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ABSTRACT

In the maximum coverage problem we are given d subsets from a universe [n],
and the goal is to output at most k subsets such that their union covers the largest
possible number of distinct items. The input can be formalized as an n× d matrix
A where entry Aij ̸= 0 if item i is covered by subset j and Aij = 0 otherwise. In
this paper we create the first linear sketch to solve the maximum coverage prob-
lem. The sketch has size sublinear in the input and is directly applicable to dis-
tributed and streaming settings, often offering significant runtime improvements.
We focus on the application to the turnstile streaming model which supports inser-
tions and deletions. In this model, updates take the form (i, j,±1) which update
Aij to Aij + 1 or Aij − 1, depending on the sign. Previous work has largely fo-
cused on more restrictive models, such as the set-arrival model where each update
reveals an entire column of A, or the insertion-only model which does not allow
deletions. We design an algorithm with an Õ(d/ε3) space bound for all k ≥ 0. We
note that when k is constant, this space bound is nearly optimal up to logarithmic
factors. We then turn to fingerprinting for risk measurement. The input is an n×d
matrix A where there are n users and d features, and the goal is to determine which
k features (or columns in A) together pose the greatest re-identification risk. Our
maximum coverage sketch directly enables a solution to targeted fingerprinting
for risk measurement. Furthermore, we present a result of independent interest:
a linear sketch of the complement of Fp, the pth frequency moment, for p ≥ 2.
We use this sketch to solve general fingerprinting for risk management. Empirical
evaluation confirms the practicality of our fingerprinting algorithms, demonstrat-
ing a speedup of up to 210x over prior work. We also demonstrate that our general
fingerprinting algorithm can serve as a dimensionality reduction technique, with
an application to facilitating enhanced feature selection efficiency.

1 INTRODUCTION

Maximum coverage is a classic NP-hard problem with applications including information retrieval
(Anagnostopoulos et al., 2015), influence maximization (Kempe et al., 2003), and sensor placement
(Krause & Guestrin, 2007). Given d subsets of a universe with n items and cardinality constraint
k ≥ 0, the goal is to output the k subsets whose union covers the greatest number of distinct items.
A simple greedy algorithm solves this problem by running for k rounds, selecting the subset with the
largest marginal gain in each round. This algorithm, in polynomial time and space, achieves a 1−1/e
relative approximation, an approximation factor which is tight for polynomial time algorithms unless
P = NP (Feige, 1998). However, its polynomial time and space complexity make it impractical
for handling massive datasets. Our objective, consequently, is to study algorithms for maximum
coverage with sublinear time and memory requirements.

We formalize the input to the maximum coverage problem as an n× d matrix A where entry Aij is
nonzero if item i is in subset j and 0 otherwise. In this paper we create the first linear sketch with
size sublinear in the input matrix to solve maximum coverage, to the best of our knowledge. Linear
sketches compress large input matrices while preserving essential information used to form the final
output. They also support updates, including both insertions and deletions, to the input matrix. In
the context of maximum coverage, an update takes the form (i, j,±1) which modifies entry Aij by
adding or subtracting one, effectively adding or removing an item from a subset (or doing nothing
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if entry Aij was nonzero before and after the update). After all updates, we can query the sketch to
form our output (in this case to select the k subsets to output).

Linear sketches are far more powerful than algorithms tailored to specific models, as they enable
significant runtime improvements while being applicable to a wide range of settings including dis-
tributed and streaming contexts1. We focus on the application to the turnstile streaming setting
where updates come one-by-one in a stream and each update modifies Aij by adding or subtract-
ing one. To our knowledge, our linear sketch provides the first streaming algorithm for maximum
coverage which allows arbitrary deletions of items from subsets. Deletions are critical for a number
of applications. For example, we use them to extend our algorithm to fingerprinting for dataset risk
measurement.

Related Work. There is an extensive body of work on the maximum coverage problem, and we
do not attempt to give a comprehensive overview here. Instead, we focus on the related streaming
literature. Specifically, we discuss one-pass streaming algorithms with polynomial time complexity,
where a pass refers to a single traversal of the stream of updates. In the following, a (x) relative
approximation means that the number of distinct items covered by the k subsets selected by the
algorithm is at least x · OPT, where OPT denotes the number of items covered by the optimal
solution. In addition, Õ(·) notation is used to suppress poly-logarithmic factors in its argument.

McGregor & Vu (2018) provide a one-pass algorithm that outputs a (1−1/e−ε) relative approxima-
tion for ε ∈ (0, 1) in Õ(d/ε2) space. They consider the insertion-only set-arrival streaming model
which given our input n× d matrix A is equivalent to seeing an entire column of A in each update.
In other words, each update reveals a subset and the items it covers, and deletions are not supported.
At a high level, their algorithm first subsamples rows of A such that OPT in this smaller universe is
Õ(k/ε2). They then argue that achieving a (1− 1/e) relative approximation to maximum coverage
on this smaller universe achieves a (1− 1/e− ε) relative approximation overall.

Bateni et al. (2017) give a one-pass (1−1/e−ε) relative approximation algorithm that uses Õ(d/ε3)
memory. They consider the insertion-only streaming model which given our input matrix A is
equivalent to receiving updates of the form (i, j, 1). Note that negative updates (i.e., deletions) are
not supported. They specifically provide an algorithm that carefully samples a number of nonzero
entries of input A, and they show that any (α) relative approximation on this smaller subsampled
universe achieves an (α − ε) relative approximation for the original input. We use their sketch as a
starting point (see Section 3 for details).

There has also been work that achieves different approximation factors (Saha & Getoor, 2009; Mc-
Gregor et al., 2021), in random-arrival streams (Warneke et al., 2023; Chakrabarti et al., 2024), and
in more general submodular maximization in the insertion-only set-arrival model (Badanidiyuru
et al., 2014; Kazemi et al., 2019).

In contrast to all of the above, our sketch (and therefore turnstile streaming algorithm) allows dele-
tions and arbitrarily ordered updates to any individual entry of A.

We note that there has also been work on submodular maximization in the somewhat related dynamic
model (Monemizadeh, 2020; Chen & Peng, 2022; Lattanzi et al., 2020). We briefly outline the
differences between the dynamic model and streaming model. While both models process updates
sequentially, the key distinction lies in their primary objectives. The dynamic model prioritizes
achieving minimal update time, whereas the streaming model, which we consider here, emphasizes
minimizing space usage. It is worth noting that most algorithms designed for the dynamic model
do not achieve sublinear space and, in some cases, require exponential space. Despite our emphasis
on space efficiency, the linear sketches we present that we will apply to the streaming model also
maintain sublinear update times.

Fingerprinting for Risk Management. We also design linear sketches which extend to turnstile
streaming algorithms for targeted and general fingerprinting for risk management, achieving approx-
imation factors which are near-optimal for polynomial-time algorithms unless P = NP (Gulyás
et al., 2016). In targeted fingerprinting, the input is an n × d matrix A, where n represents the
number of users and d represents the number of features, and a target user u ∈ [n] = {1, 2, . . . , n}.
The value of entry Aij denotes the value of the user i at feature j. The goal is to identify at most

1Refer to Section 2 for more details on linear sketches.
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k features {f1, f2, . . . , fk} such that the number of users who share identical values to the target
user u at these positions {f1, f2, . . . , fk} is minimized. In general fingerprinting, the input is also
an n× d matrix A where n is the number of users and d is the number of features. Here, the goal is
to identify at most k features {f1, f2, . . . , fk} such that number of pairs of users who share identical
values at these positions {f1, f2, . . . , fk} is minimized.

Our algorithms fit into the broader privacy attack literature (Seonghun et al., 2023; Chia et al., 2019;
Zhou et al., 2023) and can be seen as an extension of Chia et al. (2019) in the area of privacy auditing
and risk measurement. Specifically, these algorithms address the issue of fingerprinting, a technique
used to re-identify users from datasets, which poses a significant privacy risk. Fingerprinting refers
to the process of identifying a user based on unique combinations of attributes (or feature values)
in a dataset. Our algorithms help mitigate this risk by identifying which k features in a dataset
are most likely to enable adversaries to successfully fingerprint users to prioritize data protection.
Previous work outside of Gulyás et al. (2016), whose linear space and time algorithms we improve
upon, has only measured the risk of a whole dataset or a fixed set of features. In contrast, our time
and space efficient algorithms are suitable for real-time monitoring and continuous measure of re-
identification risks even as the dataset changes over time. In addition, targeted fingerprinting is a
form of frequency estimation and could be useful in other contexts such as discovering heavy hitters
(Bhattacharyya et al., 2016; Zhu et al., 2020).

1.1 OUR CONTRIBUTIONS

In all of the following Õ(·) suppresses logarithmic factors in its argument. The update time of a
sketch refers to the time required to update and maintain the sketch after an update, and the reporting
time refers to the time required to return the result upon a query.

Maximum Coverage Results.
Theorem 1. There exists a linear sketch of size Õ(d/ε3) with update time Õ(d/ε3) and reporting
time Õ(kd/ε3) such that given d subsets of a universe [n], integer k ≥ 0, and ε ∈ (0, 1), running
an (1 − 1/e) relative approximation algorithm on the sketch produces a (1 − 1/e − ε) relative
approximate solution the to maximum coverage problem with probability at least 1− 1/poly(d).

Note that the only dependence on k in our space complexity (despite our algorithm working for all
k ≥ 0) appears in poly-logarithmic factors. Moreover, since we can assume k ≤ d - otherwise,
we can simply output all the input subsets - these poly-logarithmic factors in k can be treated as
poly-logarithmic factors in d, which are hidden by the Õ(·) notation.

Our linear sketch is then naturally applicable to the turnstile streaming model since linear sketches
accomodate insertions and deletions.
Corollary 1.1. Given d subsets of a universe [n], integer k ≥ 0, and ε ∈ (0, 1), there exists a
one-pass turnstile streaming algorithm that with probability at least 1 − 1/d gives a near-optimal
(1− 1/e− ε) relative approximation to maximum coverage in Õ(d/ε3) space.

We note that the space complexity of our algorithm matches that of Bateni et al. (2017) and, for
constant ε, that of McGregor & Vu (2018). Additionally, several lower bounds exist.

Assadi (2017) shows that achieving a (1− ε) relative approximation in a constant number of passes
requires Ω(d/ε2) space. Assadi & Khanna (2018) shows that even achieving a n1/3 or

√
k relative

approximation in one pass with a sketch requires the sketch to have size Ω(d/k2). McGregor & Vu
(2018) shows that achieving better than a 1 − 1/e approximation in a constant number of passes
requires Ω(d/k2) space. Therefore (while our algorithm works for all k ≥ 0 with space Õ(d/ε3)),
if k is constant, our result is optimal up to poly-logarithmic factors. Bateni et al. (2017) also show
that any (1/2 + ε) relative approximation multi-pass streaming algorithm requires Ω(d) space.

Fingerprinting Results. We then use our linear sketch from Theorem 1 to create a linear sketch
to solve targeted fingerprinting for risk management, improving upon the linear time and space
algorithm of Gulyás et al. (2016). To reduce targeted fingerprinting to maximum coverage, we
subtract the value of entry Auj from each Aij for all i ∈ [n], j ∈ [d]. Recall that u is the input
“target” user. This reduction is feasible only because our maximum coverage sketch accommodates
deletions. Here, a (x) relative approximation means that the number of users separated from the
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input user u by the k features selected by the algorithm is at least x ·OPT, where OPT denotes the
number of users separated from u by the optimal solution. The proof of the following is deferred to
Appendix A.3.
Corollary 1.2. Given n × d matrix A, target user u ∈ [n], and ε ∈ (0, 1), there exists a linear
sketch of size Õ(d/ε3) with update time Õ(d/ε3) and reporting time Õ(kd/ε3) such that running
a (1 − 1/e) relative approximation algorithm on the sketch produces a (1 − 1/e − ε) relative
approximate solution to targeted fingerprinting with probability at least 1− 1/poly(d).

This is again directly applicable to the turnstile streaming model.
Corollary 1.3. Given n × d matrix A, target user u ∈ [n], and ε ∈ (0, 1), there exists a one-
pass turnstile streaming algorithm that achieves a (1− 1/e− ε) relative approximation to targeted
fingerprinting using space Õ(d/ε3) with probability at least 1− 1/d.

We also improve upon the linear time and space algorithm of Gulyás et al. (2016) for general fin-
gerprinting for risk management. However, unlike targeted fingerprinting, reducing general finger-
printing to maximum coverage (as Gulyás et al. (2016) does) requires tracking, for all

(
n
2

)
pairs of

users, whether they differ in value on a certain feature. This results in a O(n2) × d input matrix,
making it infeasible to handle updates with linear sketches, which we use to accommodate deletions.
Upon receiving an update to some entry of A, the sketch must be updated for all pairs of users that
are either newly separated or no longer separated by a given feature. This could involve updating
all O(n2) pairs. Therefore, we design an algorithm for general fingerprinting with a near-optimal
(1− 1/e− ε) relative approximation in a different way.

To do this, we first present a framework for submodular maximization under cardinality constraints
over monotone, linearly sketchable functions in turnstile streams 2. Submodular functions exhibit the
property of diminishing returns, and we specifically focus on maximizing monotone, non-negative
submodular functions that are defined over subsets of a given universe. In our context, this means
that there are d subsets of a universe [n], and the function takes as input some of these subsets and
returns a positive real number. A function is defined to be linearly sketchable if its input can be
compressed by a linear sketch and this sketch can be queried to efficiently produce the function’s
output value on some given subsets. For formal definitions of submodular functions and linearly
sketchable functions, see Appendix A.1.2 and Appendix A.1.2. Here, a (x) relative approximation
means that the output of the function on the k subsets selected by the algorithm is at least x ·OPT,
where OPT denotes the maximum output of the function on k subsets. The proof of the following
is deferred to Appendix A.4.
Theorem 2. Given d subsets of a universe [n] and ε ∈ (0, 1), take f to be a submodular, monotone,
non-negative function over subsets that we want to maximize by selecting at most k subsets. If f is
linearly sketchable with a (1±γ) relative approximation in O(s) space, if we set γ = ε/k, then there
exists an one-pass turnstile streaming algorithm that outputs a (1−1/e− ε) relative approximation
using O(sk) space. The algorithm succeeds with probability at least 1−1/n assuming that querying
the sketch results in error at most O(1/(ndk)).

We then instantiate this framework to solve general fingerprinting. To do this, we design a novel
sketch for estimating the quantity np − Fp for p ≥ 2 where Fp is the pth frequency moment. Here,
we are given a n-dimensional vector x, Z is the set of distinct values in vector x, and fi is the
frequency of the ith distinct value in x. For example, take x = (1, 5, 5, 3,−2, 3, 3, 7, 3). Here the
distinct values are 1, 5, 3,−2, and 7 and the respective frequencies of those values are 1, 2, 4, 1, and
1. So Fp =

∑
i∈Z fp

i = 1p+2p+4p+1p+1p. The quantity np−Fp intuitively counts the number
of p-tuples that can be formed from the entries of x (with repetition) where not all entries of the
tuple are identical in value. Here, updates are of the form (i,±1) which performs xi ← xi ± 1.

Theorem 3. There exists a linear sketch of size Õ(γ−2) with update time Õ(γ−2) and reporting
time Õ(γ−2) that given a n-dimensional vector x, constant integer p ≥ 2, and γ, δ ∈ (0, 1) outputs
a (1± γ) relative approximation of np − Fp with probability at least 1− δ.

We believe this sketch to be of independent interest since it is of the complement of the frequency
moment of a dataset. The pth frequency moment, denoted as Fp, is computed by taking the frequency

2Linear sketching is applicable to a wide variety of functions in different contexts including regression, low
rank approximation and graph compression, see, e.g., Woodruff (2014).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

of each distinct item, raising it to the pth power, and summing the results. Frequency moments have
numerous applications. For example, Fp for p ≥ 2 can indicate the degree of the skew of data which
is used in the selection of algorithms for data partitioning (Dewitt et al., 2000), error estimation
(Ioannidis & Poosala, 1995), and more. See Alon et al. (1999) for a more in-depth discussion.
There are also direct applications for the quantity np − Fp such as our use of the sketch to solve
general fingerprinting. The proof of the following is deferred to Appendix A.6.

Theorem 4. There exists a linear sketch of size Õ(dk3/ε2) with update and reporting time
Õ(dk3/ε2) that, given d subsets of a universe [n] and ε ∈ (0, 1), outputs with probability at least
1− 1/n a near-optimal (1− 1/e− ε) relative approximation to general fingerprinting.

Corollary 1.4. Given d subsets of a universe [n] and ε ∈ (0, 1), there exists an one-pass turnstile
streaming algorithm which outputs with probability at least 1 − 1/n a near-optimal (1 − 1/e − ε)

approximation to general fingerprinting in space Õ(dk3/ε2).

Experimental Results. We also illustrate the practicality of our fingerprinting algorithms by run-
ning experiments on two different datasets of size 32, 000 × 80 and 2, 500, 000 × 120. In a direct
comparison with the implementations of Gulyás et al. (2016), our algorithms show significantly
improved efficiency while retaining high comparative accuracy. Specifically, for targeted finger-
printing, we achieve a speedup of up to 49x, with accuracy that converges rapidly to that of Gulyás
et al. (2016). For general fingerprinting, we gain a speedup of up to 210x while again achieving high
comparative accuracy.

Finally, we believe that our general fingerprinting algorithm can serve as a dimensionality reduction
technique. To illustrate this, we apply it in the context of feature selection for machine learning
models where feature spaces are often extremely large. Feature selection is a process that identifies a
subset of relevant features from the original dataset to improve model performance or computational
efficiency. By using our general fingerprinting algorithm to perform feature selection and therefore
reduce the dimensionality of the input dataset, we can mitigate issues such as overfitting, improve
interpretability, and greatly speed up machine learning algorithms.

In particular, since the time complexity of many popular clustering algorithms such as k-means
scales with the dimensionality of the data, we use our general fingerprinting algorithm to select x
features that best separate the data. We therefore have reduced the dimension of the feature space to
x. We then use k-means on these x features instead of the full feature space and demonstrate that this
approach significantly increases efficiency while sacrificing little in terms of accuracy. We believe
our techniques to be general and extendable to other clustering and machine learning algorithms
outside of k-means.

2 PRELIMINARIES

Notation. Some preliminaries are postponed to Appendix A.1. We denote Aij as the entry at the ith

row and jth column of matrix A. Õ(·) notation suppresses logarithmic factors in its argument.

Linear Sketches We begin by defining what a linear sketch is and then provide an overview of
the specific linear sketches used in this paper. Given a n × d matrix A, we can compress it while
retaining essential information to solve the problem by multiplying it with a r × n linear sketching
matrix S. A linear sketch is a matrix drawn from a certain family of random matrices independent
of A. This independence ensures that S can be generated without prior knowledge of the contents of
A. Linear sketches support insertions and deletions to the entries of A, as S(A+cij) = SA+Scij
holds for any update cij , which adds or subtracts one from an entry of A. This property allows us to
maintain SA throughout updates without requiring storage of A itself. Furthermore, S is typically
stored in an implicit, pseudorandom form (e.g., via hash functions) rather than explicitly, enabling
efficient sketching of updates cij . The primary focus is on minimizing the space requirement of a
linear sketch, specifically ensuring that the sketching dimension r is sublinear in n and ideally much
smaller. Alongside space efficiency, there are two additional important performance metrics: update
time and reporting time. Update time refers to the time complexity required for the sketch to process
an update, and reporting time refers to the time complexity needed to return an answer to a query.

Perfect L0 Sampling. Consider an underlying vector x = (x1,x2, . . . ,xn). Let Supp(x) be the
set of nonzero elements of x. A perfect L0 sampler, with probability 1− δ, returns a tuple (i,xi) for
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xi ∈ Supp(x) such that Pr[i = j] = 1
∥x∥0

± n−c for every xj ∈ Supp(x) for large constant c. Note
that it returns the value of xi exactly with no error. With probability δ, the sampler outputs FAIL.
An L0 sampler can be seen as a linear sketch and accommodates both insertions and deletions to
the underlying vector x. The parameter n−c can be made arbitrarily small by increasing constant c,
effectively making the sampling process indistinguishable from perfect uniform random sampling
of nonzero entries. Importantly, increasing c incurs only constant factors in space usage. Jowhari
et al. (2010) give an algorithm that achieves this in O(log2 n log(1/δ)) bits of space. By inspecting
Theorem 2 of Jowhari et al. (2010) and using appropriate sparse recovery schemes we can see that
the update and reporting time are both poly(log n) · log(1/δ)).
L0 Sketch. Consider an underlying vector x = (x1, . . . ,xn) where all entries are initially set to 0.
We receive m updates of the form (i, v) ∈ [n]×{−M, ...,M} in a stream where the update performs
xi ← xi + v. At the end of the stream, the goal is to output a (1± ε) relative approximation of L0

with probability at least 1− δ where L0 = |{i : xi ̸= 0}|. Kane et al. (2010) give a L0 sketch with
O(1) update and reporting time that requires O(ϵ−2 log n(log(1/ϵ) + log log(mM)) · log(1/δ))
memory. A L0 sketch is a linear sketch and accommodates both insertions and deletions to the
underlying vector x.

Moment Estimation. Consider an underlying vector x = (x1,x2, . . . ,xn). For all i ∈ [n], xi ∈
[m]. Let fi = |{j : xj = i}| be the number of occurrences of value i in x. We define the pth

frequency moment of x as Fp
def
=
∑m

i=1 f
p
i for p ≥ 0.

3 MAX-COVERAGE ALGORITHM

We now present our sketch, Max-Coverage-LS (Algorithm 5), to prove Theorem 1. The proofs are
deferred to Appendix A.2. Recall that the input is formalized as a n×d matrix A, where entry Aij is
nonzero if i is in subset j, and 0 otherwise. Our approach uses Algorithm 1 from Bateni et al. (2017)
as a starting point. Bateni et al. (2017) reduce the original input matrix A to a smaller universe
A∗ by carefully sampling a subset of its nonzero entries. They then show that running the greedy
algorithm on this smaller universe yields a (1 − 1/e − ε) relative approximation for the maximum
coverage problem on A.

The plan for this section is as follows. Initially, we will not consider the streaming setting; instead,
we will assume the standard RAM model, where the entire input matrix A is fully accessible. We
will first introduce the smaller universe A∗, describing its properties and role in the problem. Next,
we will show how to construct A∗ within the RAM model, ensuring that the construction is easily
adapted to handle updates efficiently. Finally, we will present our complete algorithm, a linear
sketch, and detail how it enables the construction of A∗ in a manner that accommodates insertions
and deletions.

Constructing A∗ involves permuting the items (rows) of A and processing them in the order de-
termined by the permutation. For each item (row) i, a subset of Õ(d/(εk)) nonzero entries from
the ith row of A is arbitrarily selected and added to A∗. This process continues until A contains
Õ(d/ε3) nonzero entries in total. A∗ is a carefully subsampled version of A, where only Õ(d/ε3)
of the nonzero entries are retained while the rest are set to 0. We restate their algorithm A∗(k, ε, δ)
(Algorithm 3) in Appendix A.2. In Bateni et al. (2017) this subsampled matrix is referred to as H≤d.

The authors of Bateni et al. (2017) prove that solving the maximum coverage problem on A∗(k, ε, δ)
with a α-relative approximation guarantees a (α− ε)-relative approximation on the original matrix
A with high probability. The final (1 − 1/e − ε)-relative approximation is achieved using k-cover
(Algorithm 4), which sets appropriate parameters and applies the greedy algorithm (or any (1−1/e)
approximation algorithm) to A∗.

Theorem 5 (Theorem 2.7 and 3.1 of Bateni et al. (2017)). Running k-cover with A∗ produces a
(1− 1/e− ε) approximate solution to maximum coverage with probability 1− 1/d.

We now show how to build our linear sketch. First, we will specify how we do it when given
complete access to A and linear space with building-A∗ (Algorithm 1). Then we will show how to
turn it into a linear sketch, accommodating insertions and deletions to the entries of A.

We now prove that building-A∗ correctly builds A∗ with high probability. At a high level, we sub-
sample down to a smaller universe A′ which only causes us to lose an ε factor in our approximation.
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Algorithm 1 building-A∗ (n× d matrix A, ϵ ∈ (0, 1), k)

1: Set δ = (2 + log d) log log1−ε n.
2: Set ε = ε/8.
3: Subsample rows from A to get A′ such that OPT in A′ is O(k log d/ε2). For clarity, row j in

A′ and A both correspond to the row vector that corresponds to item j.
4: Set b = O(k log d

ε2 ).
5: Set t = O(log d).
6: for i = 1, . . . , t do
7: Use a hash function to hash each subsampled row of A′ to b buckets in structure Ci.
8: for each bucket in Ci do
9: If there are r rows hashed to the bucket, denote the r rows concatenated into a vector of

length rd as v.
10: Randomly sample O(d log(1/ε)

εk ) nonzero entries from v and store it in A′
i.

11: end for
12: end for
13: Initialize A∗(k, ε) as a n× d matrix with all entries initially set to 0.
14: Let P be a random permutation of the rows that are in A′.
15: while the number of nonzero entries in A∗(k, ε) is less than 24dδ′ log(1/ε) log d

(1−ε)ε3 do
16: Process the row j that comes next in P .
17: Determine among all i ∈ [t] which A′

i has the most nonzero entries from row j. Take this i
to be z.

18: if row j has less than d log(1/ε)
εk nonzero entries in A′

z then
19: Add all of the nonzero entries from row j in A′

z to A∗(k, ε).
20: else
21: Add d log(1/ε)

εk of the nonzero entries from row j in A′
z , chosen arbitrarily, to A∗(k, ε).

22: end if
23: end while

Now in this smaller universe, we hash the rows to a bunch of buckets. In each bucket, we will keep
a number of nonzero entries and add them to A∗. We do the process of hashing the rows to buckets
for t iterations. We will prove that these rows are sufficiently spread out ensuring that no bucket
contains too many rows with nonzero entries. This means that for each row in A′ that has nonzero
entries, in one of the i ∈ [t] iterations, A′

i will hold Õ(d/k) of its nonzero entries.
Claim 3.1. Obtaining an (1 − 1/e) approximate solution to maximum coverage on A′ is an (1 −
1/e− ε/4) approximation solution on A with probability at least 1− 1/poly(d).

We denote items (or rows) of A′ that have at least d/k nonzero entries as “large” and the others as
“small”. We argue that the number of large items and the total number of nonzero entries among
small items is bounded appropriately.
Lemma 3.2. There are at most O(k log d/ε2) large items in A′.

Lemma 3.3. There are O(d log d
ε2 ) total nonzero entries among small items in A′.

We want to show that for each large item, we recover d log(1/ε)/(εk) of their nonzero entries from
A′. In addition, we want to show that for each small item, we recover all their nonzero entries from
A′. We refer to any item corresponding to a row in A′ that contains nonzero entries as a “nonzero”
item. We begin by proving that each nonzero item is hashed to a bucket with no other large item
with high probability.
Claim 3.4. Every nonzero item for some i ∈ [t] is hashed to a bucket with no other large item with
probability 1− 1/poly(d).

We also want each nonzero item to be hashed to a bucket that does not have too many nonzero
entries from small items.
Claim 3.5. Every nonzero item for some i ∈ [t] is hashed to a bucket containing at most
O(d log(1/ε)

εk ) nonzero entries from small items with probability 1− 1/poly(d).
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Lemma 3.6. We recover all nonzero entries from small items and d log(1/ε)/(εk) nonzero entries
from each large item present in A′ with probability 1− 1/poly(d).

We now show how to implement building-A∗ via a linear sketch, Max-Coverage-LS (Algorithm 5).
Again recall that we must build A∗ while receiving updates to the entries of underlying matrix A.
Next we run max-coverage (Algorithm 6) on A∗, setting the appropriate parameters and apply the
greedy algorithm to obtain the final solution. We defer these algorithms to Appendix A.2.
Lemma 3.7. Max-Coverage-LS (Algorithm 5) and max-coverage (Algorithm 6) correctly implement
building-A∗(Algorithm 1) and k-cover (Algorithm 4) with probability at least 1− 1/poly(d).

Claim 3.8. Maximum-Coverage-LS can be implemented using Õ(d/ε3) bits of memory.

Claim 3.9. The update time of Maximum-Coverage-LS is Õ(d/ε3) and the total reporting time
(including running max-coverage) is Õ(kd/ε3).

With Lemma 3.7, Claim 3.8, and Claim 3.9, we can now conclude the proof. Note that we incur
only a ε factor loss in total, resulting in a final 1−1/e−ε approximation. Specifically, we lose a ε/4
factor going from A to A′, another ε/4 factor from running the greedy algorithm on A∗, and a ε/4
factor from using the L0 sketches to determine which set of outputs to return. Our sketch is directly
applicable to turnstile streams. We can run the sketch during the stream, handling all insertions and
deletions as they occur. Once the stream is complete, running max-coverage (Algorithm 6) will give
Corollary 1.1.

4 A LINEAR SKETCH FOR np − Fp FOR INTEGERS p ≥ 2

We now prove Theorem 3 with p-Tuples-Sketch (Algorithm 2). Recall that we are given a n-
dimensional vector x where we denote Z as the set of distinct values in vector x and fi is the
frequency of the ith distinct value in x. For example, take x = (1, 5, 5, 3,−2, 3, 3, 7, 3). Here the
distinct values are 1, 5, 3,−2, and 7 and the respective frequencies of those values are 1, 2, 4, 1,
and 1. Our goal is to compute np −

∑
i∈Z fp

i . Updates are of the form (i,±1) which modifies xi

by adding or subtracting 1. We now present our algorithm. At a high level, we keep L0 sketches
and perfect L0 samplers. If there is a value with frequency Θ(n), we use a L0 sketch to estimate
its frequency. Otherwise, we use the L0 samplers, which provide uniform samples of the nonzero
entries of a vector, to estimate the frequencies of the rest of the values. For values with very small
frequency, we ignore them and show this does not result in too much error. We defer the proof to
Appendix A.5.

5 EXPERIMENTS

We first outline our fingerprinting results and compare the runtime/accuracy to Gulyás et al. (2016)
3. We then present our results on dimensionality reduction. All experiments were run locally on
a M2 MacBook Air, with code shared on Google Colab for distribution. We use two publicly-
available datasets, the UC Irvine “Adult” and “US Census Data (1990)” Becker & Kohavi (1996);
Meek et al.. For consistency, we apply the pre-processing from Gulyás et al. (2016) to both datasets.
The pre-processed dataset of “Adult” has 32, 561 instances (representing users) and 80 features.
While the original dataset has 15 features, Gulyás et al. (2016) empirically treats each value of
each attribute as a separate attribute. So instead of the attribute being “workclass”, each potential
value of “workclass” is its own attribute. The second dataset we use, “US Census Data (1990)”, has
2, 458, 285 instances and 68 original features. We treat attributes the same as above. Therefore, our
input matrix A is an n = 2, 458, 285 by d = 195 matrix.

Targeted Fingerprinting Results. We note the differences between our theoretical and imple-
mented algorithm. We make standard modifications done in the practical implementation of stream-
ing algorithms. In particular, we use a constant subsampling rate p ∈ [0.1, 0.6] instead of sub-
sampling at log n rates, and we sample nonzero entries once we are in the smaller subsampled
universe with a fixed probability as this is sufficient for smaller datasets. We first present our results
for the UCI “Adult” dataset. We present results for subsampling rows from A to create A′ with
p = 0.1, 0.2, 0.4, and 0.6. One run corresponds to finding the targeted fingerprint of all users in the

3Gulyás et al. (2016) has two implementations, one of which is supposed to be optimized for time. However,
we found that the non-optimized implementation was faster and therefore use it for comparison.
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Algorithm 2 p-Tuples-Sketch (n× 1 vector x, constant integer p ≥ 2, γ, δ ∈ (0, 1))

1: ε← γ
1

p−1

16·2p .
2: Keep three independent L0 sketches, L1

0, L
2
0, L

3
0 of x each with δ′ = δ/8 and ε = ε.

3: Keep t = 2/ε2 · log(2(δ/8)−1) perfect L0 samplers of x and concatenate them into S.
4: Set δ′ for each L0 sampler s.t. the total probability of failure across them is at most δ/8.
5: Upon an update, the L0 sketches and perfect L0 samplers will handle updates.
6: Upon a query:
7: Initialize an empty set B.
8: Query L1

0 sketch to get w1 and set b = 0 and f ′
b = n− w1.

9: Query L2
0 to get w2. Estimate the frequency of a value using S by taking its frequency in S and

scaling by w2/t.
10: Find the value v with highest frequency f ′ in S.
11: if f ′ > f ′

b then
12: Set b = v and f ′

b = f ′.
13: end if
14: if f ′b < 3γ

1
p−1

4 · n then
15: Output np.
16: end if
17: if f ′b > n

2 then
18: Subtract off value b from L3

0 and query it to get w3.
19: Set f ′

b = n− w3.
20: end if
21: Add (b, f ′

b) to B.
22: Take t perfect L0 samplers of a n-dimensional vector with each entry set to value b and con-

catenate them to form Sb.
23: Set δ′ for each L0 sampler in Sb s.t. the total probability of failure across them is at most δ/8.
24: S∗ ← S − Sb.
25: Use S∗ to get all values and their frequencies (take the frequency in S∗ and scale by f ′

b/t).

26: for all values v with frequency f ′
v ≥

γ
1

p−1

4 (n− f ′
b) do

27: Add (v, f ′
v) to B.

28: end for
29: Using all z′ tuples (v, f ′

v) ∈ B, calculate np −
∑z′

j=1(f
′
j)

p and output.

dataset for some given cardinality constraint k. First we look at the running time of our algorithm
compared to Gulyás et al. (2016). We have k = 7 here. The following are averages over 10 runs.

(a) (b)

Figure 1: Comparison: Gulyás et al. (2016).

From fig. 1, our algorithm runs about 25x, 8.4x,
3x, and 2.3x faster than that of Gulyás et al.
(2016) with subsampling probabilities 0.1, 0.2,
0.4, and 0.6 respectively. In settings where n is
very large the subsampling probability in our al-
gorithm will be much smaller. We only run our al-
gorithm with larger subsampling probabilities for
further insight. Note that the implementation of
Gulyás et al. (2016) is deterministic. We put their
runtime as a line for visualization. Now we look
at accuracy. For increasing k, we compute the
average percent of users our algorithm is able to
separate from a given target user and compare it
to the algorithm of Gulyás et al. (2016). In fig. 1,
we show that we retain good accuracy despite subsampling rows and then subsampling nonzero en-
tries. Note that the vertical axis’s minimum value is 84%. As the subsampling probability increases,
the accuracy of our implementation converges to that of Gulyás et al. (2016). We again note that we
took an average over 10 runs.
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Figure 2

Now, we present our results for the UCI “US Census Data (1990)” dataset.
Due to limited compute, we look at one subsampling level of 0.1. For com-
paring the time of our algorithm and the previous work of Gulyás et al. (2016),
we again use k = 7. Over 10 runs, the average time of our implementation to
compute a fingerprint for an input user is 1.06 seconds while the comparison
average time is 52.6 seconds. The subsampling took an extra 46.355 seconds.
This means that our implementation is about 49x times faster. We measure
accuracy the same way as for the previous dataset. We can see in fig. 2 that
we quickly converge to the accuracy of Gulyás et al. (2016) with growing k.
Note that the vertical axis’s minimum value is 92%.

General Fingerprinting Results. The main difference between our theoret-
ical and implemented algorithm is that we only create one sketch rather than k sketches. We first
present our results for the “Adult” dataset. The main variable we vary in our experiments is the size
of our L0 sketches. We present results for an L0 sketch with 300, 600, 900, and 1, 250 rows. We
had our algorithm compute a general fingerprint for k = 1, 2, . . . , 20 to compare with Gulyás et al.
(2016). The runtime of our algorithm slightly increased as the sketch size increased. However for all
sketch sizes it ran in about 0.8 seconds which is 44x faster than the 35.30 second runtime of Gulyás
et al. (2016). Now we consider the accuracy of our algorithm. We measure accuracy by looking at
the proportion between the number of pairs of users that our algorithm separates to the number of
pairs of users that the algorithm from Gulyás et al. (2016) separates. For each sketch size, we never
dip below an accuracy ratio of 80%, and as the sketch size increases the accuracy ratio increases to
around 99%. We now present our results for the “US Census Data (1990)” dataset. We vary the size
of our L0 sketches, this time with 55, 000 rows, 180, 000 rows, and 400, 000 rows. We computed a
general fingerprint for k = 1, 2, . . . , 10. We use smaller k for comparison for this dataset since the
implementation of Gulyás et al. (2016) was not able to terminate even after several hours for larger k.

(a) (b)

Figure 3: Comparison: Gulyás et al. (2016).

These are averages over 10 runs. In fig. 3, the
runtime of our algorithm increases as the sketch
size increases. Our implementation is about 210,
120, and 45 times faster than that of Gulyás et al.
(2016) for 55, 000, 180, 000, and 400, 000 rows
respectively. For a fingerprint of size 20 our im-
plementation takes a little over twice the amount
of time as for a fingerprint of size 10 shown here.
We estimate that the runtime of the comparison
algorithm also doubles but cannot be sure due to
its non-termination. We measure accuracy in the
same way as the previous dataset. We again see
in fig. 3 that as sketch size increases, the accuracy
ratio increases. We make note of a steep drop-off
for a sketch with 55, 000 rows. However, our accuracy ratio never dips below 70%.

Dimensionality Reduction Results. We use the UCI “Wine” dataset which consists of 178 in-
stances and 13 features Aeberhard & Forina (1991). Each of the instances is labeled by one of three
wine types. We used our general fingerprinting algorithm to select features that best separate the
data. Then, we ran k-means with 3 clusters (for the 3 wine types) using just the selected features.
Therefore, this is a dimensionality reduction technique, since for many clustering algorithms (in-
cluding k-means and k-means++) the efficiency depends on the feature dimension. We measure
accuracy in the following way. After running k-means on the reduced feature space, for each cluster,
we calculate the majority wine type. Then, for each instance, if its actual wine type is not the same
as the majority wine type of its assigned cluster, we count it towards the error. We used general fin-
gerprinting to reduce the feature dimension to 3, 4, and 5 features. Our accuracy for all was around
68%. When running k-means using all 12 features, the accuracy was around 71%, which suggests
that we do not introduce that much error. In addition, when running k-means instead on just 3, 4, and
5 completely randomly chosen features, the accuracy decreases to around 52%. We also increase the
efficiency of running k-means. Running k-means with our reduced 3, 4, and 5 features compared to
running it with all 13 features is about 3.2, 2.4, and 2.1 times faster, respectively.
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A APPENDIX

A.1 EXTENDED PRELIMINARIES

A.1.1 TURNSTILE STREAMING MODEL

In this paper, we represent the input as a n × d matrix A. In the streaming model, it is standard
to initialize all the entries to zero before the stream of updates. The algorithm then processes a
stream of updates which come one-by-one, each of the form (i, j,±1). This modifies entry Aij by
performing Aij = Aij + 1 or Aij = Aij − 1 depending on the sign. This is referred to as the
turnstile streaming model, where both insertions and deletions (or positive and negative updates)
are allowed. The updates can appear in arbitrary order in the stream, and we make the standard
assumption that the length of the stream is at most poly(n). The goal of the streaming algorithm
is to process the stream efficiently, using sublinear space in the size of the input matrix A (and
therefore cannot store all the updates) and a small constant number of passes over the stream. In
this work, restrict our focus to one-pass algorithms. At the end of the stream, the algorithm can do
some post-processing and then must output the answer. While streaming algorithms are not required
to maintain a stored answer at every point during the stream, there is no restriction on when the
stream may terminate. Any time or space used before or after processing the stream is attributed
to pre-processing or post-processing, respectively. Generally, our primary focus is on optimizing
the memory usage and update time during the stream. Here the update time is the time complexity
required by the algorithm to process an update.

A.1.2 USEFUL DEFINITIONS

ℓ0 Norm. Consider an underlying vector x = (x1,x2, . . . ,xn). The ℓ0 norm of x is the number
of non-zero entries in x. Formally, it is ∥x∥0 =

∑n
i=1 I(xi ̸= 0). The ℓ0 norm is not a proper norm

since it does not meet the homogeneity requirement. However, it is still a well-defined quantity.

Submodular Maximization. Consider a non-negative set function f : 2V → R+. If for all
S ⊆ T ⊆ V \ {e}, f satisfies: f(S ∪ {e}) − f(S) ≥ f(T ∪ {e}) − f(T ), then f is submodular.
We assume that f(∅) = 0. If f(S) ≤ f(T ) for all S ⊆ T , then f is also monotone. When f is
submodular and monotone, we aim to solve max|C|≤k f(C) given a cardinality constraint k.
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Linearly Sketchable Functions. All the functions f : 2d → R+ that we consider are of the form
f(C) = g({ai}i∈C) where a1, . . . , ad are a set of vectors that are either fixed in advance or are
the columns of the n × d matrix A that are being updated in the stream. We say that a function
f is “linearly sketcheable” if there exists a randomized sketching matrix S and a corresponding
function gS such that, for any vectors a1, . . . , ad, with high probability for all C ⊆ [d], f(C) can be
approximated by gS({S · ai}i∈C).

A.1.3 CONCENTRATION INEQUALITIES

Markov’s Inequality. If X is a nonnegative random variable and a > 0, then

Pr(X ≥ a) ≤ E [X]

a
.

Chebyshev’s Inequality. For any random variable X and t > 0.

Pr(|X − E [X] | ≥ t) ≤ Var[X]

t2
.

A.2 DEFERRED PARTS OF SECTION 3 (MAXIMUM COVERAGE)

We restate the algorithm of Bateni et al. (2017), A∗(k, ε, δ) (Algorithm 3).

Algorithm 3 A∗(k, ε, δ)

Require: k, ε ∈ (0, 1], and δ.
Ensure: A∗(k, ε, δ).

1: Let δ′ = δ log log1−ε n.
2: Let h be an arbitrary hash function that uniformly and independently maps each item (or each

row of A) to [0, 1].
3: Initialize A∗(k, ε, δ).
4: while number of nonzero entries in A∗(k, ε, δ) is less than 24dδ′ log(1/ε) log d

(1−ε)ε3 do
5: Pick item i of minimum h(i) that has not been considered yet.
6: if there are less than d log(1/ε)

εk nonzero entries in the ith row of A then
7: Add all the nonzero entries from the ith row of A to A∗(k, ε, δ).
8: else
9: Add d log(1/ε)

εk of the nonzero entries of A, chosen arbitrarily, to A∗(k, ε, δ).
10: end if
11: end while

We now restate the final algorithm from Bateni et al. (2017), k-cover(Algorithm 4).

Algorithm 4 k-cover

Require: k and ε ∈ [0, 1].
Ensure: A (1− 1/e− ε) approximate solution to maximum coverage with probability 1− 1/d.

1: Set δ = 2 + log d and ε′ = ε/12.
2: Construct sketch A∗(k, ε

′, δ).
3: Run the greedy algorithm (or any 1− 1/e approximation algorithm) on A∗(k, ε

′, δ) and report
the output.

Claim 3.1. Obtaining an (1 − 1/e) approximate solution to maximum coverage on A′ is an (1 −
1/e− ε/4) approximation solution on A with probability at least 1− 1/poly(d).

Proof. This states that we only lose a ε/4 factor by reducing to a smaller universe via subsampling
such that OPT = O(k log d/ε2). This is proven in McGregor & Vu (2018) in Corollary 9. Note that
in McGregor & Vu (2018) they prove a (1− 1/e) approximate solution on A′ is an (1− 1/e− 2ε)-
approximation solution on A but we re-weigh ε in our algorithm.
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Lemma 3.2. There are at most O(k log d/ε2) large items in A′.

Proof. Suppose that there are ℓ large items. First, we choose a subset (of the d input subsets) which
covers c1 of those ℓ large items. We then remove that subset and the c1 large items it covered. We
continue the process by choosing a subset which covers c2 large items and so on for a total of k
times.

In total, we know that c1+c2+ · · ·+ck = C1 ·k log d/ε2 since we have that OPT = C1 ·k log d/ε2
for some constant C1. Now, suppose for the sake of contradiction that ℓ = C2 · k log d/ε2 for some
constant C2. Then,

C2 · k log d/ε2 − c1 − · · · − ck > C2 · k log d/ε2 − C1 · k log d/ε2 > C2 · k log d/(2ε2)

for C2 > 2C1.

So, at each step in the above process, there are at least C2 · k log d/(2ε2) large items, and hence, at
least C2d log d/(2ε

2) nonzero entries among large items. So in each step, we should have been able
to find a subset covering at least C2 log d/(2ε

2) additional large items. This means at the end of the
process (choosing k times a subset which covers some number of large items and then removing the
items and subset) we will have covered at least C2k log d/(2ε

2) items. But

OPT = C1 · k log d/ε2 < C2/2 · k log d/ε2

so we have a contradiction.

Lemma 3.3. There are O(d log d
ε2 ) total nonzero entries among small items in A′.

Proof. Suppose that there are s total nonzero entries among small items. We first find a subset (out
of the d input subsets) that covers c1 small items. Then we remove that subset along with the c1
small items. Note that we remove at most c1 · d/k nonzero entries. We can then find a subset that
covers c2 small items and remove that subset and those c2 small items. We keep on doing this for k
subsets total.

Suppose for the sake of contradiction that s = C1 · d log d/ε2 for some constant C1. So, in each
step in the above process, we could have removed at least C1 log d/ε

2 nonzero entries. However this
means that OPT ≥ C1k log d/ε

2, which for appropriate C1 contradicts OPT = O(k log d/ε2).

Claim 3.4. Every nonzero item for some i ∈ [t] is hashed to a bucket with no other large item with
probability 1− 1/poly(d).

Proof. Take some nonzero item x. By Lemma 3.2, there are at most C1 · k log d/ε2 large items for
some constant C1. For each i ∈ [t], Ci has C2 · k log d/ε2 buckets. For appropriate C2, we can say
that C2 > 2C1. In the worst case, every large item (besides potentially large item x) is hashed to
a different bucket. Then for each i the probability of x being hashed to a bucket with another large
item is at most 1/2. Note that we hash O(log(d)) times (since we do it for i ∈ [t]). Since we have at
most Õ(k + d) nonzero items by Lemma 3.2 and Lemma 3.3, we have the result by taking a union
bound.

Claim 3.5. Every nonzero item for some i ∈ [t] is hashed to a bucket containing at most
O(d log(1/ε)

εk ) nonzero entries from small items with probability 1− 1/poly(d).

Proof. Take some nonzero item x. It suffices to show with high probability that not too many
(nonzero) small items are hashed to the same bucket as x for every i ∈ [t]. For some i, take the
bucket that x was hashed to as bi. The expected number of nonzero entries in bi from small items
is at most C · d/k for some constant C since by Lemma 3.3 there are at most O(d log d/ε2) total
nonzero entries among small items, and we hash to O(k log d/ε2) buckets.

By Markov’s inequality, the probability that the true number of nonzero entries in bi from small
items is more than 2C · d/k is at most 1/2. Note that we have O(d log(1/ε)/(εk)) ≥ 2C · d/k for
ε ∈ (0, 1/2). However note that this still extends for the full range of ε since we can always use
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a smaller ε to achieve the desired error bound while only incurring an extra constant factor in the
space/time.

Since we hash O(log d) times (for i ∈ [t]), taking a union bound over the total number of nonzero
items in A′ gives us the result.

Lemma 3.6. We recover all nonzero entries from small items and d log(1/ε)/(εk) nonzero entries
from each large item present in A′ with probability 1− 1/poly(d).

Proof. The fact that we recover all the nonzero entries of small items with probability 1−1/poly(d)
follows from Claim 3.5. The fact that we recover d log(1/ε)/(εk) nonzero entries from each large
item with probability 1 − 1/poly(d) follows from Claim 3.4 and Claim 3.5. This is because each
large item for some i ∈ [t] is not hashed with another large item, and the number of nonzero entries
from small items is at most O(d log(1/ε)/(εk)). Note that we have a constant number of events that
each happen with probability 1 − 1/poly(d). Taking a union bound over these events, we achieve
overall probability of success at least 1− 1/poly(d).

We show how to implement building-A∗ via a linear sketch, Max-Coverage-LS (Algorithm 5).

Then we perform the following process, max-coverage (Algorithm 6), mostly revolving around
running the greedy algorithm to get the final answer.

Lemma 3.7. Max-Coverage-LS (Algorithm 5) and max-coverage (Algorithm 6) correctly implement
building-A∗(Algorithm 1) and k-cover (Algorithm 4) with probability at least 1− 1/poly(d).

Proof. The first step in building-A∗ is subsampling from A to get A′ such that OPT in A′ is
O(k log d/ε2). Since this sampling rate depends on what OPT is in A, in Max-Coverage-LS, we
instead sample in log n different rates. So in one of the log n different parallel runs, we will sample
with the correct rate. We will describe how we choose the right run to consider later.

Let us consider the parallel run with the correct sampling rate. The rest of Max-Coverage-LS is
identical to building-A∗. The only difference is that in Max-Coverage-LS we are uniformly sam-
pling nonzero entries using perfect L0 samplers. The correctness follows from the correctness of
the perfect L0 samplers. We set the failure probability appropriately for the L0 samplers and L0

sketches so we only incur 1/poly(d) total error.

So Max-Coverage-LS (Algorithm 5) produces a L0 sketch for each column of A and Am,∗ for
m ∈ [log n]. We must figure out which Am,∗ is the one that corresponds to the desired subsampling
rate. We instead find which Am,∗ gives us the best answer on the original input A using the L0

sketches in the following way.

Suppose that for some Am,∗ the greedy algorithm chooses subsets s1, . . . , s,k. We take the L0

sketches for these subsets (or columns of A) and reduce to the vector case to estimate how many
distinct items these subsets cover in their union.

Imagine that we are working with the original input A. Now, take the original columns s1, . . . , sk
and concatenate them into a n × k matrix L. We now randomly generate a k × 1 vector x with
entries between [−poly(d), poly(d)]. Now multiply L by x. We can see with probability at least
1 − 1/poly(d), the ith entry in L · x is nonzero if and only if the ith row of L is nonzero. So, if the
ith entry of L · x is nonzero, that means the ith item was covered by the union of subsets s1, . . . , sk.

Note that L · x is by definition equivalent to summing L1 · x1 + L2 · x2 + · · · + Lk · xk where
Li denotes the ith column of L and xi denotes the ith entry of x. Since the L0 sketches are linear
sketches, by definition they have the property the L0 sketch of the sum of two vectors is equivalent
to summing the L0 sketches for the two vectors 4. Therefore, using the L0 sketches we can create
the L0 sketch for L · x and query it to get a (1 + ε/4) approximation to the true coverage of the
union of subsets s1, . . . , sk.

Claim 3.8. Maximum-Coverage-LS can be implemented using Õ(d/ε3) bits of memory.

4See Section 2.
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Algorithm 5 Max-Coverage-LS (n× d matrix A, ϵ ∈ (0, 1), k)

1: Set δ = (2 + log d) log log1−ε n.
2: Set ε = ε/8.
3: Keep a L0 sketch for each column of A. Denote these as L0(j) for j ∈ [d].
4: for m = 1, 2, . . . , log n do
5: {Run in parallel}
6: Use a hash function to subsample rows from A with probability 1/2m. Call the subsampled

matrix we consider in this iteration A′
m.

7: {We do not store A′
m explicitly. We are simply saying we only consider updates to A′

m in
this iteration.}

8: Set b = O(k log d
ε2 ).

9: Set t = O(log d).
10: for i = 1, . . . , t do
11: Initialize an empty structure Si.
12: Use a hash function to hash each row of A′

m to b buckets in structure Cm,i.
13: {We do not store the rows of A′

m explicitly in structure Cm,i. Rather, each bucket only
considers updates to the rows that were hashed there.}

14: for each bucket in Cm,i do
15: If there are r rows hashed to the bucket, denote the r rows concatenated into a vector of

length rd as v.
16: Keep O(d log(1/ε)

εk ) perfect L0 samplers for v. Add these samplers to structure Si.
17: end for
18: end for
19: end for
20: Set the error probability for each L0 sketch and sampler such that the total error across all of

them is at most 1/poly(d).
21: Upon an update, the L0 sketches and L0 perfect samplers will handle it.
22: Upon a query:
23: for each m ∈ [log n] do
24: Initialize Am,∗(k, ε).
25: Let h be a hash function that maps uniformly between [0, 1] the rows of A′

m that have been
sampled from with the perfect L0 samplers and placed in Si for some i ∈ [t].

26: while the number of nonzero entries in Am,∗(k, ε) is less than 24dδ′ log(1/ε) log d
(1−ε)ε3 do

27: Process the row j that comes next in the ordering as determined by hash function h.
28: Determine among all i ∈ [t] which Si has the most nonzero entries from row j. Take this i

to be z.
29: if row j has less than d log(1/ε)

εk nonzero entries in Sz then
30: Add all of the nonzero entries from row j in Sz to Am,∗(k, ε).
31: else
32: Add d log(1/ε)

εk of the nonzero entries from row j in Sz , chosen arbitrarily, to Am,∗(k, ε).
33: end if
34: end while
35: end for
36: Output the L0 samplers and Am,∗(k, ε) for m ∈ [log n].

Proof. We first analyze the memory of our sketch. We subsample in log n levels and run log n
instances in parallel. In each instance, we store O(b log(d)) buckets for b = k log d/ε2 and a
constant number of hash functions that use only O(log n) space each. In each bucket we store
O(d log(1/ε)

εk ) perfect L0 samplers. Since perfect L0 samplers take Õ(log2 n) space, we have a total
complexity of Õ(d/ε3).

Claim 3.9. The update time of Maximum-Coverage-LS is Õ(d/ε3) and the total reporting time
(including running max-coverage) is Õ(kd/ε3).
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Algorithm 6 max-coverage

Require: k and ε ∈ [0, 1].
Ensure: A 1− 1/e− ε approximate solution to maximum coverage with probability 1− 1/d.

1: Set ε′ = ε/48.
2: For m ∈ [log n], construct Am,∗(k, ε

′) using Max-Coverage-LS (Algorithm 5). Also store the
L0 sketches of the columns of A outputted by Algorithm 5.

3: Run the greedy algorithm (or any 1− 1/e approximation algorithm) on each Am,∗(k, ε
′).

4: Use the L0 sketches to determine for which Am,∗ the greedy algorithm gave the best answer
and output it.

Proof. The update time of each perfect L0 sampler is poly(max(log n, log d)). Since we have
Õ(d/ε3) perfect L0 samplers. the total update time for them is Õ(d/ε3). The update time for
each L0 sketch is O(1), and we have d of them. This gives a total update time for the L0 sketches
of O(d), and an overall update time for the entire sketch of Õ(d/ε3).

Running the greedy algorithm on the produced sketches in max-coverage dominates the reporting
time. This takes time Õ(kd/ε3) since we have k rounds in the greedy algorithm and a total of
Õ(d/ε3) total nonzero entries in a sketch.

A.3 TARGETED FINGERPRINTING

Recall that in targeted fingerprinting we have an n× d input matrix A where there are n users and d
features and entry Aij represents the value the ith user has for the jth feature. Given a target user u,
we want to output at most k features such that the number of other users who do not have identical
values at all k features to u is maximized.

Claim A.1. Take A′ to be A with the updates Aij = Aij−Auj applied for all i ∈ [n], j ∈ [d]. For
some union of subsets U , the number of items covered on A′ is equivalent to the number of users
separated from the target on A.

Proof. For all i ∈ [n], for any j ∈ [d] such that Aij = Auj , we have A′
ij = 0. Additionally, for all

i ∈ [n], for any j ∈ [d] such that Aij ̸= Auj , we have that A′
ij is nonzero.

In other words, for all users, for any feature where they shared the same value with the queried user
u, this entry is now 0. In addition, for any feature where they did not share the same value with
the queried user, this entry is now nonzero. We can see that the maximum coverage problem on
A′ exactly corresponds to finding k features which separates the most users from target user u on
A.

Algorithmically, we simply store the row that corresponds to target user u in O(d) space. In ad-
dition, we can simulate forming A′ from A by sending updates to the maximum coverage sketch
for A. Therefore, the approximation factor, space, update time, and reporting time all follow from
Theorem 1 giving us Corollary 1.2. This linear sketch is then directly applicable to turnstile streams
giving us Corollary 1.3.

A.4 PROOF OF THEOREM 2 (SUBMODULAR MAXIMIZATION FRAMEWORK)

Here, we outline a framework to design algorithms to maximize monotone non-negative submodular
functions that are linearly sketchable subject to a cardinality constraint. At a high level we will
receive a linear sketch of the input matrix A such that querying the sketch will produce the function’s
output value on some union of subsets. We then adapt the classical greedy algorithm for maximizing
a monotone submodular function to query the linear sketches instead of accessing the input matrix
directly.

We note that setting γ = ε/k for many linear sketches introduces poly(k) factors in the final memory
usage. However, setting γ = ε/k is provably necessary when performing submodular maximization
over queried function values that are preserved up to a (1 ± γ) factor to achieve a 1 − 1/e − ε
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approximation (see Theorem 5 of Horel & Singer (2016)). Note that this applies to all algorithms
that perform submodular maximization that have this property.

We now prove Theorem 2. Theorem 2 allows us to create an algorithm to maximize a specific
monotone non-negative submodular function subject to a cardinality constraint by simply sketching
the input A via a linear sketch that satisfies the properties of the theorem.

Let C be a subset of the column vectors of A. In the following, {S · ai}i∈C can be thought of as
the sketch of A restricted to C. As described in Appendix A.1.2, we say that our function f has a
corresponding sketching matrix S and corresponding gS . For any two subsets of columns X and Y ,
let gS({S·ai}i∈X|Y ) denote the marginal gain of adding X , or gS({S·ai}i∈X∪Y )−gS({S·ai}i∈Y ).
c ∈ d \ C denotes a column c which is not already in subset C.

We now describe our algorithm, sketchy-submodular-maximization (Algorithm 7). We first create k
independent linear sketches (recall that the process of creating a linear sketch for the input function
is given as input to the algorithm). Then we run the following classical greedy submodular maxi-
mization algorithm with the modification that instead of directly evaluating the input function f it
queries the given sketch. Note that in each of the k adaptive rounds, we use a different sketch. The
classical greedy algorithm in each round simply looks at all subsets that have not been chosen and
adds the one with the largest marginal gain to the output set (Nemhauser et al., 1978).

Algorithm 7 sketchy-submodular-maximization

1: Initialize C ← ∅.
2: while |C| ≤ k do
3: C ← C ∪ argmaxc∈d\C gS({S · ai}i∈c|C).
4: end while
5: Return C.

We first analyze the memory usage. We are given that each sketch takes O(s) space. Since there are
k rounds of adaptivity, the total space taken by the sketches is O(sk). Both the update and reporting
time will depend on the specific linear sketch.

Now, let us prove correctness. We assume by our theorem statement that our sketch S and corre-
sponding function gS give us a (1 ± γ)-approximation to the queried values of our input function
f . There are k adaptive rounds. Since we create as many sketches and use a different one in each
round, adaptivity between the rounds does not introduce error. In addition, despite getting (1± γ)-
approximations to all our queried values instead of the true queried values of our input function,
we still get our desired approximation ratio by setting γ = ϵ/k. This is proven and discussed in
Theorem 5 of Horel & Singer (2016).

We also still get our approximation ratio with high probability. Since the error probability for each
function evaluation is O(1/(ndk)), by a union bound over all dk function evaluations, we have an
error probability of at most 1− 1/n.

A.5 OMITTED PROOFS FROM SECTION 4 (COMPLEMENT OF Fp LINEAR SKETCH)

Claim A.2. k-Tuples-Sketch uses Õ(γ−2) space and has an update time of Õ(γ−2) and reporting
time of Õ(γ−2).

Proof. We keep 3 L0 sketches and 2t = Õ(γ−2) perfect L0 samplers. Recall that p is a constant.
This proves the space usage and update time. The reporting time is dominated by computing the
final output np −

∑z′

j=1(f
′
j)

p which takes Õ(γ−2) time. Recall that we do not spend any time on
values that have not been sampled.

Now we prove correctness. We first give the following result which we will use throughout the
proof.

Lemma A.3 (Lemma 3 of Bhattacharyya et al. (2016)). Let fi and f̂i be the frequencies of an item
i in a stream S (of length n) and in a random sample of T of size r from S, respectively. Then for
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r ≥ 2γ−2 log(2δ−1), with probability 1− δ, for every universe item i simultaneously,∣∣∣ f̂i
r
− fi

n

∣∣∣ ≤ γ.

For the rest of the analysis, let us order the frequencies of the distinct values of vector x in non-
increasing order as f1 ≥ f2 ≥ . . . ≥ fz .

First note that in the algorithm we use L1
0 and S to determine what value is b, or the value with

frequency f1. Then, if f ′
b is too small, then we simply output np. We now show that this is a good

approximation.

Claim A.4. If f1 ≤ γ
1

p−1 · n, then outputting np is a (1± γ) approximation to np −
∑

i∈Z fp
i .

Proof. Here,
∑

i∈Z fp
i is greatest when there are 1/γ

1
p−1 values each with true frequency γ

1
p−1 · n.

So it is at most
( 1
γ )

1
p−1∑
i

(γ
1

p−1 · n)p =

(
1

γ

) 1
p−1

· γ
p

p−1 · np = γ · np.

Therefore, outputting np is a (1± γ) relative approximation.

Claim A.5. Using L1
0 or S to estimate the frequency of a value v outputs f ′

v = v ± γ
1

p−1

5·2p · n.

Proof. When using S (which is t uniform samples of the nonzero entries of x) to estimate the
frequency of v, we find the frequency of v among S and then scale by w2/t. Here, w2 is our (1± ε)

with ε = γ
1

p−1

16·2p estimate to the number of nonzero entries in x.

By Lemma A.3 we incur at most εn = γ
1

p−1

16·2p · n additive error from estimating the frequency of
a value from S assuming that w2 is exactly the number of nonzeros in x. That combined with the

error from estimating ∥x∥0 with w2 gives us at most (2ε + ε2) · n ≤ 3ε · n ≤ γ
1

p−1

5·2p · n additive
error. In addition, we use L1

0 to determine the number of 0’s to see if 0 is the value of the largest

frequency. This incurs at most ε · n ≤ γ
1

p−1

5·2p · n error.

Recall that in the algorithm we output np if f ′
b from S and L1

0 is less than 3γ
1

p−1

4 ·n. Since we know

the error in estimating each frequency is less than γ
1

p−1

4 · n by Claim A.5, at worst all values had
frequency γ

1
p−1 · n, and we output np. This does not incur too much error by Claim A.4.

In the rest of the analysis, we can assume that f1 ≥ γ
1

p−1

2 ·n. We now claim that incurring γ ·fp−1
1 ·

(n− f1) error still gives us the desired error guarantee.

Claim A.6. Incurring γ · fp−1
1 · (n− f1) error gives us γ · (np − Fp) total error.

Proof. We have that np − Fp ≥ fp−1
1 · (n− f1) for integers p ≥ 2. np − Fp counts the number of

p-tuples (allowing repetitions from an individual item among the n) in which not all of the entries
of the tuple have the same value. The right hand side counts p-tuples in which all but one entry are
equal to the value of highest frequency (i.e. f1) and the last has a different value.

Note that we can assume p ≤ γ
2 · n since p is a constant. Therefore, we know that f1 ≥ p.

In all of the below, we assume the correctness of the L0 sketches and perfect L0 samplers. In
the algorithm we have set their probability of error appropriately such that the probability of error
across all of them is at most 5δ/8. In addition, by Lemma A.3, we have that using the L0 samplers
to estimate the frequencies as desired has error at most 2δ/8. So, we show that we incur at most
error δ/8 for the rest of the algorithm.
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Recall that we estimate the frequency of the value of highest frequency differently if its estimated
frequency is greater than n/2. Specifically, we instead subtract off the value from a L0 sketch and
query it. We will now show that estimating the frequency of this value does not incur too much error.

Claim A.7. If f1 ≥ 2n
3 , the error incurred from our estimate of f1 is at most γ

3 · f
p−1
1 · (n− f1).

Proof. Let us denote the distinct value that has frequency f1 in x as b. By Claim A.5, we incur at

most ε1 = γ
1

p−1

5·2p · n error in estimating the frequency of b using L1
0 and S. Since f1 ≥ 2n

3 , the next
largest frequency is at most n

3 . Therefore, we will not mistake another value for b. In addition, we
will find b since in the algorithm we look for a estimated frequency greater than n

2 .

Since we correctly identify b, then the following is true. In our algorithm we subtract off b from L3
0

(a linear L0 sketch) and then query it to get w3. Then we estimate the frequency as n− w3. By the

properties of the L0 sketch, we incur at most ∆(f) = ε2 · (n − f1) for ε2 = γ
1

p−1

16·2p . Therefore, our
total error is at most

(f1 +∆(f))p − fp
1 =

p∑
j=1

[(
p

j

)
fp−j
1 ∆(f)j

]
= ε

p∑
j=1

[(
p

j

)
fp−j
1 ∆(f)j−1

]

≤ ∆(f)

p∑
j=1

[(
p

j

)
fp−1
1

]
= ∆(f)fp−1

1 · 2p

giving us the desired error. Note that our estimate of f1 could have been f1 − ∆(f) but we have
|(f1 +∆(f))p − fp

1 | ≥ |(f1 −∆(f))p − fp
1 | .

Let us now consider the case where we do not have f1 ≥ 2n/3 but in the algorithm we identify a

value v with estimated frequency f ′
v ≥ n/2. By Claim A.5, we only incur ε1 = γ

1
p−1

5·2p · n error
in estimating the values using S and L1

0 to identify the frequency of the highest frequency value.
Therefore, it must be that fv ≥ f1 − 2ε1 · n. So we incur total error 2ε1 · n + ε2 · (n − fv) ≤
2ε1 · n + ε2(n − f1 + 2ε1 · n) in estimating this top frequency. However, we only estimate the
frequency of v using L3

0 if f ′v ≥ n/2, and we therefore know that fv = Θ(f1). Therefore we get
total error c · (n− fv) in estimating the frequency of v and use similar analysis to Claim A.7 to get
the desired error guarantee.

We now show that estimating the values of frequency at least γ
1

p−1

2 ·(n−f1) does not incur too much

error. We denote a set F which contains every value of x with frequency at least γ
1

p−1

2 · (n− f1).

Claim A.8. The error incurred to the output from estimating
∑

i∈F fp
i is at most γ

3 ·f
p−1
1 · (n−f1)

with probability at least 1− δ/8.

Proof. We first show how much error we incur by estimating the frequency of one value in F . Take

ε = γ
1

p−1

16·2p We estimate the frequency fi for some i (except i = b if f ′
1 ≥ n/2) with

fi,t + ε · t
t

· ((n− f1) + ε · (n− f1))

where t is the number of uniform samples we take in the algorithm and fi,t is the frequency of value
i among the t samples. The true answer is fi,t · (n− f1)/t so the error is at most

fi,t · ε · (n− f1) + ε · t · (n− f1) + ε2 · t · (n− f1))

t
≤ 2ε · (n− f1) + ε2 · (n− f1) ≤ 3ε · (n− f1).

By similar reasoning as above, choosing b incorrectly and therefore subtracting off a different fre-
quency to form S∗ only increases this error by a constant factor. In addition, note that because in the

algorithm we add all values with estimate frequency at least γ
1

p−1

4 · (n− f ′
1), we will put all values

that are in F in B correctly. We now look at the error incurred in estimating all the frequencies of
values in B.
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We denote ∆(fi) = c · ε · (n − f1) for some constant c. Let us consider all frequencies except f1.
We have that the error is at most∑
i∈B,i>1

[(f ′
i)

p − fp
i ] =

∑
i∈B,i>1

[(fi +∆(fi))
p − fp

i ]

=
∑

i∈B,i>1

 p∑
j=1

((
p

j

)
fp−j
i ∆(fi)

j

) ≤ ∑
i∈B,i>1

∆(fi)

p∑
j=1

((
p

j

)
fp−1
i

)
≤

∑
i∈B,i>1

[
∆(fi) · 2p · fp−1

i

]
≤ 2p · fp−1

1 ·
∑

i∈B,i>1

∆(fi).

We will now show that
∑

i∈B,i>1 ∆(fi) is appropriately bounded. Note that
∑

i∈B,i>1 ∆(fi) is the
sum of the errors in calculating the frequencies of values in B (except for f1). When we estimate
a frequency fi from S∗ (which is made up of t uniform samples), we are outputting the estimated
frequency in our sample of size t multiplied by (n − f1)/t. Like before we can easily handle the
error from calculating (n − f1). Therefore, we have E [f ′

i ] = fi and Var[f ′
i ] ≤ (n − f1)/t · fi.

This gives us E
[∑

i ̸=1 f
′
i

]
=
∑

fi and Var[
∑

i ̸=1 f
′
i ] ≤ (n− f1)/t ·

∑
i ̸=1 fi. Recall that we have∑

i ̸=1 fi ≤ n− f1. So, we can now apply Chebyshev’s to get that with probability at least 1− δ/8

we have
∑

i∈B,i>1 ∆(fi) ≤ ε
2 · (n− f1).

If we had f1 ≤ 2n/3, we get error Θ(εn) from estimating its frequency from S and L1
0 as proved

by Claim A.5. Since we know that Θ(εn) ≤ f1 ≤ 2n/3, by re-weighing ε we get appropriate
error.

We now deal with values j such that fj ≤ γ
1

p−1

2 · (n− f1). We potentially do not approximate these
frequencies. However, their contribution to

∑
fp
i is low, and they give us small error as show below.

Claim A.9. The error incurred by not estimating values with frequency less than γ
1

p−1

2 · (n− f1) is
at most γ

3 · (n
p − Fp).

Proof. We first observe that we have
∑

i ̸=1 fi = n − f1. So,
∑

i/∈F fp
i is greatest when there are

2

γ
1

p−1
coordinates of value γ

1
p−1

2 · (n− f1). So this sum (and therefore the error we incur) is at most

2/γ
1

p−1∑
i

(
γ

1
p−1

2
· (n− f1)

)p

≤ γ

2p−1
· (n− f1)

p.

We have that (n− f1)
p ≤ np − fp

1 so we are getting γ
2p−1 · (np − fp

1 ) total error.

The quantity that we want to estimate is np − fp
1 −

∑
i>1 f

p
i . We can see that

np − fp
1 −

∑
i>1

fp
i ≥ np − fp

1 −
(n− f1)

p

c

for some constant c ≥ 2 since we have
∑

i>1 f1 = n − f1. Furthermore, we have that np − fp
1 ≥

(n− f1)
p. So, achieving γ

2p−1 · (np − fp
1 ) gives us the desired error guarantee.

Therefore, combining all the claims above gives the result.

A.6 PROOF OF THEOREM 4 (GENERAL FINGERPRINTING)

We now discuss our algorithm for general fingerprinting, general-fingerprinting-sketch (Algo-
rithm 8) and prove Theorem 4. To utilize our general submodular maximization framework from
Theorem 2, we need to provide a sketch that preserves queried values of the general fingerprinting
function to within a (1 ± γ) factor. The general fingerprinting function receives as input a subset
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of the columns of A and outputs how many pairs of users they separate. We can therefore see that
maximizing this function gives us the desired output. Note that the general fingerprinting function
is submodular since when adding a new column to a set C of columns, if this separates a pair of
users that were previously not separated, then this column also separates that pair of users on some
T ⊆ C. It is also monotone since adding another column to C never decreases the function value.

Algorithm 8 general-fingerprinting-sketch(n× d matrix A, ε ∈ (0, 1), k ≥ 0)

1: γ ← ε/k.
2: for j ∈ [d] do
3: Maintain a L0 sketch with error γ and Õ(γ−2) perfect L0 samplers for the jth column of A.
4: end for
5: To answer a query:
6: The query will ask for the function value on a subset of columns C.
7: For each j ∈ [d], view the L0 samplers as a vector. We denote this vector as the “L0 sampler

sketch.”
8: For all j ∈ C, take the L0 sketches and concatenate them into a matrix. Denote this as L1.
9: For all j ∈ C, take the L0 sampler sketches and concatenate them into a matrix. Denote this as

L2.
10: Reduce the column dimension of L1 and L2 by right multiplying by a random vector v from
{−poly(ndk), . . . , poly(ndk)}|C|.

11: Run the sketch from Theorem 3 using L1 and L2 with δ = 1/(ndk), γ = ε/k, and p = 2 to
estimate n2−F2

2 .

Let us analyze the memory usage. We keep one L0 sketch per column of A. As per Theorem 2, we
must set γ = ϵ/k for our sketch. This makes the space of each L0 sketch Õ(k2/ϵ2). So the total
space for all d columns is Õ(dk2/ϵ2). The space for each L0 sampler is Õ(log2 n), and we keep
Õ(dk2/ε2) of them giving us Õ(dk2/ϵ2). Using Theorem 2, our total space is therefore Õ(dk3/ϵ2).
The update time is Õ(dk3/ε2) since k sketches will be created as in accordance with Theorem 2.
The reporting time is also the same.

Now, we prove the correctness. As per our framework in Theorem 2, our result follows if we can
show that our sketch provides (1±γ)-approximations to all queried values to our general fingerprint
function with probability O(1/(ndk)).

Upon a query to our function on a subset of columns C, we return gS({S · ai}i∈C). To do this, for
each type of sketch (both the L0 sketch and the L0-sampling sketch) for the columns of subset C,
we concatenate them and reduce them each to one column.

Claim A.10. With probability 1 − 1/(ndk), for any rows x and y in (SA)C for sketch S, they are
distinct if and only if entry x and y of [(SA)C ]v are distinct for random vector x with entries in
{−poly(ndk), poly(ndk)}.

Proof. Let us look at two rows of B = (SA)C that are distinct. We call these rows Bx and By .
Take w to be the vector that is formed from performing Bx − By . We first want to show that
w⊺v ̸= 0.

We have that w⊺v = w1 ·v1 +w2 ·v2 + · · ·+wd ·vd. Fixing the values of v1 through vd−1, there
is only one value for vd such that w⊺v = 0. Therefore, this “bad” event happens with probability
at most 1/poly(ndk). Union bounding over all possible rows of B, we have that with probability
1− 1/(ndk) if rows x and y of B for any x, y are distinct then entries x and y of Bv are distinct.

To finish up the proof, we want to show that if rows x and y of B for any x, y are identical, then
entries x and y of Bv are identical. This is clearly true with probability 1.

Now, we are in the vector case. We claim that the rest of the work is done by passing in L1 and L2

into our sketch from Theorem 3 with p = 2. For each distinct item i in the vector, we denote its
frequency as fi. As we can see,

(
n
2

)
−
∑

i

(
fi
2

)
= n2−F2

2 is the general fingerprinting function. This
is because

(
n
2

)
denotes all pairs of users and by subtracting off

∑
i

(
fi
2

)
we are subtracting off pairs
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of users that share identical values. Note the changes in the parameters of the input between here
and in Theorem 3.
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