffer from oversampling, a near-zero std implies that the current best is close
to the global optimum.

A.4 ADDITIONAL BENCHMARKING RESULTS

Besides the objective functions that require a balanced strategy, we also consider Branin (Dixon,
1978) as a purely exploitation-driven case, and BraninRcos2 (Al-Roomi, 2015) as an exploration-
driven case, to evaluate NRFS under these extremes. Branin contains three global optima, and
identifying any one of them suffices to achieve optimal performance. In contrast, BraninRcos2
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(a) GM (b) Forrester2D (c) Shekel

(d) Modified Rosenbrock (e) SFE (f) HC

Figure 6: Std performance comparison on different objective functions: (a) 2D Gaussian mixture
model; (b) Forrester2D; (c) Shekel; (d) Modified Rosenbrock; (e) SFE and (f) HC

resembles the Shekel function, characterized by many local optima and a relatively narrower global
optimum region. This implies that once the global optimum region is explored, the optimal solution
is nearly recovered.

We also include the Forrester function with d = 20 as a high-dimensional test case to evaluate the
performance of NRFS under high dimensional settings. To improve computational efficiency, all
acquisition strategies are computed using a sparse axis-aligned subspace Gaussian process (SAAS-
GP) (Eriksson & Jankowiak, 2021), implemented within the BOTorch framework.

As Figure 7 shows, in the Branin case, NRFS appears to require more iterations to converge to the
global optimum compared to EI. As illustrated in Figure 2a (Section 4.2), this slower convergence
can be interpreted as the inherent trade-off for acquiring all global optima rather than focusing on
a single one. This observation indicates that a current limitation of NRFS: it may not outperform
some existing methods when the problem contains only one optimal region or multiple optimal
regions with the same optimal values. In such cases, identifying one region is sufficient to guarantee
the global optimum, thus there is no need to acquire candidates from other high potential regions.
In the BraninRcos2 setting, the performance trend aligns with that observed in the Shekel function
(Figure 3c, Section 4.3). Specifically, PES is able to identify the global optimum region more quickly
in the initial iterations. However, once the optimal region is located, NRFS starts to outperform PES
in subsequent acquisitions.

For the Forrester 20D case, the variance observed for NRFS and NRFS(OSLA) indicates that op-
timization is far from complete, as the high-dimensional design space exponentially increases the
number of candidate buckets. Nevertheless, the mean performance of our methods remains superior
to other strategies, as shown in Figure 7c.

A.5 ROBUSTNESS ANALYSIS

We have also evaluated robustness by adding varying levels of Gaussian noise to the four objec-
tive functions described in the main text. For hybrid acquisition strategies such as UCB and ϵ-EI,
hyperparameters were further tuned to ensure optimal performance under different noise levels.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(a) Mean on Branin (b) Mean on BraninRcos2 (c) Mean on Forrester20D

(d) Std on Branin (e) Std on BraninRcos2 (f) Std on Forrester20D

Figure 7: Performance comparison of BO methods on three objectives: (a–c) mean of the current
best for Branin, BraninRcos2, and Forrester20D; (d–f) std of the current best on the same bench-
marks.

(a) No noise mean (b) SNR 64 mean (c) SNR 16 mean (d) SNR 4 mean

(e) No noise std (f) SNR 64 std (g) SNR 16 std (h) SNR 4 std

Figure 8: Performance comparison for the GM example with different signal-to-noise ratio (SNR)
levels.

Based on the results, we conclude that NRFS is robust to different noise levels corresponding to
SNR values above 16 across all four objective functions. It even demonstrates robustness with high
noise (SNR = 4) in the Modified Rosenbrock and Forrester2D cases. For NRFS, adding noise to the
surrogate model broadens the effective function space, which is not necessarily detrimental. In fact,
as shown in Figures. 9b and 10b, small amount of noise can improve performance compared to the
noise-free cases. The primary negative impact of noise arises from inaccurate estimation of the pre-
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(a) No noise mean (b) SNR 64 mean (c) SNR 16 mean (d) SNR 4 mean

(e) No noise std (f) SNR 64 std (g) SNR 16 std (h) SNR 4 std

Figure 9: Performance comparison on Forrester2D function with different SNR levels.

(a) No noise mean (b) SNR 64 mean (c) SNR 16 mean (d) SNR 4 mean

(e) No noise std (f) SNR 64 std (g) SNR 16 std (h) SNR 4 std

Figure 10: Performance comparison on modified Rosenbrock function with different SNR levels.

vious best values. When the noise level is high, overestimation of the incumbent solution may cause
the true optimum to be bypassed, and our non-replacement sampling strategy may consequently skip
the global optimum.

While one-step-look-ahead NRFS is occasionally outperformed by standard NRFS, as shown in
Figures. 9b, 9d and 10b, this degradation in performance can be attributed to the fact that the one-
step-look-ahead strategy may increase the risk of overestimating the current best.

Among the remaining methods, TPE demonstrates the most stable performance, showing no signifi-
cant degradation or improvement across all four objective functions under varying noise levels. This
robustness arises from TPE’s use of a percentile-based threshold over top-performing observations,
rather than relying solely on the previously observed best. In other words, with a given noise level,
the deviation in the lower bound of the top-performing set is smaller than that of the previous best
values. For instance, if the mean of observations is used as the threshold, the deviation between the
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(a) No noise mean (b) SNR 64 mean (c) SNR 16 mean (d) SNR 4 mean

(e) No noise std (f) SNR 64 std (g) SNR 16 std (h) SNR 4 std

Figure 11: Performance comparison on modified Shekel function with different SNR levels.

noisy threshold and the true threshold becomes zero. However, this stability also reduces its ability
to escape local optimal regions, thereby lowering the chance of identifying the global optimum.

The other methods are affected by noise in different ways. An interesting observation is that, af-
ter introducing noise, methods such as EI and PI can escape from regions of local optima. This
is because the surrogate model becomes smoother with noise compared to the one learned in the
corresponding noise-free case. This results in wider modes, making it easier for these methods to
enter or escape such regions. However, the limitation is clear: only a small amount of noise helps
prevent from oversampling. When the noise level is too high, it still leads to degraded performance.
Since we are dealing with a black-box objective function, it is not possible to determine whether the
added noise is within a safe or effective range. As a result, introducing noise cannot be considered a
stable or reliable strategy to avoid oversampling.

A.6 COMPUTATIONAL COST

For all objective functions, the experimental runs were distributed across 8 Intel(R) Xeon(R) Gold
6248R CPUs.

For the non-one-step-look-ahead methods, we optimize the acquisition function by evaluating it over
all candidates and selecting the one with the maximum value.

For KG and one-step-look-ahead NRFS, if we denote the number of fantasy samples in the one-step-
look-ahead step as M , then the computational complexity becomes d2M , which incurs a high cost
when computed over the entire design space. To mitigate this, we first use Latin Hypercube Sam-
pling (LHS) (Shields & Zhang, 2016) to generate evenly distributed acquisition evaluation points
(100) in the design space. The acquisition function is then computed on these points to identify the
maximizer. Finally, we select the nearest neighbor of this maximizer from all the grid candidates
and use the selected candidate as the next evaluation point. This strategy reduces computational
resource consumption to a level comparable with other methods such as PES.

Table 1 reports the per-iteration computation time for each BO method with the corresponding ac-
quisition function. The computational cost of NRFS is comparable to that of EI and remains stable
across iterations. The additional overhead of the one-step-look-ahead NRFS arises primarily from
repeated model updates. In our setup, we use M = 5 fantasy samples, resulting in the runtime
approximately five times that of NRFS.
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Table 1: Run-time (seconds) per iteration on different objective functions with different BO methods

Acquisition function GM Modified Rosen-
brock

Forrester2D Shekel Branin BraninRcos2

RS 0.0003 0.0004 0.0003 0.0003 0.0003 0.0003
TPE 0.004 0.021 0.018 0.021 0.019 0.018
ϵ-EI 1.073 0.721 0.703 0.654 0.699 0.711
EI 1.150 1.017 1.132 0.985 1.007 1.185
PI 0.372 0.942 0.739 0.724 0.846 0.730
UCB 0.256 0.776 0.592 0.603 0.702 0.659
NRFS 0.221 1.792 1.437 1.398 0.816 1.131
PES 8.014 11.245 10.458 9.671 8.931 10.120
KG 9.356 10.167 8.134 9.871 10.776 8.804
NRFS (OSLA) 5.432 7.114 5.437 5.557 5.981 5.102

Among all methods, random sampling (RS) is the fastest, as expected. TPE exhibits relatively
lower computation time compared to EI, primarily due to the efficiency of kernel density estimation
relative to Gaussian process updates. PES incurs significantly higher computational cost; this is
consistent with what has been reported in previous work, as PES typically relies on expectation
propagation (EP) (Hennig & Schuler, 2012) to derive an analytical approximation of the utility
function. For KG, the computational time increases over iterations: it starts at approximately 1
second per iteration and grows to around 15 seconds by iteration 60.

A.7 USE OF LARGE LANGUAGE MODELS

Large Language Models are only used to check vocabulary and grammar for polishing purpose.
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