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ABSTRACT

Multi-view clustering seeks to exploit complementary information across differ-
ent views to enhance clustering performance, where both semantic and structural
information are crucial. However, existing approaches often bias toward one type
of information while treating the other as auxiliary, overlooking that the reliability
of these signals may vary across datasets and that semantic and structural cues can
provide complementary and parallel guidance. As a result, such methods may face
limitations in generalization and suboptimal clustering performance. To address
these issues, we propose a novel method, Dual-branch Representations with dy-
namic gatEd fusion and triple-grAnularity alignMent (DREAM), for deep multi-
view clustering. Specifically, DREAM disentangles semantic information via a
Variational Autoencoder (VAE) branch, while simultaneously captures structure-
aware features through a Graph Convolutional Network (GCN) branch. The re-
sulting representations are dynamically integrated using a gated fusion module
that leverages structural cues as complementary guidance, adaptively balancing
semantic and structural contributions to produce clustering-oriented latent em-
beddings. To further improve robustness and discriminability, we introduce a
triple-granularity feature alignment mechanism that enforces consistency across
views, within individual samples, and intra-cluster, thereby preserving semantic-
structural coherence while enhancing inter-cluster separability. Extensive experi-
ments on benchmark datasets demonstrate that DREAM significantly outperforms
SOTA approaches, highlighting the effectiveness of disentangled dual-branch en-
coding, adaptive gated fusion, and triple-granularity feature alignment.

1 INTRODUCTION

Recent advances in sensing and Internet technologies have enabled the collection of data from mul-
tiple sources, offering diverse and complementary information about the same phenomenon (Fang
et al., 2023; Zhou et al., 2024). For example, rasterized high-definition map and LiDAR data pro-
vide distinct yet complementary views for autonomous driving (Fadadu et al., 2022). Multi-view
clustering (MVC), which aims to exploit both the shared and complementary information across
views to uncover the underlying pattern of samples, has therefore emerged as a crucial paradigm for
analyzing complex multi-modal data. In recent years, MVC has achieved remarkable success across
domains, such as computer vision (Wang et al., 2024), biomedicine (Rappoport & Shamir, 2018)

∗Corresponding author.

1



Published as a conference paper at ICLR 2026

and social interactions (Yang et al., 2014), where clustering performance has been substantially
improved by integrating heterogeneous perspectives.

Depending on the underlying learning paradigms, MVC methods can be broadly categorized into
conventional (shallow) and deep learning-based approaches. Conventional methods, including non-
negative matrix factorization (NMF) (Liu et al., 2013), multi-kernel clustering (Zhang et al., 2024),
subspace learning (Zhang et al., 2017) and graph-based clustering (Lin & Kang, 2021), typically
rely on linear assumptions and handcrafted features, limiting their ability to capture complex pat-
terns in high-dimensional data. In contrast, deep MVC methods possess the capability to model
complex nonlinear relationships and high-dimensional patterns, thus attracting increasing attention.
This capability has been instantiated in several representative paradigms, such as autoencoder-based
frameworks (Xu et al., 2022a; Du et al., 2021), which reconstruct each view to capture rich seman-
tic information; graph neural network-based approaches (Fan et al., 2020; Ling et al., 2023) which
use graph topology as guidance to fuse attributes of each node and its neighbors, thereby generat-
ing structure-aware representations; and contrastive learning-based methods (Lin et al., 2022b; Xu
et al., 2022b), which maximize mutual information across views to enforce cross-view consistency
and improve cluster separability.

Despite differences in technical implementations, existing deep MVC methods consistently ac-
knowledge that both semantic information (intrinsic sample features) and structural information
(inter-sample relationships) are essential. However, most approaches emphasize one while treating
the other as auxiliary, leading to imbalanced integration— for example, some prioritize constructing
and utilizing consensus graphs with semantic embeddings as input (Ren et al., 2024; Du et al., 2023),
while others focus on semantic reconstruction with structural information serving as guidance (Dong
et al., 2025). Consequently, semantics and structure are not jointly and equitably modeled, leaving
room for explicitly disentangling and adaptively fusing both sources of information. Beyond the
disentanglement, the fusion of semantics and structure poses another critical challenge. Naı̈ve fea-
ture concatenation can introduce conflicts, as features from different views, whether semantic or
structural, often vary in informativeness, with certain views dominated by redundancy or noise, and
their relative contributions may be dataset-dependent. Moreover, prior work typically aligns fea-
tures at only one or two levels—such as cross-view consistency or intra-cluster compactness—while
neglecting simultaneous multi-granularity alignment across views, within samples, and among clus-
ters, potentially leading to suboptimal clustering and insufficient preservation of semantic-structural
coherence, particularly given the heterogeneous distributions of semantic and structural embeddings.

To address these issues, we propose a Dual-branch Representations with dynamic gatEd fusion and
triple-grAnularity alignMent model (DREAM), for deep MVC. Specifically, DREAM employs two
dedicated encoders: a VAE encoder for semantic abstraction that captures intrinsic sample content,
and a GCN encoder for structure-aware modeling that preserves inter-sample relations. Then, the
extracted representations are dynamically integrated using a gated fusion module which adaptively
balances semantic and structural contributions within views and leverages structural cues as com-
plementary guidance to fuse embeddings across views, producing clustering-oriented embeddings.
Finally, to further improve robustness and discriminability, we introduce a triple-granularity feature
alignment mechanism that enforces consistency across views, within individual samples, and intra-
cluster, thereby preserving semantic-structural coherence while enhancing inter-cluster separability.
Our main contributions are summarized as follows:

• We design a dual-branch disentanglement module that explicitly separates semantic and struc-
tural information via dedicated semantics (VAE) and structure (GCN) encoders, enabling the
model to capture heterogeneous information in a complementary manner.

• We propose an adaptive gated fusion module that treats semantic and structural embeddings as
parallel information sources, dynamically balancing their contributions while suppressing re-
dundant or noisy signals, thereby producing compact and discriminative latent representations.

• We introduce a unified feature alignment strategy that enforces alignment at three
granularities—cross-view consistency, intra-sample coherence, and inter-cluster separabil-
ity—strengthening latent feature alignment and enhancing clustering discrimination.

• Extensive experiments on multiple datasets demonstrate that DREAM outperforms SOTA
methods, validating the effectiveness of the dual-branch disentanglement, adaptive fusion, and
triple-granularity feature alignment mechanisms for multi-view clustering.
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Figure 1: Framework of DREAM. Multi-view data are first encoded into semantic and structure-
aware features, which are then dynamically integrated via a gated fusion module with triple-
granularity alignment to produce clustering-oriented embeddings, subsequently used for clustering.

2 RELATED WORK

Multi-view clustering has attracted considerable attention for integrating complementary informa-
tion across views, and can be broadly categorized into semantics-oriented methods, which exploit
intrinsic sample attributes, and structure-oriented methods, which utilize inter-sample relationships.

Semantics-Oriented Methods. A common line of work in MVC emphasizes capturing rich seman-
tic content by constructing latent embeddings, as semantics encode shared attributes that distinguish
instances for clustering. For example, Wang et al. (2022) proposed a deep learning framework for
MVC that factorizes view-specific data via NMF and aligns the resulting embeddings to capture
consistent semantics across heterogeneous views. Lin et al. (2022a) aligned sample representations
across views in a contrastive way for binary clustering tree decoding. Xu et al. (2022a) applied deep
autoencoders to learn view-specific embeddings independently and concatenated them into global
features to mitigate the negative impact of unclear clustering patterns in individual views. Simi-
larly, Zeng et al. (2023) demonstrated that different views share an invariant semantic distribution,
enabling the model to reduce cross-view discrepancies and learn unified semantic representations
without paired samples. Li et al. (2023) proposed a dual mutual information constrained clustering
method that minimizes the mutual information across all the dimensionalities to reduce the redun-
dancy among features and maximizes the mutual information of the similar instance pairs to obtain
more unbiased and robust representations. Liu et al. (2024) extracted view-specific features, inte-
grated them according to view importance, and leveraged semantic features from both individual
and fused views to generate cluster-friendly features via two dedicated contrastive losses.

Structure-Oriented Methods. Other approaches often prioritize capturing inter-sample structural
relationships explicitly, which reveal the relative arrangement of samples and inform clustering. For
instance, Xue et al. (2021) combined adaptive graph learning with graph convolution and multiple
kernel clustering to integrate global and local structures for clustering. Pan & Kang (2021) filtered
noisy topological information and applied graph contrastive loss to learn a consensus graph. Yan
et al. (2023) aggregated features across samples and views and enforced structure-guided contrastive
learning for more discriminative representations. Similarly, Wang & Feng (2024) modeled structural
relations and constructed a consistent cross-view affinity matrix to enhance clustering compactness.
Cui et al. (2026) leveraged local neighborhood graphs and Gaussian modeling to capture latent
structural information, improving cross-view consistency and intra-cluster compactness.
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In summary, semantics-oriented methods aim to achieve cross-view consistency in latent semantic
spaces, while structure-oriented methods emphasize inter-sample relations via topological informa-
tion. However, existing approaches often treat one type of information as primary and rely on one
or two types of contrastive techniques to enforce cross-view agreement and enhance inter-class sep-
arability, leaving explicit disentanglement and adaptive balance of semantic and structural features,
as well as aligning heterogeneous embedding spaces, underexplored. To address this, we propose a
framework consisting of a dual-branch module for semantics and structure encoding, a gated fusion
mechanism to capture heterogeneous information and to dynamically balance their contributions,
and a triple-granularity contrastive objective that enforces cross-view consistency, intra-sample co-
herence, and inter-class separability.

3 METHOD

In this section, we first introduce the problem definition and provide an overview of DREAM’s
framework. We then describe the modules of DREAM in detail: the Dual Branch Encoding Module,
the Gated Feature Fusion Module, the Feature Alignment Module, and the Clustering Module.

3.1 PROBLEM DEFINITION AND FRAMEWORK OVERVIEW

Let a multi-view dataset be represented as X = {X(1),X(2), . . . ,X(V )}, where V denotes the
number of views, and X(v) = {x(v)

1 ,x
(v)
2 , . . . ,x

(v)
N } ∈ RN×d(v)

represents the N samples with
feature dimensionality d(v) in the v-th view. The goal of multi-view clustering is to partition the n
samples into K clusters based on their multi-view features, without access to ground-truth labels.

The overall framework of the proposed DREAM model is depicted in Figure 1. First, the multi-view
dataset X is processed by the Semantics Encoding Branch (the upper left module with grey back-
ground) and Structure Encoding Branch (the middle left module with grey background) separately,
obtaining latent feature M(v) and H(v). Second, for each sample i, latent feature µ(v)

i and h
(v)
i

are processed by the Gated Feature Fusion Module (the module with light orange background) to
obtain the fused latent feature li. Specifically, for each view v, µ(v)

i and h
(v)
i are first fused via

a learned gating strategy, and the resulting latent representations g
(v)
i are then aggregated across

views using cross-view weighting cues derived from h
(v)
i to obtain the final fused feature li. Third,

li is processed by the clustering module (the bottom right part in the module with orange back-
ground), obtaining clustering result. Fourth, the module with light blue background comprises three
alignment strategies corresponding to the first, second, and third step. The Cross-View Alignment
module encourages each view of sample i to capture more consistent semantic and structural infor-
mation. The Intra-Sample Alignment module encourages the fused embedding li to remain close to
its semantic and structure-aware counterparts (µ(v)

i and h
(v)
i ). Finally, the Inter-Cluster Alignment

module enhances the discriminability among different clusters.

3.2 DUAL BRANCH ENCODING MODULE

Semantic and structural features are both essential for effective multi-view clustering. However,
existing methods often exhibit a bias toward one type of information while treating the other as
auxiliary, thereby neglecting the variability in their relative reliability across datasets as well as the
inherently complementary nature of semantics and structure. Such limitations may result in re-
duced generalization ability and suboptimal clustering performance. To overcome these challenges,
we design a Dual Branch Encoding Module that captures semantic and structural features simultane-
ously and separately. Specifically, the semantics encoding branch employs a variational autoencoder
(VAE) to independently extract sample-level semantic content, while the structure encoding branch
leverages a graph convolutional network (GCN) encoder to obtain structure-aware embeddings by
explicitly modeling inter-sample relationships.

Semantics Encoding Branch. For each view v, the semantic branch employs a VAE encoder,
which takes the input data X(v) and produces the mean M(v) = {µ(v)

1 ,µ
(v)
2 , . . . ,µ

(v)
n } and log-

arithm of the variance S(v) = {log σ2(v)
1 , log σ

2(v)
2 , . . . , log σ

2(v)
n } of the latent distribution via
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M(v),S(v) = f
(v)
Encoder(X

(v)). The mean embedding M(v) is subsequently adopted as the seman-
tic feature representation. To ensure that M(v) captures sufficient information from X(v) and that
the latent space follows a standard normal distribution, this branch optimizes a reconstruction loss
Lrecon (Eq. 1) and a Kullback–Leibler (KL) divergence LSemantics

KL (Eq. 2):

Lrecon =

V∑
v=1

1

N
‖X̂(v) −X(v)‖22, (1)

LSemantics
KL = −1

2

V∑
v=1

1

N

N∑
i=1

d∑
j=1

(
1 + log(σ

2(v)
ij )− µ2(v)

ij − σ2(v)
ij

)
, (2)

where X̂(v) is the reconstructed feature computed by X̂(v) = f
(v)
Decoder

(
M(v) + exp

(
0.5S(v)

)
� ε
)
.

The overall loss of the semantic branch, denoted as LSemantics, is defined as

LSemantics = Lrecon + λ1L
Semantics
KL , (3)

where λ1 is a weighting factor that balances the reconstruction and regularization terms.

Structure Encoding Branch. For each view v, we first build the graph structure among samples,
where top-k similar samples are interconnected. Please refer to Appendix A.1 for graph construction
method. Then, the GCN encoder updates each sample to explicitly merge graph structure into it
by H(v) = D(v)− 1

2A(v)D(v)− 1
2X(v), where A(v) = {a(v)ij } ∈ RN×N is the adjacency matrix

built in the first step, and D(v) is the degree matrix with d
(v)
ii =

∑
j a

(v)
ij . To ensure that the

learned embeddings preserve the original graph connectivity, we employ a graph reconstruction
loss. Specifically, the predicted adjacency matrix is defined as Â(v) = σ(H(v)H(v)>), where
σ(·) denotes the element-wise sigmoid function. The graph reconstruction loss LStructure is then
computed as the mean squared error between the predicted and ground-truth adjacency:

LStructure =

V∑
v=1

1

N2
‖Â(v) −A(v)‖22, (4)

Overall Encoding Loss. Combining semantic and structural branches, the overall encoding loss is:

LEncode = LSemantics + LStructure. (5)

3.3 GATED FEATURE FUSION MODULE

While semantic and structural features are disentangled, fusing them remains challenging. Simple
concatenation may suffer from heterogeneous feature distributions and redundancy or noise dom-
inance. To address this, we propose a Gated Feature Fusion Module that dynamically balances
semantic and structural contributions, yielding compact and discriminative embeddings. It employs
Intra-View Gating to fuse two embedded features within a view, Cross-View Weighting to learn view
importance and Cross-View Weighted Fusion to fuse views within each sample.

Intra-View Gating. Semantic and structure-aware embeddings within each view are first fused
using a learnable gate:

g
(v)
i = µ

(v)
i � σ

(
W

(v)
Gate[µ

(v)
i ‖h

(v)
i ]
)
+ h

(v)
i �

(
1− σ(W(v)

Gate[µ
(v)
i ‖h

(v)
i ])

)
, (6)

where µ(v)
i and h

(v)
i denote the semantic and structure-aware embeddings for sample i, [·‖·] rep-

resents concatenation, W(v)
Gate is a learnable linear projection, and σ(·) is the sigmoid activation

function. This operation adaptively balances semantic and structural information within each view.

Cross-View Weighting. Then, for each view v and sample i, the structure-aware embedding hi
(v)

is mapped to a scalar weight α(v)
i :

α
(v)
i = f

(v)
Wt.(h

(v)
i ) ∈ R, (7)
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where f (v)Wt. is a MLP with ReLU activation. Structure-aware embeddings H(v) characterize sample-
neighbor relations within each view, so that h(v)

i encodes how strongly a sample connects under that
view. Projecting h

(v)
i into a scalar weight α(v)

i , the model enables cross-view comparison of struc-
tural coherence and adaptively emphasizes views providing more reliable inter-sample relationship
cues.

Cross-View Weighted Fusion. Finally, gated embeddings g
(v)
i are fused across views using the

normalized weights α̂(v)
i :

li =

V∑
v=1

α̂
(v)
i g

(v)
i , α̂

(v)
i =

exp(α
(v)
i )∑V

v′=1 exp(α
(v′)
i )

, (8)

where α̂(v)
i is obtained via softmax normalization across views for each sample. The final fused

representation li incorporates both semantic and structure-aware information, and captures comple-
mentary cues across multiple views.

3.4 FEATURE ALIGNMENT MODULE

In multi-view learning, decoupled and fused semantic and structure-aware features may still be
inconsistent across branches and views, and fused embeddings may lose critical information or dis-
criminability. To address this, we introduce the Feature Alignment Module, which enforces align-
ment at multiple levels to produce robust and informative clustering-oriented representations.

Cross-View Alignment. To reduce discrepancies between views, embeddings from all views are
aligned toward a shared consensus using cross-view distillation losses for both the Semantics En-
coding Branch and the Structure Encoding Branch:

LSemantics
distill =

V∑
v=1

1

N
‖M(v) −M∗‖22, LStructure

distill =

V∑
v=1

1

N2
‖Â(v) −A∗‖22, (9)

where M∗ and A∗ denote the consensus targets obtained by aggregating the semantic and structure
embeddings across all views. These losses encourage each view to capture consistent semantic and
structural information, facilitating more coherent fused representations.

Intra-Sample Alignment. To preserve key semantic and structural information for each sample and
maintain global discriminability across samples, a triplet-style InfoNCE loss is employed:

Lintra = − 1

V

V∑
v=1

1

N

N∑
i=1

log
exp(sim(li,µ

(v)
i )/τ) + exp(sim(li,h

(v)
i )/τ)∑N

j=1

[
exp(sim(li,µ

(v)
j )/τ) + exp(sim(li,h

(v)
j )/τ)

] , (10)

where sim(·, ·) denotes cosine similarity, and τ is the temperature parameter. More specifically, for
each sample i, the Intra-Sample Alignment loss encourages the fused embedding li to remain close
to its semantic and structure-aware counterparts, i.e., (li,µ

(v)
i ) and (li,h

(v)
i ) in the numerator, while

simultaneously reduces the similarity between li and semantic and structure-aware embeddings from
other samples, i.e., (li,µ

(v)
j ) and (li,h

(v)
j ) in the denominator.

Inter-Cluster Alignment. To enhance the discriminability among different clusters, a triplet loss
which imposes two complementary forces—an attractive force that pulls the anchor and its positives
toward each other to enforce intra-cluster compactness, and a repulsive force which pushes the
anchor and its negatives away from each other to ensure inter-cluster separation, is applied over the
fused embeddings:

Linter =
1

R

∑
(a,p,n)∈S

max
(
0, ‖la − lp‖2 − ‖la − ln‖2 +m

)
, (11)

where (a, p, n) denotes a triplet of anchor, positive, and negative samples, m is the margin, S is
the set of selected triplets, and R is the total number of selected triplets. More specifically, for
each triplet (a, p, n), the anchor (a) refers to a sample currently used as the basis to construct the
triplet; the positive (p) is another sample whose pseudo label is identical to that of the anchor,
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meaning the two are predicted to belong to the same cluster; the negative (n) is another sample
whose pseudo label differs from that of the anchor. Pseudo labels are generated by the Clustering
Module (Sec. 3.5) during training, where the argmaxk pik is used as the pseudo label for sample i,
updated every 3 epochs. Using pseudo labels provides dynamic refinement of cluster structure and
training stability without propagating noisy signal from early-stage noisy assignments thus leading
to stable convergence.

Overall Feature Alignment Loss. The overall feature alignment loss is formulated by integrating
the cross-view, intra-sample, and inter-cluster alignment objectives:

LAlign = λ2L
Semantics
distill + λ2L

Structure
distill + Lintra + Linter, (12)

where λ2 is a constant number set to 10 during experiment.

3.5 CLUSTERING MODULE

Finally, a clustering layer is adopted to obtain cluster assignments for fused representation li. This
layer maintains a set of trainable cluster centers {ck}Kk=1 where K denotes the number of clusters.

The similarity between latent representation li and each cluster center is first measured using a Stu-
dent’s t-distribution kernel qik =

(1+‖li−ck‖22)
−1∑K

j=1(1+‖li−cj‖22)−1 to provide a soft assignment of sample i to

each cluster, where qik represents soft assignment distribution of sample i to cluster k. Before com-
puting distances, both li and ck are l2-normalized to improve numerical stability. Then, a sharpened

target distribution pi is generated through pik =
q
1/tem
ik∑K

j=1 q
1/tem
ij

, where tem is the temperature param-

eter controlling the sharpness of the distribution. Finally, each sample is assigned to the cluster with
the highest probability y(i)pred = argmaxk pik.

During this process, an entropy loss Lentropy (Eq. 13) encouraging each sample’s soft assignment to
be confident (i.e., close to one-hot), and a KL divergence LCluster

KL (Eq. 14) aligning the predicted
soft assignments q with a more confident target distribution p to enhance cluster purity, are leveraged.

Lentropy = − 1

N

N∑
i=1

K∑
k=1

qik log(qik + ε), (13)

LCluster
KL = KL(p‖q) = 1

N

N∑
i=1

K∑
k=1

pik log
pik

qik + ε
, (14)

where ε is a small constant to avoid numerical issues.

Overall Cluster Loss. The overall cluster loss is:
LCluster = Lentropy + λ3L

Cluster
KL , (15)

where λ3 is used to balance the two losses.

3.6 THE OVERALL OPTIMIZATION OBJECTIVE

By jointly considering the Dual Branch Encoding Module, the Gated Feature Fusion Module,
the Feature Alignment Module, and the Clustering Module, the overall objective function of the
DREAM model can be formulated as:

LTotal = LEncode + αLAlign + βLCluster, (16)
where α and β are hyperparameters that adjust the contributions of three losses. To make a clear
presentation, the algorithm flow is shown in Algorithm 1.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets: Six widely used multi-view datasets—Yale, NGS, BBC, UCI, HW, and ALOI100—are
employed for clustering experiments. Details of these datasets are summarized in Table 1.
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Algorithm 1 The optimization of DREAM

Require: Multi-view dataset {X(v)}Vv=1; Cluster number K
1: Initialize graph structures {A(v)}Vv=1 and cluster centers {ck}Kk=1
2: while Not reach the maximum iteration Tmax do
3: for each view v = 1 to V do
4: Extract semantic features M(v) and structure features H(v) (Sec. 3.2)
5: Calculate Encoding Loss (Eq. 5)
6: end for
7: Fuse M(v) and H(v) (Sec. 3.3), and calculate Feature Alignment Loss (Sec. 3.4, Eq. 12)
8: Perform clustering (Sec. 3.5) and calculate Cluster Loss (Sec. 3.5, Eq. 15)
9: Jointly optimize the overall objective function LTotal (Eq. 16)

10: Backpropagate and update model parameters
11: end while
12: Return: The final clustering result

Comparison Methods: Eight representative SOTA MVC methods are used for comparison, in-
cluding DSMVC (Tang & Liu, 2022), MFLVC (Xu et al., 2022b), SEM (Xu et al., 2023), GCFAg-
gMVC (Yan et al., 2023), SCMVC (Wu et al., 2024), MVCAN (Xu et al., 2024), SCM (Luo et al.,
2024), and GDMVC (Bai et al., 2024).

Table 1: Summary of datasets used for
clustering experiments.

Dataset Samples Views Clusters
Yale 165 3 15
NGS 500 3 5
BBC 685 4 5
UCI 2000 3 10
HW 2000 6 10
ALOI100 10800 4 100

Evaluation Metrics: Clustering performance is evalu-
ated using three standard metrics: clustering accuracy
(ACC), normalized mutual information (NMI), and pu-
rity. Higher metric values indicate better performance.

Implementation Details: Our model is implemented in
PyTorch 2.7.1 and trained on a desktop equipped with
an NVIDIA GeForce RTX 5070 Ti GPU and 64 GB of
RAM, using the Adam optimizer with default settings.
Given the variations in sample sizes, feature dimensions,
and the number of views across datasets, hyperparame-
ters are tuned for each dataset from a candidate range to obtain optimal configurations. The learning
rate used for different datasets ranges between [0.1, 0.00005]. For baseline methods, we use hyper-
parameters recommended in their papers or released codes and perform a light search around these
defaults to prevent performance loss due to mismatched settings and report the best result.

4.2 COMPARISON RESULTS

Table 2 reports the experimental performance of our DREAM model and eight baseline methods
across different datasets. The best performance for each metric is highlighted in bold, while the
second-best is indicated with underlining. As shown in Table 2, different methods exhibit vary-
ing performance across datasets. Our method, DREAM, consistently outperforms all baselines on
six benchmark datasets and three evaluation metrics, demonstrating its strong generalization ability
and robustness. For instance, on the ALOI100 dataset, DREAM surpasses the second-best method,
GDMVC, by 5.19%, 4.22%, and 5.93% in ACC, NMI, and Purity, respectively. This improvement
clearly validates the effectiveness of the disentangled dual-branch encoding, the adaptive gated fu-
sion and the triple-granularity alignment in enhancing multi-view clustering performance. Please
see further discussion in Appendix A.7.

4.3 ABLATION STUDIES

To clearly illustrate the contribution of each core component in DREAM, we conduct a systematic
ablation study by removing the Semantics Encoding Module, Structure Encoding Module, Gated
Feature Fusion Module, and Feature Alignment Module individually. Table 3 reports the perfor-
mance under each ablation setting.

First, the two encoding branches are examined. Removing the Semantics Encoding Module leads
to a consistent drop in performance across datasets, indicating that semantic representations provide
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Table 2: Performance comparison of multi-view clustering algorithms on six benchmark datasets.

Datasets DSMVC MFLVC SEM GCFAggMVC SCMVC MVCAN SCM GDMVC Ours
ACC

Yale 64.85 21.82 27.27 30.91 39.39 40.60 49.09 76.97 78.18
NGS 40.00 90.40 93.80 88.60 93.20 30.60 97.20 40.20 97.80
BBC 42.48 77.81 61.46 58.98 86.57 78.54 58.98 34.89 90.07
UCI 93.75 86.05 87.05 83.20 68.65 92.00 67.45 85.50 95.90
HW 95.85 68.40 81.35 81.25 82.40 95.10 84.25 88.25 97.80
ALOI100 15.66 7.06 65.81 4.85 4.34 67.98 3.96 81.81 87.00

NMI
Yale 66.81 19.48 35.11 32.84 40.37 45.48 51.92 76.79 79.87
NGS 12.26 76.05 81.89 74.70 82.20 17.51 91.03 12.19 92.90
BBC 11.26 59.20 44.12 53.26 71.53 63.26 31.39 4.85 72.75
UCI 89.24 79.00 76.72 72.95 65.88 85.23 60.20 86.15 92.01
HW 92.21 66.68 71.58 72.67 73.53 89.75 73.41 89.37 95.05
ALOI100 40.69 37.90 82.97 14.80 12.47 83.76 11.47 86.66 90.88

Purity
Yale 65.45 21.82 27.88 5.44 40.61 43.03 52.12 76.97 82.42
NGS 41.40 90.40 93.80 88.60 93.20 33.40 97.20 40.60 98.00
BBC 44.96 77.81 65.99 68.91 86.57 78.54 58.98 37.81 90.07
UCI 93.75 86.05 87.05 83.20 72.10 92.00 68.80 85.50 96.30
HW 95.85 68.55 81.35 81.25 82.40 95.10 84.25 88.25 97.80
ALOI100 16.36 7.06 68.61 5.20 4.51 72.17 4.11 82.25 88.18

Table 3: Ablation studies on the contributions of each component in the DREAM model.

Datasets UCI HW ALOI100
Metrics ACC NMI Purity ACC NMI Purity ACC NMI Purity
w/o Semantics Encoding 87.05 80.44 87.05 90.55 87.00 92.05 84.68 89.24 86.69
w/o Structure Encoding 75.90 67.85 78.40 84.65 86.30 94.50 78.29 87.32 82.16
w/o Gated Fusion 82.70 83.44 85.70 92.85 87.82 94.00 83.90 89.73 85.07
w/o Feature Alignment 88.35 81.58 89.75 96.25 91.83 96.25 86.62 90.61 87.84
Our model 95.90 92.01 96.30 97.80 95.05 97.80 87.00 90.88 88.18

indispensable, discriminative cues for clustering. Removing the Structure Encoding Module results
in the most severe performance degradation—for example, ACC decreases by 20% on the UCI
dataset—demonstrating that inter-sample structural relations are fundamental for reliable multi-view
clustering. Next, the importance of the fusion mechanism is assessed by replacing the Gated Feature
Fusion Module with simple averaging. While the changed model occasionally surpasses single-
branch variants, it remains substantially inferior to the full DREAM model. This indicates that naive
averaging fails to effectively leverage the complementary information of semantic and structural
embeddings, whereas gated fusion adaptively balances view informativeness. Finally, disabling the
Feature Alignment Module also results in noticeable performance degradation. On the UCI dataset,
ACC decreases from 95.90% to 88.35%, demonstrating that triple-granularity alignment strengthens
cluster cohesion by harmonizing representations across views, samples, and clusters.

(a) BBC (b) HW

Figure 2: Impact of varying the hyperparam-
eters α and β on clustering performance.

Overall, the ablation results validate that each mod-
ule contributes meaningfully and that the integration
of dual-branch encoding, gated feature fusion, and
feature alignment achieves superior multi-view clus-
tering performance.

4.4 SENSITIVITY ANALYSIS

We conducted a sensitivity analysis on the hy-
perparameters of DREAM (Figure 2). Specifi-
cally, we investigated two key hyperparameters, α
and β, by varying their values across the range
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[0.001, 0.01, 0.1, 1, 10, 100, 1000]. Results show that changes in these parameters induce only minor
fluctuations in performance on the BBC and HW datasets, indicating that our method is highly robust
to hyperparameter selection. Additional results on other datasets are provided in Appendix A.5.

4.5 CONVERGENCE ANALYSIS

We ploted metrics and losses over training iterations with average (avg) and standard deviation (std)
from five random-seed experiments on BBC and HW (Figure 3) to demonstrate the robustness of
our model. Results show that metrics and losses stabilize with the training cycle, indicating that the
model shows good convergence properties.

Figure 3: Convergence analysis on BBC and HW.

4.6 VISUALIZATION

To qualitatively assess the clustering capability of DREAM, we performed t-SNE visualizations on
both the raw features and the fused features learned by DREAM on the BBC and HW datasets
(Figure 4). Compared with the raw features, the learned fused features exhibit a markedly clearer
separation of clusters, indicating that DREAM effectively captures highly discriminative represen-
tations that are well-suited for clustering tasks.

(a) BBC raw features (b) BBC fused features (c) HW raw features (d) HW fused features

Figure 4: t-SNE visualization of raw and learned fused features on BBC and HW datasets.

5 CONCLUSION

In this work, we present DREAM, a novel multi-view clustering framework designed to disentan-
gle and integrate semantic and structural information to improve clustering performance. DREAM
introduces three innovative components: a dual-branch encoder that separately models semantic
and structure-aware representations, a gated fusion module that adaptively balances contributions of
representations, and a triple-granularity alignment strategy that enforces consistency across views,
within individual samples, and within clusters. Comprehensive experiments on multiple benchmark
datasets demonstrate that DREAM consistently surpasses SOTA methods, highlighting its effective-
ness and generality for multi-view clustering.
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6 REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of our results. The details of method are provided
in Sec. 3, and details of model architecture are described in Appendix. A.6. The code of our model
will be made publicly available upon publication.
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A APPENDIX

A.1 GRAPH CONSTRUCTION

Table 4: Comparison between cosine-similarity and
Euclidean-distance graph construction methods on HW and
BBC. For brevity, COS and EUC are used in the table to
represent cosine-similarity and Euclidean-distance, respec-
tively.

Datasets ACC NMI Purity
COS EUC COS EUC COS EUC

HW 97.50 97.80 94.73 95.05 97.50 97.80
BBC 90.07 24.23 72.75 1.31 90.07 33.87

Two graph structure initialization
methods are leveraged in our ex-
periment for datasets of different
kind. For image datasets, includ-
ing ALOI100, HW, Yale and UCI,
k-nearest neighbors are obtained by
computing Euclidean distance to con-
struct graphs for each view feature
matrix X(v). This approach is ef-
ficient for dense image features and
leverages geometric distance which is
natural for visual descriptors. For text
datasets, including NGS and BBC, a
cosine-similarity-based k-nearest graph is built. Specifically, first, each view feature X(v) is L2-
normalized; next, the cosine similarity matrix is computed and its diagonal is set to zero to avoid
self-loops; finally, the top-k largest similarity entries are kept as neighbors, producing a graph. This
procedure is robust for sparse while high-dimensional textual representations and explicitly controls
local connectivity.

To further demonstrate the influence of graph construction strategies on model performance, we
conducted an experiment comparing cosine-similarity graphs and Euclidean-distance graphs under
the same hyperparameter settings on two representative datasets HW and BBC. The results are sum-
marized in Table 4. It can be observed that while modifying the graph construction strategy for
HW leads to only a slight performance drop, applying the same change to BBC results in a sub-
stantial degradation. This indicates that text-based datasets, such as BBC, are highly sensitive to the
graph construction method and particularly benefit from cosine-similarity-based graph construction
method.

A.2 RATIONALE FOR USING GCN ENCODER RATHER THAN GROUND-TRUTH ADJACENCY

To verify the necessity of the GCN encoder, we conducted an experiment in which the GCN encoder
is replaced by a linear layer that directly receives the ground-truth adjacency matrix as input. The
linear layer is employed because the next module requires inputs of the same size. The results,
summarized in Table 5, show that while using the ground-truth adjacency achieves reasonable (good
though not better) performance on image datasets (Yale, UCI, HW, and ALOI100), it leads to a
significant performance drop on text-based datasets (NGS and BBC). These findings demonstrate
that the GCN encoder is essential for effectively dealing with both image- and text-based datasets
simultaneously.
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Table 5: Comparison between using GCN encoder and Ground-truth Adjacency.

Yale NGS BBC UCI HW ALOI100
ACC

Ours (with GCN encoder) 78.18 97.80 90.07 95.90 97.80 87.00
Ours (with Ground-truth Adjacency) 77.58 56.60 51.24 92.90 94.50 81.19

NMI
Ours (with GCN encoder) 79.87 92.90 72.75 92.01 95.05 90.88
Ours (with Ground-truth Adjacency) 78.28 31.93 27.00 89.56 92.31 89.03

Purity
Ours (with GCN encoder) 82.42 98.00 90.07 96.30 97.80 88.18
Ours (with Ground-truth Adjacency) 80.61 61.20 59.56 95.25 97.15 84.85

A.3 RATIONALE FOR USING STRUCTURAL-CUES IN THE GATED FEATURE FUSION MODULE

The rationale for using structure-aware embedding H(v) as guidance for cross-view weighting is
twofold. First, as stated in Sec. 3.3, the structure-aware embedding h

(v)
i incorporates inter-instance

information, thus hints the structural reliability of sample i in view v. In other words, it captures
how consistently this sample aligns with its local neighborhood in that view’s graph structure. This
property provides valuable cues for view weighting during fusion. Second, an experiment replacing
the structural cues with semantic cues is conducted to verify the effectiveness of structural cue-aided
gated feature fusion (Table 6).

Table 6: Comparison between using structural cues and semantic cues in the Gated Feature Fusion
Module.

Yale NGS BBC UCI HW ALOI100
ACC

Ours (with structural-guided fusion) 78.18 97.80 90.07 95.90 97.80 87.00
Ours (with semantic-guided fusion) 76.97 86.00 87.74 93.85 97.55 85.99

NMI
Ours (with structural-guided fusion) 79.87 92.90 72.75 92.01 95.05 90.88
Ours (with semantic-guided fusion) 76.60 73.04 68.25 89.75 94.39 90.86

Purity
Ours (with structural-guided fusion) 82.42 98.00 90.07 96.30 97.80 88.18
Ours (with semantic-guided fusion) 80.00 88.40 87.74 95.10 97.55 89.56

A.4 ABLATION STUDIES

Experiment reuslts on NGS, Yale and BBC datasets are reported in Table 7, from which we can
see that all the modules in our model are verified as indispensable. To be specific, removing ei-
ther the semantic or structural encoding module leads to clear performance degradation, with the
structural branch being especially critical. Disabling the gated fusion module also reduces accuracy,
confirming that simple averaging cannot fully exploit semantic-structural complementarity. Finally,
the feature alignment module is essential for maintaining representation consistency, as its removal
noticeably lowers performance.

Interestingly, the BBC dataset shows different trends from NGS and Yale. When Semantics En-
coding Module is removed, the model achieves even higher accuracy than the full model version.
This is likely because BBC is inherently a text-based dataset whose raw views already carry strong
and highly correlated semantic signals. Adding an explicit Semantics Encoding Module may rather
introduce redundancy or noise, leading to inferior performance. Instead, the scarce structural infor-
mation in the raw data becomes relatively more valuable. These results highlight that the relative

14



Published as a conference paper at ICLR 2026

importance of semantic and structural information is dataset-dependent, further validating the ne-
cessity of our disentangled design.

Table 7: Ablation studies on NGS, Yale and BBC datasets.

Datasets NGS Yale BBC
Metrics ACC NMI Purity ACC NMI Purity ACC NMI Purity
w/o Semantics Encoding 95.20 87.56 95.20 72.12 72.82 76.36 91.53 76.72 91.53
w/o Structure Encoding 45.60 19.74 45.60 67.88 68.37 69.09 29.20 3.48 35.33
w/o Gated Feature Fusion 96.60 91.18 97.00 73.94 73.45 76.97 82.34 63.77 83.65
w/o Feature Alignment 62.40 50.08 68.80 74.55 77.63 81.21 75.62 47.42 75.62
Our model 97.80 92.90 98.00 78.18 79.87 82.42 90.07 72.75 90.07

A.5 SENSITIVITY STUDIES

Two hyperparameters, α and β, are varied across the range [0.001, 0.01, 0.1, 1, 10, 100, 1000] to
examine their impact on model performance. Results (Figure 5) show that varying these parameters
causes only minor performance variations across the studied datasets, confirming the robustness of
our approach.

(a) NGS (b) Yale (c) ALOI100 (d) UCI

Figure 5: Sensitivity analysis of hyperparameters α and β on four datasets.

A.6 DETAILS OF MODEL ARCHITECTURE

Dual Branch Encoding Module. The semantic encoder in our model consists of three linear layers
with ReLU activations and an additional linear layer yielding the mean and log-variance for the
latent semantic representation. The structural encoder is composed of three graph convolutional
layers with ReLU activations.
Gated Feature Fusion Module. It leverages one linear layer with sigmoid activation to adaptively
fuse embeddings from two encoders within each view, and another two linear layers with ReLU
activation in between to learn view importance.
Feature Alignment Module. This module mainly use loss functions defined in Sec. 3.4 to align
features at three granularities. It contains no trainable layers.
Clustering Module. This module initializes trainable cluster centers using K-means on the fused
features, and iteratively refines them via soft assignment.

A.7 FURTHER COMPARISON BETWEEN DREAM AND EXISTING DEEP LEARNING-BASED
APPROACHES

While existing methods may struggle to achieve satisfactory clustering results for small-scale
datasets (e.g., Yale, BBC) and datasets with a large number of fine-grained classes (e.g., ALOI100),
DREAM achieves a significant clustering improvement for these datasets. We believe that the diffi-
culty faced by existing methods on these tasks primarily stems from representation unreliability and
insufficient class-specific information. When only a small number of samples are available per class,
it is difficult for the model to extract enough discriminative cues, and the learned embeddings may
contain misleading signals or lack informative structure, ultimately leading to suboptimal clustering
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performance. Our method achieves improvements on these challenging datasets for the following
two reasons. First, dual-branch disentanglement with adaptive feature fusion enhances information
richness and representation reliability. Unlike methods that extract a single type of information and
embed it into one latent space, our framework explicitly disentangles semantic information (via the
VAE branch) and structural information (via the GCN branch), and integrates them through a gated
fusion mechanism. This design not only compels the model to learn complementary perspectives
of the data, thereby enriching information diversity, but also enables it to dynamically balance the
semantic and structural contributions according to the informativeness of each, thereby improving
the reliability of the learned representations. Second, triplet-alignment improves robustness against
fine-grained noise. Datasets such as ALOI100 contain fine-grained categories, leading to subtle
inter-class differences. Consequently, representations are more susceptible to noise. Our alignment
mechanism jointly aligns latent spaces across views, across information types, and within clusters,
forcing the model to aggregate information from multiple sources, maintaining consistent represen-
tations while mitigating noise.

A.8 THE USE OF LARGE LANGUAGE MODELS (LLMS)

The language of this manuscript was refined with the assistance of a large language model (LLM).
The LLM was also consulted during the early idea-formation stage to assist in reviewing relevant
literature. All other parts of this paper, including experiments, analyses, and conclusions, were
designed and conducted solely by the authors.
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