
Under review as a conference paper at ICLR 2024

INTERPRETING ADAPTIVE GRADIENT METHODS BY
PARAMETER SCALING FOR LEARNING-RATE-FREE
OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We address the challenge of estimating the learning rate for adaptive gradient
methods used in training deep neural networks. While several learning-rate-free
approaches have been proposed, they are typically tailored for steepest descent.
However, although steepest descent methods offer an intuitive approach to find-
ing minima, many deep learning applications require adaptive gradient methods
to achieve faster convergence. In this paper, we interpret adaptive gradient meth-
ods as steepest descent applied on parameter-scaled networks, proposing learning-
rate-free adaptive gradient methods. Experimental results verify the effectiveness
of this approach, demonstrating comparable performance to hand-tuned learning
rates across various scenarios. This work extends the applicability of learning-
rate-free methods, enhancing training with adaptive gradient methods.

1 INTRODUCTION

Almost all training procedures for deep neural networks are conducted iteratively, gradually ap-
proaching their optimum. During this process, the length and direction of parameter updates vary
depending on the choice of optimizers, such as stochastic gradient descent (SGD), RMSProp (Tiele-
man & Hinton, 2012), and Adam (Kingma & Ba, 2015). In particular, adaptive gradient methods,
such as RMSProp and Adam, are commonly employed in training sophisticated networks, includ-
ing Transformers (Vaswani et al., 2017), which have recently gained significant prominence. These
adaptive gradient methods dynamically adjust the direction of parameter updates by normalizing the
gradient scale of each parameter. However, they still require the manual tuning of the learning rate,
which determines the length of parameter updates, as a hyperparameter.

Since the learning rate hyperparameter significantly impacts the training speed and final performance
of deep neural networks, extensive research has been conducted to adaptively determine learning
rates (Orabona & Tommasi, 2017; Loizou et al., 2021; Ivgi et al., 2023; Defazio & Mishchenko,
2023; Mishchenko & Defazio, 2023), referred to as learning-rate-free methods. These methods
estimate the learning rate based on the function value at the optimum, distance to the solution, or
gradients. However, in the case of adaptive gradient methods, scaled gradients are used for training
instead of the actual gradient values, making the estimation of the learning rate challenging.

To address this issue, methods for predicting the learning rate of adaptive gradient methods have
also been proposed (Defazio & Mishchenko, 2023; Mishchenko & Defazio, 2023). However, it
is observed that these methods do not consistently achieve optimal performance in certain situa-
tions, including the training of reinforcement learning models and fine-tuning on downstream tasks
(Sec. 5). In this paper, we aim to address this issue and propose a learning rate estimation algorithm
that can be effectively applied to adaptive gradient methods. We focus on Adam in our experiments
as it is one of the most widely used methods, but the extension to others is straightforward.

Adaptive gradient methods scale the gradients of parameters to normalize their effects, resulting
in a parameter update direction different from the steepest direction. To overcome this problem,
we interpret an adaptive gradient method as a parameter-scaled SGD. As demonstrated in Eqs. 1-4,
dividing the gradient by α2 is equivalent to multiplying the parameter by α. Thus, adaptive gradient
methods can be viewed as applying steepest descent to such parameter-scaled networks.

1



Under review as a conference paper at ICLR 2024

Table 1: Descriptions of adaptive gradients methods

Method Update rule Reference
AdaGrad wk+1 ← wk − ηgk/

√∑
i≤k g

2
i Duchi et al. (2011)

RMSProp wk+1 ← wk − ηgk/
√
vk Tieleman & Hinton (2012)

Adam wk+1 ← wk − ηmk/
√
vk Kingma & Ba (2015)

AMSGrad wk+1 ← wk − ηmk/
√
maxi≤k vi Reddi et al. (2018)

LARS wk+1 ← wk − ηmkϕ(∥wk∥)/∥mk∥ You et al. (2017)
LAMB wk+1 ← wk − ηrkϕ(∥wk∥)/∥rk∥; rk = mk/

√
vk You et al. (2020)

y = f(w) = f(w′/α) = f ′(w′) (1)

w′ ← w′ − η
∂f ′

∂w′ (w
′) (2)

αw ← αw − η

α

∂f

∂w
(w) (3)

w ← w − η

α2

∂f

∂w
(w) (4)

Based on this transformation, we propose two adaptive gradient variants of existing learning-rate-
free methods (Loizou et al., 2021; Defazio & Mishchenko, 2023): parameter-scaled stochastic
Polyak step-size (PS-SPS) and parameter-scaled D-Adapt SGD (PS-DA-SGD). The performance of
existing and proposed learning-rate-free methods is validated under various experimental settings,
including supervised classification, reinforcement learning, fine-tuning on downstream tasks, and
self-supervised learning. While steepest descent-based learning-rate-free methods fail to converge
in some cases, the proposed variants effectively transform them into adaptive gradient methods. Fur-
thermore, one of the proposed methods, PS-DA-SGD, demonstrates the most robust and effective
performance among the compared learning-rate-free methods.

The contributions of this paper can be summarized as follows:

1. We propose a method to interpret adaptive gradient methods as parameter-scaled SGD.
2. Using this transformation, we adapt existing learning-rate-free methods to be applicable to

adaptive gradient methods.
3. We conduct a comprehensive evaluation of existing and proposed learning-rate-free adap-

tive gradient methods to assess their compatibility with various experimental scenarios.

2 RELATED WORK

2.1 ADAPTIVE GRADIENT METHODS

While steepest descent-based methods, such as SGD, SGD with momentum, and Nesterov acceler-
ated gradient (Nesterov, 1983), offer an intuitive iterative approach to finding minima, experimental
results indicate that adaptively adjusting the update direction leads to faster training of deep neural
networks.

Table 1 provides descriptions of various adaptive gradient methods. Here, m and v represent the
exponential moving average of gradients and squared gradients, respectively. For simplicity, we
omit ϵ and bias correction terms. Most of these methods normalize the scale of each element in
the gradient, though the specific approaches may differ. In this paper, our primary focus lies on the
scaling rule of Adam, but it is worth noting that the extension to other methods is straightforward.

2.2 LEARNING-RATE-FREE METHODS

Convex optimization has long been a fundamental research area, and a key aspect of this field in-
volves determining a learning rate that achieves optimal convergence rates. Theoretically, optimal

2



Under review as a conference paper at ICLR 2024

learning rate are known when problem-specific constants are available, such as the Lipschitz con-
stant, distance to the solution, or function value at the optimum (Polyak, 1987; Duchi et al., 2011;
Nesterov et al., 2018). However, as these values are problem-specific and often unknown, methods
have been developed to adaptively find the learning rate without prior knowledge of these constants.

Although deep neural networks are typically not convex, the methods developed for convex op-
timization have proven to be effective in practice. In this paper, we focus on learning-rate-free
methods that have demonstrated their effectiveness in deep learning applications. The methods that
have been successfully applied in deep learning applications include continuous coin betting (CO-
COB) (Orabona & Tommasi, 2017), stochastic Polyak step-size (SPS) (Loizou et al., 2021), distance
over gradients (DoG) (Ivgi et al., 2023), and D-adaptation (Defazio & Mishchenko, 2023).

COCOB (Orabona & Tommasi, 2017) is a coin-betting-based method that considers situations where
previous gradients remain relatively constant as indicative of a high expected outcome. In such
cases, COCOB increases the betting, corresponding to an increase in the learning rate. To adapt this
method for deep learning applications, a variant called COCOB-Backprop has also been proposed.
This variant scales the learning rate for each parameter according to their gradient scales and has
been validated for its effectiveness in image classification and word-level prediction tasks.

SPS (Loizou et al., 2021) is a stochastic variant of the Polyak step size (Polyak, 1987). It estimates
the difference between the current function value and the optimum value, using the ratio of this
difference to the square of the current gradient as the learning rate.

DoG (Ivgi et al., 2023) employs the displacement from the initial parameter as a proxy for the
distance to the solution. The learning rate is determined by the ratio of the maximum displacement
to the sum of the gradient norms up to the current iteration. The presence of the sum of gradient
norms in the denominator of the learning rate formula gives DoG a learning rate annealing behavior
similar to AdaGrad (Duchi et al., 2011).

D-Adaptation (Defazio & Mishchenko, 2023) estimates the distance to the solution by adaptively
updating its lower bound during training. Several variants of D-Adaptation have been proposed,
with D-Adapt SGD utilizing the lower bound divided by the gradient norm at the initial parameters
as the learning rate. D-Adaptation-based methods can be combined with additional learning rate
scheduling techniques, such as cosine annealing, to enhance convergence speed.

These learning-rate-free methods have demonstrated their effectiveness when applied to deep neural
networks, often achieving equal or improved final accuracy compared to conventional optimizers.
However, they are developed based on the assumption that gradient and parameter update directions
align. Therefore, further validation is needed to assess their compatibility with adaptive gradient
methods, which independently scale the gradients of each parameter.

3 MOTIVATION

The iterative process for finding the minimum of an objective function f(w) can be written as
follows:

w ← w − ηu (5)
Here, η represents the learning rate, and u denotes the update direction. Typically, η is regarded as a
hyperparameter that learning-rate-free methods aim to estimate, while u is determined by the choice
of optimizer.

In the case of SGD, the expectation value of u is equal to the gradient of the objective function:
SGD update rule: Eu = ∇f(w) (6)

This holds true for momentum methods as well, provided that f is smooth and the update are suffi-
ciently small (∥ηu∥ ≪ 1/L, when ∇f is L-Lipschitz continuous). For a more concise notation, we
use ∇f(w) to represent ∂f

∂w (w).

However, this equality does not hold for adaptive gradient methods, where the gradient of each
parameter is scaled:

adaptive gradient: Eu = ∇f(w)/α2 (7)
Here, α depends on the choice of scaling rule, with α2 =

√
vt being the case when Adam is used.

Due to this discrepancy, the optimal η of an adaptive gradient method should be a function of α.

3



Under review as a conference paper at ICLR 2024

Algorithm 1 Parameter-scaled stochastic Polyak step-size (PS-SPS)
Input: f(w), f∗, n, c, w0, αk > 0

1: for k = 0 to n− 1 do
2: gk ∈ ∂f(wk) ▷ Get stochastic gradients
3: w′

k ← wk ◦αk ▷ Scale parameters
4: g′

k ← gk ◦α−1
k ▷ Scale gradients

5: ηk ←
f(wk)− f∗

c∥g′
k∥2

▷ SPS for SGD

6: w′
k+1 ← w′

k − ηkg
′
k ▷ Update parameters

7: wk+1 ← w′
k+1 ◦α−1

k ▷ Undo parameter scaling
8: end for

Nevertheless, simply substituting the ∇f(w) term in learning-rate-free methods with ∇f(w)/α2

results in an incorrect outcome.

For example, SPS estimates the learning rate as follows:

η =
f(w)− f∗

c∥∇f(w)∥2 (8)

However, replacing∇f(w) with∇f(w)/α2 yields:

η(α) =
f(w)− f∗

c∥∇f(w)/α2∥2 (9)

Eu(α) = ∇f(w)/α2 (10)

Eη(α)u(α) =
f(w)− f∗

c∥∇f(w)∥2∇f(w) · α
2 (11)

If η(α) was an optimal learning rate of the α2-scaled adaptive gradient method, the parameter update
should remain consistent regardless of α, but this is not the case. Hence, an alternative approach is
needed to make learning-rate-free methods compatible with adaptive gradient methods.

In contrast, DoG and D-Adaptation produce parameter update rules that do not rely on α when α is a
scalar. However, we observe they exhibit suboptimal performance when α takes the form of a vector
with varying values for each component, which is the case for most adaptive gradient methods.

Why are adaptive gradient methods important? While SGD with momentum performs well in
many scenarios, adaptive gradient methods tend to outperform plain SGD in scenarios involving so-
phisticated networks like Transformers or in scenarios where batch normalization cannot be applied,
such as reinforcement learning (Bhatt et al., 2019; Zhang et al., 2020).

Why is the proposed parameter scaling method important? Adaptive gradient methods, despite
scaling the gradient for each parameter, still necessitate the use of a learning rate hyperparameter.
Moreover, the choice of the learning rate value has a significant impact on convergence speed and fi-
nal performance. The proposed parameter scaling method serves to adapt learning-rate-free methods
originally designed for SGD to be compatible with adaptive gradient methods.

4 PROPOSED METHOD

4.1 ALGORITHM

In this section, we introduce adaptive gradient variants by leveraging the parameter scaling tech-
nique. Specifically, we present parameter-scaled (PS) variants of SPS and D-Adaptation, denoted
as PS-SPS and PS-DA, respectively. We omit COCOB (Orabona & Tommasi, 2017) and DoG (Ivgi
et al., 2023) from consideration, as we find that PS-SPS and PS-DA perform well in practice, while
the PS variant of DoG does not yield favorable results. Additionally, since COCOB is inherently a
parameter-wise method, applying parameter scaling to it would be irrelevant.

4



Under review as a conference paper at ICLR 2024

Algorithm 2 Parameter-scaled D-Adapt SGD (PS-DA-SGD)
Input: f(w), n, d0, γk, w0, αk > 0

1: m0 = 0, s0 = 0, gM = 0, αM = 0
2: for k = 0 to n− 1 do
3: gk ∈ ∂f(wk) ▷ Get stochastic gradients
4: w′

k ← wk ◦αk; w′
0 ← w0 ◦αk ▷ Scale parameters

5: g′
k ← gk ◦α−1

k ; s′k ← sk ◦α−1
k ▷ Scale gradients

6: αM ← max(αM ,αk) ▷ Update maximum scaling factor
7: d′k ← dk ·max(αk/αM ) ▷ Scale D lower bound
8: gM ← max(gM , gk) ▷ Update maximum gradients
9: g′

M ← gM ◦α−1
M ▷ Scale maximum gradients

10: ηk ←
d′kγk
∥g′

M∥
▷ D-Adapt SGD learning rate

11: w′
k+1 ← w′

k − ηkg
′
k ▷ Update parameters

12: d̂k+1 ←
mk

∥s′k∥
▷ Get D lower bound

13: dk+1 ← max(d̂k+1, dk) ▷ Update D lower bound
14: mk+1 ← mk + ηk⟨g′

k,w
′
0 −w′

k⟩ ▷ Update numerator
15: sk+1 ← sk + ηkgk ▷ Update denominator
16: wk+1 ← w′

k+1 ◦α−1
k ▷ Undo parameter scaling

17: end for

The conversion of SPS to PS-SPS is straightforward, as illustrated in Alg. 1.

Here, ◦ denotes element-wise multiplication, and α−1
k signifies the element-wise inverse of αk. f∗

and c represent the function value at optimum and the scaling parameter, respectively, which are
essential for estimating the learning rate using SPS. We employ c = 0.5 throughout all experiments,
following Loizou et al. (2021). αk represents the scaling factor, which varies depending on the
choice of an adaptive gradient method. To convert SPS to PS-SPS, we only need to scale gk and
wk, as the only affected term in SPS is gk.

On the other hand, the conversion of D-Adapt SGD to PS-DA-SGD requires several modifications,
as described in Alg. 2.

max(x,y) represents the element-wise maximum of two vectors, and max(x) signifies the max-
imum element within a vector. d0 stands for the initial estimate of the lower bound of D, which
represents the distance to the solution. Consistent with Defazio & Mishchenko (2023), a value of
d0 = 10−6 is employed in all experiments. Additionally, γk denotes the learning rate annealing
schedule that can be applied in conjunction with D-Adaptation.

We need additional modifications to convert D-Adapt SGD to PS-DA-SGD, because applying the
modifications outlined in Alg. 1 directly to D-Adapt SGD produce undesired results. This is because
the learning rate employed by D-Adapt SGD depends on the ratio of D to g0, where g0 represents the
gradient at initial parameters. If one of the parameters converges faster than the others, the element
of αk corresponding to that parameter may approach zero, especially when an Adam-style scaling
rule is applied. This results in an increase of in g0 ◦ α−1

k , and consequently, the training ceases.
Therefore, we introduce additional modifications based on following two key insights: firstly, the
update rule should remain consistent even when an alpha with all equal elements is multiplied to all
parameters, and secondly, even if one parameter converges earlier, the remaining parameters should
continue their training. To compensate for the decrease of α, we shrink D by the maximum scale
ratio (Lines 6-7). Additionally, we use gM instead of g0 and scale gM by αM instead of αk to
prevent training from halting (Line 8-9).

4.2 CONVERGENCE ANALYSIS

Reddi et al. (2018) demonstrated that Adam may fail to converge, even when applied to a convex
function. To address this issue, they introduced AMSGrad, which they proved to be convergent.
Adam scales gradients based on to the square root of moving average of squared gradients, which

5



Under review as a conference paper at ICLR 2024

Table 2: Descriptions of learning-rate-free and baseline methods

Method Note Reference
Steepest descent

SGD (Baseline) requires a hand-tuned learning rate
SPS Estimated learning rate fluctuates Loizou et al. (2021)

DoG Implicit AdaGrad-like learning rate annealing is inherent Ivgi et al. (2023)

D-Adapt SGD SGD variant of D-Adaptation
Additional learning rate annealing can be applied Defazio & Mishchenko (2023)

Adaptive gradient
Adam (Baseline) requires a hand-tuned learning rate Kingma & Ba (2015)

COCOB Estimates parameter-wise learning rates Orabona & Tommasi (2017)

LDoG Layer-wise variant of DoG Ivgi et al. (2023)

D-Adapt Adam Adam variant of D-Adaptation Defazio & Mishchenko (2023)

Prodigy Adam variant of D-Adaptation with faster adaptation Mishchenko & Defazio (2023)

Proposed
PS-SPS Proposed parameter-scaled SPS
PS-DA-SGD Proposed parameter-scaled D-Adapt SGD

can decrease as the training progresses. Conversely, AMSGrad uses the maximum scaling of Adam
up to the current iteration, preventing the scaling from decreasing.

Similarly, the convergence of both proposed algorithm depends on the parameter scaling rule (αk).
When the AMSGrad scaling rule is applied, both methods find the optimum of a convex Lipschitz
function, as demonstrated in Appendix A.1.

However, in practice, the scaling rule of AMSGrad often exhibits slower convergence compared to
Adam. Consequently, we employ Adam scaling throughout our experiments.

5 EXPERIMENTS

In this section, we present experimental results to demonstrate the necessity of our proposed method.
We begin by examining the failure cases of existing methods and then validate the performance of
our approach by comparing it to existing methods. Throughout the experiments, we apply Adam
parameter scaling rule to both PS-SPS and PS-DA-SGD. Additionally, we apply a momentum of 0.9
to PS-DA-SGD.

5.1 OPTIMIZERS

Table 2 presents the optimization methods we employ for comparison. We classify COCOB as an
adaptive gradient method since it estimates parameter-wise learning rates, and similarly, we classify
LDoG as an adaptive gradient method because it estimates layer-wise learning rates.

5.2 TESTING ENVIRONMENTS

We begin by examining the impact of batch normalization layers (Ioffe & Szegedy, 2015) on the
performance of learning-rate-free methods. To assess this, we train ResNet-32 (He et al., 2016)
and VGG-19 (Simonyan & Zisserman, 2015) models on the CIFAR-100 dataset (Krizhevsky et al.,
2009), removing all batch normalization layers from the VGG models while retaining them in the
ResNet models.

Next, we assess performance in reinforcement learning tasks. Due to the non-stationary nature of
the task, batch normalization layers exhibit inferior performance and are consequently omitted from
this experiment. We train soft actor-critic (SAC; Haarnoja et al. (2018)) models on the Hopper-v2
and Humanoid-v2 benchmarks from the OpenAI gym benchmark suite (Brockman et al., 2016).

6



Under review as a conference paper at ICLR 2024

Table 3: Experimental results. Cases achieving at least 95% of the best results are shown in bold.

CIFAR-100 Reinforcement learning ImageNet Fine-tuning SSL
ResNet-32 VGG-19 Hopper Humanoid ViT-Tiny SegNeXt Swin-T SimCLR

Steepest descent
SGD 66.7 (0.233) 64.7 (0.038) 3466 (5/5) NaN (0/5) - - - 74.9
SPS 65.2 (0.359) 0.01 (5.041) - - 18.9 39.7 41.4 76.0
DoG 66.7 (0.495) 56.3 (0.074) 1050 (0/5) 475 (0/5) 0.31 39.0 43.0 75.7
D-Adapt SGD 65.6 (0.312) 0.01 (4.605) NaN (0/5) NaN (0/5) 0.77 38.1 42.0 74.7
Adaptive gradient
Adam 68.3 (0.236) 62.1 (0.086) 3448 (5/5) 5527 (5/5) 72.0 41.6 44.1 76.0
COCOB 50.1 (1.666) 55.1 (0.771) 3334 (5/5) 5337 (5/5) 0.14 6.12 18.6 66.4
LDoG 63.9 (0.547) 56.4 (0.073) 3277 (1/5) 469 (0/5) 4.29 40.6 43.4 74.5
D-Adapt Adam 65.9 (0.286) 48.3 (0.033) 3502 (5/5) 5504 (3/5) 70.5 26.1 41.4 69.0
Prodigy 66.4 (0.221) 57.8 (0.019) 195 (0/5) 419 (0/5) 68.3 29.3 41.8 76.9
Proposed
PS-SPS 65.9 (0.337) 53.4 (0.182) - - 42.0 39.3 43.8 76.7
PS-DA-SGD 65.8 (0.305) 50.6 (0.009) 3497 (5/5) 5534 (5/5) 73.6 40.6 44.0 73.5

Subsequently, we train Vision Transformer (ViT) models (Dosovitskiy et al., 2021) on the ImageNet-
1K dataset (Russakovsky et al., 2015). This model demands the use of adaptive gradient methods to
achieve a faster convergence.

We also conduct two additional experiments to assess the performance of learning-rate-free methods.
One of these experiments involves fine-tuning models with pretrained weights. We fine-tune two
semantic segmentation networks on the ADE20K dataset (Zhou et al., 2019): SegNeXt (Guo et al.,
2022), a convolution-based model, and Swin Transformer (Liu et al., 2021), a Transformer-based
model.

The second additional experiment involves a self-supervised learning (SSL) task. We train Sim-
CLR models (Chen et al., 2020) with a ResNet-18 backbone (He et al., 2016) on the STL-10
dataset (Coates et al., 2011).

5.3 EXPERIMENTAL RESULTS

Table 3 summarizes the experiment results. We opt not to employ the weight decay regularization for
the sake of a fair comparison. It is because the selection of its magnitude can significantly influence
the final performance, with the optimal magnitude varying depending on optimization methods.
The CIFAR-100 column displays the top-1 accuracy on the test set. We also provide the train
loss in parentheses to distinguish overfitting. The reinforcement learning column displays average
reward. Because reinforcement learning models sometimes fail to converge depending on their
initial parameters or optimization algorithm, we also provide the training success rate in parentheses.
The last three columns represent the top-1 accuracy on ImageNet, the mean intersection-over-union
on ADE20K, and the top-1 accuracy on STL-10, respectively.

The proposed parameter scaling approach successfully converts existing steepest descent-based
learning-rate-free methods to suitable for adaptive gradient methods, from SPS to PS-SPS and D-
Adapt SGD to PS-DA-SGD, enabling them to achieve convergence on a wider range of tasks. No-
tably, PS-DA-SGD performs exceptionally well, surpassing existing learning-rate-free methods on
most tasks and closing the gap with hand-tuned learning rates.

6 ANALYSIS

6.1 SUPERVISED CLASSIFICATION ON CIFAR-100

All the methods, except for COCOB, demonstrate reasonable performance on ResNet-32 models.
However, the performance of steepest descent methods deteriorate when applied to VGG-19 models
without batch normalization layers. Amongst the steepest descent-based learning-rate-free methods,
only DoG converges, whereas all adaptive gradient methods succeed.

It is observed that learning-rate-free methods tend to exhibit lower accuracy in VGG experiments,
primarily due to overfitting. This phenomenon can be attributed to the fact that learning-rate-free

7



Under review as a conference paper at ICLR 2024

Table 4: ImageNet top-1 accuracy of ViT with weight decay regularization

Method AdamW D-Adapt Adam Prodigy PS-DA-SGD
Top-1 acc. 75.4 72.4 74.6 75.0

methods have developed from convex optimization, where the primary goal is to minimize loss on
the training dataset. In contrast, deep learning applications also require generalization capabilities.

6.2 REINFORCEMENT LEARNING

The performance of steepest descent-based methods tends to worsen in reinforcement learning mod-
els, where batch normalization is often omitted. All steepest descent-based learning-rate-free meth-
ods fail to converge. Moreover, several adaptive gradient-based methods also exhibit decreased or
unstable performance. Nonetheless, the proposed PS-DA-SGD achieves stable and superior perfor-
mance. SPS and PS-SPS are excluded since they require the loss value at the optimum, denoted as
f∗ in Alg. 1, which is unavailable in the reinforcement learning experiments.

Similar to the proposed PS-DA-SGD, D-Adapt Adam and Prodigy are both variants of Adam based
on D-Adaptation. However, they exhibit unstable performance in reinforcement learning. Estimated
learning rates can help explain this phenomenon, as depicted in Fig. 1a. In all trials, the estimated
learning rates of Prodigy diverge, and occasionally, the learning rates of D-Adapt Adam also exhibit
divergence. The design goal of Prodigy is to adapt the learning rate quickly, suspected to be the
cause of divergence.

6.3 TRAINING TRANSFORMER FROM SCRATCH

Again, all steepest gradient-based methods diverge or fail to reach the optimum. Most adaptive
gradient-based methods are successful, but the final performance varies depending on each method.
D-Adapt Adam and PS-DA-SGD show the best performance among learning-rate-free methods,
comparable to that of Adam. PS-SPS underperforms in the ViT experiment compared to other
experiments due to the highly fluctuating learning rate. This is also true for PS-SPS, which is a
variant of SPS, and the fluctuation hinders the training speed of PS-SPS. However, we observe that
the training of PS-SPS is slow but still ongoing, and therefore, we anticipate that it will eventually
converge to a solution given sufficient time.

While we omit weight decay regularization throughout the experiments, other methods reported
their performance on ViT with weight decay. For a fair comparison, we also train ViT using PS-
DA-SGD with weight decay applied and compared it to those methods. As shown in Table 4, the
performance gap between methods decrease when weight decay is enabled. Nevertheless, PS-DA-
SGD demonstrates the best accuracy among learning-rate-free methods.

6.4 FINE-TUNING FROM PRETRAINED WEIGHTS

All methods, except for COCOB, exhibit reasonable performance in fine-tuning experiments. How-
ever, similar to the reinforcement learning experiments, D-Adapt Adam and Prodigy show subopti-
mal performance. Fig. 1b displays the estimated learning rates. D-Adapt Adam and Prodigy predict
relatively large learning rates, which result in suboptimal performance on the fine-tuning task.

6.5 SELF-SUPERVISED LEARNING

We expected self-supervised learning task to be challenging to optimize because there is no a su-
pervision or defined optimal goal. However, contrary to expectations, most methods perform well
in self-supervised learning. Prodigy and PS-SPS outperform D-Adapt Adam and PS-DA-SGD on
this task, primarily due to their larger learning rates. Fig. 1c shows that D-Adapt Adam and PS-
DA-SGD estimate lower learning rates compared to Prodigy and PS-SPS. We suspect that this may
also be due to overfitting, as STL-10 is a relatively small dataset, similar to CIFAR-100. Because a
large learning rate can act as a regularizer (Li et al., 2019), Prodigy and PS-SPS achieve better test
accuracy in the self-supervised learning experiment.

8



Under review as a conference paper at ICLR 2024

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

0

1

2

3

4
·10−3

Step

L
ea
rn
in
g
ra
te

Adam
Prodigy

D-Adapt Adam
(converged)

D-Adapt Adam
(failed)

PS-DA-SGD

(a) Reinforcement learning experiment

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·105

0

1

2

3
·10−4

Step

L
ea
rn
in
g
ra
te

Adam
Prodigy

D-Adapt Adam
PS-DA-SGD

PS-SPS

(b) Fine-tuning experiment

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

0

0.5

1

1.5
·10−3

Step

L
ea
rn
in
g
ra
te

Adam
Prodigy

D-Adapt Adam
PS-DA-SGD

PS-SPS

(c) Self-supervised learning experiment

Figure 1: Estimated learning rate

6.6 LIMITATION

Learning-rate-free methods tend to suffer from overfitting more severely than hand-tuned ones, es-
pecially on small datasets. We anticipate that this is due to the disparity in goals between convex
optimization and deep learning applications, as deep learning applications also require generaliza-
tion capabilities. While adding regularization like weight decay can help mitigate this issue, it
introduces another hyperparameter to tune, which contradicts the objective of learning-rate-free op-
timization. Therefore, further research is needed to incorporate regularization or sharpness-aware
minimization (Foret et al., 2021) to address this issue.

7 CONCLUSION

In this paper, we demonstrate that steepest descent-based learning-rate-free methods encounter chal-
lenges in specific scenarios. To address this issue, we introduce two adaptive gradient variants of
these methods, namely PS-SPS and PS-DA-SGD. These variants are founded on the insight that an
adaptive gradient can be viewed as equivalent to a steepest descent method applied to a parameter-
scaled network. Our proposed approach effectively transforms existing steepest descent-based meth-
ods into adaptive gradient methods, enabling them to achieve convergence across a wider range
of tasks. Furthermore, our proposed methods exhibit the highest levels of stability and efficiency
among adaptive gradient-based learning-rate-free methods.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Aditya Bhatt, Max Argus, Artemij Amiranashvili, and Thomas Brox. Crossnorm: Normalization
for off-policy td reinforcement learning. arXiv preprint arXiv:1902.05605, 2019.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelli-
gence and statistics, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scar-
lett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pp. 7449–7479. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/defazio23a.html.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2021.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. In International Conference on Learning Represen-
tations, 2021.

Meng-Hao Guo, Cheng-Ze Lu, Qibin Hou, Zhengning Liu, Ming-Ming Cheng, and Shi-Min Hu.
Segnext: Rethinking convolutional attention design for semantic segmentation. Advances in Neu-
ral Information Processing Systems, 35:1140–1156, 2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Maor Ivgi, Oliver Hinder, and Yair Carmon. DoG is SGD’s best friend: A parameter-free dynamic
step size schedule. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 14465–14499.
PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/ivgi23a.
html.

Diederick P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

10

https://proceedings.mlr.press/v202/defazio23a.html
https://proceedings.mlr.press/v202/ivgi23a.html
https://proceedings.mlr.press/v202/ivgi23a.html


Under review as a conference paper at ICLR 2024

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial large
learning rate in training neural networks. Advances in Neural Information Processing Systems,
32, 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak
step-size for sgd: An adaptive learning rate for fast convergence. In International Conference on
Artificial Intelligence and Statistics, pp. 1306–1314. PMLR, 2021.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner. arXiv preprint arXiv:2306.06101, 2023.

Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

Yurii Evgen’evich Nesterov. A method of solving a convex programming problem with convergence
rate o\bigl(kˆ2\bigr). In Doklady Akademii Nauk, volume 269, pp. 543–547. Russian Academy
of Sciences, 1983.

Francesco Orabona and Tatiana Tommasi. Training deep networks without learning rates through
coin betting. Advances in Neural Information Processing Systems, 30, 2017.

Boris T Polyak. Introduction to optimization. 1987.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

K Simonyan and A Zisserman. Very deep convolutional networks for large-scale image recognition.
In 3rd International Conference on Learning Representations (ICLR 2015). Computational and
Biological Learning Society, 2015.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–
31, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. In International Conference on Learning Representations,
2020.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in
Neural Information Processing Systems, 33:15383–15393, 2020.

Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Semantic understanding of scenes through the ade20k dataset. International Journal of Computer
Vision, 127:302–321, 2019.

11



Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 CONVERGENCE ANALYSIS OF PROPOSED METHODS

As mentioned in Sec. 4.2, the convergence of adaptive gradient methods depends on the scaling
rule. In this section, we analyze the convergence of proposed methods in the case of AMSGrad
scaling. We also assume that a convex G-Lipschitz function f and the deterministic case. As shown
in Table 1, the scaling rule of AMSGrad is α2

k =
√
maxi≤k vi. Because αk is a non-decreasing

sequence upper bounded by
√
G, it converges to α. As the scaling rule converges, the convergence

of proposed methods are straightforwardly derived from their vanilla ones (Loizou et al., 2021;
Defazio & Mishchenko, 2023).

A.1.1 CONVERGENCE ANALYSIS OF PS-SPS

In the deterministic case, we use c = 1 in the Alg. 1. From the parameter update of PS-SPS, we
derive the following:

∥(wk+1 −w∗) ◦αk∥ = ∥(wk −w∗) ◦αk − ηkgk ◦α−1
k ∥ (12)

Using the convexity of f and applying the definition of ηk in the Alg. 1 yields:

∥(wk+1 −w∗) ◦αk∥2

= ∥(wk −w∗) ◦αk∥2 + η2k∥gk ◦α−1
k ∥2 − 2ηk⟨wk −w∗, gk⟩

≤ ∥(wk −w∗) ◦αk∥2 + η2k∥gk ◦α−1
k ∥2 − 2ηk(f(wk)− f(w∗))

= ∥(wk −w∗) ◦αk∥2 −
(f(wk)− f(w∗))2

∥gk ◦α−1
k ∥2

≤ max(αk ◦α−1
k−1)

2∥(wk −w∗) ◦αk−1∥2 −
(f(wk)− f(w∗))2

∥gk ◦α−1
k ∥2

(13)

Because αk converges to α, αk > α/2 for k > m.

∥(wn+1 −w∗) ◦αn∥2

≤
(

n∏
k=m+1

max(αk ◦α−1
k−1)

2

)
∥(wm+1 − w∗) ◦αm∥2

−
n∑

k=m+1

(
n∏

i=k+1

max(αi ◦α−1
i−1)

2

)
(f(wk)− f(w∗))2

∥gk ◦α−1
k ∥2

(14)

Suppose βk is the product of all elements of αk. Then,

max(αk ◦α−1
k−1) ≤βk · β−1

k−1

1 ≤
n∏

k=m+1

max(αk ◦α−1
k−1) ≤βn · β−1

m = A2 <∞ (15)

Therefore,

0 ≤ ∥(wn+1 −w∗) ◦αn∥2 ≤ A2∥(wm+1 − w∗) ◦αm∥2 −
n∑

k=m+1

(f(wk)− f(w∗))2

∥gk ◦α−1
k ∥2

≤ A2D2G−
n∑

k=m+1

(f(wk)− f(w∗))2G−2 min(α)2/4 (16)

min
m+1≤k≤n

f(wk)− f(w∗) ≤ 2ADG3/2 min(α)−1

√
n−m− 1

(17)

12



Under review as a conference paper at ICLR 2024

A.1.2 CONVERGENCE ANALYSIS OF PS-DA-SGD

D-Adaptation-based methods contain additional learning rate annealing parameter, γk, and the con-
vergence of PS-DA-SGD depends on it. PS-DA-SGD converges when γk is a decreasing sequence
that satisfying

∞∑
k=1

γk =∞,

∞∑
k=1

γ2
k <∞. (18)

At first, we need that dk converges. From the convexity of f ,

0 ≤
n∑

k=0

ηk(f(wk)− f(w∗))

≤
n∑

k=0

⟨gk,wk −w∗⟩

=⟨sn+1,w0 −w∗⟩ −
n∑

k=0

ηk⟨gk,w0 −w∗⟩

=⟨sn+1 ◦α−1
n+1, (w0 −w∗) ◦αn+1⟩

−
n∑

k=0

ηk⟨gk ◦α−1
k , (w0 −w∗) ◦αk⟩

=⟨s′n+1, (w0 −w∗) ◦αn+1⟩ −mn+1

=
√
G⟨s′n+1,w0 −w∗⟩ −mn+1 (19)

Applying the definition of d̂k yields:

d̂n+2 =
mn+1

∥s′n+1∥
≤ D
√
G (20)

As dk is non-decreasing and bounded, it converges. Consequently, λk = d′k/∥g′
M∥ also converges.

Because λk converges to λ, λk > λ/2 for k > m.

∥(wk+1 −w∗) ◦αk∥2

= ∥(wk −w∗) ◦αk − ηkgk ◦α−1
k ∥2

= ∥(wk −w∗) ◦αk∥2 + η2k∥gk ◦α−1
k ∥2 − 2ηk⟨gk,wk −w∗⟩

≤ ∥(wk −w∗) ◦αk∥2 + η2k∥gk ◦α−1
k ∥2 − 2ηk(f(wk)− f(w∗)) (21)

λ

n∑
k=m

γk(f(wk)− f(w∗))

≤ 2

n∑
k=m

ηk(f(wk)− f(w∗))

≤ ∥(wm −w∗) ◦αm∥2 − ∥(wn+1 −w∗) ◦αn+1∥2 + 2

n∑
k=m

η2k∥gk ◦α−1
k ∥2

+

n∑
k=m

∥(wk+1 −w∗) ◦αk+1∥2 − ∥(wk+1 −w∗) ◦αk∥2 (22)

13



Under review as a conference paper at ICLR 2024

The last term is bounded as follows.
n∑

k=m

∥(wk+1 −w∗) ◦αk+1∥2 − ∥(wk+1 −w∗) ◦αk∥2

=

n∑
k=m

⟨(wk+1 −w∗) ◦ (αk+1 +αk), (wk+1 −w∗) ◦ (αk+1 −αk)⟩

≤
n∑

k=m

∥(wk+1 −w∗) ◦ (αk+1 +αk)∥∥(wk+1 −w∗) ◦ (αk+1 −αk)∥

≤ 2D
√
G

n∑
k=m

∥(wk+1 −w∗) ◦ (αk+1 −αk)∥ ≤ 2D
√
GD∞

n∑
k=m

∥αk+1 −αk∥1 ≤ B (23)

Therefore, since ∥gk ◦α−1
k ∥ <

√
G,

min
m+1≤k≤n

f(wk)− f(w∗) ≤
∑n

k=m γk(f(wk)− f(w∗))∑n
k=m γk

≤ ∥(wm −w∗) ◦αm∥2
λ
∑n

k=m γk
+

2λ2G
∑n

k=m γ2
k∑n

k=m γk
+

B

λ
∑n

k=m γk
(24)

14


	Introduction
	Related work
	Adaptive gradient methods
	Learning-rate-free methods

	Motivation
	Proposed method
	Algorithm
	Convergence analysis

	Experiments
	Optimizers
	Testing environments
	Experimental results

	Analysis
	Supervised classification on CIFAR-100
	Reinforcement learning
	Training Transformer from scratch
	Fine-tuning from pretrained weights
	Self-supervised learning
	Limitation

	Conclusion
	Appendix
	Convergence analysis of proposed methods
	Convergence analysis of PS-SPS
	Convergence analysis of PS-DA-SGD



