
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CAUSAL-STEER: DISENTANGLED CONTINUOUS
STYLE CONTROL WITHOUT PARALLEL CORPORA

Anonymous authors
Paper under double-blind review

ABSTRACT

Controlling stylistic attributes of Large Language Models (LLMs), such as formal-
ity or conceptual complexity, is crucial for effective human-AI interaction. How-
ever, current methods often suffer from discreteness, reliance on expensive paral-
lel corpora, and instability, limiting their practical utility. This paper introduces a
novel framework for robust activation steering that eliminates the need for parallel
corpora, enabling continuous, fine-grained, and linear control over LLM outputs.
Our key insight is to reframe Low-Rank Adaptation (LoRA) as a causal interven-
tion tool. By contrasting activations on identical inputs with and without a LoRA
perturbation trained via a contrastive objective, we separate the influence of con-
tent. To enhance reliability, we introduce a robust aggregation pipeline that uses
Principal Component Analysis (PCA) for denoising and the geometric median for
centrality estimation, yielding a stable and disentangled style vector. At inference,
this vector allows for precise bidirectional control via activation steering with neg-
ligible computational overhead. We demonstrate state-of-the-art performance on
controlling conceptual complexity, text detoxification, and formality control. Our
method not only provides superior control but also generalizes across different
models and tasks, and enables simultaneous multi-attribute control. Our code is
available at: https://anonymous.4open.science/r/cs-01C1

1 INTRODUCTION
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Figure 1: Comparison of LLM style
control: existing methods require par-
allel corpora for rigid, discrete control,
whereas our method uses non-parallel
data to achieve fine-grained, continuous
linear control.

Large Language Models (LLMs) are emerging as power-
ful general-purpose tools, demonstrating remarkable po-
tential in complex interactive scenarios that demand ac-
curate information delivery (Brown et al., 2020; Touvron
et al., 2023a). Yet, their practical utility extends beyond
factual correctness: effective human-AI interaction also
requires fine-grained control over expressive dimen-
sions of generated output, ranging from linguistic for-
mality to conceptual complexity. Such control is essen-
tial for tailoring responses to a user’s cognitive state, for
example aligning explanations with their Zone of Proxi-
mal Development (Vygotsky, 1978). Current mainstream
control paradigms, however, remain limited in both pre-
cision and stability as show in Figure 1. Prompt engineer-
ing (Liu et al., 2023) and instruction fine-tuning (Ouyang
et al., 2022) all operate in fundamentally discrete control
spaces, restricting users to coarse categories (e.g., “begin-
ner” vs. “expert”) and producing unpredictable shifts dur-
ing iterative adjustment. This discreteness is misaligned
with the inherently continuous nature of many stylistic spectrums, such as knowledge granularity,
ultimately constraining personalization and reducing interaction efficiency.

To achieve continuous adjustment, some studies apply linear interpolation of model parame-
ters (Kangaslahti & Alvarez-Melis, 2025; Ilharco et al., 2022). Using LoRA, a base model is fine-
tuned toward different stylistic anchors, and the parameter updates are then interpolated. While this
approach forms a continuous control space, it faces key limitations: it often requires parallel data for
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anchor training and tends to capture corpus-specific artifacts rather than genuine stylistic differences.
Consequently, the model merges dataset features instead of learning a transferable representation of
style, resulting in outputs that are unstable and difficult to control.

To address these gaps, the emerging paradigm of activation steering has attracted increasing at-
tention (Turner et al., 2023a; Zhang et al., 2025). By directly manipulating a model’s internal
representations in latent space, activation steering offers a principled mechanism for continuous,
fine-grained control over stylistic attributes. However, the practical effectiveness of this approach
hinges on obtaining high-quality steering directions. Existing methods typically rely on parallel
corpora(Han et al., 2024), pairs of texts aligned in content but differing in style, which are expen-
sive to construct and rarely available for complex dimensions such as conceptual complexity. This
dependence introduces two critical challenges. First, the content pollution problem: imperfect
content alignment causes extracted difference vectors to encode both stylistic and semantic varia-
tion, reducing generalizability. Second, the robustness problem: even when initial style signals are
isolated, steering directions remain vulnerable to noise and outliers, limiting stability across topics.

In this work, we present a novel framework, Causal-Steer, for robust, corpus-free activation steering
that enables precise and linear style control. Our key insight is to reframe Low-Rank Adaptation (Hu
et al., 2022) (LoRA) as a causal intervention tool. By contrasting activations from identical inputs
with and without a LoRA perturbation, we isolate the net stylistic effect while circumventing the
need for parallel data. To further enhance reliability, we design an aggregation pipeline that applies
PCA for denoising and employs robust centrality estimation to derive stable steering vectors resilient
to outliers. Using conceptual complexity as a case study, we demonstrate that our method supports
continuous bidirectional control and generalizes across tasks and languages.

Our main contributions are as follows:

1. Linear, Corpus-Free Bidirectional Control. We extract a style vector from a single, non-
parallel dataset (even a single-style dataset) and leverage it to realize fine-grained, linear, and
bidirectional control, removing the need for costly parallel corpora.

2. Robust and Disentangled Representation. Through PCA-based denoising and robust central-
ity aggregation, our method suppresses content-related noise and resists outliers, producing a
disentangled style vector that remains stable and transferable across diverse settings.

3. Versatile, State-of-the-Art Performance. Causal-Steer outperforms prior methods on multiple
tasks such as text detoxification and formality control, and consistently generalizes to different
domains and languages without additional tuning.

2 RELATED WORK

Approaches to style control in LLMs can be broadly categorized into modifications of model param-
eters (Mañas et al., 2025; Feng et al., 2025) and inference-time activations (Feng et al., 2024; Klein
& Nabi, 2024). In the parameter space, Ilharco et al. (2022) introduced “task arithmetic”, where vec-
tors derived from fine-tuning are used to edit model capabilities (Akiba et al., 2025). More directly
related to style, Dekoninck et al. (2023) demonstrated that interpolating between multiple LoRA
adapters, each fine-tuned on different attributes, can effectively control generation style. An alter-
native, more lightweight paradigm is activation engineering. Pioneering this, Turner et al. (2023a)
developed Activation Addition (ActAdd), computing a steering vector from the activation difference
of a single pair of contrasting prompts. This concept was refined by Rimsky et al. (2024) with Con-
trastive Activation Addition (CAA), which averages these differences over a large dataset of pairs
for greater stability. In a similar vein, Zhang et al. (2025) proposed Generation with Concept Activa-
tion Vectors (GCAV), deriving a controlling vector by training a linear classifier on activations. For
more targeted edits, Li et al. (2023) developed Inference-Time Intervention (ITI) to shift activations
in specific truth-related attention heads. Finally, Zou et al. (2023) unified these activation-based
approaches under the conceptual framework of Representation Engineering.

3 METHODOLOGY

To separate the extracted style vector vstyle from content and mitigate interference from style noise,
we aim to achieve fine-grained linear control over text style. Causal-Steer as show in Figure 2,
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Figure 2: Framework for extracting and controlling style. The process is (1) training style-
specific LoRAs with a contrastive loss, (2) extracting perturbations caused by the LoRAs and aggre-
gating them into vstyle, and (3) using this vector for continuous style control at inference. Here, Df
and Dif denote the formal and informal datasets; Bf, Af, Bif, and Aif are the corresponding LoRA
modules; Mbase is the base model; fl(·) is the activation extraction function; lsteer is the steering
layer; ∆v(ℓ) is the per-example activation perturbation; and vstyle is the aggregated style vector.

consists of three main stages: 1) We use a contrastively-guided LoRA to introduce a precise, low-
rank perturbation to the base model’s weights and extract style-specific activation differences from
the perturbation. 2) We introduce a robust aggregation technique that combines PCA with a ro-
bust centrality estimation to denoise the extracted vectors and identify the core style direction. 3)
At inference time, we use the normalized style vector for multi-layer activation steering, enabling
continuous and fine-grained style control.

3.1 PRELIMINARIES

Base and Perturbed Models. Mbase is a frozen pretrained language model. Mformal and Minformal are
models obtained by applying LoRA-based perturbations to Mbase, trained on style-specific datasets
Dformal and Dinformal respectively, using a contrastive loss. Crucially, these datasets need not be
parallel, the only requirement is that they exhibit contrasting styles.

MLP-Layer Activation Extractor. For a Transformer layer l, a model M , and a text d, we define
fl(M,d) as the mean of the MLP output vectors for all generated tokens, excluding prompt tokens:

fl(M,d) =
1

Tr

Tr∑
t=1

z
(l)
t , (1)

where z(l)t is the post-MLP hidden state for the t-th token, and Tr is the number of generated tokens.
This design ensures that the extracted style vector reflects holistic stylistic features throughout the
model’s output, rather than structural artifacts from the prompt or the partial semantic biases of
individual tokens.

3.2 EXTRACTING STYLE VECTORS VIA CAUSAL INTERVENTION

LoRA fundamentally applies a precise, low-rank update ∆W to the base model’s weights W0, re-
sulting in fine-tuned weights Wstyle = W0 + ∆W . We treat this fine-tuning process as a precise
causal intervention on the model. Its goal is to elicit specific stylized behaviors while avoiding
significant shifts in the core semantic space learned during pretraining. To ensure this perturba-
tion ∆W effectively separates style from content, we guide its training with a contrastive learning
objective. This objective directs the weight update towards a subspace that maximizes style separa-
bility. Specifically, the objective function to guide the Mformal perturbation is:

Lcontrastive = −E

[
log

exp(sim(hda
,hdp

)/τ)

exp(sim(hda
,hdp

)/τ) +
∑

dn
exp(sim(hda

,hdn
)/τ)

]
, (2)
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where the anchor hda
and positive example hdp

are from Dformal, and negative examples hdn
are

from Dinformal. This discriminative guidance compels the LoRA update ∆W to focus on generaliz-
able features that can distinguish the two styles across different content. Consequently, the model
must suppress content-related activations, thereby learning a pure and generalizable style represen-
tation. We employ a differential method to extract the pure effect of this stylistic perturbation. For a
formal sample di and layer l, the stylistic perturbation vector is defined as:

∆v
(l)
formal,i = fl(Mformal, di)− fl(Mbase, di). (3)

The informal difference vector ∆v
(l)
informal,j is calculated analogously.

This differential measurement approach is fundamentally different from naive observational meth-
ods. A baseline approach would be to directly obtain the style vector from the difference in acti-
vations on the datasets Dformal and Dinformal within the base model Mbase. However, this method
assumes that content-related information can be eliminated via vector subtraction, thereby isolating
the pure style signal. This assumption holds only under the condition of extremely high content
consistency between texts, which in turn necessitates a meticulously crafted parallel corpus. Causal-
Steer, in contrast, captures the LoRA-induced perturbation on the very same input di, elegantly
circumventing this reliance on parallel corpora.

Causal-Steer’s ability to isolate the stylistic effect hinges on the approximately linear relationship
between the weight perturbation ∆W and the change in activations. We formalize this relationship
by considering the activation of layer l as a function of weights W and data d, denoted as h(l)(W,d).
A first-order Taylor expansion around the base weights W0 yields:

∆h(l)(d) = h(l)(W0 +∆W,d)− h(l)(W0, d) ≈ Jh,W (W0, d) ·∆W, (4)

where Jh,W (W0, d) =
∂h(l)(W,d)

∂W

∣∣
W=W0

is the Jacobian matrix mapping perturbations in the weight
space to changes in the activation space.

This linear approximation indicates that the ∆h(l) we extract can be interpreted as the image of
the LoRA-induced weight perturbation ∆W under this Jacobian mapping. In other words, ∆h(l)

represents how the stylistic intervention in the weight space manifests within the model’s hidden
representation space, thus providing a direct and disentangled handle for controlling style.

3.3 ROBUST AGGREGATION AND DENOISING

Our objective is to aggregate the collected sample-level difference vectors for each layer into a sin-
gle, robust style vector v(l)

style. A simple baseline, the arithmetic mean, is suboptimal as it conflates
the primary style signal with sample-specific content variations. This indiscriminate averaging in-
troduces noise and fails to isolate the core style direction. To address this, we propose a two-stage
strategy that first denoises the vectors to isolate the style subspace and then performs a robust aggre-
gation within that subspace.

Vector Set Construction and Modeling. We first construct a unified set of style difference vectors
by aligning their directions. Specifically, we negate the vectors derived from the informal style to
align them with the formal style direction:

X(l) = {∆v
(l)
formal} ∪ {−∆v

(l)
informal}. (5)

We model each vector xi ∈ X(l) as a composition of a shared, low-dimensional style signal v(l)
style

and high-dimensional, sample-specific content noise ϵcontent,i:

xi = v
(l)
style + ϵcontent,i. (6)

This model posits that the consistent style direction is the primary signal shared across all samples,
whereas content-related features manifest as diverse noise.

Denoising via PCA. Based on our model, we hypothesize that the shared style signal v(l)
style consti-

tutes the principal components with the highest variance in the set X(l). Conversely, the content
noise ϵcontent,i is distributed across the remaining components of lower variance. Consequently, we

4
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Table 1: Evaluation results on conceptual complexity. Methods with the mean suffix utilize mean
token feature extraction for control. Among these, RepEmean failed and is excluded from the ranking,
CS denotes our Causal-Steer method, and CSsingle denotes the variant trained only on the single
sided (simple) dataset. For all successful methods, the best results are in bold and the second best
are underlined. Arrows (↑/↓) indicate the desired direction for each metric. All ChatGPT-4.1–based
metrics are scored on a 1–10 scale.

Method Model Complex Simple

Rel.↑ Flu.↑ Acc.↑ Diff.↑ F-G.↑ SMOG.↑ C-L.↑ Rel.↑ Flu.↑ Acc.↑ Diff.↓ F-G.↓ SMOG.↓ C-L.↓

CAA Qwen
2.5-7B

-Instruct

9.56 8.71 8.19 5.37 16.28 15.57 15.64 9.57 8.51 7.58 4.18 13.64 11.19 15.71
ITI 9.75 9.08 8.48 5.16 16.64 15.05 15.45 9.67 8.73 7.83 4.17 13.78 17.48 17.14
RepE 9.60 8.76 8.24 5.35 16.28 14.83 14.84 9.71 8.73 8.17 4.37 14.52 17.23 17.93

CAAmean

Qwen
2.5-7B

-Instruct

9.53 8.26 7.91 8.00 19.98 19.24 29.08 9.01 8.36 6.59 2.85 11.97 12.07 10.81
RepEmean 9.81 9.12 8.41 4.99 16.57 15.67 17.59 9.83 9.13 8.68 4.82 14.98 15.00 14.41
ITImean 9.78 8.41 8.30 6.97 18.25 18.03 22.06 8.94 7.87 6.71 3.12 11.92 12.52 10.80
CLMI 8.92 7.97 7.60 8.36 20.67 22.49 26.91 9.50 9.06 7.64 3.47 11.38 11.37 10.02
ReFT 8.96 8.31 7.78 4.11 12.38 14.20 13.46 8.26 7.91 6.87 3.05 12.24 11.23 9.89
CS 9.75 8.35 8.59 8.42 22.78 21.97 31.55 9.29 8.41 6.85 2.77 10.71 9.05 7.46
CSsingle 9.67 8.30 8.56 8.40 23.95 21.14 27.28 9.16 8.34 6.76 2.80 10.33 10.89 9.74

CAAmean

LLaMa
3.1-8B

-Instruct

8.35 6.91 5.53 6.62 20.04 19.68 21.60 6.64 4.89 4.01 1.97 12.69 10.80 9.98
RepEmean 9.24 8.30 6.92 4.33 14.48 15.89 16.25 9.35 8.37 6.66 4.25 13.60 14.45 15.03
ITImean 9.06 7.54 6.33 5.98 18.65 18.90 19.88 6.56 4.98 3.74 2.08 8.27 10.04 9.42
CLMI 9.17 8.28 8.15 6.63 19.00 20.05 26.86 9.41 9.29 7.26 2.96 9.54 10.69 8.67
ReFT 7.29 7.25 6.30 3.12 3.12 11.19 8.15 8.05 8.80 5.71 2.31 7.31 9.76 7.27
CS 9.53 8.34 7.44 7.22 20.54 22.54 29.52 6.88 6.58 4.06 1.92 6.16 8.02 6.97
CSsingle 9.59 8.31 7.94 7.81 21.63 20.17 24.64 8.04 7.61 5.18 2.16 9.04 10.22 8.79

employ PCA to separate the style signal from the content noise. We project each vector xi in X(l)

onto the subspace spanned by the top k principal components:

x̃i = (P
(l)
k )⊤xi, (7)

where the columns of P(l)
k are the top k eigenvectors of the sample covariance matrix. This pro-

jection acts as a filter, preserving the low-dimensional style information while discarding high-
dimensional content variations. Empirically, we find that a small value such as k = 8 is sufficient to
capture the core style variance, supporting our hypothesis that style is a low-dimensional attribute.

Robust Aggregation with Geometric Median. While PCA removes structural noise, outliers from
atypical samples may persist within the projected style subspace. To mitigate their influence, we
perform a robust aggregation using the Geometric Median m̃

(l)
∗ , which is defined as:

m̃
(l)
∗ = argmin

m̃

∑
i

∥x̃i − m̃∥2. (8)

Unlike the arithmetic mean, the geometric median provides a robust measure of centrality that is less
sensitive to extreme values. Finally, we project the aggregated vector back to the original activation
space to obtain the definitive style vector:

v
(l)
style = P

(l)
k m̃

(l)
∗ . (9)

This two-stage procedure yields a robust style vector that generalizes across diverse inputs, enabling
reliable and controllable style steering at inference time.
3.4 STYLE CONTROL AT INFERENCE VIA ACTIVATION STEERING

A key advantage of Causal-Steer is its ability to enable bidirectional control from a single style vec-
tor. This vector can be extracted from a non-parallel corpus representing only the target property
(e.g., complex concepts), yet it can steer generation towards or away from that property. We achieve
this control at inference time via activation steering, a method that directly modifies a model’s inter-
nal activations without altering its weights.

Specifically, for a selected set of layers Lsteer (see Section 4.3 for selection details), we intervene in
the output of the MLP submodule during the generation of each token t. We add the pre-computed,
normalized style vector v(l)

style to the original activation z
(l)
t , scaled by an intensity coefficient α:

z
′(l)
t = z

(l)
t + α ·

v
(l)
style

∥v(l)
style∥2

. (10)
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Figure 3: A comparison of the control effectiveness of Causal-Steer against two baselines on Com-
plexity and Formality tasks. The results demonstrate that by adjusting the coefficient α, Causal-Steer
effectively steers the target style while maintaining high scores for Relevance and Fluency.

Here, v(l)
style is the robust style vector derived previously. We normalize it to ensure that the interven-

tion strength is determined solely by the tunable scalar α.

The coefficient α provides continuous and fine-grained control over the output’s complexity level. A
positive α guides the model towards the target property (e.g., complex), whereas a negative α steers
the activations in the opposite direction (e.g., simple). When α = 0, the original model behavior
is recovered as the activations remain unchanged. This method transforms complexity control into
a single, interpretable parameter. Since style vectors are pre-computed, the intervention is a simple
vector addition with negligible computational overhead. This makes the method highly efficient and
flexible, allowing for smooth interpolation of concept complexity without any model retraining.

4 EXPERIMENTS

Table 2: Ablation study results on the Qwen2.5-
7B-Instruct model.

Method Complex Simple

Flu. Acc. Diff. Flu. Acc. Diff.

Causal-Steer 8.35 8.59 8.42 8.41 6.85 2.77
-w/o Contrast 8.24 8.50 8.24 8.31 6.87 3.01
-w/o Difference 8.21 7.95 7.90 8.50 6.67 2.85
-w/o Mean Token 7.41 7.28 4.26 8.94 8.24 4.73
-w/o PCA 8.18 8.27 8.18 7.31 5.20 2.81
-w/o Mean 8.28 8.48 8.24 8.36 6.61 2.82

Datasets. We evaluate Causal-Steer on three
stylistic control tasks: conceptual complexity,
toxicity detoxification, and formality control.
For our primary task of conceptual complex-
ity, we extract style vectors from the Scale
dataset (Wang et al., 2025) and evaluate on the
ELI5 dataset (Fan et al., 2019). To assess gen-
eralization, we test toxicity control using vec-
tors from APPDIA (Atwell et al., 2022) on the
RealToxicityPrompts corpus (Gehman et al.,
2020), and formality control using data from Zhang et al. (2020) evaluated on ELI5. Further details
on data preprocessing and statistics are provided in the Appendix D.

Baselines. We benchmark Causal-Steer against a comprehensive suite of baselines including Rep-
resentation Engineering (RepE) (Zou et al., 2023), Contrastive Activation Addition (CAA) (Turner
et al., 2023a), Inference-Time Intervention (ITI) (Li et al., 2023), Continuous Language Model In-
terpolation (CLMI) (Kangaslahti & Alvarez-Melis, 2025), ReFT (Wu et al.), POSPROMPT, Arith-
metic (Dekoninck et al., 2023), ActAdd (Turner et al., 2023b), and GCAV-Output (Zhang et al.,
2025). Further details on each baseline are provided in the Appendix C.

Evaluation Metrics. For conceptual complexity control, we assess Relevance, Fluency, Scientific
Accuracy, and Knowledge Difficulty using ChatGPT-4.1 (OpenAI, 2025), supplemented by the au-
tomated Flesch Grade Level (Flesch, 2007), SMOG (Mc Laughlin, 1969), Coleman-Liau (Coleman
& Liau, 1975), and human evaluation in the Appendix E. For formality control, we evaluate Tone
Appropriateness, Relevance, Fluency, and Formality using GPT-4.1. We also use the popular s-
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nlp/roberta-base-formality-ranker model1 from Hugging Face as the text formality style prediction
model. This is a binary classification model, and we use the probability value as the text formal style
strength. Finally, detoxification performance is measured by the maximum toxicity score from the
Perspective API2. Full evaluation prompts are detailed in the Appendix G.

For the ChatGPT-4.1 metrics, we conducted three measurements and reported their average. Because
the ChatGPT-4.1 scores were highly consistent, the standard deviations across the three runs were
very small. Due to space constraints, we report only the average values and omit the standard
deviations. All scores range from 1 to 10.

4.1 MAIN RESULTS ON CONCEPTUAL COMPLEXITY CONTROL
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Figure 4: Heatmap of average style control scores across
layer blocks. The y-axis and x-axis represent the start and
end indices for the intervention block, respectively. Scores
are averaged over multiple runs.

Table 1 presents the quantitative re-
sults for controlling conceptual com-
plexity. Causal-Steer significantly
outperforms most baselines across
both the Qwen2.5-7B-Instruct(Qwen
et al., 2024) and LLaMa3.1-8B-
Instruct(Grattafiori et al., 2024). The
framework demonstrates strong style
control while maintaining high gen-
eration quality. When steering to-
wards “Complex”, Causal-Steer ex-
hibits superior control. On Qwen2.5-
7B, for instance, it achieves the high-
est difficulty score (8.42) and Flesch
grade (22.78), producing conceptu-
ally advanced content without sac-
rificing relevance or fluency. Con-
versely, for the “Simple” condition,
Causal-Steer consistently records the
lowest difficulty and Flesch grade
scores. These results confirm our
vector’s capacity for precise bidirec-
tional steering.

The analysis of the baselines reveals
the importance of our activation strat-
egy. Methods like the original CAA, ITI, and RepE rely on activations from the final token. This
approach necessitates high-quality parallel corpora to be effective. As shown in the table, adapting
CAA to use mean activations (CAAmean) substantially enhances its control capabilities. In contrast,
RepEmean still fails. We attribute this failure to its use of PCA for analyzing activations, a technique
that requires a much larger dataset to identify a meaningful style direction. This hypothesis is sup-
ported by our generalization experiments, where its performance improves on the larger Formality
dataset (16,000 examples) (Zhang et al., 2020).

Although CLMI achieves commendable results in style control, its primary limitation is a failure to
disentangle style from content during fine-tuning. Consequently, the model learns to associate the
target style with specific content from its training data, leading to the generation of content artifacts.
CLMI’s outputs are consistently shorter (approx. 100 tokens) than those of other methods (approx.
500 tokens), mirroring its training data in both length and structure. This highlights that Causal-
Steer succeeds by isolating a pure style vector. This isolation enables robust, generalizable control,
which is unachievable by other methods that suffer from severe content-style entanglement.

1https://huggingface.co/s-nlp/roberta-base-formality-ranker
2https://perspectiveapi.com
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4.2 SINGLE-SOURCE BIDIRECTIONAL CONTROL

Beyond the standard setting with two style-specific LoRA adapters, Causal-Steer also supports bidi-
rectional control when both the adapter and the steering vector are learned from a single-sided cor-
pus. To verify this, we construct a variant, denoted CSsingle, that uses only the Simple subset of the
Scale dataset. In this variant, we remove the contrastive loss used in Section 3 and fine-tune a single
LoRA on Simple answers with the standard supervised objective. We then apply the same causal-
intervention procedure to extract one style vector. At inference time, we use a positive steering
coefficient α > 0 for the learned style and a negative coefficient α < 0 to steer in the opposite (more
complex) direction. As shown in Table 1, CSsingle achieves remarkable performance, effectively
demonstrating robust bidirectional control even when trained on single-sided data.

We further compare this single-source setting against ReFT. While ReFT performs well when steer-
ing in the learned direction (positive scaling), it fails significantly when we attempt bidirectional
control. Specifically, applying a negative coefficient for ReFT does not yield the opposite style;
instead, it leads to severe generation artifacts, such as repetition and hallucinations, without suc-
cessfully shifting the style. We hypothesize that this failure stems from the nature of the learned
representation: ReFT likely learns a vector representing the residual between the base model and
the dataset outputs, rather than an intrinsic style vector. Consequently, simply reversing this residual
is semantically meaningless, causing model collapse. In contrast, our method explicitly learns the
style vector itself, thereby enabling stable and valid bidirectional control.

4.3 ANALYSIS OF THE CONTROL MECHANISM

To better understand the properties of Causal-Steer, we conduct a deeper analysis of its control
linearity and layer-wise sensitivity.
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Figure 5: Two-Dimensional Stylistic Control. Model out-
put scores for (a) Knowledge Difficulty and (b) Formality
under simultaneous steering.

Linear and Stable Stylistic Con-
trol. A core objective of Causal-
Steer is to enable continuous and
predictable control over style. Fig-
ure 3 evaluates this by plotting per-
formance metrics against the steering
coefficient α. The results for Causal-
Steer demonstrate a strong, approxi-
mately linear relationship between α
and the target style metrics, Formal-
ity and Knowledge Difficulty. As α
increases, the intended stylistic inten-
sity grows predictably. Critically, this
control is achieved with minimal im-
pact on generation quality. Key met-
rics such as Relevance and Fluency remain high across a wide operational range of α values, show-
ing degradation only at extreme settings. This stability highlights the effectiveness of our robust
aggregation pipeline.

The CLMI reveals a more fundamental limitation. Its control is effectively confined to the spectrum
between its two training endpoints, corresponding to a safe operational range for α between 0 and
1. Because this method functions by interpolating between the weights of two fine-tuned models,
it cannot extrapolate beyond the styles observed during training. Attempting to push the model
outside this bounded range, for instance, by setting α to values like -1 or 2, results in a catastrophic
collapse in generation quality, causing all performance metrics to plummet. This means the method
cannot generate content that is, for example, more formal than the examples in its formal dataset
without sacrificing coherence. This fundamentally restricts its utility to a narrow style range and
prevents true creative or intensified style generation. The comparison confirms the superiority of
Causal-Steer in creating a genuinely continuous, wide-ranging, and robust control mechanism.

Identifying Optimal Layers for Intervention. We investigate which layers are most influential
for style control to inform an optimal intervention strategy. Figure 6 visualizes the average style
score achieved by applying our steering vector across different continuous blocks of layers, defined

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

by a start and end index in Qwen2.5-7B-Instruct. When calculating the average score, we applied a
penalty for outputs that collapsed into repetitive, meaningless content. The heatmap reveals a clear
pattern: the most effective control (indicated by the highest positive scores in orange and red) is
concentrated in the mid-to-late layers of the model. Specifically, interventions starting around layer
18 and extending to approximately layer 23 yield the strongest stylistic effect. Intervening in the
initial layers (1-10) proves far less effective and can even be detrimental to the output. This empir-
ical result aligns with the prevailing hypothesis that later transformer layers encode more abstract
semantic and stylistic information (Zhang et al., 2025). Based on this analysis, we apply steering to
layers 18 through 23 in our main experiments, as this range provides a robust and powerful locus for
style manipulation.

4.4 ABLATION STUDIES

Table 3: Performance of different methods on Formal and
Informal datasets.

Method Formal Informal

Rel.↑ Flu.↑ Tone.↑ For.↑ P.F.↑ Rel.↑ Flu.↑ Tone.↑ For.↓ P.F.↓

CAAmean 9.05 6.25 8.12 6.83 0.91 9.28 8.08 5.65 2.30 0.32
RepEmean 9.79 8.47 8.82 6.38 0.96 8.90 6.68 5.59 2.80 0.72
ITImean 9.73 8.26 8.29 5.86 0.91 7.54 5.12 4.71 2.71 0.78
CLMI 9.80 9.37 9.41 7.58 0.88 8.82 7.70 5.94 2.40 0.36
CS 9.84 8.66 9.55 8.61 0.98 9.38 7.73 5.74 2.22 0.20

We conduct an ablation study to vali-
date the necessity of each component
in Causal-Steer. As shown in Table 2,
every component is critical for opti-
mal performance.

Removing the contrastive learning
objective (“-w/o Contrast”) causes a
notable decline in control effective-
ness. Forgoing the differential acti-
vation (“-w/o Difference”) also measurably weakens control. Both results validate our causal in-
tervention strategy. The aggregation pipeline is equally important; removing PCA (“-w/o PCA”) or
using a simple arithmetic mean (“-w/o Mean”) degrades performance by failing to properly denoise
the style signal. Finally, using only the last token’s representation (“-w/o Mean Token”) instead
of averaging across all tokens severely diminishes control intensity, underscoring the need for a
holistic style signal. These findings confirm that all components contribute synergistically to the
framework’s effectiveness.

4.5 MULTI-ATTRIBUTE CONTROL

Causal-Steer’s capabilities extend beyond single-attribute manipulation to natural, multi-
dimensional style control. This is theoretically grounded in the sparse nature of high-dimensional
vector spaces, which permits the linear superposition of multiple style vectors (Liang et al., 2024).
By simply adding the vectors for different attributes, we can achieve simultaneous and composable
control over the generation process.

Figure 7 provides an empirical demonstration of this principle, where we jointly steer for Formality
and Conceptual Complexity . The figure presents two heatmaps showing the resulting style scores as
a function of the formality coefficient α1 (horizontal axis) and the knowledge coefficient α2 (vertical
axis). Specifically, Subfigure (a) illustrates the model’s output Knowledge Difficulty Score, while
Subfigure (b) shows the generated Formality Score. The heatmaps demonstrate that as the control
signals α1 and α2 are varied, the corresponding style scores undergo a smooth and continuous
transition. Furthermore, the plots reveal a positive correlation between the two attributes. Intensi-
fying one style’s control signal produces a corresponding change in the score for the other style. For
example, increasing the conceptual complexity signal (α2) also tends to increase the formality score,
and vice versa. This observation highlights the inherent semantic interplay between advanced con-
ceptual content and formal language. The smooth and predictable gradients across both heatmaps
provide strong evidence that Causal-Steer enables fine-grained and continuous control over multiple
stylistic dimensions, while effectively capturing their natural associations.

4.6 GENERALIZATION TO OTHER CONTROL TASKS

To assess the generalizability of Causal-Steer beyond conceptual complexity, we evaluated its per-
formance on two distinct stylistic control tasks: formality control and text detoxification.

Table 3 presents the results for Formality task. Causal-Steer demonstrates superior control over the
target style, achieving the highest formality score (8.61) when steering towards formal style and
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one of the lowest scores (2.22) when steering towards informal style. Crucially, this high degree of
stylistic control is attained while simultaneously yielding the highest scores for relevance and sci-
entific accuracy, indicating that Causal-Steer effectively modulates style without degrading content
quality.

Table 4: Comparison of toxicity control methods
on two test sets. Toxicity (lower is better) and per-
plexity (PPL, lower is better) are reported.

Model Toxicitytoxic Toxicityrandom

Toxicity ↓ PPL ↓ Toxicity ↓ PPL ↓

Baseline 0.1807 13.71 0.0956 19.23
POSPROMPT 0.1913 59.98 0.1008 18.32
ActAdd 0.1620 34.08 0.0852 12.61
Arithmetic 0.1625 6.84 0.0816 7.34
GCAV-Output 0.0879 21.29 0.0622 6.08
Causal-Steer 0.0609 12.95 0.0520 8.18

Furthermore, we applied Causal-Steer to the
critical safety task of detoxification with
Llama-2-7b-chat (Touvron et al., 2023b), with
results shown in Table 4. Causal-Steer sig-
nificantly outperforms all baselines, achieving
the lowest toxicity scores on both the toxic
and random test sets, where both evaluations
involve one-way detoxification rather than the
bidirectional control used in our other exper-
iments. This detoxification performance is
achieved while maintaining a competitive per-
plexity (PPL), suggesting that Causal-Steer ef-
fectively mitigates toxicity without severely compromising the model’s linguistic coherence. These
experiments collectively demonstrate that our proposed vector extraction and steering mechanism
provides a versatile and effective solution for a wide range of attribute control problems. We also
tested Causal-Steer cross-lingually, detailed cases are in Appendix J.

Table 5: Comparison of Model Responses
α Question: Do magnetic and/or electric field have any influence on time and space?

10 Yes,..., Electric and magnetic fields do not directly change spacetime, but they can affect how
particles move, which influences how time and distance are measured in practice...

-5 Yes,..., In general relativity, electromagnetic fields contribute to spacetime curvature through
their energy, meaning that strong fields can slightly alter the geometry of spacetime...

-20 Yes,..., Within the framework of Einstein’s general relativity, the interaction between electro-
magnetism and gravity is formally described by the Einstein–Maxwell equations, where the
stress–energy tensor of the electromagnetic field directly enters Einstein’s field equations to
determine spacetime curvature...

4.7 CASE STUDY

Table 5 illustrates representative responses under different control strengths α. As α decreases, the
generated answers gradually shift from intuitive and accessible descriptions to more theoretical and
domain-specific explanations, ranging from practical comments on measurement effects (α = 10)
to discussions of spacetime curvature (α = −5), and finally to highly academic references such
as the Einstein–Maxwell equations (α = −20). This demonstrates that α serves as a continuous
control knob, enabling smooth adjustment of responses along a spectrum from layperson-friendly to
technical. For brevity, we only present a condensed example here, while the complete outputs and
additional cases are provided in the Appendix H.

5 CONCLUSION

We introduced Causal-Steer, a novel framework for fine-grained style control in LLMs that removes
the dependency on parallel corpora by leveraging LoRA as a causal intervention to disentangle
style vectors. Supported by a robust aggregation pipeline, our method successfully isolates a pure
style signal from non-parallel data. Experimental results demonstrate that Causal-Steer enables
linear, bidirectional, and compositional control over diverse stylistic attributes such as conceptual
complexity and formality, while preserving generation quality and exhibiting strong cross-lingual
adaptability. These findings highlight the practicality and effectiveness of our approach, offering a
continuous and robust paradigm for adaptive and steerable language models beyond discrete control.
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ETHICS STATEMENT

Our research fully adheres to ethical guidelines for responsible AI and machine learning research.
All datasets used in our experiments are publicly available datasets. No proprietary, sensitive, or
private data was used in this study.

In addition to computational experiments, we conducted a small-scale human study to assess text
style. Participation was voluntary, and all participants provided informed consent before taking
part. The study was reviewed and approved under our institution’s internal review procedures, and
participants’ privacy and confidentiality were fully protected. All collected data was anonymized
and used exclusively for research purposes.

We acknowledge that responsible research entails careful consideration of potential harms and social
impacts. Our work does not involve manipulative, discriminatory, or unsafe practices, and we have
designed our experiments to minimize any negative consequences to participants and the broader
community.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our work. First, detailed descrip-
tions of our methods, model architectures, and algorithms are provided in the main text, and the
corresponding code is made available through the anonymous repository https://anonymous.
4open.science/r/cs-01C1, which is also referenced in the supplementary materials. Sec-
ond, all datasets used in our experiments are publicly available and included in the anonymous
repository, along with complete data processing steps and instructions necessary to replicate our
experiments. Third, in the appendix, we provide detailed explanations of the experimental setup,
hyperparameters, evaluation protocols, including prompt design and review procedures, to allow
accurate replication of our computational and human-in-the-loop experiments. Together, these re-
sources provide all information necessary for reproducing our results.
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A STATEMENT ON THE USE OF LLMS

We report the use of a large language model in the preparation of this manuscript. Specifically, we
used Gemini 2.5 (Gemini Team, 2025) to identify and correct grammatical errors and to improve the
overall readability of the text. The authors retained full responsibility for all content, and the final
version of the paper reflects our own edits and revisions.

B DETAILS OF EXPERIMENTAL CONFIGURATION

To ensure the reproducibility of our results, we provide a detailed description of the experimental
configuration used for training, inference, and evaluation. All experiments were conducted on four
NVIDIA A100 GPUs with 80GB memory each. Our model was trained for a total of 2 epochs
with a per-device batch size of 8, a learning rate of 1 × 10−4, gradient accumulation steps set to 1,
and a maximum sequence length of 512 tokens. For parameter-efficient fine-tuning, we employed
Low-Rank Adaptation (LoRA) with a rank r = 8, scaling factor α = 16, and a dropout rate of 0.05.
The PEFT library was used to automatically identify and adapt the appropriate linear layers within
the model. In addition, a contrastive learning objective was incorporated with the contrastive loss
weight λ = 0.05. For inference, we used deterministic decoding (greedy search without sampling)
with a maximum generation length of 512 tokens. During evaluation with GPT-based scoring, the
temperature was set to 0.2 to ensure stability and consistency of judgments.

C DETAILS OF BASELINES

We benchmark our method against a comprehensive suite of baselines for controllable generation,
categorized into prompt-based and activation-based approaches. For our primary task of conceptual
complexity control, we include zero-shot instructional prompting and three prominent activation
steering methods: Representation Engineering (RepE) (Zou et al., 2023), Contrastive Activation Ad-
dition (CAA) (Turner et al., 2023a), and Inference-Time Intervention (ITI) (Li et al., 2023). Distinct
from these activation-based techniques, we also include Continuous Language Model Interpola-
tion(CLMI) (Kangaslahti & Alvarez-Melis, 2025) for our main experiment, which achieves control
by interpolating the weights of Low-Rank Adapters (LoRA) rather than steering activations. For
the activation-based methods, we evaluate both the standard approach using the final token’s hid-
den state and a stronger variant we implement that averages hidden states across all tokens (-avg).
For the toxicity detoxification task, we include additional specialized baselines such as the prompt-
based POSPROMPT and activation steering methods including Arithmetic (Dekoninck et al., 2023),
ActAdd (Turner et al., 2023b), and GCAV-Output (Zhang et al., 2025).

D DETAILS OF DATASETS

We evaluate our method on a primary task of controlling conceptual complexity and assess its gen-
eralizability on two additional stylistic dimensions: toxicity detoxification and formality control.

For our primary task, conceptual complexity, we extract the corresponding style vector from the
Scale3, a question-answering corpus with graded difficulty levels. We then evaluate the model’s
ability to modulate content difficulty on a test set of 100 questions randomly sampled from the
ELI5 dataset (Fan et al., 2019).

To demonstrate the versatility of our method, we conduct two generalization experiments. For tox-
icity control, we derive the style vector from the APPDIA dataset (Atwell et al., 2022), which pro-
vides aligned toxic and detoxified sentence pairs. We evaluate its performance following the setup
of Zhang et al. (2025) on two subsets of the RealToxicityPrompts corpus (Gehman et al., 2020):
one with highly toxic prompts and another with randomly sampled ones. For formality control, we
extract the style vector from 16,000 sentence pairs randomly sampled from the parallel corpus of
Zhang et al. (2020).

3https://huggingface.co/wa57/Scale
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Since both the APPDIA and formality datasets are originally composed of parallel sentences rather
than question–answer pairs, we adapt them to the instruction-following setting: we use GPT-4.1 to
generate corresponding questions q for each pair and slightly modify the answers to better align with
instruct-style training. The exact prompting procedure is detailed in Appendix G.1, and the adapted
datasets are provided both in the appendix and via our anonymous repository.

E HUMAN EVALUATION

Table 6: Human evaluation results based on Best-
Worst ranking. We report the percentage of times
each method was chosen as Best, Middle, or
Worst by 3 annotators across 50 questions. A
higher ’Best’ percentage indicates stronger pref-
erence.

Method Complex Style (%) Simple Style (%)

Best Middle Worst Best Middle Worst

CLMI 11.3 25.3 63.3 14.7 28.0 57.3
CAAmean 23.3 41.3 35.3 26.0 45.3 28.7
Ours 65.3 33.3 1.3 59.3 26.7 14.0

To better assess the relative performance of our
method, we conducted a human evaluation us-
ing a Best-Worst Scaling methodology. This
approach reduces annotator bias compared to
direct scoring. For each of the 50 test ques-
tions, 3 annotators were shown the Simple and
Complex outputs from our method, CAAmean,
and CLMI in a randomized, blind setting. For
each set of three, they were asked to select the
single “Best” and “Worst” response based on a
holistic judgment of style appropriateness and
overall quality (e.g., fluency, coherence).

The results, summarized in Table 6, show a
strong preference for our method. For the Com-
plex style, our model was chosen as “Best” in a decisive 65.3% of cases, significantly outperforming
CAAmean (23.3%) and CLMI (11.3%).

A similar trend was observed for the Simple style, where our method was again preferred as “Best”
in 59.3% of evaluations. This confirms its robust bidirectional control. The low percentage of our
method being selected as “Worst” (1.3% for Complex and 14.0% for Simple) further underscores
its stability and reliability. In contrast, CLMI was rated “Worst” in the majority of cases (63.3% for
Complex), highlighting its limitations in achieving effective style control. These findings from our
comparative human evaluation strongly validate the superiority of our proposed framework.

F COMPUTATIONAL OVERHEAD

Table 7: Inference speed in tokens per
millisecond (tokens/ms). Higher val-
ues are better. Our method maintains a
speed comparable to the baseline.

Configuration Speed (tokens/ms)

Baseline 1.17
1 vector, α = 20 1.13
1 vector, α = 30 1.16
2 vectors, α = 20 1.12
2 vectors, α = 30 1.04

The primary computational cost of our framework is in-
curred during the offline style vector extraction phase. In
contrast, the overhead during online inference is negligi-
ble. As shown in Table 7, the generation speed, measured
in tokens per millisecond, remains nearly identical to the
baseline even when applying multiple steering vectors si-
multaneously. The control intensity (α) has no impact on
this speed, as the underlying operation is a simple vector
addition. This efficient design, which concentrates com-
putational effort into a one-time offline process, makes
our method highly practical for real-time applications.
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G PROMPTS

G.1 PROMPTS FOR DATASETS REWRITE

Transform the given pair of parallel sentences (e.g., formalinformal, toxicdetoxified) into a unified QA
format.

Steps
1. Generate one natural and coherent question (Q) that could reasonably elicit both given answers.
2.Produce two answers (A1 and A2) corresponding to the styles in the original parallel data:
− If the pair is formal vs. informal, ensure that A1 is informal and A2 is formal.
− If the pair is toxic vs. detoxified, ensure that A1 retains the toxic style while A2 provides the detoxified

version.
3. You may expand the answers with additional content to increase richness, but keep both answers

semantically consistent with each other.
4. Always preserve the intended style (informal vs. formal; toxic vs. detoxified).

G.2 PROMPTS FOR CONCEPTUAL COMPLEXITY TASK

You are an expert evaluator for natural language generation quality.
Evaluate the following text based on four dimensions. Focus especially on conceptual complexity.
1. Relevance: Does the response stay on topic and directly address the question or topic without irrelevant

content?
2. Fluency: Is the language clear, coherent, and easy to read, with proper grammar and logical flow?
3. Scientific Accuracy: Are the knowledge points and explanations factually correct and reliable based on

authoritative sources?
4. Knowledge Difficulty: Assess whether the knowledge level matches the expected difficulty.

− Higher scores: Highly technical or research−level content suitable for graduate−level understanding.
− Lower scores: Simple, introductory, or popular−science level explanations.

Give each dimension a score from 1 (poor) to 10 (excellent).

G.3 PROMPTS FOR FORMALITY TASK

You are an expert evaluator for natural language generation quality.
Evaluate the following text based on four dimensions. Focus especially on formality.
1. Relevance: Does the response stay on topic and directly address the question or topic without irrelevant

content?
2. Fluency: Is the language clear, coherent, and easy to read, with proper grammar and logical flow?
3. Tone Appropriateness: Is the tone of the response (e.g., professional, casual, empathetic, neutral)

suitable for the prompt’s context and implied audience?
4. Formality: Assess the text’s level of formality based on word choice, sentence structure, and adherence

to stylistic conventions.(Assign a score of 5 for standard model output.)
− Higher scores: Highly formal language, sophisticated vocabulary, complex sentence structures, and an

objective tone. Avoids slang, contractions, and colloquialisms.
− Lower scores: Highly informal or conversational language. May use slang, contractions, simple

sentence structures, and a personal or subjective tone.
Give each dimension a score from 1 (poor) to 10 (excellent).
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H CASE OF CONCEPTUAL COMPLEXITY TASK

Question: Do magnetic and/or electric fields have any influence on time and space?

α = 10 (Simple)

Yes, both the electric and magnetic fields can affect how we measure time and distance in certain situations
, especially when dealing with very fast speeds close to light or strong gravitational fields.

1.**Electric Field**: In general relativity, an electric charge at rest creates no direct effect on spacetime
that would change our usual way of measuring distances and times (like using clocks). However, if
you consider charged particles moving through an electromagnetic field, it’s important to remember
that they experience forces from those fields which could make their paths twist around as seen from
other frames of reference. But this doesn’t directly mean there is a change in the measurement of
time and space for them; rather, it means that things get more complicated because now you need to
take into account not just gravity but also these extra forces coming from the electric charges.

2.**Magnetic Field**: Similar to the case with electric fields, a single magnet sitting still wont cause
changes in measurements of time and space unless something else interacts with its field. When
considering objects moving near each other under the influence of magnets, like two wires carrying
current, then yes, the movement of one wire affects another due to the changing magnetic field,
making everything move differently than expected without taking the magnetic force into
consideration. This makes the path taken look different depending where you’re standing kind of like
seeing someone walk diagonally instead of straight ahead while riding on a merry−go−round!

3.**Spacetime Curvature Due To EM Energy**: Just like mass curves spacetime according to General
Relativity, energy carried by photons (light) does so too. So having lots of electricity and magnetism
swirling about will curve spacetime slightly, much like putting a heavy ball down onto a trampoline
causes it to bend downwards. It might be tiny bending compared to planets and stars, but it exists!

In summary, while individual static electric and magnetic fields don’t usually warp time and space
themselves, once you start talking about moving charges.

α = −5 (Medium)

Yes, both the electromagnetic fields (electric and magnetic) can indeed affect spacetime according to
modern physics theories, particularly general relativity.

In Albert Einstein’s theory of General Relativity, gravity is described as curvature in spacetime caused by
mass and energy. This means that not only does massive matter curve spacetime but also strong or
dynamic electromagnetic fields can contribute to this curvature under certain conditions. Specifically:

1. **Einstein−Maxwell Equations**: These equations combine Maxwells equations for electromagnetism
with Einsteins field equations from general relativity. They describe how an electromagnetic field
affects the geometry of spacetime through its stress−energy tensor term.

2. **Gravitomagnetic Effects**: In extreme scenarios involving very high currents or intense magnetic
fields, there could be significant gravitomagnetic effects predicted by these unified models. However,
such effects would typically require extremely large−scale phenomena beyond what we encounter in
everyday situations.

3. **Quantum Gravity Theories**: At quantum scales, where gravitational forces become comparable to
other fundamental interactions like those mediated by the electromagnetic force, more speculative
theoretical frameworks may come into play. Some proposals within loop quantum gravity or string
theory suggest that even at microscopic levels, electromagnetic fields might influence spacetime
structure indirectly via their contributions to the overall quantum state of spacetime.

4. **Experimental Observations**: While direct experimental evidence supporting these predictions
remains limited due to technological constraints, indirect observations and precision measurements
continue to refine our understanding of how strongly coupled systems behave near black holes or
neutron starsenvironments characterized by highly relativistic and possibly magnetized conditions.

It’s important to note that while theoretically possible, the practical implications of electromagnetic
influences on spacetime remain largely confined to astrophysical contexts rather than macroscopic
terrestrial environments. Nonetheless, ongoing research continues to explore these fascinating
intersections between electrodynamics and gravitational physics.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

α = −20 (Complex)

Yes, both electromagnetic fields (which encompass the electric and magnetic fields) can indeed exert
influences on spacetime within certain theoretical frameworks of modern physics.

### Electromagnetic Fields in General Relativity
In the context of general relativity, formulated by Albert Einstein, gravitational effects are described

through the curvature of spacetime. However, this framework primarily accounts for mass−energy
contributions to such curvature. Recent interpretations and extensions of these theories incorporate
electrodynamics into considerations of spacetime structure:

1. **Quantum Gravity Theories**: These speculative frameworks attempt to reconcile quantum mechanics
with general relativity. In some models, quantized electromagnetic interactions could contribute non

−trivially to spacetime metrics at microscopic scales.
2. **Non−Linear Electrodynamics**: Certain modifications or nonlinear formulations of classical

electromagnetism predict deviations from Maxwellian predictions under extreme conditions relevant
to high−field regimes near black holes or compact astrophysical objects.

### Quantum Electrodynamic Effects
At the microscale, phenomena governed by quantum electrodynamics (QED), which is an extension of

classical electrodynamics incorporating principles of quantum mechanics, exhibit significant
implications:

1. **Casimir Effect**: This phenomenon arises due to quantum fluctuations in vacuum states between two
closely spaced conductive surfaces. It involves spatial configurations influenced by electromagnetic
boundary conditions, manifesting as measurable physical forces.

2. **Vacuum Polarization**: Within QED, virtual particle pairs (electrons and positrons) transiently
interact with intense electromagnetic fields, leading to observable macroscopic consequences via
renormalization parameters.

### Lorentz Violations and Anisotropic Spacetimes
Theoretical explorations often invoke violations of local Lorentz symmetryspatial isotropy and temporal

homogeneity postulated foundational tenets of special relativistic formalismsto model emergent
phenomenological descriptions consistent with experimental data across various energy scales.

I CASE OF FORMALITY TASK

Question: why do most bipedal robots always keep their knees bent a bit when standing?

α = −25 (Informal)

Most bipedal robots keep their knees slightly bent for several reasons:

1. **Stability**: Keeping the legs in a slight bend helps with balance and stability. When the robot is
standing still or walking, this position makes it easier to stay upright without falling over.

2. **Energy Efficiency**: A little bend in the knee can help save energy because its not as hard on the
motors that move the leg parts (like servos). It’s like how you might bend your knees before jumping
it uses less power but gives more push−off force.

3. **Shock Absorption**: Just like humans, bending at the knees can act as a shock absorber during steps
or jumps. This means the robot doesnt have to work so hard to handle bumps or uneven ground.

4. **Flexibility \& Range of Motion**: Bending the knees keeps them from getting stuck straight up or
down all the time. This lets the robot be more flexible about where its feet go next, which is important
if it needs to walk around stuff or change directions fast.

5. **Less Stress On Joints And Bones** : In real life, keeping joints loose instead of locked up stops
things from breaking under pressure. Same goes for these bots − they don’t want metal bones
snapping!

So basically, just like we use our bodies’ bends to feel comfy and strong while standing, robots get way
into those same tricks too!
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α = −10

Most bipedal robots maintain a slight bend in their knees while standing for several reasons:

1. **Stability**: Keeping the legs at an angle (bent) helps distribute weight more evenly and provides
better stability against tipping over. This is similar to how humans stand with slightly bent knees.

2. **Energy Efficiency**: A small amount of knee flexion can help store potential energy as elastic strain
in the leg muscles or tendons. When walking or running, this stored energy can be released to assist
in propelling the robot forward, making it more efficient.

3. **Shock Absorption**: The slight bend acts like a shock absorber during movement. It reduces impact
forces on both joints and other parts of the body, which could otherwise cause damage from repeated
hard landings.

4. **Joint Health**: Maintaining some degree of joint flexibility prevents stiffness that might occur if they
were locked straight all the time. Stiffness increases wear and tear on mechanical components.

5. **Control Precision**: In robotics, keeping certain angles allows engineers to fine−tune control
algorithms because there’s less chance of hitting physical limits compared to having fully extended
limbs where you’d hit ”hard stops.”

6. **Humanoid Design Consistency**: For humanoid robots designed to mimic human movements,
maintaining a natural stance makes them look more lifelike and easier to interact with since people
expect others to have naturally curved postures rather than rigidly upright ones.

Overall, these factors contribute to improving performance, longevity, and user interaction for bipedal
robots!

α = 10

Most bipedal robots maintain a slight bend in the knee for several reasons related to stability and efficiency
:

1. **Stability**: A slightly bent posture helps improve balance and stability. This is similar to how
humans naturally stand with some degree of flexion at the knees. The bending allows the robot’s
center of mass to be more centrally positioned over its base, reducing the risk of tipping or falling.

2. **Energy Efficiency**: Bent knees can help reduce energy consumption during static stance phases. By
maintaining this position, the mechanical systems (such as motors) require less effort to support the
weight of the body without additional strain on joints that might occur if they were fully extended.

3. **Dynamic Stability During Movement**: When performing dynamic movements such as walking or
running, having flexible joint angles like those found in human anatomy enables better control and
adaptability. Bipedal robots often use these principles to enhance their ability to navigate various
terrains and respond to external forces dynamically.

4. **Biological Inspiration**: Many robotic designs draw inspiration from biological models, including
human locomotion patterns. Mimicking natural postures can lead to more effective and efficient
movement strategies.

5. **Reduction of Stress on Joints and Components**: Keeping certain joints moderately flexed reduces
stress on both the physical components within the robot and potential wear and tear associated with
prolonged periods of full extension.

These factors collectively contribute to why many bipedal robots adopt a posture involving mild knee
bends while standing or moving. However, specific design choices may vary based on the intended
application, capabilities, and goals of each individual robot model.
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α = 20 (Formal)

Most bipedal robots maintain a slight bend in the knee for several reasons:

1. **Stability and Balance**: Bending the knees slightly helps to enhance stability and balance. This
posture allows the robot to distribute its weight more effectively across the lower limbs, reducing the
risk of tipping or imbalance.

2. **Postural Adaptation**: Human beings naturally adopt such postures due to biomechanical advantages
that facilitate efficient movement and support various activities. Similarly, robotic designs often
mimic human postures to improve functionality and adaptability.

3. **Flexibility and Dexterity**: A slight bend in the knees provides greater flexibility and dexterity,
enabling the robot to perform a wider range of actions with ease. It facilitates movements such as
walking, climbing, and manipulation tasks.

4. **Energy Efficiency**: Bent knees can contribute to energy efficiency during locomotion by allowing
smoother transitions between different phases of gait (such as stance phase and swing phase).

5. **Safety Considerations**: Maintaining an upright yet flexible posture reduces stress on joints and
musculature over prolonged periods, which is crucial for long−term operation without fatigue or
damage.

6. **Mimicry of Natural Movements**: Many robotic systems aim to emulate natural human behaviors to
better integrate them into environments where they interact closely with humans, thereby enhancing
social acceptability and effectiveness.

These factors collectively explain why many bipedal robots employ a posture characterized by mild flexion
at the knees while maintaining other aspects similar to those observed in human physiology.
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J CASE OF CROSS-LANGUAGE GENERALIZATION

To further evaluate the cross-lingual capability of our model, we tested whether activation vectors
extracted from English datasets could control formality in German question-answering tasks. The
experimental results, presented below, demonstrate that our activation vectors effectively generalize
across languages, maintaining robust control over stylistic attributes in the target language.

Question:Die globale Finanzkrise von 2007/2008. Wird es eine weitere geben?

α = 20 (Informal)

Es ist schwierig zu sagen, wann und wie das nchste groe Finanzspielzeug wird, aber man kann sicher sein,
dass es immer noch Risiken gibt, die dazu fhren knnen, dass der Markt pltzlich in Schwierigkeiten
gert.

Hier sind einige Grnde, warum ein neuer Finanzschlafmtze vielleicht kommen knnte:
1. **Hilfsschlafmtzen**: Wenn jemand versucht, den Markt mit Hilfe von Geld aus dem Nichts machen

will − sozusagen einen groen Spielball fr sich selbst − dann kann das zum nchsten groen
Schlafmtzenspiel werden.

*Beispiel:* Wie bei den Hauseinlagen, die vor vielen Jahren als super−sicher gedacht wurden, aber im
Endeffekt viele Leute tiefen Schlfer aufwachen lieen, wenn sie ihre Hausgeldkarten nicht gut genug
versteckt hielten oder vergaen, dass sie gar kein echtes Geld waren!

2. **Zu viel Geld suchen nach einem Ort, um zu spielen**:
*Wenn alle Banken und andere Menschen, die Geld haben wollen, keine gute Idee finden, wo sie ihr Geld

lassen sollen, dann knnten sie versuchen, etwas ganz Neues zu finden!*
3. **Menschen, die glauben, dass alles okay ist**, wenn es nicht wirklich okay ist:
*Wie wenn du weit, dass dein Auto kaputt ist, aber du fhrst trotzdem damit, weil du denkt, dass es schon

lange keinen Fehler gemacht hat.*
4. **Ganze Lnder, die dummspielen**:
*Was passiert, wenn alle Leute in einer Stadt oder Land, das sehr viel Geld hat, einfach nur Spa haben

wollen, ohne richtig darber nachdenken, was genau sie tun? Es wre wie wenn alle Freunde in deinem
Kindergarten zusammenhelfen wrden, um ein riesiges Sandburg−Haus zu bauen, aber niemandem
kommt in den Kopf, dass es Zeit ist, mal rber zur Wasserbrunnen−Schaukel zu gehen!*

α = −20 (Formal)

Es ist schwierig zu sagen, ob und wann genau eine neue Finanzkrise passieren wird, aber wir knnen
sicherstellen, dass das Risiko immer da ist. Hier sind einige Punkte zum Thema Finanzrisiken:

1. **Lernende Systeme**: Nach der groen Krise von 2007/2008 haben viele Lnder und Banken versucht,
ihre Systeme besser zu machen. Das bedeutet nicht, dass sie perfekt sind oder nie wieder Probleme
haben werden.

2. **Debt−Bubble**: Eine groe Schuldenbombe kann sich bauen, wie in den Jahren vor dem Crash. Wenn
Leute, Unternehmen oder Regierungen zu viel Geld leihen, ohne genug Kredite zurckzahlen zu
knnen, kann das zu einem Problem fhren.

3. **Housing−Markt−Schwankungen**: Immobilienblscherei war ein groer Teil des Problems im Jahr
2007/2008. Wenn der Immobilienmarkt pltzlich abfllt, kann das einen Sturz starten.

4. **Technologiefirmen**: Heutzutage gibt es andere Sektoren, die riesige Betten voller Geld haben
knnten z.B. Tech−Firmen mit hohen Bewertungen. Ein Schlag fr diese Firmen knnte alles verndern.

5. **Klimawandel**: Die Vernderte Weltwirtschaft durch den Klimawandel kann auch zu neuen Art von
Krisen fhren, die uns berraschen knnten.

6. **Politik und Rechtswesen**: Politische Unruhe und Schwierigkeiten bei der Steuerung von
Marktsystemen knnen auch dazu fhren, dass Dinge aus dem Ruder laufen.

Um solche Krisen zu verhindern oder wenigstens zu dmpfen, mssen Lnder und Institutionen stndig
aufpassen und sich anpassen. Es hilft auch, wenn jeder seine eigene finanzielle Situation gut
kontrolliert und keine zu vielen Risiken nimmt. Insgesamt ist es wichtig, dass alle Beteiligten
vorsichtig bleiben und immer nach besseren Mglichkeiten suchen, um Risiken zu minimieren.
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Figure 6: Heatmap of average style control scores across layer blocks. The y-axis and x-axis
represent the start and end indices for the intervention block, respectively. Scores are averaged over
multiple runs.
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Figure 7: Two-Dimensional Stylistic Control. Model output scores for (a) Knowledge Difficulty
and (b) Formality under simultaneous steering.
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