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ABSTRACT

Artists are increasingly concerned about advancements in image generation models
that can closely replicate their unique artistic styles. In response, several protection
tools against style mimicry have been developed that incorporate small adversarial
perturbations into artworks published online. In this work, we evaluate the effec-
tiveness of popular protections—with millions of downloads—and show they only
provide a false sense of security. We find that low-effort and “off-the-shelf” tech-
niques, such as image upscaling, are sufficient to create robust mimicry methods
that significantly degrade existing protections. Through a user study, we demon-
strate that all existing protections can be easily bypassed, leaving artists vulnerable
to style mimicry. We caution that tools based on adversarial perturbations cannot
reliably protect artists from the misuse of generative AI, and urge the development
of alternative protective solutions.

1 INTRODUCTION

Style mimicry is a popular application of text-to-image generative models. Given a few images from
an artist, a model can be finetuned to generate new images in that style (e.g., a spaceship in the style
of Van Gogh). But style mimicry has the potential to cause significant harm if misused. In particular,
many contemporary artists worry that others could now produce images that copy their unique art
style, and potentially steal away customers (Heikkilä, 2022). As a response, several protections have
been developed to protect artists from style mimicry (Shan et al., 2023a; Van Le et al., 2023; Liang
et al., 2023). These protections add adversarial perturbations to images that artists publish online, in
order to inhibit the finetuning process. These protections have received significant attention from the
media—with features in the New York Times (Hill, 2023), CNN (Thorbecke, 2023) and Scientific
American (Leffer, 2023)—and have been downloaded over 1M times (Shan et al., 2023a).

Yet, it is unclear to what extent these tools actually protect artists against style mimicry, especially if
someone actively attempts to circumvent them (Radiya-Dixit et al., 2021). In this work, we show
that state-of-the-art style protection tools—Glaze (Shan et al., 2023a), Mist (Liang et al., 2023) and
Anti-DreamBooth (Van Le et al., 2023)—are ineffective when faced with simple robust mimicry
methods. The robust mimicry methods we consider range from low-effort strategies—such as using
a different finetuning script, or adding Gaussian noise to the images before training—to multi-step
strategies that combine off-the-shelf tools. We validate our results with a user study, which reveals
that robust mimicry methods can produce results indistinguishable in quality from those obtained
from unprotected artworks (see Figure 1 for an illustrative example).

We show that existing protection tools merely provide a false sense of security. Our robust mimicry
methods do not require the development of new tools or fine-tuneing methods, but only carefully
combining standard image processing techniques which already existed at the time that these protec-
tion tools were first introduced!. Therefore, we believe that even low-skilled forgers could have easily
circumvented these tools since their inception.

Although we evaluate specific protection tools that exist today, the limitations of style mimicry
protections are inherent. Artists are necessarily at a disadvantage since they have to act first (i.e.,
once someone downloads protected art, the protection can no longer be changed). To be effective,
protective tools face the challenging task of creating perturbations that transfer to any finetuning
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Public art can be used 
to mimic artists…

… so artists only release 
protected art

Protections fail against 
robust mimicry (ours)

Original artwork by @nulevoy

Generated art mimic

An astronaut riding a horse

Protections prevent 
naive mimicry

Protected artwork

Figure 1: Artists are vulnerable to style mimicry from generative models finetuned on their art.
Existing protection tools add small perturbations to published artwork to prevent mimicry (Shan et al.,
2023a; Liang et al., 2023; Van Le et al., 2023). However, these protections fail against robust mimicry
methods, giving a false sense of security and leaving artists vulnerable. Artwork by @nulevoy (Stas
Voloshin), reproduced with permission.

technique, even ones chosen adaptively in the future.1 To illustrate this point, updated versions of
Mist (Liang et al., 2023) and Glaze (Shan et al., 2023a) were released after the conclusion of our
study, and yet we found these updated versions to be similarly ineffective against our methods. We
thus caution that adversarial machine learning techniques will not be able to reliably protect artists
from generative style mimicry, and urge the development of alternative measures to protect artists.

We disclosed our results to the affected protection tools prior to publication. In response, Glaze
released a new version 2.1 that protects against the specific attacks we describe here.

2 BACKGROUND AND RELATED WORK

Text-to-image diffusion models. A latent diffusion model consists of an image autoencoder and a
denoiser. The autoencoder is trained to encode and decode images using a lower-dimensional latent
space. The denoiser predicts the noise added to latent representations of images in a diffusion process
(Ho et al., 2020). Latent diffusion models can generate images from text prompts by conditioning
the denoiser on image captions (Rombach et al., 2022). Popular text-to-image diffusion models
include open models such as Stable Diffusion (Rombach et al., 2022) and Kandinsky (Razzhigaev
et al., 2023), as well as closed models like Imagen (Saharia et al., 2022) and DALL-E (Ramesh et al.;
Betker et al., 2023).

Style mimicry. Style mimicry uses generative models to create images matching a target artistic
style. Existing techniques vary in complexity and quality (see Appendix G). An effective method
is to finetune a diffusion model using a few images in the targeted style. Some artists worry
that style mimicry can be misused to reproduce their work without permission and steal away
customers (Heikkilä, 2022).

1A similar conclusion was drawn by Radiya-Dixit et al. (Radiya-Dixit et al., 2021), who argued that
adversarial perturbations cannot protect users from facial recognition systems.
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Style mimicry protections. Several tools have been proposed to prevent unauthorized style
mimicry. These tools allow artists to include small perturbations—optimized to disrupt style mimicry
techniques—in their images before publishing. The most popular protections are Glaze (Shan et al.,
2023a) and Mist (Liang et al., 2023). Additionally, Anti-DreamBooth (Van Le et al., 2023) was
introduced to prevent fake personalized images, but we also find it effective for style mimicry. Both
Glaze and Mist target the encoder in latent diffusion models; they perturb images to obtain latent
representations that decode to images in a different style (see Appendix H.1). On the other hand,
Anti-DreamBooth targets the denoiser and maximizes the prediction error on the latent representations
of the perturbed images (see Appendix H.2).

Circumventing style mimicry protections. Although not initially designed for this purpose,
adversarial purification (Yoon et al., 2021; Shi et al., 2020; Samangouei et al., 2018) could be used
to remove the perturbations introduced by style mimicry protections. DiffPure (Nie et al., 2022) is
the strongest purification method and Mist claims robustness against it. Another existing method for
purification is upscaling (Mustafa et al., 2019). Similarly, Mist and Glaze claim robustness against
upscaling. Section 4.1 highlights flaws in previous evaluations and how a careful application of both
methods can effectively remove mimicry protections.

IMPRESS (Cao et al., 2024) was the first purification method designed specifically to circumvent
style mimicry protections. While IMPRESS claims to circumvent Glaze, the authors of Glaze critique
the method’s evaluation (Shan et al., 2023b), namely the reliance on automated metrics instead of a
user study, as well as the method’s poor performance on contemporary artists. Our work addresses
these limitations by considering simpler and stronger purification methods, and evaluating them
rigorously with a user study and across a variety of historical and contemporary artists. Our results
show that the main idea of IMPRESS is sound, and that very similar robust mimicry methods are
effective.

Unlearnable examples . Style mimicry protections build upon a line of work that aims to make data
“unlearnable” by machine learning models (Shan et al., 2020; Huang et al., 2021; Cherepanova et al.,
2021; Salman et al., 2023). These methods typically rely on some form of adversarial optimization,
inspired by adversarial examples (Szegedy et al., 2013). Ultimately, these techniques always fall
short of an adaptive adversary that enjoys a second-mover advantage: once unlearnable examples
have been collected, their protection can no longer be changed, and the adversary can thereafter select
a learning method tailored towards breaking the protections (Radiya-Dixit et al., 2021; Fowl et al.,
2021; Tao et al., 2021).

3 THREAT MODEL

The goal of style mimicry is to produce images, of some chosen content, that mimic the style of a
targeted artist. Since artistic style is challenging to formalize or quantify, we refrain from doing so
and define a mimicry attempt as successful if it generates new images that a human observer would
qualify as possessing the artist’s style.

We assume two parties, the artist who places art online (e.g., in their portfolio), and a forger who
performs style mimicry using these images. The challenge for the forger is that the artist first protects
their original art collection before releasing it online, using a state-of-the-art protection tool such as
Glaze, Mist or Anti-DreamBooth. We make the conservative assumption that all the artist’s images
available online are protected. If a mimicry method succeeds in this setting, we call it robust.

In this work, we consider style forgers who finetune a text-to-image model on an artist’s images—the
most successful style mimicry method to date (Shan et al., 2023a). Specifically, the forger finetunes
a pretrained model f on protected images X from the artist to obtain a finetuned model f̂ . The
forger has full control over the protected images and finetuning process, and can arbitrarily modify to
maximize the mimicry success. Our robust mimicry methods combine a number of “off-the-shelf”
manipulations that allow even low-skilled parties to bypass existing style mimicry protections. In
fact, our most successful methods require only black-box access to a finetuning API for the model f ,
and could thus also be applied to proprietary text-to-image models that expose such an interface.
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(a) Original artwork (b) Finetuning used in (Shan et al., 2023a). (c) Our finetuning

Figure 2: The protections of Glaze (Shan et al., 2023a) do not generalize across fine-tuning setups.
We mimic the style of the contemporary artist @nulevoy from Glaze-protected images by using: (b)
the finetuning script provided by Glaze authors; and (c) an alternative off-the-shelf finetuning script
from HuggingFace. In both cases, we perform “naive” style mimicry with no effort to bypass Glaze’s
protections. Glaze protections are successful using finetuning from the original paper, but significantly
degrade with our script. Our finetuning is also better for unprotected images (see Appendix D).

4 ROBUST STYLE MIMICRY

We say that a style mimicry method is robust if it can emulate an artist’s style using only protected
artwork. While methods for robust mimicry have already been proposed, we note a number of
limitations in these methods and their evaluation in Section 4.1. We then propose our own methods
(Section 4.3) and evaluation (Section 5) which address these limitations.

4.1 LIMITATIONS OF PRIOR ROBUST MIMICRY METHODS AND OF THEIR EVALUATIONS

(1) Some mimicry protections do not generalize across finetuning setups. Most forgers are
inherently ill-intentioned since they ignore artists’ genuine requests not to use their art for genera-
tive AI (Heikkilä, 2022). A successful protection must thus resist circumvention attempts from a
reasonably resourced forger who may try out a variety of tools. Yet, in preliminary experiments,
we found that Glaze (Shan et al., 2023a) performed significantly worse than claimed in the original
evaluation, even before actively attempting to circumvent it. After discussion with the authors of
Glaze, we found small differences between our off-the-shelf finetuning script, and the one used in
Glaze’s original evaluation (which the authors shared with us).2 These minor differences in finetuning
are sufficient to significantly degrade Glaze’s protections (see Figure 2 for qualitative examples).
Since our off-the-shelf finetuning script was not designed to bypass style mimicry protections, these
results already hint at the superficial and brittle protections that existing tools provide: artists have
no control over the finetuning script or hyperparameters a forger would use, so protections must be
robust across these choices.

(2) Existing robust mimicry attempts are sub-optimal. Prior evaluations of protections fail to
reflect the capabilities of moderately resourceful forgers, who employ state-of-the-art methods (even
off-the-shelf ones). For instance, Mist (Liang et al., 2023) evaluates against DiffPure purifications
using an outdated and low-resolution purification model. Using DiffPure with a more recent model,
we observe significant improvements. Glaze (Shan et al., 2023a) is not evaluated against any version
of DiffPure, but claims protection against Compressed Upscaling, which first compresses an image
with JPEG and then upscales it with a dedicated model. Yet, we will show that by simply swapping
the JPEG compression with Gaussian noising, we create Noisy Upscaling as a variant that is highly
successful at removing mimicry protections (see Figure 26 for a comparison between both methods).

(3) Existing evaluations are non-comprehensive. Comparing the robustness of prior protections
is challenging because the original evaluations use different sets of artists, prompts, and finetuning
setups. Moreover, some evaluations rely on automated metrics (e.g., CLIP similarity) which are
unreliable for measuring style mimicry (Shan et al., 2023a;b). Due to the brittleness of protection
methods and the subjectivity of mimicry assessments, we believe a unified evaluation is needed.

2The two finetuning scripts mainly differ in the choice of library, model, and hyperparameters. We use a
standard HuggingFace script and Stable Diffusion 2.1 (the model evaluated in the Glaze paper).
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4.2 A UNIFIED AND RIGOROUS EVALUATION OF ROBUST MIMICRY METHODS

To address the limitations presented in Section 4.1, we introduce a unified evaluation protocol to
reliably assess how existing protections perform against a variety of simple and natural robust mimicry
methods. Our solutions to each of the numbered limitations above are: (1) The attacker uses a popular
“off-the-shelf” finetuning script for the strongest open-source model that all protections claim to be
effective for: Stable Diffusion 2.1. This finetuning script is chosen independently of any of these
protections, and we treat it as a black-box. (2) We design four robust mimicry methods, described
in Section 4.3. We prioritize simplicity and ease of use for low-expertise attackers by combining
a variety of off-the-shelf tools. (3) We design and conduct a user study to evaluate each mimicry
protection against each robust mimicry method on a common set of artists and prompts.

4.3 OUR ROBUST MIMICRY METHODS

We now describe four robust mimicry methods that we designed to assess the robustness of protections.
We primarily prioritize simple methods that only require preprocessing protected images. These
methods present a higher risk because they are more accessible, do not require technical expertise,
and can be used in black-box scenarios (e.g. if finetuning is provided as an API service). For
completeness, we further propose one white-box method, inspired by IMPRESS (Cao et al., 2024).

We note that the methods we propose have been considered (at least in part) in prior work that found
them to be ineffective against style mimicry protections (Shan et al., 2023a; Liang et al., 2023; Shan
et al., 2023b). Yet, as we noted in Section 4.1, these evaluations suffered from a number of limitations.
We thus re-evaluate these methods (or slight variants thereof) in a comprehensive manner and show
that they are significantly more successful than previously claimed.

Black-box preprocessing methods.

✦ Gaussian noising. As a simple preprocessing step, we add small amounts of Gaussian noise to
protected images. This approach can be used ahead of any black-box diffusion model.

✦ DiffPure. We use image-to-image models to remove perturbations introduced by the protections,
also called DiffPure (Nie et al., 2022) (see Appendix I.1). This method is black-box, but requires two
different models: the purifier, and the one used for style mimicry. We use Stable Diffusion XL as our
purifier.

✦ Noisy Upscaling. We introduce a simple and effective variant of the two-stage upscaling purification
considered in Glaze (Shan et al., 2023a). Their method first performs JPEG compression (to minimize
perturbations) and then uses the Stable Diffusion Upscaler (Rombach et al., 2022) (to mitigate
degradations in quality). Yet, we find that upscaling actually magnifies JPEG compression artifacts
instead of removing them. To design a better purification method, we observe that the Upscaler is
trained on images augmented with Gaussian noise. Therefore, we purify a protected image by first
applying Gaussian noise and then applying the Upscaler. This Noisy Upscaling method introduces
no perceptible artifacts and significantly reduces protections (see Figure 26 for an example and
Appendix I.2 for details).

White-box methods.

✦ IMPRESS++. For completeness, we design a white-box method to assess whether more complex
methods can further enhance the robustness of style mimicry. Our method builds on IMPRESS (Cao
et al., 2024) but adopts a different loss function and further applies negative prompting (Miyake et al.,
2023) and denoising to improve the robustness of the sampling procedure (see Appendix I.3 and
Figure 27 for details).

5 EXPERIMENTAL SETUP

Protection tools. We evaluate three protection tools—Mist, Glaze and Anti-DreamBooth—against
four robust mimicry methods—Gaussian noising, DiffPure, Noisy Upscaling and IMPRESS++—and
a baseline mimicry method. We refer to a combination of a protection tool and a mimicry method as

5
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@greg-f (Gregory Fromenteau)

Edvard Munch

c) Naive style mimicry 
from protected art

b) Naive style mimicry 
from unprotected art

d) Robust style mimicry 
from protected arta) Original artwork

Figure 3: Examples of robust style mimicry for two different artists: @greg-f (contemporary) and
Edvard Munch (historical). Cherry-picked examples with strong protections and successful robust
mimicry. We apply Noisy Upscaling for prompts: “a shoe” and “an astronaut riding a horse”.

a scenario. We thus analyze fifteen possible scenarios. Appendix J describes our experimental setup
for style mimicry and protections in detail.

Artists. We evaluate each style mimicry scenario on images from 10 different artists, which we
selected to maximize style diversity. To address limitations in prior evaluations (Shan et al., 2023b),
we use five historical artists as well as five contemporary artists who are unlikely to be highly
represented in the generative model’s training set (two of these were also used in Glaze’s evaluation).3
All details about artist selection are included in Appendix J.

Implementation. Our mimicry methods finetune Stable Diffusion 2.1 (Rombach et al., 2022),
the best open-source model available at the time when the protections we study were introduced.
We use an off-the-shelf finetuning script from HuggingFace (see Appendix J.1 for details). We
first validate that our style mimicry pipeline is successful on unprotected art using a user study,
detailed in Appendix K.1. For protections, we use the original codebases to reproduce Mist and
Anti-Dreambooth. Since Glaze does not have a public codebase (and the authors were unable to share
one), we use the released Windows application binary (version 1.1.1) as a black-box. We set each
scheme’s hyperparameters to maximize protections. See Appendix J.2 for details on the configuration
for each protection.

We perform robust mimicry by finetuning on 18 different images per artist. We then generate images
for 10 different prompts. These prompts are designed to cover diverse motifs that the base model,
Stable Diffusion 2.1, can successfully generate. See Appendix K for details about prompt design.

User study. To measure the success of each style mimicry scenario, we rely only on human
evaluations since previous work found automated metrics (e.g., using CLIP (Radford et al., 2021)) to
be unreliable (Shan et al., 2023a;b). Moreover, style protections not only prevent style transfer, but
also reduce the overall quality of the generated images (see Figure 3 for examples). We thus design a
user study to evaluate image quality and style transfer as independent attributes of the generations.4

We acknowledge that an ideal study would recruit artists, as was done in (Shan et al., 2023a).
Unfortunately, most artists we reached out to were reluctant to participate in a study that shows
limitations of existing protective tools (a small number of artists did acknowledge the success of our

3Contemporary Artists were selected from Artstation. We keep them anonymous throughout this work—and
refrain from showcasing their art—except for artists who gave us explicit permission to share their identity and
art. We will share all images used in our experiments upon request with researchers.

4The user study was approved by our institution’s IRB.
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methods when targeting their art styles, but they did not form a large enough cohort to get statistically
significant results).

Our user study therefore relies on Amazon Mechanical Turk (MTurk) annotators, with stringent
measures taken to ensure the quality and reliability of responses (see Appendix K). Our study asks
participants to compare image pairs, where one image is generated by a robust mimicry method, and
the other from a baseline state-of-the-art mimicry method that uses unprotected art of the artist. A
perfectly robust mimicry method would generate images of quality and style indistinguishable from
those generated directly from unprotected art. We perform two separate studies: one assessing image
quality (e.g., which image looks “better”) and another evaluating stylistic transfer (i.e., which image
captures the artist’s original style better, disregarding potential quality artifacts). Our results show
that these two metrics obtain very similar results across all scenarios. Appendix K describes our user
study and interface in detail.

As noted by the authors of Glaze (Shan et al., 2023a), the users of platforms like MTurk might not
have high artistic expertise. However, we believe that the judgment of non-artists is also relevant
as they may ultimately represent potential consumers of digital art. Thus, if lay people consider
mimicry attempts to be successful, mimicked art could hurt an artist’s business. Also, to mitigate
potential issues with the quality of annotations (Kennedy et al., 2020), we put in place several control
mechanisms to filter out low-quality annotations to the best of our abilities (details in Appendix K).
Furthermore, as noted above, a small number of artists did acknowledge that they found our methods
effective.

Evaluation metric. We define the success rate of a robust mimicry method as the percentage of
annotators (5 per comparison) who prefer outputs from the robust mimicry method over those from
a baseline method finetuned on unprotected art (when judging either style match or overall image
quality). Formally, we define the success rate for an artist in a specific scenario as:

success rate =
1

10 · 5

10∑
prompt

5∑
annotator

1[robust mimicry preferred over unprotected mimicry]

(1)

A perfectly robust mimicry method would thus obtain a success rate of 50%, indicating that its
outputs are indistinguishable in quality and style from those from the baseline, unprotected method.
In contrast, a very successful protection would result in success rates of around 0% for robust mimicry
methods, indicating that mimicry on top of protected images always yields worse outputs.

6 RESULTS

In Figure 4, we report the distribution of success rates per artist (N=10) for each scenario. We
averaged the quality and stylistic transfer success rates to simplify the analysis (detailed results can be
found in Appendix C). Since the forger can try multiple mimicry methods for each prompt, and then
decide which one worked best, we also evaluate a “best-of-4” method that picks the most successful
mimicry method for each generation (according to human evaluators). Best-of-4 also also illustrates
how different methods succeed for different styles and artists, as it outperforms all independent
methods.

6.1 MAIN FINDINGS: ALL PROTECTIONS ARE EASILY CIRCUMVENTED

We find that all existing protective tools create a false sense of security and leave artists vulnerable
to style mimicry. Indeed, our best robust mimicry methods produce images that are, on average,
indistinguishable from baseline mimicry attempts using unprotected art. Since many of our simple
mimicry methods only use tools that were available before the protections were released, style forgers
may have already circumvented these protections since their inception.

Noisy upscaling is the most effective method for robust mimicry, with a median success rate above
40% for each protection tool (recall that 50% success indicates that the robust method is indistin-
guishable from a mimicry using unprotected images). This method only requires preprocessing
images and black-box access to the model via a finetuning API. Other simple preprocessing methods

7
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median artist
most protected artist most vulnerable artist

0% 25% 50% 75%
Success rate

Naive mimicry
Gaussian

noising

IMPRESS++

DiffPure

Noisy
Upscaling

Best-of-4

Anti-DreamBooth

0% 25% 50% 75%
Success rate

Glaze

0% 25% 50% 75%
Success rate

Mist

Figure 4: Success rate per artist (N=10) on all mimicry scenarios. Box plots represent success rates
for most protected, quartiles, median and least protected artists, respectively. Success rates around
50% indicate that robust mimicry outputs are indistinguishable in style and quality from mimicry
outputs based on unprotected images. Best-of-4 selects the most successful method for each prompt.

like Gaussian noising or DiffPure also significantly reduce the effectiveness of protections. The
more complex white-box method IMPRESS++ does not provide significant advantages. Sample
generations for each method are in Appendix B.

A style forger does not have to use a single robust mimicry method, but can test all of them and
select the most successful. This “best-of-4” approach always beats the baseline mimicry method over
unprotected images (which attempts a single method and not four) for all protections.

Appendix A shows images at each step of the robust mimicry process (i.e., protections, preprocessing,
and sampling). Appendix B shows example generations for each protection and mimicry method.
Appendix C has detailed success rates broken down per artist, for both image style and quality.

6.2 ANALYSIS

We now discuss key insights and lessons learned from these results.

Glaze protections break down without any circumvention attempt. Results for Glaze without
robust mimicry (see “Naive mimicry” row in Figure 4) show that the tool’s protections are often
ineffective. Without any robustness intervention, 30% of the images generated with our off-the-shelf
finetuning are rated as better than the baseline results using only unprotected images. This contrasts
with Glaze’s original evaluation, which claimed a success rate of at most 10% for robust mimicry.5
This difference is likely due to the protection’s brittleness to slight changes in the finetuning setup
(as we illustrated in Section 4.1). With our best robust mimicry method (noisy upscaling) the
median success rate across artists rises further to 40%, and our best-of-4 strategy yields results
indistinguishable from the baseline for a majority of artists.

Robust mimicry works for contemporary and historical artists alike. Shan et al. (2023b) note
that one of IMPRESS’ main limitations is that “purification has a limited effect when tested on artists
that are not well-known historical artists already embedded in original training data”. Yet, we find
that our best-performing robust mimicry method—Noisy Upscaling—has a similar success rate for
historical artists (42.2%) and contemporary artists with little representation in the model’s training
set (43.5%).

5The original evaluation in Glaze directly asks annotators whether a mimicry is successful or not, rather than
a binary comparison between a robust mimicry and a baseline mimicry as in our setup. Shan et al. (2023a) report
that mimicry fails in 4% of cases for unprotected images, and succeeds in 6% of cases for protected images.
This bounds the success rate for robust mimicry—according to our definition in Equation (1)—by at most 10%.
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Alphonse Mucha

Edvard Munch

Naive style mimicry 
from protected art

Naive style mimicry 
from unprotected art

Robust style mimicry 
from protected artOriginal artwork

Figure 5: Randomly selected comparisons where all 5 annotators preferred mimicry from unprotected
art over robust mimicry. Both use Noisy Upscaling for robust mimicry.

Protections are highly non-uniform across artists. As we observe from Figure 4, the effectiveness
of protections varies significantly across artists: the least vulnerable artist (left-most whisker) enjoys
much stronger mimicry protections than the median artist or the most vulnerable artist (right-most
whisker). We find that robust mimicry is the least successful for artists where the baseline mimicry
from unprotected images gives poor results to begin with (cf. results for artist A1 in Appendix C and
Appendix K.1). Yet, since existing tools do not provide artists with a way to check how vulnerable
they are, these tools still provide a false sense of security for all artists. This highlights an inherent
asymmetry between protection tools and mimicry methods: protections should hold for all artists
alike, while a mimicry method might successfully target only specific artists.

Robust mimicry failures still remove protection artifacts. We manually checked the cases
where all annotators ranked mimicry from unprotected art as better than robust mimicry with Noisy
Upscaling. Figure 5 shows two examples. We find that in many instances, the model fails to mimic
the style accurately even from unprotected art. In these cases, robust mimicry is still able to generate
clear images that are similar to unprotected mimicry, but neither matches the original style well.

7 DISCUSSION AND BROADER IMPACT

Adversarial perturbations do not protect artists from style mimicry. Our work is not intended as
an exhaustive search for the best robust mimicry method, but as a demonstration of the brittleness of
existing protections. Because these protections have received significant attention, artists may believe
they are effective. But our experiments show they are not. As we have learned from adversarial ML,
whoever acts first (in this case, the artist) is at a fundamental disadvantage (Radiya-Dixit et al., 2021).
We urge the community to acknowledge these limitations and think critically when performing future
evaluations.

Just like adversarial examples defenses, mimicry protections should be evaluated adaptively.
In adversarial settings, where one group wants to prevent another group from achieving some goal, it
is necessary to consider “adaptive attacks” that are specifically designed to evade the defense (Carlini
& Wagner, 2017). Unfortunately, as repeatedly seen in the literature on machine learning robustness,
even after adaptive attacks were introduced, many evaluations remained flawed and defenses were
broken by (stronger) adaptive attacks (Tramer et al., 2020). We show it is the same with mimicry
protections: simple adaptive attacks significantly reduce their effectiveness. Surprisingly, most
protections we study claim robustness against input transformations (Liang et al., 2023; Shan et al.,
2023a), but minor modifications were sufficient to circumvent them.

We hope that the literature on style mimicry prevention will learn from the failings of the adversarial
example literature: performing reliable, future-proof evaluations is much harder than proposing a

9
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new defense. Especially when techniques are widely publicized in the popular press, we believe it is
necessary to provide users with exceptionally high degrees of confidence in their efficacy.

Protections are broken from day one, and cannot improve over time. Our most successful
robust style mimicry methods rely solely on techniques that existed before the protections were
introduced. Also, protections applied to online images cannot easily be changed (i.e., even if the
image is perturbed again and re-uploaded, the older version may still be available in an internet
archive) (Radiya-Dixit et al., 2021). It is thus challenging for a broken protection method to be
fixed retroactively. Of course, an artist can apply the new tool to their images going forward, but
pre-existing images with weaker protections (or none at all) will significantly boost an attacker’s
success (Shan et al., 2023a).

Nevertheless, the Glaze and Mist protection tools recently received significant updates (after we
had concluded our user study). Yet, we find that the newest 2.0 versions do not protect against
our robust mimicry attempts either (see Appendix E and F). A subsequent version of Glaze (2.1)
explicitly targets the methods we studied, but this does not change the fact that all previously protected
art remains vulnerable, and that future attacks could again attempt to adaptively evade the newest
protections. The same holds true for attempts to design similar protections for other data modalities,
such as video (Passananti et al., 2024) or audio (Gokul & Dubnov, 2024).

Ethics and broader impact. The goal of our research is to help artists better decide how to protect
their artwork and business. We do not focus on creating the best mimicry method, but rather on
highlighting limitations in popular perturbation tools—especially since using these tools incurs a cost,
as they degrade the quality of published art. We disclose our results to the affected protection tools
prior to publication, so that they can determine the best course of action for their users.

Further, insecure protection tools may mislead artists to believe it is safe to release their work,
enabling forgery and putting them in a worse situation than if they had been more cautious in the
absence of any protection. With this work, we hope to raise awareness among artists about the
fundamental limitations of protection tools.

With respect to our paper, all the art featured in this paper comes either from historical artists, or
from contemporary artists who explicitly permitted us to display their work. We hope our results will
inform improved non-technical protections for artists in the era of generative AI.

Limitations and future work. A larger study with more than 10 artists and more annotators may
help us better understand the difference in vulnerability across artists. The protections we study are
not designed in awareness of our robust mimicry methods. However, we do not believe this limits
the extent to which our general claims hold: artists will always be at a disadvantage if attackers can
design adaptive methods to circumvent the protections.

10
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A DETAILED ART EXAMPLES

This section illustrates how images look like at every stage of our work. We include (1) original
artwork from a contemporary artist (@nulevoy)6 as a reference in Figure 6, (2) the original artwork
after applying each of the available protections in Figure 7, (3) one image after applying the cross
product of all protections and preprocessing methods in Figure 8, (4) baseline generations from a
model trained on unprotected art in Figure 9, and (5) robust mimicry generations for each scenario in
Figure 10.

Figure 6: 4 samples from the original artwork from @nulevoy.

(a) Glaze

(b) Mist

(c) Anti-DreamBooth

Figure 7: Artwork in Figure 6 after applying different protections.

6The artist gave explicit permission for the use of their art
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No preprocessing Gaussian Noising DiffPure Noisy Upscaling

(a) Glaze

(b) Mist

(c) Anti-DreamBooth

Figure 8: Artwork used for finetuning after applying preprocessing methods to protected images
in Figure 7. Each row represents a protection, and each column a preprocessing method. Noisy
Upscaling is the most successful preprocessing technique at removing the perturbations introduced
by protections.
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Figure 9: Generations in the style of @nulevoy after finetuning on unprotected images. Each
generation is sampled with a different seed.

Naive mimicry Gaussian Noising DiffPure IMPRESS++ Noisy Upscaling

(a) Glaze

(b) Mist

(c) Anti-DreamBooth

Figure 10: Generations in the style of @nulevoy using robust mimicry methods for the prompt “an
astronaut riding a horse”. Each row represents which protection was applied to the finetuning data.
Each column represents the robust mimicry method used. The first column indicates naive mimicry
was applied (i.e. we trained directly on the protected images). Figure 9 includes sample generations
from a model trained on artwork without protections.
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B ROBUST MIMICRY GENERATIONS

Albrecht Durer, “a shoe with a plant growing inside”

Unprotected Anti-DB Unprotected Glaze Unprotected Mist

Edvard Munch, “a shoe”

Edvard Munch, “a piano”

A5, “a feathered car”

Anna O.-Lebedeva, “a piano”

A5, “a village in a thunderstorm”

Edward Hopper, “a golden apple”

Edward Hopper, “a feathered car”

Figure 11: Style mimicry for all protections using naive mimicry—no robust method is used and
we finetune directly on protected images. We randomly chose artists and prompts. Each image pair
shows the protected generation and generation from unprotected art.
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Albrecht Durer, “a shoe with a plant growing inside”

Unprotected
Anti-DB +

Gaussian noising Unprotected
Glaze +

Gaussian noising Unprotected
Mist +

Gaussian noising

Edvard Munch, “a shoe”

Edvard Munch, “a piano”

A5, “a feathered car”

Anna O.-Lebedeva, “a piano”

A5, “a village in a thunderstorm”

Edward Hopper, “a golden apple”

Edward Hopper, “a feathered car”

Figure 12: Style mimicry for all protections using Gaussian Noising. We randomly chose artists and
prompts. Each image pair shows the protected robust generation and generation from unprotected art.
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Albrecht Durer, “a shoe with a plant growing inside”

Unprotected
Anti-DB +
DiffPure Unprotected

Glaze +
DiffPure Unprotected

Mist +
DiffPure

Edvard Munch, “a shoe”

Edvard Munch, “a piano”

A5, “a feathered car”

Anna O.-Lebedeva, “a piano”

A5, “a village in a thunderstorm”

Edward Hopper, “a golden apple”

Edward Hopper, “a feathered car”

Figure 13: Style mimicry for all protections using DiffPure. We randomly chose artists and prompts.
Each image pair shows the protected robust generation and generation from unprotected art.
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Albrecht Durer, “a shoe with a plant growing inside”

Unprotected
Anti-DB +

IMPRESS++ Unprotected
Glaze +

IMPRESS++ Unprotected
Mist +

IMPRESS++

Edvard Munch, “a shoe”

Edvard Munch, “a piano”

A5, “a feathered car”

Anna O.-Lebedeva, “a piano”

A5, “a village in a thunderstorm”

Edward Hopper, “a golden apple”

Edward Hopper, “a feathered car”

Figure 14: Style mimicry for all protections using IMPRESS++. We randomly chose artists and
prompts. Each image pair shows the protected robust generation and generation from unprotected art.
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Albrecht Durer, “a shoe with a plant growing inside”

Unprotected
Anti-DB +

Noisy Upscaling Unprotected
Glaze +

Noisy Upscaling Unprotected
Mist +

Noisy Upscaling

Edvard Munch, “a shoe”

Edvard Munch, “a piano”

A5, “a feathered car”

Anna O.-Lebedeva, “a piano”

A5, “a village in a thunderstorm”

Edward Hopper, “a golden apple”

Edward Hopper, “a feathered car”

Figure 15: Style mimicry for all protections using Noisy Upscaling. We randomly chose artists and
prompts. Each image pair shows the protected robust generation and generation from unprotected art.
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C DETAILED RESULTS

C.1 MIMICRY QUALITY VERSUS STYLE

This section includes the detailed results from our user study. As mentioned in Section 5, we ask
users to assess quality and stylistic fit separately in our study. Figure 16 and 17 show the results for
each of these evaluations separately (the results in the main body represent the average of the two).
Finally, Table 1 includes numerical results for each scenario.

median artist
most protected artist most vulnerable artist

0% 25% 50% 75%
Success rate

Naive mimicry
Gaussian

noising

IMPRESS++

DiffPure

Noisy
Upscaling

Best-of-4

Anti-DreamBooth

0% 25% 50% 75%
Success rate

Glaze

0% 25% 50% 75%
Success rate

Mist

Figure 16: Quality evaluation. User preference ratings of all style mimicry scenarios but only for the
quality question: “Based on noise, artifacts, detail, prompt fit, and your impression, which image has
higher quality?”.

0% 25% 50% 75%
Success rate

Naive mimicry
Gaussian

noising

IMPRESS++

DiffPure

Noisy
Upscaling

Best-of-4

Anti-DreamBooth

0% 25% 50% 75%
Success rate

Glaze

0% 25% 50% 75%
Success rate

Mist

Figure 17: Style evaluation. User preference ratings of all style mimicry scenarios but only for the
quality question: “Overall, ignoring quality, which image better fits the style of the style samples?”.
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Table 1: Success rates averaged across artists for all style mimicry scenarios. Higher percentages
indicate more successful mimicry, and 50% would indicate perfect mimicry.

Method Naive mimicry Gaussian noising IMPRESS++ DiffPure Noisy Upscaling Best-of-4
Protection

Anti-DB 11.6% 20.6% 32.2% 26.6% 45.0% 56.6%
Glaze 22.2% 29.6% 35.4% 32.0% 39.4% 56.6%
Mist 9.0% 21.0% 37.4% 35.8% 42.8% 62.0%

(a) Quality

Method Naive mimicry Gaussian noising IMPRESS++ DiffPure Noisy Upscaling Best-of-4
Protection

Anti-DB 21.8% 31.2% 28.6% 31.0% 44.0% 52.4%
Glaze 30.8% 35.4% 27.8% 37.6% 41.6% 51.2%
Mist 19.4% 35.4% 31.6% 37.4% 44.2% 53.4%

(b) Style

C.2 RESULTS BROKEN DOWN PER ARTIST

We present next the results obtained for each artist in each scenario. Table 2 plots the success rate for
each method against each protection for all artists, and Table 3 includes the detailed success rates.
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Table 2: Success rates per artist for style and quality questions, respectively. Each line plot shows,
for a given protection and artist, the success rate with Gaussian noising ( ), naive mimicry ( ),
IMPRESS++ ( ), DiffPure ( ), Noisy Upscaling ( ), and Best-of-4 ( ) on a scale from 0% to
77%, where the bar | demarcates 50%.

Attack Anti-DB Glaze Mist
Artist

A1

A2

A3

A4

A5

Albrecht Durer
Alphonse Mucha
Anna O.-Lebedeva
Edvard Munch
Edward Hopper

(a) Quality

Attack Anti-DB Glaze Mist
Artist

A1

A2

A3

A4

A5

Albrecht Durer
Alphonse Mucha
Anna O.-Lebedeva
Edvard Munch
Edward Hopper

(b) Style
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Table 3: User preference ratings of all style mimicry scenarios S ∈ M for each artist A ∈ A by
name. Each cell states the percentage of votes that prefer an image generated under the corresponding
scenario S and artist A ∈ A over a matching image generated under clean style mimicry. Higher
percentages indicate weaker attacks or better defenses.

Method Naive mimicry Gaussian noising IMPRESS++ DiffPure Noisy Upscaling Best-of-4
Protection Artist

Anti-DB A1 4% 6% 8% 18% 26% 30%
A2 14% 48% 54% 32% 50% 62%
A3 10% 8% 18% 16% 40% 46%
A4 14% 22% 20% 14% 54% 70%
A5 16% 16% 22% 24% 54% 60%
Albrecht Durer 2% 22% 32% 26% 42% 70%
Alphonse Mucha 16% 22% 44% 42% 60% 66%
Anna O.-Lebedeva 38% 40% 56% 40% 44% 76%
Edvard Munch 2% 14% 40% 40% 46% 56%
Edward Hopper 0% 8% 28% 14% 34% 30%

Glaze A1 8% 20% 22% 10% 12% 24%
A2 12% 42% 40% 28% 44% 60%
A3 12% 26% 18% 26% 34% 52%
A4 22% 20% 20% 54% 54% 60%
A5 18% 34% 34% 24% 40% 52%
Albrecht Durer 2% 16% 40% 28% 26% 54%
Alphonse Mucha 40% 44% 58% 42% 56% 66%
Anna O.-Lebedeva 42% 46% 54% 44% 34% 70%
Edvard Munch 40% 16% 42% 42% 38% 62%
Edward Hopper 26% 32% 26% 22% 56% 66%

Mist A1 0% 6% 20% 4% 12% 28%
A2 14% 50% 50% 46% 48% 76%
A3 0% 10% 22% 24% 60% 60%
A4 0% 16% 24% 36% 66% 70%
A5 12% 22% 40% 28% 50% 54%
Albrecht Durer 10% 24% 28% 46% 38% 60%
Alphonse Mucha 32% 18% 60% 56% 54% 66%
Anna O.-Lebedeva 20% 38% 54% 50% 34% 74%
Edvard Munch 2% 22% 54% 44% 28% 72%
Edward Hopper 0% 4% 22% 24% 38% 60%

(a) Quality

Method Naive mimicry Gaussian noising IMPRESS++ DiffPure Noisy Upscaling Best-of-4
Protection Artist

Anti-DB A1 0% 4% 4% 10% 34% 36%
A2 14% 20% 40% 16% 48% 54%
A3 10% 14% 26% 28% 42% 46%
A4 36% 58% 42% 56% 54% 56%
A5 4% 0% 10% 32% 60% 66%
Albrecht Durer 20% 32% 36% 28% 44% 50%
Alphonse Mucha 56% 56% 42% 52% 48% 58%
Anna O.-Lebedeva 32% 50% 24% 30% 28% 56%
Edvard Munch 6% 30% 26% 20% 46% 50%
Edward Hopper 40% 48% 36% 38% 36% 52%

Glaze A1 8% 14% 8% 14% 30% 34%
A2 36% 42% 26% 46% 44% 52%
A3 24% 24% 16% 40% 32% 50%
A4 56% 58% 32% 44% 58% 66%
A5 12% 18% 18% 30% 32% 40%
Albrecht Durer 22% 28% 26% 26% 38% 38%
Alphonse Mucha 48% 54% 36% 54% 52% 56%
Anna O.-Lebedeva 26% 32% 40% 38% 44% 68%
Edvard Munch 38% 32% 36% 40% 48% 56%
Edward Hopper 38% 52% 40% 44% 38% 52%

Mist A1 0% 6% 4% 0% 22% 18%
A2 6% 38% 44% 42% 64% 72%
A3 6% 28% 26% 36% 34% 44%
A4 36% 58% 46% 52% 48% 54%
A5 4% 14% 18% 26% 58% 56%
Albrecht Durer 28% 32% 24% 36% 50% 60%
Alphonse Mucha 34% 50% 34% 50% 48% 64%
Anna O.-Lebedeva 32% 48% 44% 56% 38% 64%
Edvard Munch 10% 38% 36% 40% 42% 64%
Edward Hopper 38% 42% 40% 36% 38% 38%

(b) Style
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C.3 INTER-ANNOTATOR AGREEMENT

0% 20% 40% 60% 80% 100%

Naive mimicry

Robust mimicry

Inter-annotator agreement

3/5 votes agree 4/5 votes agree 5/5 votes agree

Figure 18: Inter-annotator agreement for generations from robust mimicry with Noisy Upscaling and
generations from models finetuned on protected art directly (naive mimicry). We plot the percentage
of comparisons for which the preferred option was selected by 3, 4 or 5 annotators, respectively.
The graph shows a higher consensus for naive mimicry, since the differences are clearer, and more
variance for robust mimicry.

D DIFFERENCES WITH GLAZE FINETUNING

In Section 4.1 and Figure 2, we discussed the brittleness of Glaze protections against small changes
in the finetuning script. We also found our finetuning setup to be better at baseline style mimicry
from unprotected art (see Figure 19).

(a) Original artwork (b) Glaze finetuning (c) Our finetuning

Figure 19: The finetuning script shared by Glaze authors produce substantially worse mimicry even
from unprotected art. We apply both finetuning scripts directly on unprotected art from @nulevoy.
The main reason behind this difference might be that the script uses Stable Diffusion 1.5, instead of
version 2.1 as reported in their paper.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

E FINDINGS ON GLAZE 2.0

After concluding our user study, Glaze (Shan et al., 2023a) released an updated version of their tool
(v2.0). According to the official release, “This new version significantly improved Glaze robustness
against the newest AI models”. Although we could not run the entire user study with the latest
protections, we reproduced some of our experiments to verify if protections were more robust under
robust mimicry. We believe this comparison is fair to Glaze since we are using newer models—such
as Stable Diffusion XL for upscaling. These models, although released before Glaze 1.1.1, may not
have been considered in the tool’s design and are now explicitly accounted for.

The official release specifically mentions “Significantly improved robustness against Stable Diffusion
1, 2, SDXL, especially for smooth surface art (e.g. anime, cartoon)”. Therefore, we decided to
test this new tool with the contemporary artist nulevoy, who draws in a cartoon style and gave us
permission to display their artwork. As with the previous version, we only have access to the publicly
available Windows application that uses unknown parameters. We protect the images using the
“highest” protection option. Our main findings are:

1. Glaze v2.0 introduces more visible perturbations uniformly over the images. See Figure 20.

2. Glaze v2.0 does not improve protection under robust mimicry. Noisy Upscaling still achieves
almost perfect style mimicry. See Figure 21.

3. Noisy Upscaling is able to to remove visible perturbations during preprocessing as before.
See Figure 22.

(a) Glaze v1.1.1 (b) Glaze v2.0

Figure 20: Comparison of perturbations by Glaze v1.1.1 and v2.0 on artwork from @nulevoy.

(a) Robust style mimicry on Glaze v1.1.1 (b) Robust style mimicry on Glaze v2.0

Figure 21: Comparison of robust style mimicry (Noisy Upscaling) on artwork from @nulevoy
protected with both versions of Glaze. Images in Figure 6 serve as a reference for the artistic style.

F FINDINGS ON MIST V2

After responsibly disclosing our work to defense developers, authors from Mist brought to our
attention the recent release of their latest Mist v2 with improved resilience (Zheng et al., 2023). As
we did with Glaze v2.0 (see Section E), we reproduced some of our experiments with the latest
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(a) Original artwork (b) Protected images after Noisy Upscaling

Figure 22: Original artwork from @nulevoy and the resulting images after applying Noisy Upscaling
to artwork protected with Glaze v2.0. See protected images in Figure 20.

protections to verify the success of robust mimicry. Their original implementation still uses the
outdated version 1.5 of Stable Diffusion. We change to SD 2.1 to match our previous experiments7.

Our findings, as we saw with Glaze v2.0, highlight that improved protections are still not effective
against low-effort robust mimicry. More specifically, the latest version of Mist:

1. introduces visible perturbations over the images. See Figure 23
2. does not improve protections against robust mimicry. See Figure 24
3. creates protection that are easily removable with Noisy Upscaling. See Figure 25.

(a) Mist v1 (b) Mist v2

Figure 23: Comparison of perturbations introduced by Mist v1 and v2 on artwork from @nulevoy.

(a) Robust style mimicry on Mist v1 (b) Robust style mimicry on Mist v2

Figure 24: Comparison of robust style mimicry (Noisy Upscaling) on artwork from @nulevoy
protected with both versions of Mist. Images in Figure 6 serve as a reference for the artistic style.

7Both models share the same encoder for which protections are optimized.
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(a) Original artwork (b) Protected images after Noisy Upscaling

Figure 25: Original artwork from @nulevoy and the resulting images after applying Noisy Upscaling
to artwork protected with Mist v2. See protected images in Figure 23.

G METHODS FOR STYLE MIMICRY

This section summarizes the existing methods that a style forger can use to perform style mimicry.
Our work only considers finetuning since it is reported to be the most effective (Shan et al., 2023a).

G.1 PROMPTING

Well-known artistic styles contained in the training data (e.g. Van Gogh) can be mimicked by
prompting a text-to-image model with a description of the style or the name of the artist. For
example, a prompt can be augmented with “ painted in a cubistic style” “ painted by van Gogh” to
mimic those styles, respectively. Prompting is easy to apply and does not require changes to the
model. However, it fails to mimic styles that are not sufficiently represented in the training data of
model—often from the most vulnerable artists.

G.2 IMG2IMG

Img2Img creates an updated version of an image with guidance from a prompt. For this, Img2Img
processes image x with t timesteps of a diffusion process to obtain the diffused image xt. Then,
Img2Img uses the model with guidance from prompt P to reverse the diffusion process into the
output image variation xP . Analogous to prompting, a prompt suffices to transfer a well-known style,
but Img2Img also fails for unknown styles.

G.3 TEXTUAL INVERSION

Textual inversion (Gal et al., 2022) optimizes the embedding of some n new tokens t = [t1, . . . , tn]
that are appended to image prompts P so that generations closely mimic the style of a given set
of images. The tokens are optimized via gradient descent on the model training loss so that P + t
generates images that mimic the target style. Textual inversion requires white-box access to the target
model, but enables the mimicry of unknown styles.

G.4 FINETUNING

Finetuning updates the weights of a pretrained text-to-image model to introduce a new functionality.
In this case, finetuning allows a forger to “teach” the generative model an unknown style using
a set of images in the target style and their captions (e.g. an astronaut riding a horse). First, all
captions are augmented with some special word, like the name of the artist, to create prompts
Px = Cx + “by w∗”. Then, the model weights are updated to minimize the reconstruction loss of the
given images following the augmented prompts. At inference time, the forger can append “by w∗” to
any prompt to obtain art in the target style

The authors of Glaze identify this finetuning setup as the strongest style mimicry method (Shan et al.,
2023a). We validate the success of our style mimicry with a user study detailed in Appendix K.1
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H EXISTING STYLE MIMICRY PROTECTIONS

Naming convention. Depending on the context, style mimicry protections may be viewed either as
attacks or as the targets of attacks. In an artistic setting, artists see style mimicry as an attack and
utilize methods like Glaze as a defense. Conversely, in the context of adversarial robustness, Glaze can
be seen as an attack against style mimicry methods through adversarial perturbations. The research
community has not reached a consensus on terminology: Glaze’s authors consider style mimicry an
attack and label Glaze as a defense, while the authors of Mist and Anti-DreamBooth describe their
approaches as attacks. In our work, we distance ourselves from the attack/defense terminology and
instead refer to these mechanisms as protections, and to the party performing mimicry as the “style
forger”.

Existing protections can either target the encoder or the decoder of text-to-image models. We classify
them accordingly.

H.1 ENCODER PROTECTIONS

Encoder protections include adversarial perturbations in the images X so that the encoder Eϕ of the
model maps images to latent representations that, when reconstructed, recover images in a different
style. Concretely, an encoder protection first defines a target latent representation tx ∈ Latent for
each image x ∈ X that is different to its own style. For instance, the target latent representation for
Edvard Munch could be Vincent Van Gogh. Then, protection P optimizes the objective

min
δx

dLat(Eϕ(x+ δx) , tx)

subject to dImg(x+ δx, x) ≤ p.
(2)

Glaze (Shan et al., 2023a) is an instance of an encoder protection. Glaze first selects an adversarial
target style Sadv that style mimicry should learn instead of the style S to be protected. Then, Glaze
uses Img2Img style transfer to create a variation xSadv in style Sadv of each image x ∈ X . The latent
representation of variation xSadv is used as the target latent representation tx for each image x ∈ X .

Glaze selects the target style Sadv from a pre-defined set of 50 styles Sadv. First, Glaze computes the
distance between the mean CLIP embedding of the images X and the prompt PS′ corresponding to
each style S′ ∈ Sadv. Then, Glaze randomly samples target style Sadv from the 50 to the 75 percentile
of target styles Sadv sorted by distance.

Glaze implements Objective (2) with the penalty method (Wright, 2006) as

min
δx

∥Eϕ(x+ δx) , tx∥22 + α ·max(LPIPS(x+ δx, x)− p, 0) (3)

where LPIPS (Zhang et al., 2018) is a choice for metric dImg that aims to measure user-perceived
image distortion. Glaze then optimizes Objective (3) with the Adam (Kingma & Ba, 2014) optimizer.

Mistϕ (Liang et al., 2023) is a different encoder protection from the Mist project8. Mistϕ opti-
mizes perturbations with PGD to minimize the squared L2-induced distance between the latent
representation of the artists’ images and some unrelated target image.

In their original work, Mist is only evaluated against DreamBooth, Style Transfer, and Textual
Inversion, but not against finetuning. Also, the original Mist work refers to Mistϕ as Mist operating
in textural mode.

H.2 DENOISER PROTECTIONS

Denoiser protections use the prediction error of the denoiser ϵθ as a proxy of the quality of style
mimicry, making it a feasible target for adversarial optimization. Current Denoiser protections,
such as Mist (Liang et al., 2023) and Anti-DreamBooth (Van Le et al., 2023) assume that poorly
reconstructed images will fail to mimic style

8Mist project also contains a denoiser attack that we fail to reproduce as a robust protection.
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Anti-DreamBooth (Van Le et al., 2023) uses the prediction error of the denoiser ϵθadv as a proxy for
the mimicry quality, where denoiser ϵθadv corresponds to the denoiser from a finetuned model trained
on images with the style to be protected. Since perturbations maximizing the error with the pretrained
decoder can be easily circunvented with finetuning, Anti-DreamBooth uses a technique they refer to
as Alternating Surrogate and Perturbation Learning (ASPL). The intuition behind ASPL is trying
to simulate finetuning on the art and maximizing the error during finetuning. For this purpose, they
interleave finetuning steps with perturbation optimization steps.

I ROBUST MIMICRY METHODS

This section details the robust mimicry methods we use in our work. These methods are not aimed
at maximizing performance. Instead, they demonstrate how various ”off-the-shelf” and low-effort
techniques can significantly weaken style mimicry protections.

Formally, given protected images X and a pretrained text-to-image model f , we define a general
robust mimicry pipeline that finetunes a model f̂ and then produces an image Z for a given prompt
as follows (a successful method may not require modifications in all stages):

f̂ ← Finetune(f ;PreProcess(X))

Z ← PostProcess(Sample(f̂ , “prompt”)).

I.1 DIFFPURE

DiffPure (Nie et al., 2022) uses image generation diffusion models to adversarially purify images
Xprot. DiffPure processes each image xadv ∈ Xprot with t timesteps of a diffusion process to obtain the
diffused image xt

adv =
√
αt ·xadv+

√
1− αt ·ϵ, where α is the noise schedule of the diffusion process

and noise ϵ is sampled from N (0, I). Then, DiffPure constructs the purified image DiffPure(xadv)
by applying reverse diffusion to image xt

adv for t timesteps with an image generation diffusion model
DM. Nie et al. prove that under certain idealized conditions, DiffPure is likely to weaken adversarial
perturbations in image xadv.

If the text-to-image model M supports unconditional image generation, then we can use model M for
the reverse diffusion process. For example, Stable Diffusion (Rombach et al., 2022) generates images
unconditionally when the prompt P equals the empty string. Under these conditions, Img2Img is
equivalent to DiffPure. Therefore, in the context of defenses for style mimicry, we refer to Img2Img
applied with an empty prompt P as unconditional DiffPure, and to Img2Img applied with a non-empty
prompt P as conditional DiffPure.

I.2 NOISY UPSCALING

Upscaling increases the resolution of an image by predicting new pixels that enhance the level of
detail. Upscaling images can purify adversarially perturbed images (Mustafa et al., 2019). However,
we discover that applying upscaling directly on protected images fails to remove the perturbations.

We define Noisy Upscaling as a way to address the shortcomings of upscaling. Noisy Upscaling
first applies Gaussian noising and then upscales the noisy image. Noisy Upscaling has a more
profound effect than the sum of its parts: Gaussian noising only adds noise to an image xadv, but
does not remove the adversarial perturbation δx. Similarly, we observe upscaling to roughly preserve
perturbation δx. In contrast, NoisyUpscale(xadv) shows neither visually perceptible noise, nor
adversarial perturbations. Figure 26 illustrates the improvements. We explain these phenomena as
follows.

First, we use the Stable Diffusion Upscaler (UpscaleSD), which is trained on noise-augmented images
and accepts the corresponding noise level L as a class-conditioning label. We can therefore condition
UpscaleSD on the noise level Lσ2 , corresponding to the variance σ2 used by GaussianNoising, to
remove the noise that GaussianNoising adds.

Second, we note that upscaling has shown success against adversarial perturbations for classifiers
(Mustafa et al., 2019), but not against adversarial perturbations for generative models (Liang et al.,
2023; Shan et al., 2023a).
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(a) Original artwork (b) Protected artwork (c) Upscaling (d) Compr. Upscaling (e) Noisy Upscaling

Figure 26: Illustration of Noisy Upscaling on a random image from @nulevoy. Unlike naive upscaling
and Compressed Upscaling, Noisy Upscaling removes protections while preserving the details in the
original artwork.

I.3 IMPRESS++

We enhance the IMPRESS algorithm (Cao et al., 2024). We change the loss of the reverse encoding
optimization from patch similarity to l∞ and include two additional steps: negative prompting and
post-processing. All in all, IMPRESS++ first preprocesses protected images with Gaussian noise and
reverse encoder optimization, then samples using negative prompting and finally post-processes the
generated images with DiffPure to remove noise.

Reverse encoder optimization. Reverse encoder optimization is a preprocessing defense against en-
coder protections. It adds additional perturbations ∆∆′ to images Xprot so that the latent representation
tx′

adv
= Eϕ(x′

adv) of each protected image x′
adv = xadv + δxadv satisfies

Dϕ′

(
tx′

adv

)
≈ x′

adv (4)

and each perturbation δxadv ∈ ∆∆′ satisfies

dImg(xadv + δxadv , xadv) ≤ p. (5)

If Equation (4) holds, then style mimicry finetuning learns the style of images X ′
prot. In addition, the

combination of Equation (5) with the image similarity constraint dImg(x+ δx, x) ≤ p in Objective (2)
ensures that the defended images X ′

prot look similar to the original images X . Therefore, style mimicry
finetuning on images X ′

prot should learn a style similar to style S .

Reverse encoder optimization aims to achieve Equation (4) and Equation (5) by optimizing the
objective

min
δxadv

dLat(Eϕ(xadv + δxadv) , Eϕ(xadv))

subject to dImg(xadv + δxadv , xadv) ≤ p
(6)

with PGD.

Negative prompting. Negative prompting (Miyake et al., 2023) is a technique to guide image
generation of a diffusion-based text-to-image model M away from a prompt Pneg. To this end,
negative prompting manipulates the classifier-free guidance (Ho & Salimans, 2022), which computes
the denoiser output of model M as

ϵ̃θ(z, t, P ) = (1 + w) · ϵθ(z, t, P )− w · ϵθ(z, t, “”) (7)

where parameter w controls the guidance strength. Negative prompting simply substitutes the empty
string “” with Pneg to obtain

ϵ̃θ(z, t, P ) = (1 + w) · ϵθ(z, t, P )− w · ϵθ(z, t, Pneg) . (8)

We design a routine for DInF
that leverages negative prompting to guide model M away from

adversarial generations. To this end, we first apply Textual Inversion with adversarial images Xprot to
encode the style of adversarial generations Sadv into a special word w∗. We then set prompt Pneg =
“art by w∗”.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Naive negative prompting offers no strength control. Too little strength may fail to guide model M
away from the adversarial style Sadv. Too much strength may guide towards the style opposite to style
Sadv in the latent space of model M, which is not necessarily the desired style S. We use negative
prompt weights (muerrilla, 2023) to control the strength of negative prompting. The negative prompt
weights technique introduces the strength control parameter c to interpolate between Equation (7)
and Equation (8) as

ϵ̃θ(z, t, P ) = (1 + w) · ϵθ(z, t, P )− w · ((1 + c) · ϵθ(z, t, Pneg)− c · ϵθ(z, t, “”)) . (9)

Figure 27 illustrates the improvements introduced by each additional step.

(a) Original
IMPRESS

(b) IMPRESS +
negative prompting

(c) IMPRESS++. IMPRESS +
negative prompting + denoising

Figure 27: Improvements of each additional step in IMPRESS++ over the original IMPRESS (Cao
et al., 2024). Negative prompting improves image consistency and denoising reduces artifacts in
generated images.

J EXPERIMENTAL SETUP

This section describes our general experimental setup and specifies the settings and hyperparameters
of the methods we use. When possible, we use default values from the machine learning literature.
For implementation details see our official repository: hidden for submission

J.1 STYLE MIMICRY EXPERIMENTAL DETAILS

As described in Section 3, our threat model considers style mimicry with a latent diffusion text-to-
image model M that is finetuned on a set of images X in a style S . This section specifies our choices
for model M, images X , style S , the hyperparameters for finetuning M, and the hyperparameters for
generating images with the finetuned model. Where possible, we try to replicate the style mimicry
setup used by Shan et al. to evaluate Glaze, and highlight any differences.

Model We use Stable Diffusion version 2.1 (Stability AI, 2022), the same model used to optimize
the protections we evaluate (Shan et al., 2023a; Liang et al., 2023; Van Le et al., 2023).

Dataset. We collate 10 image sets
{
XA : A ∈ A

}
from 10 different artists A. Each image set XA

contains 18 images that we choose manually to follow a consistent style SA. We select the artists
A from contemporary and historical artists: We select 5 contemporary artists from ArtStation9 and
5 historical artists from the WikiArt dataset (Tan et al., 2019). We found 2 of the 4 artists used by
Glaze and included them in our evaluation. We manually select the remaining 8 artists to cover a
broad variety of styles. Glaze additionally verified that the images of the contemporary artists in their
evaluation are not included in the training dataset of the model M. Unfortunately, the LAION-5B
dataset (Schuhmann et al., 2022) used to train SD 2.1 was taken offline (Cole, 2023), so we are unable
to perform this verification. Instead, we verify for each contemporary artist A ∈ A that SD 2.1 is
unable to mimic the style SA by manually inspecting SD 2.1 generations for prompts of the form “An

9www.artstation.com
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{object} by {artist}”. We center-crop each image x to 512× 512 pixels and generate a caption Cx

for x with the BLIP-2 model (Li et al., 2023).

Finetuning hyperparameters. Glaze does not specify which finetuning script they use, but they
claim to “follow the same training parameters as (Rombach et al., 2022). We use 5 · 10−6 learning
rate and batch size of 32.” This batch size misfits their small finetuning image sets that contain no
more than 34 images. Moreover, the finetuning code that Shan et al. kindly sent us upon request uses
DreamBooth finetuning with Stable Diffusion 1.5, instead of version 2.1 as described in their work.

In light of these discrepancies, and assuming that mimicry protections should be agnostic to the
finetuning setup used, we use an “off-the-shelf” HuggingFace finetuning script for Stable Diffusion
(von Platen et al., 2024) and manually tune hyperparameters for optimal style mimicry before
protections are applied. Concretely, we use 2,000 training steps, batch size 4, learning rate 5 · 10−6,
and set the remaining hyperparameters to their default values. We pair each image x with the prompt
Px = Cx+“ by w∗”, where w∗ = “nulevoy”10.

Generation hyperparameters We use the DPM-Solver++(2M) Karras (Lu et al., 2022; Karras
et al., 2022) scheduler for 50 steps to generate images of size 768× 768. This scheduler generates
images with slightly higher quality than the PNDM (Liu et al., 2021) scheduler used by Glaze.

J.2 PROTECTIONS EXPERIMENTAL DETAILS

We evaluate three different protections: Mist (Liang et al., 2023), Glaze (Shan et al., 2023a), and
Anti-DreamBooth (Van Le et al., 2023). For a fair comparison, we fix the perturbation budget p for
each adversarial perturbation δx created by Mist and Anti-DreamBooth to p = 8/255, which is the
same budget that Liang et al. use to evaluate Mist. It is not possible to evaluate Glaze with exactly
this perturbation budget, for three reasons: First, Glaze uses LPIPS for the image similarity measure
dImg, which does not bound the L∞ norm. Second, Glaze implements the metric dImg as a soft bound
in Objective (3), which offers no hard bound guarantees. Third, Glaze is closed-source software
whose perturbation budget control only offers the settings Default, Medium, and High. Upon
request, the Glaze authors refused to share a codebase where we could control the hyperparameters.
Therefore, we evaluate Glaze through their official public tool with the setting High to evaluate
our protections under the highest protections. In our evaluation, we perceive images processed with
Glaze to be equally or less perturbed than images processed with Mist and Anti-DreamBooth.

Next, we describe specific hyperparameters we use to reproduce each of the protections.

J.2.1 ANTI-DREAMBOOTH

Van Le et al. implement Anti-DreamBooth against DreamBooth finetuning. We adapt their imple-
mentation to our vanilla finetuning for style mimicry, using the same hyperparameters where possible:
We set the number of iterations to N = 50, the PGD perturbation budget to p = 8/255, the PGD step
size to α = 5 · 10−3, and the number of PGD steps per ASPL iteration to NPGD = 6. We minimize
the loss LFinetune with the vanilla finetuning setup in Appendix J.1 for 300 training steps.

J.2.2 MISTϕ

We replicate the evaluation that Liang & Wu use to evaluate Mistϕ against Stable Diffusion. We set
the PGD perturbation budget to p = 8/255, the number of PGD iterations to NPGD = 100, the PGD
step size to α = 1/255, and the target image to T = Target Mist shown in Figure 28.

J.2.3 GLAZE

The Glaze authors were unable to share a codebase upon request. We thus use their publicly released
Windows application binary. We use the latest available version of Glaze, v1.1.1. We set Intensity

10@nulevoy is the first ArtStation artist that we experimented with. In our experiments, we found “nulevoy”
a suitable choice for the special word w∗ and use it for all artists. We check that all of nulevoy’s images are
published after the release date of LAION-5B to ensure that SD 2.1 has no prior knowledge about nulevoy’s
style.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Figure 28: The Mist target image Target Mist. Target Mist is the default target image in the reference
Mist implementation and one of the successful target images evaluated by Liang & Wu.

to High and Render Quality to Slowest, to obtain the strongest protections. Appendix E
includes qualitative results on an updated version released after we concluded our user study.

J.3 ROBUST MIMICRY METHODS EXPERIMENTAL DETAILS

J.3.1 GAUSSIAN NOISING

We manually tune the Gaussian noising strength to σ2 = 0.05.

J.3.2 DIFFPURE

We use conditional DiffPure with the best-performing publicly available image generation diffusion
model, Stable Diffusion XL 1.0 (SDXL) (Podell et al., 2023). We implement conditional DiffPure
using the HuggingFace AutoPipelineForImage2Image pipeline. We use classifier-free guid-
ance scale guidance scale = 7.5 with prompt P = Cx for image x. We manually tune the
number of diffusion timesteps t via the strength pipeline argument to strength = 0.2.

J.3.3 IMPRESS++

Reverse Optimization Like Mistϕ, we set the PGD perturbation budget to p = 8/255 and the PGD
step size to α = 1/255. We manually tune the number of PGD iterations to NPGD = 400.

Noisy Upscaling We manually tune the Gaussian noising strength to σ = 0.1. We then use the
Stable Diffusion Upscaler 11 with the maximum denoising strength L.12.

We note that the Stable Diffusion Upscaler is trained on diffused images of the form xα =
√
α · x+√

1− α · N (0, I). In contrast, noisy upscaling noises images additively, that is, without the factor√
α. However, we note that for

√
1− α = σ = 0.1, we have

√
α = 0.995 ≈ 1. In practice, we

observe no qualitative difference in the generated images.

Negative Prompting We manually tune the negative prompting strength to c = 0.5. We use the
Stable Diffusion web UI 13 to apply Textual Inversion on the adversarial images Xprot. We follow the
Textual Inversion setup used by Liang et al. to evaluate Mist and set the length of the token vector t
to n = 8, the embedding initialization text to “style *”, the learning rate to γ = 0.005, the batch size
to 1, and the number of training steps to 500.

DiffPurepost To make IMPRESS++ work under a single-model availability, we apply DiffPurepost
with the same model that we use for image generation, SD 2.1. We implement DiffPurepost using the
HuggingFace AutoPipelineForImage2Image pipeline. We use the classifier-free guidance

11www.huggingface.co/stabilityai/stable-diffusion-x4-upscaler
12We inadvertently set the denoising strength to L = 320 instead of the actual maximum denoising strength

L = 350. We observe no qualitative difference in the generated images.
13https://github.com/AUTOMATIC1111/stable-diffusion-webui
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scale guidance scale = 7.5 with prompt P = Cx + “, artistic” for image x. We manually tune
the number of diffusion timesteps t via the strength pipeline argument to the value strength =
0.2.

K USER STUDY

This user study was approved by our institution’s IRB.

Design. Our user study asks annotators to compare outputs from one robust mimicry method
against a baseline where images are generated from a model trained on the original art without
protections—for a fixed set of prompts P.

We present participants with both generations and a gallery with original art in the target style. We
ask participants to decide which image is better in terms of style and quality, separately. For this, we
ask them two different questions:

1. Based on noise, artifacts, detail, prompt fit, and your impression, which image has higher
quality?

2. Overall, ignoring quality, which image better fits the style of the style samples?

For each comparison, we collect data from 5 users. We randomize several aspects of our study
to minimize user bias. We randomly select the order of robust mimicry and baseline generations.
Second, we randomly shuffle the order of all image comparisons to prevent all images from the same
mimicry method to appear consecutively. Finally, we also randomly sample the seeds that models use
to generate images to prevent repeating the same baseline image across different comparisons.

Differences with Glaze’s user study. Our study does not exactly replicate the design of Glaze’s
user study for two reasons. First, the Glaze study provided annotators with four AI-generated
images and four original images, asking if the generated images successfully mimicked the original
artwork. This evaluation fails to account for the commonly encountered scenario where current
models are incapable of reliably mimicking an artist’s style even from unprotected art. Second, we
believe the relative assessment recorded in our study (“Which of these two mimicry attempts is more
successful?”) is easier for humans than the absolute assessment used in the Glaze study (“Is this
mimicry attempt successful”).

Prompts. We curate a small dataset of 10 prompts P. We design the prompts to satisfy two criteria:

1. The prompts should cover diverse motifs with varying complexity. This ensures that we
can detect if a scenario compromised the prompt-following capabilities of a style mimicry
model.

2. The prompts should only include prompts for which our finetuning base model M, SD 2.1,
can successfully generate a matching image. This reduces the impact of potential human
bias against common defects of SD 2.1.

To satisfy criterion 1 and increase variety, we instruct ChatGPT to generate prompt suggestions for
four different categories:

1. Simple prompts with template “a {subject}”.

2. Two-entity prompts with template “a {subject} {ditransitive verb} a {object}”.

3. Entity-attribute prompts with template “a {adjective} {subject}”.

4. Entity-scene prompts with template “a {subject} in a {scene}”.

The chat we used to generate our prompts can be accessed at https://chatgpt.com/share/
ea3d1290-f137-4131-baca-2fa1c92b3859. To satisfy criterion 2, we generate images
with SD 2.1 on prompts suggested by ChatGPT and manually filter out prompts with defect gener-
ations (e.g. a horse with 6 legs). We populate the final set of prompts P with 4 simple prompts, 2
two-entity prompts, 2 entity-attribute prompts, and 2 entity-scene prompts (see Figure 29).
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1 prompts = [
2 # simple prompts
3 "a mountain",
4 "a piano",
5 "a shoe",
6 "a candle",
7 # two-entity prompts
8 "a astronaut riding a horse",
9 "a shoe with a plant growing inside",

10 # entity-attribute prompts
11 "a feathered car",
12 "a golden apple",
13 # entity-scene prompts
14 "a castle in the jungle",
15 "a village in a thunderstorm",
16 ]

Figure 29: Our set of prompts. We manually wrote the prompts “a astronaut riding a horse” and “a
village in a thunderstorm”. ChatGPT wrote the remaining prompts.

Quality control. We first run a pilot study where we directly ask users to answer the previous
questions about style and quality. This study resulted in very low-quality responses that are barely
better than random choice. We enhanced the study to introduce several quality control measures to
improve response quality and filter out low-quality annotations:

1. We limit our study to desktop users so that images are sufficiently large to perceive artifacts
introduced by protections.

2. We precede the questions we use for our study with four dummy questions about the noise,
artifacts, detail, and prompt matching of the images. The dummy questions force annotators
to pay attention and gather information useful to answer the target questions.

3. We precede our study with a training session that shows for question 1, 2, and each of the
four dummy questions an image pair with a clear, objective answer. The training session
helps users to understand the study questions. We introduced this stage after gathering
valuable feedback for annotators.

4. We add control comparisons to detect annotators who did not understand the tasks or were
answering randomly. We generated several images from the baseline model trained on the
original art. For each of these images, we created two ablations. For question 1 (quality),
we include Gaussian noise to degrade its quality but preserve the same information. For
question 2 (style), we apply Img2Img to remove the artist style and map the image back to
photorealism using the prompt “high quality photo, award winning”. We randomly include
control comparisons between the original generations and these ablations, and we only
accept labels from users who answered correctly at least 80% of the control questions.

Execution. We execute our study on Amazon Mechanical Turk (MTurk). We design and evaluate
an MTurk Human Intelligence Task (HIT) for each artist A ∈ A, shown in Figure 30. Each HIT
includes image pair comparisons for a single artist A under all scenarios S ∈M, as well 10 quality
control image pairs, 10 style control image pairs, and 6 training image pairs. We generate an image
pair for each of the 10 prompts and each of 15 scenarios, for a total of 10 · 15 + 10 + 10 + 6 = 176
image pairs per HIT. We estimate study participants to spend 5 minutes on the training image pairs
and 30 seconds per remaining image pair, so 90 minutes in total. We compensate study participants
at a rate of $16/hour, so $24 per HIT.

K.1 STYLE MIMICRY SETUP VALIDATION

We execute an additional user study to validate that our style mimicry setup in Appendix G success-
fully mimics style from unprotected images.
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Figure 30: The interface of our user study.

0% 20% 40% 60% 80% 100%

Clean style mimicry success rate
not successful at all
not very successful
somewhat successful

successful
very successful

Figure 31: User ratings of clean style mimicry success. Each bar indicates the percentage of votes for
the corresponding success level for clean style mimicry generations. Figure 32 breaks the ratings
down by artist.

For each prompt P ∈ P and artist A ∈ A, our validation study uses the baseline model trained on
uprotected art to generate one image. Inspired by the evaluation by Glaze (Shan et al., 2023a), we ask
participants to evaluate the style mimicry success by answering the question:

How successfully does the style of the image mimic the style of the style samples? Ignore
the content and only focus on the style.

To answer this question, we show a participant the image xO
A and the images XA that serve as style

samples. The participant can answer the question on a 5-point Likert scale with options

1. Not successful at all

2. Not very successful

3. Somewhat successful

4. Successful

5. Very successful

We also execute the style mimicry validation study on MTurk. We design and evaluate a single HIT
for all questions, shown in Figure 33. We estimate study participants to spend 15 seconds on each
question, and to spend 1 minute to familiarize themselves with a new style, so 35 minutes in total.
We compensate study participants at a rate of $18/hour, so $10.50 per HIT.

We find that style mimicry is successful in over 70% of the comparisons. Results are detailed in
Figure 31.
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Edward Hopper

Edvard Munch

Anna O.-Lebedeva

Alphonse Mucha

Albrecht Durer
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Clean style mimicry success rate

not successful at all
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successful

very successful

Figure 32: User ratings of clean style mimicry success. Each bar indicates the percentage of votes for
the corresponding success level over all clean style mimicry generations for the corresponding artist.

Figure 33: The interface of our style mimicry setup validation study.

K.2 DOES PRE-PROCESSING ALONE DEGRADE IMAGE QUALITY?

While purification methods can nullify the effects of adversarial purifications, they could, in principle,
also degrade image quality. To evaluate the extent of this phenomenon, we include comparisons
between artists’ original art, and their original art pre-processed with Noisy Upscaling. We include
these comparisons for six artists14 in our study and add comparisons for two held-out original artworks
for each artist. On average, participants preferred the quality of pre-processed originals exactly 50
% of the time, and their style 48.3 % of the time. This suggests that Noisy Upscaling does not
meaningfully degrade the quality of original artwork.

14We only include six out of the ten artists, because this experiment was added while the study was already
ongoing.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

L COMPUTE RESOURCES

Table 4 reports the compute resources for our experiments.

Table 4: Compute resources for our experiments. Execution time per image / (artist) reports the
execution time of the method to compute a single image, or the combined execution time for all
samples of an artist, if the method operates on all samples of an artist at once. † Google Cloud ‡
IMPRESS++ requires an additional 2 seconds per image generation.

Method GPU CPU Memory Storage Execution time per
image / (artist) Overall execution time

Finetuning RTX A6000 EPYC 7742 5 GB 5 GB (40 minutes) 100 hours
Image generation RTX A6000 EPYC 7742 5 GB 5 GB 15 seconds 13 hours
Anti-DB RTX A6000 EPYC 7742 5 GB 10 GB 29 minutes 88 hours
Glaze T4 16 vCPUs on GCP† 5 GB 5 GB 4 minutes 12 hours
Mist RTX A6000 EPYC 7742 5 GB 5 GB 18 seconds 54 minutes
Gaussian noising None EPYC 7742 0 GB 0 GB 143 milliseconds 26 seconds
IMPRESS++ RTX A6000 EPYC 7742 5 GB 5 GB (27 minutes)‡ 370 minutes‡

DiffPure RTX A6000 EPYC 7742 7 GB 7 GB 48 seconds 144 minutes
Noisy Upscaling RTX A6000 EPYC 7742 3.5 GB 3.5 GB 217 seconds 651 minutes
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