

000 001 ESCAPING MODEL COLLAPSE VIA SYNTHETIC DATA 002 VERIFICATION: NEAR-TERM IMPROVEMENTS AND 003 LONG-TERM CONVERGENCE 004 005

006 **Anonymous authors**

007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Synthetic data has been increasingly used to train frontier generative models. How-
014 ever, recent study raises key concerns that iteratively retraining a generative model
015 on its self-generated synthetic data may keep deteriorating model performance, a
016 phenomenon often coined *model collapse*. In this paper, we investigate ways to
017 modify the synthetic retraining process to avoid model collapse, and even possibly
018 help reverse the trend from collapse to improvement. Our key finding is that by
019 injecting information through an external synthetic data verifier, whether a human
020 or a better model, synthetic retraining will not cause model collapse. Specifically,
021 we situate our theoretical analysis in the fundamental linear regression problem,
022 showing that verifier-guided retraining yields early improvements when the verifier
023 is accurate, and in the long run the parameter estimate converges to the verifier’s
024 knowledge center. Our theory predicts that the performance of synthetic retraining
025 will have early gains but eventually plateaus or even reverses, unless the verifier
026 is perfectly reliable. Indeed, our experiments on both linear regression as well as
027 Conditional Variational Autoencoder (CVAE) trained on MNIST data also confirm
028 these theoretical insights.
029
030

1 INTRODUCTION

031 The use of synthetic data has gained significant traction due to its ability to reduce data collection
032 costs and enhance privacy protection, with applications in computer vision (Wood et al., 2021),
033 healthcare (Azizi et al., 2021; Santangelo et al., 2025), and finance (Potluru et al., 2023). A growing
034 body of work has demonstrated that training with synthetic data can improve performance, especially
035 when real data are scarce or expensive to obtain (Shrivastava et al., 2017; Doersch & Zisserman, 2019;
036 Liu et al., 2023; Tremblay et al., 2018). However, recent studies caution that recursively training
037 models on synthetic data alone can lead to a degradation of quality, a phenomenon often termed
038 *model collapse* (Shumailov et al., 2024; Dohmatob et al., 2024a;b;c; Alemohammad et al., 2023;
039 Gerstgrasser et al., 2024).

040 In practice, synthetic data are rarely used in raw form. Instead, practitioners often apply filtering steps
041 to remove low-quality synthetic samples before retraining. For example, in natural language gener-
042 ation, synthetic sentences may be screened using grammar checkers or LLM-as-a-judge pipelines;
043 in computer vision, synthetic images may be filtered using pretrained discriminators or human an-
044 notation; in recommendation and preference learning, synthetic feedback is often validated against
045 external heuristics or known user signals (Tu et al., 2024; Iskander et al., 2024; Lupidi et al., 2024;
046 Lampis et al., 2023; Zhang et al., 2024). A common abstraction across these approaches is the use of
047 a *verifier* that evaluates candidate synthetic samples and retains only those passing verification.

048 While intuitively appealing, it remains unclear whether such verifier-based filtering truly improves
049 model training. Existing studies provide partial insights in specific tasks—such as classification with
050 noisy labels (Feng et al., 2024) or preference-driven data selection (Ferbach et al., 2024)—but a
051 general statistical framework for understanding the impact of verifiers on retraining dynamics is still
052 lacking. In particular, we lack a systematic theory that characterizes both the short-term benefits of
053 verifier filtering and its long-term consequences for iterative retraining.

054
 055 **Our contributions.** We develop a statistical framework to analyze retraining on verified synthetic
 056 data, focusing on linear regression – a canonical model for principled study of model collapse
 057 (Dohmatob et al., 2024a;b; Gerstgrasser et al., 2024) – while also empirically extending insights to
 058 real-world generative settings. Our contributions can be summarized as follows:

059

 060 - *Does verification help?* We show that verifier filtering can indeed improve model training.
 061 Our results provide formal conditions under which retraining on verified synthetic data
 062 yields performance gains relative to unfiltered retraining.
 063 - *When does it help?* We characterize the regimes in which verification leads to improvement
 064 versus degradation, highlighting the role of synthetic sample size, verifier bias, and verifier
 065 strength. This provides a concrete answer to *when* verification is beneficial.
 066 - *Why does it help?* We identify the mechanism underlying these improvements: a verifier-
 067 induced bias–variance trade-off in the short term, and convergence of the retrained model
 068 toward the verifier’s knowledge center in the long term. These results reveal distinct
 069 asymptotic performance phases depending on verifier quality.
 070 - *Empirical validation.* We validate our theory through both simulations and real-data experi-
 071 ments, including linear regression and conditional variational autoencoder (CVAE) models,
 072 showing that our theoretical predictions align with observed training dynamics.

073 These together offer a comprehensive understanding about the role of external verifiers in synthetic
 074 retraining, helping explain *whether*, *when*, and *why* verification can mitigate model collapse.

075 1.1 RELATED WORK

076 **Understanding and mitigating model collapse.** Recent research has shown that relying heavily on
 077 synthetic data for training can lead to *model collapse*, a degradation in model quality over successive
 078 training iterations. Intuitively, model collapse refers to the phenomenon where repeated retraining
 079 on synthetic data produces worse models rather than better ones. A number of recent studies
 080 have provided evidence of collapse. For instance, Shumailov et al. (2024) showed that recursively
 081 training solely on synthetic data induces distribution shift that leads to collapse. Dohmatob et al.
 082 (2024b) demonstrated that even small proportions of synthetic data can harm performance. In
 083 linear models, Dohmatob et al. (2024a) analyzed collapse mechanisms explicitly, while Dohmatob
 084 et al. (2024c) linked degradation to altered neural scaling laws. To mitigate collapse, some studies
 085 propose accumulating data across iterations rather than replacing it entirely, which stabilizes training
 086 (Gerstgrasser et al., 2024; Dey & Donoho, 2024). Others, such as Alemohammad et al. (2023), argue
 087 that only incorporating fresh data fully avoids collapse.

088 However, showing that collapse does not occur is not sufficient. Ultimately, the goal of retraining is
 089 not merely to avoid deterioration but to *achieve improvement*, since better models are the essential
 090 objective in practice. Yet prior work has largely stopped at diagnosing collapse or proposing strategies
 091 that stabilize performance, without demonstrating conditions under which retraining can strictly
 092 improve models. This gap motivates our focus on verifier-filtered synthetic data, an approach
 093 closely aligned with industry practice, where synthetic samples are routinely refined through external
 094 feedback mechanisms. By analyzing this setting, we provide a theoretical foundation for when and
 095 why retraining can lead to genuine model improvement.

096 **Filtering and selecting synthetic data.** A complementary line of work investigates filtering
 097 strategies to improve synthetic data quality. Empirical studies have shown that training on filtered
 098 synthetic data can mitigate collapse and sometimes even enhance performance (Zhang et al., 2024;
 099 Lampis et al., 2023; Haluptzok et al., 2022; Zelikman et al., 2022; Patwa et al., 2024). These
 100 results suggest that filtering may offer a pathway toward improvement rather than mere stabilization.
 101 Theoretically, Ferbach et al. (2024); Wei & Zhang (2025) interprets curation as a form of implicit
 102 preference optimization. In their setting, synthetic data are curated according to a reward function,
 103 and the analysis is carried out at the population level: with infinitely many curated samples and
 104 repeated retraining, the model distribution converges to the highest-reward level set, so the generator
 105 maximizes expected reward but collapses onto those high-reward regions. In contrast, our work
 106 takes a parameter-estimation perspective in linear regression: we study how a verifier-guided filtering
 107 rule affects the finite-sample MSE of the estimator and explicitly characterize how the estimator
 108 depends on the verifier’s accuracy, the strictness of the verification rule, and the synthetic sample size.
 109 This allows us to describe both when verifier-filtered synthetic retraining improves estimation and

108 how the long-run behavior depends on these verifier properties and on the amount of synthetic data.
 109 Feng et al. (2024) analyzes verifier-based filtering in classification, modeling the verifier by a single
 110 error-rate parameter. They identify a sharp phase transition: filtering either achieves perfect accuracy
 111 or complete failure, depending on verifier quality. In contrast, our analysis provides a more nuanced
 112 characterization. We show that in regression, performance varies smoothly with the verifier’s bias
 113 and variance, rather than undergoing a sharp threshold effect. Moreover, we provide finite-sample
 114 rates that explicitly capture the interplay between real and synthetic data sizes. These distinctions
 115 highlight that while empirical work suggests filtering can drive improvement, a comprehensive
 116 theoretical understanding of the transition dynamics has been lacking. Our framework aims to fill
 117 this gap by rigorously analyzing verifier-filtered retraining under a linear model, thereby offering
 118 insights into when filtering not only prevents collapse but also yields strict improvement. Amin
 119 et al. (2025) assume a strong, reliable quality function and focus on how an external labeler aids
 120 learning under this fixed filtering mechanism. In contrast, we treat the generator as the previous
 121 (potentially imperfect) model and study how the verifier’s quality itself drives improvement, plateau,
 122 or collapse during retraining. Zhu et al. (2024) analyze collapse in synthetic retraining and propose
 123 data editing to avoid it, but their theory does not show performance gains. Our framework instead
 124 leverages external knowledge to produce higher-quality synthetic data that improves the model, not
 just prevents collapse.

125
 126 **Comparison with reinforcement learning with verified rewards (RLVR).** Our approach share
 127 some conceptual similarity with RLVR that assigns a verified reward value for each data sample
 128 (Guo et al., 2025; Yu et al., 2025), whereas our problem uses a verifier to pick a subset of data.
 129 However, RLVR fundamentally differs from our setting on various aspects. While indeed being a
 130 useful approach, RLVR is only applicable in settings where reward signals are clearly verifiable
 131 (Guo et al., 2025; Wu & Choi; Yu et al., 2025). In contrast, many important training settings lack
 132 reliable reward functions. Even alignment procedures avoid absolute reward assignments and instead
 133 rely on pairwise comparison signals (e.g., RLHF (Ouyang et al., 2022)) because scalar rewards are
 134 often difficult and noisy to define, for instance, evaluating image quality or open-ended language
 135 generation with a single numerical reward is inherently subjective. In contrast, binary accept/reject
 136 filtering is much less noisy and widely used in practice. This “generate–verify–retrain” paradigm
 137 is also a core primitive in modern LLM training pipelines, including large-scale systems such as
 138 DeepSeek-Coder (Guo et al., 2025), and has proven to be stable, scalable, and easy to integrate.
 139 These practical advantages, along with the growing research interest in verifier-driven retraining,
 140 motivate our theoretical study of this fundamental mechanism.

2 VERIFIER-GUIDED SYNTHETIC RETRAINING IN LINEAR REGRESSION

141 In this section, we formalize our model of synthetic retraining with verification in the linear regression
 142 setting, where the objective is to estimate the coefficient vector θ^* .

143 **Setup.** Consider the linear model

$$y = x^\top \theta^* + \xi,$$

144 where $\xi \sim \mathcal{N}(0, \sigma^2)$, $x \in \mathbb{R}^p$, and $\theta^* \in \mathbb{R}^p$ is the unknown parameter of interest. We evaluate
 145 estimators using the mean squared error (MSE), i.e., $\mathbb{E}\|\hat{\theta} - \theta^*\|^2$.

146 Suppose we have access to a verifier that encodes prior knowledge suggesting that the true parameter
 147 lies within a certain region. For analytical clarity, we model this knowledge as a spherical constraint:
 148

$$B_r(\theta_c) := \{ \theta \in \mathbb{R}^p : \|\theta - \theta_c\| \leq r \},$$

149 with fixed (but unknown) center θ_c and radius r .

150 **Verifier rule.** The verifier does not reveal θ_c or r directly. Instead, it provides binary feedback
 151 indicating whether a given (real or synthetic) data point (x_i, y_i) is consistent with the sphere constraint.
 152 Specifically, the verifier outputs *Yes* if

$$|y_i - x_i^\top \theta_c| \leq r\|x_i\| + \sigma_c, \tag{1}$$

153 and *No* otherwise. This rule is motivated by the expectation bound

$$\mathbb{E}[|y_i - x_i^\top \theta_c|] = \mathbb{E}[|x_i^\top (\theta^* - \theta_c) + \xi_i|] \leq r\|x_i\| + \mathbb{E}|\xi_i| = r\|x_i\| + \sqrt{\frac{2}{\pi}}\sigma.$$

154 Since the true σ might be unknown in practice, σ_c serves as an estimate of the true σ .

Motivation. We adopt this binary verifier model for both practical and theoretical reasons: (i) In practice, eliciting simple yes/no feedback is far less noisy and more cost-effective than asking verifiers to directly specify θ_c or r . Indeed, in many applications verifiers may not even know these quantities explicitly. (ii) This design mirrors the success of comparison-based feedback in reinforcement learning from human feedback (RLHF), where binary or relative judgments are easier for humans (or automated raters) to provide than absolute scores. Such binary responses have become a standard tool in preference alignment for large language models, where LLM raters and human evaluators provide pairwise or accept/reject judgments that effectively guide learning at scale. ((Ouyang et al., 2022; Wettig et al., 2024))

Thus, although simple, the binary verifier captures both the practical constraints of real-world feedback and the theoretical tractability needed for analysis, while serving as a natural mechanism to filter synthetic data during retraining.

Synthetic Retraining with Verifier Filtering We begin with a set of real data (X^0, Y^0) , where $X^0 \in \mathbb{R}^{n_0 \times p}$ and $Y^0 \in \mathbb{R}^{n_0}$. The initial estimator $\hat{\theta}^0$ is obtained via Ordinary Least Squares (OLS):

$$\hat{\theta}^0 = (X^{0\top} X^0)^{-1} X^{0\top} Y^0. \quad (2)$$

We then proceed with iterative synthetic retraining, where each round follows a *generate–verify–retrain* scheme:

- **Generate:** Y^1 is generated by the following formula and X^1 is generated by the design detailed below:

$$Y^1 = X^1 \hat{\theta}^0 + \xi^1, \quad \xi^1 \sim \mathcal{N}(0, \sigma^2 I).$$

- **Verify:** Each synthetic sample (x_i^1, y_i^1) is passed through the verifier condition equation 1. Only the verified subset is retained, denoted $(X^{1'}, Y^{1'})$.

- **Retrain:** A new OLS estimator is computed using only the verified data:

$$\hat{\theta}^1 = (X^{1'\top} X^{1'})^{-1} X^{1'\top} Y^{1'}. \quad (3)$$

For subsequent iterations $k \geq 1$, we repeat this procedure:

$$\hat{\theta}^k \xrightarrow{\text{generate}} (X^{k+1}, Y^{k+1}) \xrightarrow{\text{verify}} (X^{k+1'}, Y^{k+1'}) \xrightarrow{\text{retrain}} \hat{\theta}^{k+1}. \quad (4)$$

Because learning proceeds through the conditional $Y^k | X^k$, synthetic retraining requires specifying the covariate design X^k ; labels Y^k are then generated conditionally via the model under verifier constraints. In principle, one could construct X^k arbitrarily; however, to ensure mathematical clarity and keep the theorem tractable, we adopt a targeted design. We align the synthetic covariates with a fixed orthonormal set $\{v_1, \dots, v_p\}$ and construct X^k in a block-structured form by repeating each v_j^\top as rows:

$$X^k = \left(\underbrace{v_1, \dots, v_1}_{\text{copies of } v_1}, \underbrace{v_2, \dots, v_2}_{\text{copies of } v_2}, \dots, \underbrace{v_p, \dots, v_p}_{\text{copies of } v_p} \right)^\top.$$

After verifier filtering, each orthogonal direction v_j retains exactly n_k samples. This block design diagonalizes the transition operator $\hat{\theta}^k \mapsto \hat{\theta}^{k+1}$. By aligning synthetic samples with fixed orthogonal directions, we remove the rotational variability that arbitrary designs would introduce across iterations and decouple the dynamics along singular directions. In particular, choosing $\{v_j\}$ as the right singular vectors of the real data matrix X^0 yields the cleanest interpretation, making explicit how verifier bias, synthetic sample size, and noise variance interact. This choice clarifies both the short-term bias-variance tradeoff and the long-term convergence behavior, and we will adopt it in the following analysis.

This construction mirrors curating data along approximately orthogonal factors (e.g., topical axes like politics, economics, sports). It is not unique: alternatives (canonical basis, isotropic random directions) can yield similar qualitative conclusions, with potentially different constants or rates.

3 ON THE NEAR-TERM IMPROVEMENT UNDER SYNTHETIC RETRAINING

This section investigates the verifier’s role in synthetic retraining: *does it help, when does it help, and why does it help?* We focus on one round and show that verifier-guided retraining can improve

216 performance under mild assumptions. The key mechanism is a verifier-induced bias–variance trade-
 217 off. We first present an error decomposition that isolates this trade-off, then provide a quantitative
 218 one-step bound that reveals how synthetic sample size, verifier bias/strength, determine improvement
 219 versus degradation. We conclude with design implications that inform the experiments in Section 5.
 220

221 3.1 SOURCE OF IMPROVEMENT: BIAS–VARIANCE TRADE-OFF

223 To address the question of *when and why* verifier-guided synthetic retraining improves estimation, we
 224 analyze the mean squared error (MSE) of the one-step estimator $\hat{\theta}^1$ in estimating the true regression
 225 coefficient θ^* . The MSE admits the following decomposition:

$$226 \mathbb{E}\|\hat{\theta}^1 - \theta^*\|^2 = \mathbb{E}_{\hat{\theta}^0} \left[\text{Tr}(\text{Var}(\hat{\theta}^1 | \hat{\theta}^0)) \right] + \mathbb{E}_{\hat{\theta}^0} \left\| \mathbb{E}[\hat{\theta}^1 | \hat{\theta}^0] - \theta^* \right\|^2. \quad (5)$$

228 The first term in equation 5 is the **synthetic variance**: it captures additional estimation noise from
 229 the randomness in synthetic data generation. This variance decreases at rate $1/n_1$ with the synthetic
 230 sample size n_1 , but is unaffected by the real sample size n_0 . Hence, with abundant synthetic data,
 231 this term becomes negligible.

232 The second term is the **verification error**, which measures the deviation of the conditional mean
 233 estimator $\mathbb{E}(\hat{\theta}^1 | \hat{\theta}^0)$ from θ^* . This error depends both on the accuracy of the verifier (i.e., its potential
 234 bias) and the quality of the initial estimator $\hat{\theta}^0$, which improves with larger n_0 .
 235

236 To further disentangle the verification error, we decompose it as

$$237 \mathbb{E}_{\hat{\theta}^0} \left\| \mathbb{E}[\hat{\theta}^1 | \hat{\theta}^0] - \theta^* \right\|^2 = \text{Tr} \left(\text{Var} \left(\mathbb{E}[\hat{\theta}^1 | \hat{\theta}^0] \right) \right) + \left\| \mathbb{E}[\hat{\theta}^1] - \theta^* \right\|^2. \quad (6)$$

239 Here, the first term is the **verification variance**, reflecting variance reduction achieved by discarding
 240 inconsistent synthetic samples, while the second is the **verification bias**, capturing systematic
 241 deviation introduced by verifier bias.

242 Putting these together, the full decomposition is

$$243 \mathbb{E}\|\hat{\theta}^1 - \theta^*\|^2 = \underbrace{\mathbb{E}_{\hat{\theta}^0} \left[\text{Tr}(\text{Var}(\hat{\theta}^1 | \hat{\theta}^0)) \right]}_{\text{Synthetic Variance}} + \underbrace{\text{Tr} \left(\text{Var} \left(\mathbb{E}[\hat{\theta}^1 | \hat{\theta}^0] \right) \right)}_{\text{Verification Variance}} + \underbrace{\left\| \mathbb{E}[\hat{\theta}^1] - \theta^* \right\|^2}_{\text{Verification Bias}}. \quad (7)$$

247 This decomposition highlights the central trade-off: verifier filtering *reduces variance* but may
 248 *introduce bias*. Verified synthetic data leads to improvement precisely when the variance reduction
 249 outweighs the bias introduced. In particular, when the verifier is sufficiently accurate and the synthetic
 250 sample size n_1 is large, the MSE of $\hat{\theta}^1$ can be strictly smaller than that of the real-data estimator $\hat{\theta}^0$.
 251

252 3.2 CHARACTERIZING IMPROVEMENT IN ONE-ROUND RETRAINING

253 The next theorem characterizes the MSE of one-step estimator $\hat{\theta}^1$ in 3. In particular, it shows that
 254 after one step of verifier-guided synthetic retraining, model can improve given that the bias of the
 255 verifier is small.

256 **Theorem 3.1.** *Suppose each eigenvalue of the design matrix X^0 is $\Omega(\sqrt{n_0})$.¹ Then there exist
 257 constants $m_{1,j}, m_{3,j} \in \mathbb{R}$ and $m_{2,j} \in (0, 1)$ for $j = 1, \dots, p$, depending only on $r, X^0, \theta^*, \theta_c$, as
 258 well as constants $K, L > 0$ such that:*

$$259 \left| \frac{1}{\sigma^2} \mathbb{E}\|\hat{\theta}^1 - \theta^*\|^2 - \sum_{j=1}^p \left(\underbrace{\frac{m_{2,j}}{n_1}}_{\text{Synthetic Variance}} + \underbrace{m_{1,j}^2 + \frac{m_{1,j}m_{3,j} + m_{2,j}^2}{\mu_j^2}}_{\text{Verification Bias+Variance}} \right) \right| < K \left(\frac{1}{n_1 n_0^{1/3}} + \frac{1}{n_0^{3/2}} \right) \quad (8)$$

266 holds with probability at least $1 - p \exp(-L n_0^{1/3})$, where n_1 denotes the post-verification sample
 267 size.

268 ¹That is, each dimension is well-represented in the original data. This holds easily when, e.g., the feature
 269 data is drawn i.i.d. from a full-rank distribution.

270 **Remark 1.** The constants $m_{1,j}, m_{2,j}, m_{3,j}$ (identified explicitly in Appendix B) are moments of a
 271 truncated Gaussian distribution induced by the verifier.

273 • $m_{1,j}, m_{3,j}$: capture the directional bias between θ_c and θ^* along the j -th singular direction;
 274 • $m_{2,j}$: quantifies the variance reduction along that direction, and always satisfies $m_{2,j} < 1$.

276 In particular, if $\theta_c = \theta^*$, then $m_{1,j} = m_{3,j} = 0$ for all $j = 1, \dots, p$.

278 Theorem 3.1 reveals that improvement can be achieved after one step of verifier-guided synthetic
 279 retraining. For comparison, the MSE of the initial estimator $\hat{\theta}^0$ is

280
$$\frac{1}{\sigma^2} \mathbb{E} \|\hat{\theta}^0 - \theta^*\|^2 = \sum_{j=1}^p \mu_j^{-2}. \quad (9)$$

283 When the verifier bias is small (so $m_{1,j}, m_{3,j} \approx 0$), the verification bias+variance term

285
$$m_{1,j}^2 + \frac{m_{1,j} m_{3,j} + m_{2,j}^2}{\mu_j^2}$$

288 is strictly smaller than the real-data variance μ_j^{-2} . Thus, whenever n_1 is sufficiently large, the bound
 289 in equation 8 improves upon the baseline equation 9. The gap between them quantifies the additional
 290 knowledge injected by the verifier through synthetic retraining.

291 This result highlights why verifier-guided retraining is practically useful: in regimes where real data
 292 are scarce but synthetic data can be generated cheaply, the verifier serves as a mechanism to filter and
 293 refine synthetic samples so that they effectively amplify limited real-world evidence. In practice, this
 294 suggests that retraining with a moderately accurate verifier can substantially reduce estimation error
 295 without requiring more real data, a setting that frequently arises in modern machine learning systems
 296 where data collection is costly but simulators or generative models are available.

297 As we will demonstrate empirically in Section 5, this bias-variance trade-off is not confined to the
 298 linear model. It also manifests in complex models such as VAEs, where the benefit of synthetic
 299 retraining is most pronounced during the early stages of training on the MNIST dataset.

301 **4 ITERATIVE RETRAINING AS A MARKOV PROCESS, CONTRACTION AND
 302 CONVERGENCE TO THE KNOWLEDGE CENTER**

305 In the previous subsection, we showed that one-step verifier-guided retraining can improve estimation
 306 accuracy through bias-variance trade-offs. This raises a natural question:

307 **Q: If a single round of verifier-filtered retraining improves performance, can such improvement
 308 be sustained over multiple rounds, and what is the eventual outcome?**

309 In this subsection, we address this question. We want to understand the nature of the long-term
 310 dynamics of iterative verifier-guided retraining though studying the linear regression model. Prior
 311 to presenting our main results, we clarify the terminology frequently employed in the literature on
 312 model collapse, focusing on its meaning in our linear regression setting.

314 • **Model Degradation/Collapse:** $\limsup_{k \rightarrow \infty} \mathbb{E} \|\hat{\theta}^k - \theta^*\|^2 > \mathbb{E} \|\hat{\theta}^1 - \theta^*\|^2$.
 315 • **Model Improvement:** $\limsup_{k \rightarrow \infty} \mathbb{E} \|\hat{\theta}^k - \theta^*\|^2 < \mathbb{E} \|\hat{\theta}^1 - \theta^*\|^2$.

317 Our key finding is that both behaviors can occur in long-term iterative retraining. The outcome de-
 318 pends critically on three factors: the growth rate of synthetic data, the verifier’s bias, and the verifier’s
 319 strength (i.e., its ability to reduce variance). Over time, iterative retraining injects increasingly more
 320 verifier knowledge into the estimator, while the contribution from the original data gradually decays.
 321 As a result, the verifier and the generative model family eventually dominate the limit behavior,
 322 driving the estimator $\hat{\theta}^k$ toward the verifier’s knowledge center θ_c .

323 This dynamic gives rise to three distinct phases of long-term behavior:

- **(1) Unbiased verifier:** If the verifier is unbiased (i.e., $\theta_c = \theta^*$), iterative retraining yields continuous improvement and the estimator converges to the true parameter.
- **(2) Mildly biased verifier:** With small bias, iterative retraining can improve performance in the short term by reducing variance, but performance eventually plateaus or deteriorates as verifier bias accumulates.
- **(3) Strongly biased verifier:** With large bias, iterative retraining leads to degradation and may even cause collapse in the limit.

Among these, case (2) is particularly relevant in practice. It highlights a cautionary message: while synthetic retraining can initially boost accuracy, it cannot guarantee sustained improvement unless the verifier is highly reliable. Since ensuring a perfectly unbiased verifier is unrealistic, the influence of the original data will eventually vanish, leaving the verifier (and the chosen generative model family) to dictate the long-term outcome.

Formally, the following theorem characterizes the long-term behavior of the estimator $\hat{\theta}^k$ in linear regression under iterative verifier-guided retraining.

Theorem 4.1. *There exist a synthetic retraining process and some constant $0 < \rho < 1$ such that:*

$$\mathbb{E}\|\hat{\theta}^k - \theta_c\|^2 \leq \rho^{2k}\mathbb{E}\|\hat{\theta}^0 - \theta_c\|^2 + p\sigma^2 \sum_{j=0}^{k-1} \frac{\rho^{2(k-j)-1}}{n_j}. \quad (10)$$

In particular, if $\lim_{k \rightarrow \infty} n_k = \infty$, then $\lim_{k \rightarrow \infty} \mathbb{E}\|\hat{\theta}^k - \theta_c\|^2 = 0$.

The proof of Theorem 4.1 is provided in Appendix B, where concentration bounds and supermartingale inequalities are used to establish convergence. Here we focus on the main intuition and highlight the key novelty of our analysis.

The central observation is that the iterative retraining procedure equation 4 induces a *Markov process*: the next state $\hat{\theta}^{k+1}$ depends only on the current state $\hat{\theta}^k$. Formally, the update can be expressed as

$$\hat{\theta}^{k+1} = T(\hat{\theta}^k) + \eta_{k+1}, \quad (11)$$

where $T(\cdot)$ is a deterministic mapping determined by verifier filtering, and η_{k+1} is a sub-Gaussian noise term due to the randomness of synthetic samples at iteration $k+1$. Crucially, we show that $T(\cdot)$ is a *contraction mapping*, and that the variance of the noise decays at the rate $\text{Var}(\eta_{k+1}) \asymp 1/n_{k+1}$.

This perspective allows us to view equation 11 as a discretized stochastic differential equation (SDE). As $n_k \rightarrow \infty$, the noise term vanishes and the dynamics are dominated by the deterministic contraction $T(\hat{\theta}^k)$, which drives the recursion toward its fixed point—the verifier’s knowledge center θ_c . The presence of the verifier is therefore *essential*: it is precisely what transforms the update rule into a contraction, guaranteeing convergence.

By contrast, in prior work on model collapse without a verifier (e.g., Gerstgrasser et al. (2024); Xu et al. (2025)), the update reduces to the identity mapping. In that case, increasing the synthetic sample size can suppress noise accumulation and ensure bounded error (i.e., $\mathbb{E}\|\hat{\theta}^k - \theta^*\|^2 < \infty$), but there is no contraction and hence no convergence or sustained improvement. The critical difference between $T(\cdot)$ and the identity is exactly the knowledge extracted from the verifier through synthetic data. Our analysis is the first to formally show that the verifier fundamentally alters the long-term dynamics: it continuously injects knowledge, iteration by iteration, so that the estimator moves closer to θ_c over time.

This contribution also clarifies a common misconception: even with a perfect verifier ($\theta_c = \theta^*$) and infinitely many synthetic samples in one iteration, convergence cannot occur in a single step. As shown in Theorem 3.1, while infinite samples remove the synthetic variance term, the verification bias+variance term persists. Thus, convergence requires the *iterative* action of the verifier, which gradually aligns the estimator with the truth.

We observe the same phenomenon in our CVAE experiments on MNIST (Section 5). During early iterations, enlarging the synthetic sample size substantially improves the model; however, beyond a threshold, further increases bring diminishing returns.

Figure 1: Error changes of the one-step retraining estimator $\hat{\theta}^1$ versus estimator $\hat{\theta}^0$ only using original real data, measured by $\log\left(\frac{\|\hat{\theta}^0 - \theta^*\|_2}{\|\hat{\theta}^1 - \theta^*\|_2}\right)$: theory’s prediction (left) and empirical comparisons (right).

5 EXPERIMENTS

In this section, we evaluate our method in two settings: *linear regression simulation*, which mirrors the theoretical assumptions, and a *Conditional Variational Autoencoder (CVAE) on MNIST*, which demonstrates practical behavior under iterative retraining and filtering. [Appendix D.6 further includes a large-scale news summarization experiment using SmolLM2-135M](#)(Allal et al., 2025). In all cases, the results closely align with our theoretical predictions.

5.1 SIMULATION: LINEAR REGRESSION

Setting. We consider the linear model $y = x^\top \theta^* + \xi$, with $\xi \sim \mathcal{N}(0, 1)$, $\theta^* \in \mathbb{R}^p$, and $x \in \mathbb{R}^p$. An initial OLS estimator is fitted on a small real dataset (X^0, Y^0) , after which we conduct K iterative rounds of synthetic top-up aligned with the right singular vectors of X^0 .

One-step Synthetic Retraining. Figure 1a shows the error reduction predicted by Theorem 3.1 align closely with the empirical results in Figure 1b, validating the sharpness of our theoretical bounds in Theorem 3.1. In this experiment, we set $\theta^* = \mathbf{1}_8$ and define the verifier’s belief center as $\theta_c = \theta^* + \Delta \cdot \mathbf{1}$, where Δ controls the verifier’s bias relative to the truth. The verification radius r determines how strictly synthetic samples are filtered: smaller r enforces tighter acceptance around θ_c , while larger r admits looser acceptance. Using 100 real samples and 200 verified synthetic samples per singular direction, we find that verifier-guided retraining outperforms the real-only baseline when verifier bias is small (green region), whereas excessive bias leads to degradation (red region). This experiment empirically confirms the short-term bias-variance trade-off formalized in Theorem 3.1.

Iterative Synthetic Retraining. Similarly, Figure 2a confirms Theorem 4.1, because it shows that under a biased verifier, the retraining estimator converges to the verifier’s ‘knowledge center’ θ_c . In this experiment, the sample size increases linearly from 100 to 5500 over 60 rounds, with $\theta^* = \mathbf{1}_8$ and $\theta_c = \theta^* + 0.1 \cdot \mathbf{1}$. The results also show that convergence is faster with a smaller verification radius. In Figure 2b, we repeat the experiment with an unbiased verifier ($\theta_c = \theta^* = \mathbf{1}_8$). In this case, verifier-guided retraining achieves consistently lower error than retraining without verification. These findings provide empirical support for our long-term analysis in Theorem 4.1, demonstrating how the contraction effect of the verifier yields convergence in practice. [Appendix D.1 reports results using randomly designed synthetic data, and Appendix D.2 provides experiments with different verifier shapes. These results show that our conclusions are robust to the synthetic data design and the verifier shape.](#)

5.2 CONDITIONAL VARIATIONAL AUTOENCODERS (CVAE) ON MNIST

We also conduct experiments on real-world image generation to demonstrate the applicability of our theory beyond linear regression.

Setting. To make the bias-variance trade-off and verifier-injection effects clearly observable, we initialize the CVAE with only 500 real MNIST images, creating a challenging low-resource scenario.

Figure 2: Iterative synthetic retraining with and without bias.

We use a small initial real-data sample because this is the regime where our theory predicts the strongest benefits from verifier-guided retraining: an undertrained generator can leverage the verifier’s external information. When initialized on the full 60k MNIST images, the generator leaves little room for such gains, and the verifier primarily prevents collapse. Additional results for varying initial sample sizes are presented in Appendix D.5. A discriminator, trained on varying amounts of real data together with an equal number of synthetic samples, serves as the verifier. It assigns each synthetic sample a probability of being real, and we retain the top 10% per digit. This 10% threshold is motivated by a one-step synthetic retraining study: across synthetic sizes and filtering thresholds, retaining the top 10% yielded the best balance between quality and diversity. Overly strict filtering produces high-quality but low-diversity samples, while overly loose filtering yields diverse but lower-quality samples.

The number of retained samples n_1 follows two schedules: (i) a fixed sample size, or (ii) a linear growth schedule. We then retrain the CVAE on the retained synthetic data and repeat this procedure until performance stabilizes. Empirically, beyond 40 iterations the Fréchet Inception Distance (FID) no longer improves, so we report results up to 40 rounds as a conservative steady-state horizon. Generative quality is measured by the FID between generated data and real data. [The MNIST-specific FID is reported in Appendix D.3, and the results are consistent with those presented in this section.](#) For more details on model architecture, training, and evaluation, see Appendix C.

Results. Because our verifier—implemented as a discriminator—provides feedback biased toward perceptual realism rather than likelihood calibration, we report **FID** as the primary metric in the main text and defer likelihood-based reconstruction metrics (ELBO) to Appendix C. Figure 3a reports FID across retraining iterations. With a strong verifier (trained on the full real dataset and an equal amount of synthetic data), we observe rapid FID improvement within the first 15 rounds, even under small fixed-size schedules (green (20K) and orange (5K) curves). Afterward, the improvement slows and eventually plateaus. In contrast, synthetic retraining without a verifier leads to severe degradation. This behavior closely mirrors our theory: (i) early gains arise from the short-term bias-variance trade-off (Theorem 3.1), and (ii) long-term stability is predicted by the contraction effect of verifier filtering (Theorem 4.1).

Figure 4 provides qualitative evidence. Compared to the baseline CVAE trained on 500 real samples, the model retrained for 40 rounds with verified synthetic data produces significantly sharper and more realistic images. By contrast, the model retrained without verification deteriorates after 40 rounds, consistent with model collapse. The choice of 40 rounds corresponds to the point at which loss and FID stabilize, so further retraining brings no additional benefit. [Additional qualitative results are provided in Appendix D.4.](#)

The plateau highlights verifier limitations: because the verifier is relatively simple, it may overemphasize certain styles or patterns in synthetic data that are easier to distinguish from real data, thereby introducing bias. For reference, a CVAE trained on all 60K real samples achieves an FID of 17.56 and reconstruction error of 71.52, while the best synthetic model (red curve) after 40 verified retraining iterations reaches 21.17 and 91.21, respectively.

Figure 3: FID results across retraining rounds. (a) Effect of filtering and retained sample size. (b) Effect of verifier quality, varied by training data size. Together, the plots highlight how both sample selection and verifier strength shape generative performance.

Figure 4: Samples generated by the CVAE at different stages: **Left:** model trained in the first round on 500 real images, **Middle:** model after 40 rounds with filtering under a linear sample growth schedule (10k → 256k), **Right:** model after 40 rounds without filtering under the same linear schedule.

Finally, Figure 3b examines how verifier quality affects retraining. Here, the CVAE is trained with 20K synthetic samples per round. As expected, stronger verifiers (trained on more real data) yield larger FID improvements, whereas weaker verifiers cause the FID curve to plateau early and can even degrade performance.

We also report test ELBO in Appendix C. Although ELBO is harder to improve than FID under our current verifier design, the same theoretical predictions persist: (i) the verifier prevents collapse, (ii) early gains reflect the bias–variance trade-off, and (iii) performance eventually plateaus and can even reverse after ~ 10 iterations.

6 DISCUSSION

Our study provides a theoretical and empirical characterization of verifier-guided synthetic retraining. We show that the process yields *short-term gains* by reducing variance through verifier filtering, but in the *long run* the estimator converges to the verifier’s knowledge center. This explains both the promise and the risk of such methods: a high-quality verifier can inject reliable external knowledge, while a biased verifier inevitably steers the model away from the truth. Viewed through the lens of *information elicitation*, our framework formalizes how external signals are incorporated recursively into training and why the outcome reflects the verifier’s information.

At the same time, our framework has limitations. We have focused on linear regression as the analytical testbed, and although extensions to generative models such as VAEs validate the theory qualitatively, further generalization is needed. Future work includes developing sharper bounds for nonlinear models, exploring alternative synthetic design strategies beyond block orthogonalization, and studying verifier dynamics in large-scale language and vision models.

540 REFERENCES
541

542 Sina Alejomhammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Intiaz Humayun, Hossein
543 Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard G Baraniuk. Self-consuming generative
544 models go mad. *arXiv preprint arXiv:2307.01850*, 4:14, 2023.

545 Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme Penedo,
546 Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček, Agustín Piqueres Lajarín, Vaibhav Srivastav,
547 Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo
548 Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and
549 Thomas Wolf. Smollm2: When smol goes big – data-centric training of a small language model,
550 2025. URL <https://arxiv.org/abs/2502.02737>.

551 Kareem Amin, Sara Babakniya, Alex Bie, Weiwei Kong, Umar Syed, and Sergei Vassilvitskii.
552 Escaping collapse: The strength of weak data for large language model training. *arXiv preprint*
553 *arXiv:2502.08924*, 2025.

554 Zahra Azizi, Chaoyi Zheng, Lucy Mosquera, Louise Pilote, and Khaled El Emam. Can synthetic data
555 be a proxy for real clinical trial data? a validation study. *BMJ open*, 11(4):e043497, 2021.

556 Derrick Adrian Chan and Siphesihle Philezwini Sithungu. Evaluating the suitability of inception
557 score and fréchet inception distance as metrics for quality and diversity in image generation.
558 In *Proceedings of the 2024 7th International Conference on Computational Intelligence and*
559 *Intelligent Systems*, pp. 79–85, 2024.

560 Bin Dai and David Wipf. Diagnosing and enhancing vae models. In *International Conference on*
561 *Learning Representations*, 2019.

562 Apratim Dey and David Donoho. Universality of the $\pi^2/6$ pathway in avoiding model collapse.
563 *arXiv preprint arXiv:2410.22812*, 2024.

564 Carl Doersch and Andrew Zisserman. Sim2real transfer learning for 3d human pose estimation:
565 motion to the rescue. *Advances in Neural Information Processing Systems*, 32, 2019.

566 Elvis Dohmatob, Yunzhen Feng, and Julia Kempe. Model collapse demystified: The case of regression.
567 *arXiv preprint arXiv:2402.07712*, 2024a.

568 Elvis Dohmatob, Yunzhen Feng, Arjun Subramonian, and Julia Kempe. Strong model collapse. *arXiv*
569 *preprint arXiv:2410.04840*, 2024b.

570 Elvis Dohmatob, Yunzhen Feng, Pu Yang, Francois Charton, and Julia Kempe. A tale of tails: Model
571 collapse as a change of scaling laws. *arXiv preprint arXiv:2402.07043*, 2024c.

572 Yunzhen Feng, Elvis Dohmatob, Pu Yang, Francois Charton, and Julia Kempe. Beyond model
573 collapse: Scaling up with synthesized data requires reinforcement. In *ICML 2024 Workshop on*
574 *Theoretical Foundations of Foundation Models*, 2024.

575 Damien Ferbach, Quentin Bertrand, Avishek Joey Bosse, and Gauthier Gidel. Self-consuming
576 generative models with curated data provably optimize human preferences. *arXiv preprint*
577 *arXiv:2407.09499*, 2024.

578 Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey, Rafael Rafailov, Henry Sleight, John Hughes,
579 Tomasz Korbak, Rajashree Agrawal, Dhruv Pai, Andrey Gromov, et al. Is model collapse in-
580 evitable? breaking the curse of recursion by accumulating real and synthetic data. *arXiv preprint*
581 *arXiv:2404.01413*, 2024.

582 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
583 Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-
584 ment learning. *Nature*, 645(8081):633–638, 2025.

585 Patrick Haluptzok, Matthew Bowers, and Adam Tauman Kalai. Language models can teach them-
586 selves to program better. *arXiv preprint arXiv:2207.14502*, 2022.

594 Shadi Iskander, Nachshon Cohen, Zohar Karnin, Ori Shapira, and Sofia Tolmach. Quality matters:
 595 Evaluating synthetic data for tool-using llms. *arXiv preprint arXiv:2409.16341*, 2024.
 596

597 Andrea Lampis, Eugenio Lomurno, and Matteo Matteucci. Bridging the gap: Enhancing the utility
 598 of synthetic data via post-processing techniques. *arXiv preprint arXiv:2305.10118*, 2023.
 599

600 Mikhail Leontev, Alexander Mikheev, Kirill Sviatov, and Sergey Sukhov. Quality metrics of varia-
 601 tional autoencoders. In *2020 International Conference on Information Technology and Nanotech-
 602 nology (ITNT)*, pp. 1–5. IEEE, 2020.
 603

604 Zhaoshan Liu, Qiujie Lv, Yifan Li, Ziduo Yang, and Lei Shen. Medaument: Universal automatic
 605 data augmentation plug-in for medical image analysis. *arXiv preprint arXiv:2306.17466*, 2023.
 606

607 Alisia Lupidi, Carlos Gemmell, Nicola Cancedda, Jane Dwivedi-Yu, Jason Weston, Jakob Foerster,
 608 Roberta Raileanu, and Maria Lomeli. Source2synth: Synthetic data generation and curation
 609 grounded in real data sources. *arXiv preprint arXiv:2409.08239*, 2024.
 610

611 Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the summary!
 612 Topic-aware convolutional neural networks for extreme summarization. In *Proceedings of the 2018
 613 Conference on Empirical Methods in Natural Language Processing*, Brussels, Belgium, 2018.
 614

615 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 616 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 617 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 618 27744, 2022.
 619

620 Parth Patwa, Simone Filice, Zhiyu Chen, Giuseppe Castellucci, Oleg Rokhlenko, and Shervin
 621 Malmasi. Enhancing low-resource llms classification with peft and synthetic data. *arXiv preprint
 622 arXiv:2404.02422*, 2024.
 623

624 Vamsi K Potluru, Daniel Borrajo, Andrea Coletta, Niccolò Dalmasso, Yousef El-Laham, Elizabeth
 625 Fons, Mohsen Ghassemi, Sriram Gopalakrishnan, Vikesh Gosai, Eleonora Kreačić, et al. Synthetic
 626 data applications in finance. *arXiv preprint arXiv:2401.00081*, 2023.
 627

628 Gabriele Santangelo, Giovanna Nicora, Riccardo Bellazzi, and Arianna Dagliati. How good is your
 629 synthetic data? synthro, a dashboard to evaluate and benchmark synthetic tabular data. *BMC
 630 Medical Informatics and Decision Making*, 25(1):89, 2025.
 631

632 Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang, and Russell Webb.
 633 Learning from simulated and unsupervised images through adversarial training. In *Proceedings of
 634 the IEEE conference on computer vision and pattern recognition*, pp. 2107–2116, 2017.
 635

636 Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal. Ai
 637 models collapse when trained on recursively generated data. *Nature*, 631(8022):755–759, 2024.
 638

639 Jonathan Tremblay, Aayush Prakash, David Acuna, Mark Brophy, Varun Jampani, Cem Anil, Thang
 640 To, Eric Cameracci, Shaad Boochoon, and Stan Birchfield. Training deep networks with synthetic
 641 data: Bridging the reality gap by domain randomization. In *Proceedings of the IEEE conference
 642 on computer vision and pattern recognition workshops*, pp. 969–977, 2018.
 643

644 Zeo Tu, Xiangdi Meng, Yu He, Zihan Yao, Tianyu Qi, Jun Liu, and Ming Li. Resofilter: Rine-grained
 645 synthetic data filtering for large language models through data-parameter resonance analysis. *arXiv
 646 preprint arXiv:2412.14809*, 2024.
 647

648 Xiukun Wei and Xueru Zhang. Self-consuming generative models with adversarially curated data.
 649 *arXiv preprint arXiv:2505.09768*, 2025.
 650

651 Alexander Wettig, Aatmik Gupta, Saumya Malik, and Danqi Chen. Qurating: Selecting high-quality
 652 data for training language models. *arXiv preprint arXiv:2402.09739*, 2024.
 653

654 Erroll Wood, Tadas Baltrušaitis, Charlie Hewitt, Sebastian Dziadzio, Thomas J Cashman, and Jamie
 655 Shotton. Fake it till you make it: face analysis in the wild using synthetic data alone. In *Proceedings
 656 of the IEEE/CVF international conference on computer vision*, pp. 3681–3691, 2021.
 657

648 Fang Wu and Yejin Choi. The invisible leash: Why rlvr may not escape its origin. In *2nd AI for Math*
649 *Workshop@ ICML 2025*.

650

651 Shirong Xu, Hengzhi He, and Guang Cheng. A probabilistic perspective on model collapse. *arXiv*
652 *preprint arXiv:2505.13947*, 2025.

653

654 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
655 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
656 scale. *arXiv preprint arXiv:2503.14476*, 2025.

657

658 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
659 reasoning. *Advances in Neural Information Processing Systems*, 35:15476–15488, 2022.

660

661 Jinghui Zhang, Dandan Qiao, Mochen Yang, and Qiang Wei. Regurgitative training: The value of
662 real data in training large language models. *arXiv preprint arXiv:2407.12835*, 2024.

663

664 Xuekai Zhu, Daixuan Cheng, Hengli Li, Kaiyan Zhang, Ermo Hua, Xingtai Lv, Ning Ding, Zhouhan
665 Lin, Zilong Zheng, and Bowen Zhou. How to synthesize text data without model collapse? *arXiv*
666 *preprint arXiv:2412.14689*, 2024.

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

APPENDIX OVERVIEW

This appendix contains: Appendix A (1-D Gaussian toolkit), Appendix B (reduction and full proof for linear regression), Appendix C (additional details on CVAE experiments), [Appendix D \(additional simulations and experiments\)](#), Appendix E (use of large language models)

A ONE-DIMENSIONAL GAUSSIAN TOOLKIT

In this section, we provide a toolkit for analyzing the one-dimensional Gaussian mean estimation problem with verifier-filtered synthetic data. This toolkit serves as the foundation for our analysis of the linear regression models. We will establish several key lemmas and theorems that characterize the MSE of the mean estimator under the one-dimensional Gaussian model. These results will be instrumental in proving Theorem 3.1 and Theorem 4.1 in Appendix B.

A.1 SETUP AND NOTATIONS

We consider the one-dimensional mean estimation problem where the real data $X_1^0, \dots, X_{n_0}^0$ are independently and identically distributed (i.i.d.) from a Gaussian distribution:

$$X_1^0, \dots, X_{n_0}^0 \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2),$$

with known variance σ^2 .

In our setting, a verifier exists and encodes external knowledge that the true mean lies in an interval $[a, b]$ (i.e. $\mu \in [a, b]$). Therefore, $\bar{X}^0 = \frac{X_1^0 + \dots + X_{n_0}^0}{n_0}$ is the empirical mean of real data, which minimizes MSE if *no extra* information is supplied. We are interested in whether data verification could effectively inject new information and improve over \bar{X}^0 . Consider the following synthetic data generation and filtering procedure:

- Generate n_1 synthetic data $X_1^1, \dots, X_{n_1}^1 \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\bar{X}^0, \sigma^2)$.
- Retain $X_i^0 \in [a, b]$ as $X_1'^1, \dots, X_{n_1}'^1$, and estimate μ using $\bar{X}^1 = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i'^1$.

We will compare the estimator \bar{X}^1 with \bar{X}^0 and formally characterize when data verification enhances or degrades model performance - i.e., when $\mathbb{E}(\bar{X}^1 - \mu)^2 < \mathbb{E}(\bar{X}^0 - \mu)^2$ or not. Our key finding is that \bar{X}^1 introduces the core bias-variance trade-off that underpins model improvement or degradation. We will characterize the MSE of \bar{X}^1 which reveals how key quantities such as the real and synthetic sample size, the verifier's bias and variance will decide performance of the filtering strategy. These insights provide intuition for extending verifier-guided re-training to more complex settings.

We first review some notation and key results for the truncated normal distribution, which will be used in the subsequent sections. Consider a one-dimensional normal distribution $X \sim \mathcal{N}(\mu, \sigma^2)$ and let X' be its truncated version restricted to the interval $[a, b]$. The distribution of X' is called the *truncated normal distribution*, denoted as $X' \sim \mathcal{N}(x|\mu, \sigma^2) \cdot \mathbb{1}_{\{a < x < b\}}$. The mean and variance of the truncated normal distribution X' are given analytically:

$$\begin{aligned} \mathbb{E}[X'|\mu] &= \mu - \sigma \frac{\phi(\frac{b-\mu}{\sigma}) - \phi(\frac{a-\mu}{\sigma})}{\Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})} := \mu + \sigma m_1\left(\frac{a-\mu}{\sigma}, \frac{b-\mu}{\sigma}\right) \\ \text{Var}(X'|\mu) &= \sigma^2 \left[1 - \frac{\frac{b-\mu}{\sigma} \phi(\frac{b-\mu}{\sigma}) - \frac{a-\mu}{\sigma} \phi(\frac{a-\mu}{\sigma})}{\Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})} - \left(\frac{\phi(\frac{b-\mu}{\sigma}) - \phi(\frac{a-\mu}{\sigma})}{\Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})} \right)^2 \right] \\ &:= \sigma^2 m_2\left(\frac{a-\mu}{\sigma}, \frac{b-\mu}{\sigma}\right) \end{aligned} \tag{12}$$

where $\phi(x)$ and $\Phi(x)$ denote the standard normal density and cumulative distribution functions, respectively. Standardizing X via $Z := \frac{X-\mu}{\sigma}$ and setting

$$\alpha = \frac{a-\mu}{\sigma}, \quad \beta = \frac{b-\mu}{\sigma}, \tag{13}$$

756 the expression in equation 12 become:
 757

$$\begin{aligned} 758 \mathbb{E}[Z'] &= m_1(\alpha, \beta) \\ 759 \text{Var}(Z') &= m_2(\alpha, \beta) \end{aligned} \quad (14)$$

760 where $Z' \sim \mathcal{N}(x|0, 1) \cdot \mathbb{1}_{\{\alpha < x < \beta\}}$ is the standardized truncated normal distribution. For convenience,
 761 we write $\mathcal{N}_{trunc}(\alpha, \beta) := \mathcal{N}(x|0, 1) \cdot \mathbb{1}_{\{\alpha < x < \beta\}}$. Thus, m_1 and m_2 correspond to the first and second
 762 central moments of the standardized truncated normal distribution. In addition, we also define the
 763 third central moment of the standardized truncated normal distribution:
 764

$$\begin{aligned} 765 m_3(\alpha, \beta) &:= \mathbb{E}(Z' - \mathbb{E}Z')^3 \\ 766 &= -\frac{(\beta^2 - 1)\phi(\beta) - (\alpha^2 - 1)\phi(\alpha)}{(\Phi(\beta) - \Phi(\alpha))} - \frac{3(\phi(\beta) - \phi(\alpha))(\beta\phi(\beta) - \alpha\phi(\alpha))}{(\Phi(\beta) - \Phi(\alpha))^2} \\ 767 &\quad - \frac{2(\phi(\beta) - \phi(\alpha))^3}{(\Phi(\beta) - \Phi(\alpha))^3}. \end{aligned} \quad (15)$$

771 In particular, $0 < m_2(\alpha, \beta) < 1$ for any $\alpha < \beta$ and $m_1(\alpha, \beta) = m_3(\alpha, \beta) = 0$ if $\alpha + \beta = 0$.
 772

773 **A.2 CHARACTERIZATION OF $\mathbb{E}(\bar{X}^1 - \mu)^2$, BIAS-VARIANCE TRADE-OFF, AND MODEL
 774 IMPROVEMENT**

775 **Theorem A.1.** *Assume that $n_1 > n_0 \geq 100$. Then there exists constant K , depending only on α and
 776 β , such that*

$$\begin{aligned} 777 \left| \frac{1}{\sigma^2} \mathbb{E}(\bar{X}^1 - \mu)^2 - \underbrace{\frac{m_2(\alpha, \beta)}{n_1}}_{\text{Synthetic Variance}} - \underbrace{\left(m_1^2(\alpha, \beta) + \frac{m_2^2(\alpha, \beta) + m_3(\alpha, \beta)m_1(\alpha, \beta)}{n_0} \right)}_{\text{Verification Bias+Variance}} \right| \\ 778 \\ 779 \\ 780 \\ 781 \\ 782 \\ 783 \\ 784 < K \left(\frac{1}{n_1 n_0^{1/3}} + \frac{1}{n_0^{3/2}} \right) \end{aligned} \quad (16)$$

785 holds with probability at least $1 - \exp\left(-\frac{1}{2}n_0^{1/3}\right)$.
 786

787 *Proof of Theorem A.1.* It will be convenient to reparameterize the sample mean estimators by centering
 788 them around the true mean. Specifically, we define the residuals:
 789

$$\epsilon_1 := \frac{\bar{X}^0 - \mu}{\sigma}, \quad \epsilon_1 \sim \mathcal{N}(0, \frac{1}{n_0}). \quad (17)$$

790 Note that \bar{X}^1 is the mean of n_1 i.i.d. samples from the truncated normal distribution $\mathcal{N}(x|\bar{X}^0, \sigma^2) \cdot$
 791 $\mathbb{1}_{\{\alpha < x < \beta\}}$. The MSE of \bar{X}^1 can be decomposed as follows:
 792

$$\begin{aligned} 793 \mathbb{E}[(\bar{X}^1 - \mu)^2] &= \mathbb{E}_{\bar{X}^0} \mathbb{E}_{\bar{X}^1 | \bar{X}^0} [(\bar{X}^1 - \mu)^2] \\ 794 &= \mathbb{E}_{\bar{X}^0} \left[\text{Var}(\bar{X}^1 | \bar{X}^0) + (\mathbb{E}[\bar{X}^1 | \bar{X}^0] - \mu)^2 \right] \\ 795 &= \sigma^2 \mathbb{E}_{\bar{X}^0} \left[\frac{m_2(\alpha - \epsilon_1, \beta - \epsilon_1)}{n_1} \right] + \mathbb{E}_{\bar{X}^0} [(\bar{X}^0 - \mu - \sigma m_1(\alpha - \epsilon_1, \beta - \epsilon_1))^2] \\ 796 &= \frac{\sigma^2}{n_1} \mathbb{E}_{\epsilon_1} [m_2(\alpha - \epsilon_1, \beta - \epsilon_1)] + \sigma^2 \mathbb{E}_{\epsilon_1} [(m_1(\alpha - \epsilon_1, \beta - \epsilon_1) + \epsilon_1)^2] \end{aligned} \quad (18)$$

797 For the first term in 18, we consider the event $E_1 := \{|\epsilon_1| < n_0^{-1/3}\}$, the function $m_2(\cdot, \cdot)$ is
 798 Lipschitz continuous in a neighborhood of (α, β) , so we have
 799

$$800 |m_2(\alpha - \epsilon_1, \beta - \epsilon_1) - m_2(\alpha, \beta)| = |\epsilon_1| \cdot \left| m_2^{(1)}(\alpha - \xi, \beta - \xi) \right| < \frac{M_1}{n_0^{1/3}}, \quad (19)$$

810 for some $\xi \in (0, \epsilon_1)$, where we define
 811

$$812 \quad M_1 := \sup_{|\xi| < \frac{1}{100^{1/3}}} \left| m_2^{(1)}(\alpha - \xi, \beta - \xi) \right|, \\ 813$$

814 and M_1 is a constant independent of n_0 as long as $n_0 \geq 100$. Event E_1 hold with high probability:
 815

$$816 \quad \mathbb{P} \left(|\epsilon_1| < n_0^{-1/3} \right) > 1 - \frac{\exp \left(-\frac{n_0^{1/3}}{2} \right)}{\sqrt{\pi/2} \cdot n_0^{1/6}} > 1 - \frac{\exp \left(-\frac{n_0^{1/3}}{2} \right)}{\sqrt{\pi/2} \cdot 100^{1/6}} > 1 - \exp \left(-\frac{n_0^{1/3}}{2} \right). \\ 817 \\ 818$$

819 Then we consider then second term in 18. The Taylor expansion of the function
 820

$$m_1(\epsilon_1) := m_1(\alpha - \epsilon_1, \beta - \epsilon_1)$$

821 up to the third-order terms is:
 822

$$m_1(\epsilon_1) = m_1(\alpha, \beta) - [1 - m_2(\alpha, \beta)]\epsilon_1 + \frac{1}{2}m_3(\alpha, \beta)\epsilon_1^2 + \frac{1}{6}m_1^{(3)}(\xi)\epsilon_1^3, \quad \text{for some } \xi \in (0, \epsilon_1), \\ (20)$$

825 where $m_1^{(3)}(\xi)$ denotes the third derivative of m_1 evaluated at some point between 0 and ϵ_1 . Then we
 826 can get
 827

$$\begin{aligned} \mathbb{E}_{\epsilon_1} \left[(m_1(\alpha - \epsilon_1, \beta - \epsilon_1) + \epsilon_1)^2 \right] &= \mathbb{E} \left(m_1(\alpha, \beta) + m_2(\alpha, \beta)\epsilon_1 + \frac{1}{2}m_3(\alpha, \beta)\epsilon_1^2 + \frac{1}{6}m_1^{(3)}(\xi)\epsilon_1^3 \right)^2 \\ &= m_1^2(\alpha, \beta) + \frac{m_2^2(\alpha, \beta) + m_1(\alpha, \beta)m_3(\alpha, \beta)}{n_0} + \frac{3m_3^2(\alpha, \beta)}{4n_0^2} \\ &\quad + \mathbb{E} \left(m_1(\alpha, \beta) + m_2(\alpha, \beta)\epsilon_1 + \frac{1}{2}m_3(\alpha, \beta)\epsilon_1^2 \right) \frac{m_1^{(3)}(\xi)}{3}\epsilon_1^3 \\ &\quad + \mathbb{E} \left(\frac{m_1^{(3)}(\xi)}{36}\epsilon_1^6 \right). \end{aligned} \quad (21)$$

838 First, using the fact that there exists constant M that only depends on α and β , such that $|m_1^{(3)}(x)| < M$ for any x , we have:
 839

$$\begin{aligned} &\left| \mathbb{E} \left[\left(m_1(\alpha, \beta) + m_2(\alpha, \beta)\epsilon_1 + \frac{1}{2}m_3(\alpha, \beta)\epsilon_1^2 \right) \frac{m_1^{(3)}(\xi)}{3}\epsilon_1^3 \right] \right| \\ &\leq \mathbb{E} \left[\left(|m_1(\alpha, \beta)| + m_2(\alpha, \beta)|\epsilon_1| + \frac{1}{2}|m_3(\alpha, \beta)|\epsilon_1^2 \right) \cdot \frac{M}{3}|\epsilon_1|^3 \right] \\ &= \mathbb{E} \left[\frac{M}{3}|m_1(\alpha, \beta)||\epsilon_1|^3 + \frac{M}{3}m_2(\alpha, \beta)|\epsilon_1|^4 + \frac{M}{6}|m_3(\alpha, \beta)||\epsilon_1|^5 \right] \\ &\leq \frac{K_1}{n_0^{3/2}}. \end{aligned}$$

840 for some constant K_1 depending only on α and β .
 841

842 Secondly, the last term in equation 21 is bounded by:
 843

$$\mathbb{E} \left[\frac{m_1^{(3)}(\xi)}{36}\epsilon_1^6 \right] \leq \frac{M^2}{36}\mathbb{E}[\epsilon_1^6] = \frac{5M^2\sigma^6}{12n_0^3} \leq \frac{K_2}{n_0^3},$$

844 for some constant K_2 .
 845

846 So the second term in 18 is bounded by
 847

$$\left| \mathbb{E}_{\epsilon_1} \left[(m_1(\alpha - \epsilon_1, \beta - \epsilon_1) + \epsilon_1)^2 \right] - m_1^2(\alpha, \beta) - \frac{m_2^2(\alpha, \beta) + m_1(\alpha, \beta)m_3(\alpha, \beta)}{n_0} \right| < \frac{K}{n_0^{3/2}} \quad (22)$$

848 for some constant K .
 849

850 Combining 18, 19, and 22 completes the proof.
 851

□

864 A.3 ITERATIVE RETRAINING AND LONG-TERM DYNAMICS IN ONE-DIMENSIONAL
 865 GAUSSIAN MEAN ESTIMATION
 866

867 Now consider the verifier-guided synthetic retraining in the Gaussian mean estimation setting. The
 868 iterative retraining process can be described by the following algorithm.

870 **Algorithm 1** Iterative Verifier-Guided Retraining for Gaussian Mean Estimation

871 1: **Input:** Initial estimate \bar{X}^0 from real data
 872 2: **for** $k = 0, 1, 2, \dots$ **do**
 873 3: Draw $\xi_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$ and construct synthetic samples $X_i^k = \bar{X}^k + \xi_i$.
 874 4: Retain points with $a < X_i^k < b$, yielding n_k verified samples $\{X_i'^k : i = 1, 2, \dots, n_k\}$.
 875 5: $\bar{X}^{k+1} \leftarrow \frac{1}{n_k} \sum_{i=1}^{n_k} X_i'^k$.
 876 6: **end for**

879 Algorithm 1 defines a Markov process $\{\bar{X}^0, \bar{X}^1, \dots, \bar{X}^k, \dots\}$, where the conditional distribution
 880 $p(\bar{X}^{k+1} | \bar{X}^k)$ is given by

882
$$p(\bar{X}^{k+1} | \bar{X}^k) : \bar{X}^{k+1} = \bar{X}^k + \sigma \frac{\sum_{i=1}^{n_k} \xi_i'^{k+1}}{n_k}, \quad \xi_i'^{k+1} \text{ i.i.d. } \sim \mathcal{N}_{\text{trunc}}\left(\frac{a - \bar{X}^k}{\sigma}, \frac{b - \bar{X}^k}{\sigma}\right) \quad (23)$$

884 The following theorem summarizes these findings:

886 **Theorem A.2.** *Let \bar{X}^k be the Markov process determined by equation 23 with initial condition*

887
$$\bar{X}^0 \sim \mathcal{N}(0, \frac{\sigma^2}{n_0}),$$

890 and assume n_k is non-decreasing in k . Then the following statements hold:

891 • If $|a|, |b| < \infty$, there exists a constant $0 < \rho < 1$ such that,

893
$$\mathbb{E}\left(\bar{X}^k - \frac{a+b}{2}\right)^2 \leq \rho^{2k} \mathbb{E}(\bar{X}^0 - \frac{a+b}{2})^2 + \sum_{j=0}^{k-1} \frac{\rho^{2(k-j)-1}}{n_j}.$$

896 Moreover, if $\lim_{k \rightarrow \infty} n_k = \infty$, $\lim_{k \rightarrow \infty} \mathbb{E}|\bar{X}^k - \frac{a+b}{2}|^2 = 0$.

898 • If $-\infty = a < b < \infty$, then $\liminf_{k \rightarrow \infty} \bar{X}^k = -\infty$. If $-\infty < a < b = \infty$, then
 899 $\limsup_{k \rightarrow \infty} \bar{X}^k = \infty$.

901 *Proof of Theorem A.2.* Define

902
$$\epsilon_k = \frac{\bar{X}^k - \mu}{\sigma}, \quad (24)$$

905 which represents the standardized error of the estimator \bar{X}^k . It is easy to see that $\epsilon_k \in [\alpha, \beta] \Leftrightarrow$
 906 $\bar{X}^k \in [a, b]$, where α, β are defined in equation 13. Therefore, it suffices to consider the standardized
 907 process $\{\epsilon_k, k = 0, 1, 2, \dots\}$. equation 23 can be standardized as:

909
$$\epsilon_{k+1} = \epsilon_k + \frac{\sum_{i=1}^{n_k} \xi_i'^{k+1}}{n_k}, \quad \xi_i'^{k+1} \sim \mathcal{N}_{\text{trunc}}(\alpha - \epsilon_k, \beta - \epsilon_k), \quad (25)$$

912 For convenience, we shift the noise terms $\xi_i'^{k+1}$ in equation 25 to have mean zero. Therefore, we
 913 introduce

916
$$T_{\alpha, \beta}(x) := x + \mathbb{E}[Z \mid \alpha - x \leq Z \leq \beta - x], \quad v_{\alpha, \beta}(x) := \text{Var}(Z \mid \alpha - x \leq Z \leq \beta - x). \quad (26)$$

918 where $Z \sim \mathcal{N}(0, 1)$.
 919
 920 Therefore, equation 25 can be rewritten as

$$\epsilon_{k+1} = T_{\alpha, \beta}(\epsilon_k) + \eta_{k+1} \quad (27)$$

921 where $\eta_{k+1} = \frac{1}{n_k} \sum_{i=1}^{n_k} (\xi_i'^{k+1} - \mathbb{E}\xi_i'^{k+1})$ is the average of independent mean zero noise in equa-
 922 tion 25. In particular, we have

$$\mathbb{E}[\eta_{k+1} \mid \mathcal{F}_k] = 0, \quad \text{Var}(\eta_{k+1} \mid \mathcal{F}_k) = \frac{v_{\alpha, \beta}(\epsilon_k)}{n_k}.$$

923 where $\mathcal{F}_k := \sigma(\epsilon_0, \eta_1, \dots, \eta_k)$ and n_k is the (post-filtering) batch size at round k .
 924
 925 It is easy to see that

$$\begin{aligned} T_{\alpha, \beta}(x) &= x + m_1(\alpha - x, \beta - x), \\ v_{\alpha, \beta}(x) &= m_2(\alpha - x, \beta - x), \\ T'_{\alpha, \beta}(x) &= v_{\alpha, \beta}(x). \end{aligned}$$

926 We first consider $|a|, |b| < \infty$. In this case, we first show that the deterministic part $T_{\alpha, \beta}(x)$ in
 927 equation 27 is a global contraction. Since $-\infty < \alpha < \beta < \infty$, we have

$$\sup_{x \in \mathbb{R}} T'_{\alpha, \beta}(x) = \sup_{x \in \mathbb{R}} \text{Var}(Z \mid \alpha - x \leq Z \leq \beta - x) = \text{Var}(Z \mid |Z| < |\frac{\alpha + \beta}{2}|) := \rho < 1.$$

928 Therefore, $T_{\alpha, \beta}(x)$ is a global contraction. By the contractive mapping theorem that $T_{\alpha, \beta}(x)$ has a
 929 unique fixed point x^* , which solves $x^* = T_{\alpha, \beta}(x^*)$. It is easy to see that
 930

$$x^* = T_{\alpha, \beta}(x^*) \implies x^* = x^* + \mathbb{E}(Z \mid \alpha - x^* \leq Z \leq \beta - x^*) \implies x^* = \frac{\alpha + \beta}{2}. \quad (28)$$

931 By the mean-value theorem,
 932

$$|T_{\alpha, \beta}(\epsilon_k) - \frac{\alpha + \beta}{2}| \leq \rho |\epsilon_k - \frac{\alpha + \beta}{2}|.$$

933 Let $V_k := (\epsilon_k - \frac{\alpha + \beta}{2})^2$, we have
 934

$$\mathbb{E}[V_{k+1} \mid \epsilon_k] = (T_{\alpha, \beta}(\epsilon_k) - \frac{\alpha + \beta}{2})^2 + \frac{v_{\alpha, \beta}(\epsilon_k)}{n_k} \leq \rho^2 (\epsilon_k - \frac{\alpha + \beta}{2})^2 + \frac{\rho}{n_k}.$$

935 Taking expectations yields
 936

$$\mathbb{E}V_{k+1} \leq \rho^2 \mathbb{E}V_k + \frac{\rho}{n_k}. \quad (29)$$

937 Unrolling equation 29,
 938

$$\mathbb{E}V_k \leq \rho^{2k} \mathbb{E}V_0 + \rho \sum_{j=0}^{k-1} \frac{\rho^{2(k-1-j)}}{n_j}. \quad (30)$$

939 It is easy to see that
 940

$$\mathbb{E}V_k \leq \rho^{2k} \mathbb{E}V_0 + \rho \sum_{j=0}^{k-1} \frac{\rho^{2(k-1-j)}}{n_0} < \rho^{2k} \mathbb{E}V_0 + \frac{\rho}{n_0(1 - \rho^2)}.$$

941 Therefore, by the Cauchy-Schwarz inequality, $\lim_{k \rightarrow \infty} \mathbb{E}\epsilon_k^2 < \infty$ easily follows. Moreover, when
 942 $n_k \rightarrow \infty$, let $g_i := \rho^{2i}$ and $a_j := 1/n_j \rightarrow 0$. A standard ℓ^1 -convolution argument shows $(g * a)_k :=$
 943 $\sum_{j=0}^{k-1} g_{k-1-j} a_j = \sum_{j=0}^{k-1} \frac{\rho^{2(k-1-j)}}{n_j} \rightarrow 0$. Therefore $\lim_{k \rightarrow \infty} \mathbb{E}V_k = \lim_{k \rightarrow \infty} \mathbb{E}(\epsilon_k - \frac{\alpha + \beta}{2})^2 = 0$.
 944

Now we consider the case $-\infty = a < b < \infty$ (equivalently $-\infty = \alpha < \beta < \infty$). We will show that $\liminf_{k \rightarrow \infty} \epsilon_k = -\infty$ a.s..

Let $t_k := \beta - \epsilon_k$ and the recursion equation 27 can be rewritten for t_k :

$$t_{k+1} = t_k + \lambda(t_k) - \eta_{k+1},$$

where $\lambda(t_k) = -\mathbb{E}(Z|Z < \beta - \epsilon_k) = \mathbb{E}[Z | Z \geq -t_k]$.

Consider the hitting time $\tau_M := \inf\{k : t_k \geq M\}$ for any $M > 0$. Fix $M > 0$ and define

$$m(M) := \min_{t \leq M} \lambda(t) = \mathbb{E}[Z | Z \geq -M] > 0,$$

which is strictly positive the fact that $\lambda(t) > 0$ and $\lambda(t)$ is a decreasing function. On the event $\{\tau_M > K\}$ we have $t_j < M$ for $j = 0, \dots, K-1$, hence $\lambda(t_j) \geq m(M)$. Summing the recursion yields

$$t_K = t_0 + \sum_{j=0}^{K-1} \lambda(t_j) - \sum_{j=0}^{K-1} \eta_{j+1} \geq t_0 + K m(M) - S_K,$$

where $S_K := \sum_{j=0}^{K-1} \eta_{j+1}$ and $t_0 = \beta - \epsilon_0$ is \mathcal{F}_0 -measurable (hence random). Therefore,

$$\{\tau_M > K\} \subseteq \left\{ S_K \geq t_0 + K m(M) - M \right\}. \quad (31)$$

Define the (random) burn-in index

$$K_0 := \left\lceil \frac{2(M - t_0)}{m(M)} \right\rceil.$$

Then for all $K \geq K_0$,

$$t_0 + K m(M) - M \geq \frac{m(M)}{2} K,$$

and equation 31 gives, conditionally on \mathcal{F}_0 ,

$$\{\tau_M > K\} \subseteq \left\{ S_K \geq \frac{m(M)}{2} K \right\}, \quad \text{for all } K \geq K_0. \quad (32)$$

Next, we will show that S_K is a sub-exponential random variable in event $\{\tau_M > K\}$. Since $S_K = \sum_{j=0}^{K-1} \eta_{j+1} = \sum_{j=0}^{K-1} \frac{1}{n_j} \sum_{i=1}^{n_j} (\xi_i'^{j+1} - \mathbb{E}\xi_i'^{j+1})$, we will first show that $\xi_i'^{j+1} - \mathbb{E}\xi_i'^{j+1}$ is sub-exponential.

Since $\xi_i'^{j+1} \sim \mathcal{N}_{\text{trunc}}(-\infty, \beta - \epsilon_j) = \mathcal{N}_{\text{trunc}}(-\infty, t_j)$, on the event $\{\tau_M > K\}$ we have

$$\xi_i'^{j+1} - \mathbb{E}\xi_i'^{j+1} < t_j - \mathbb{E}[Z | Z < t_j] \leq M - \mathbb{E}[Z | Z < M] := b(M) < \infty.$$

The above inequality follows from the fact that $t - \mathbb{E}[Z | Z < t]$ is an increasing function of t and $t_j < M$ for $j = 0, \dots, K-1$ on the event $\{\tau_M > K\}$. In addition, $\text{Var}(\xi_i'^{j+1}) = \text{Var}(Z|Z < t_j) \leq 1$. Therefore, $\xi_i'^{j+1} - \mathbb{E}\xi_i'^{j+1}$ is mean zero, bounded above by $b(M)$ with $\text{Var}(\xi_i'^{j+1} - \mathbb{E}\xi_i'^{j+1}) < 1$.

By Bennet/Bernstein MGF inequality, we have

$$\log \mathbb{E} e^{\lambda(\xi_i'^{j+1} - \mathbb{E}\xi_i'^{j+1})} \leq \frac{\lambda^2}{2(1 - b(M)\lambda/3)},$$

for $0 < \lambda < \frac{3}{b(M)}$. This shows that $\xi_i'^{j+1} - \mathbb{E}\xi_i'^{j+1}$ is sub-exponential with parameters $SE(1, 2b(M)/3)$. By standard properties of sub-exponential random variables, $\eta_{j+1} = \frac{1}{n_j} \sum_{i=1}^{n_j} (\xi_i'^{j+1} - \mathbb{E}\xi_i'^{j+1})$ is $SE(1/n_j, 2b(M)/(3n_j))$ and $S_K = \sum_{j=0}^{K-1} \eta_{j+1}$ is $SE(\sum_{j=0}^{K-1} 1/n_j, 2b(M)/(3n_1))$ since n_j is non-decreasing. Therefore, for any $t > 0$ we have tail bound

$$\mathbb{P}(S_K \geq t) \leq \exp \left(-\frac{1}{2} \min \left\{ \frac{t^2}{\sum_{j=0}^{K-1} 1/n_j}, \frac{n_1 t}{2b(M)} \right\} \right) \leq \exp \left(-\frac{1}{2} \min \left\{ \frac{n_1 t^2}{K}, \frac{n_1 t}{2b(M)} \right\} \right). \quad (33)$$

1026 Use the tail bound equation 33 in equation 32, we have
 1027

$$1028 \quad \mathbb{P}(\tau_M > K \mid \mathcal{F}_0) \leq \mathbb{P}\left(S_K \geq \frac{m(M)}{2}K\right) \leq \exp\left(-c(M)n_1K\right) \quad (34)$$

1030

1031 for all $K \geq K_0$ with $c(M) = \min\left\{\frac{m(M)^2}{8}, \frac{n(M)}{8b(M)}\right\}$.
 1032

$$1033 \quad \mathbb{P}(\tau_M > K) = \mathbb{E}[\mathbb{P}(\tau_M > K \mid \mathcal{F}_0)] \\ 1034 \quad \leq \mathbb{E}\left[\exp\left(-c(M)n_1K\right)\mathbb{1}_{\{K > K_0\}}\right] + \mathbb{P}(K \leq K_0) \quad (35)$$

1036

1037 Let $K \rightarrow \infty$ in equation 35, we get $\mathbb{P}(\tau_M < \infty) = 1$. Since M is arbitrary, this implies
 1038 $\liminf_{k \rightarrow \infty} \epsilon_k = -\infty$ a.s..

1039 The case $-\infty < a < b = \infty$ can be proved in the same way, therefore is omitted.

1040

□

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

B PROOFS OF ALL THEOREMS IN SECTION 2

Because of our special synthetic data design, the OLS estimator is equivalent to learning each coordinate of θ along the orthogonal directions $\{v_j\}$ separately. We can therefore rewrite the retraining procedure as follows:

Algorithm 2 Iterative Verifier-Guided Retraining in Linear Regression

- 1: **Input:** Real data (X^0, Y^0)
- 2: Compute initial estimator $\hat{\theta}^0 = (X^{0\top} X^0)^{-1} X^{0\top} Y^0$
- 3: Let $X^0 = U\Sigma V^\top$ be the SVD of X^0 , with right singular vectors $V = (v_1, \dots, v_p)$
- 4: **for** $k = 0, 1, 2, \dots$ **do**
- 5: **for** $j = 1, \dots, p$ **do**
- 6: Construct synthetic design matrix $X^{k+1,j}$ with all rows equal to v_j^\top
- 7: Generate synthetic responses $Y^{k+1,j} = X^{k+1,j} \hat{\theta}^k + \sigma \xi^{k+1,j}$, where $\xi^{k+1,j} \sim \mathcal{N}(0, I)$
- 8: Apply verifier to each $(x_i^{k+1,j}, y_i^{k+1,j})$ and retain valid samples satisfying

$$|y_i^{k+1,j} - (x_i^{k+1,j})^\top \theta_c| \leq r \|x_i^{k+1,j}\| + \sigma_c, \quad (36)$$

- 9: yielding n_k verified samples $(x_i'^{k+1,j}, y_i'^{k+1,j})$.
- 10: Compute one-dimensional estimator

$$\hat{\theta}^{k+1,proj,j} = \bar{y}'^{k+1,j} \quad (37)$$

- 11: **end for**

$$\hat{\theta}^{k+1,proj,j} = \bar{y'}^{k+1,j} \quad (37)$$

11: **end for**
12: Update overall estimator:

$$\hat{\theta}^{k+1} = \sum_{j=1}^p v_j \hat{\theta}^{k+1,proj,j} \quad (38)$$

13: end for

Proof of Theorem 3.1. We consider the one dimensional projection estimator of $\hat{\theta}^{1,proj,j}$ defined in equation 37. The filter condition equation 36 is equivalent to:

$$\begin{aligned} & |\sigma \xi_i^{1,j} + v_j^\top (\hat{\theta}^0 - \theta_c)| \leq r + \sigma_c \\ \iff & y_i^{1,j} = \sigma \xi_i^{1,j} + v_j^\top \hat{\theta}^0 \in \left(-r - \frac{\sigma_c}{\sigma} + v_j^\top \theta_c, r + \frac{\sigma_c}{\sigma} + v_j^\top \theta_c \right). \end{aligned} \quad (39)$$

Note that $\hat{\theta}^0 \sim \mathcal{N}(\theta^*, (X^0^\top X^0)^{-1}\sigma^2)$ and v_j is the j -th right singular vector of X^0 , therefore $v_j^\top \hat{\theta}^0 \sim \mathcal{N}(v_j^\top \theta^*, \sigma^2 \mu_j^{-2})$. Therefore, $\hat{\theta}^{1,proj,j} = \bar{y}^{1,j}$ correspond to the verifier-filtered mean estimator of a one-dimensional Gaussian mean estimation problem with true mean $v_j^\top \theta$, variance $\sigma^2 \mu_j^{-2}$ and filtering interval $(-r - \frac{\sigma_c}{\sigma} + v_j^\top \theta_c, r + \frac{\sigma_c}{\sigma} + v_j^\top \theta_c)$. Let

$$\begin{aligned}\alpha_j &:= \frac{-r - \sigma_c + v_j^\top(\theta_c - \theta^\star)}{\sigma}, \\ \beta_j &:= \frac{r + \sigma_c + v_j^\top(\theta_c - \theta^\star)}{\sigma}.\end{aligned}\tag{40}$$

Under the assumption $\mu_j = \omega(\sqrt{n_0})$, there exists a constant $L > 0$, such that $\mu_j^2 > Ln_0$ for all $j = 1, \dots, p$. Therefore, by Theorem A.1, there exists constant K_j depending only on α_j, β_j such that if $n_1 > n_0 > 100$,

$$\begin{aligned} & \left| \frac{1}{\sigma^2} \mathbb{E}(\hat{\theta}^{1,proj,j} - v_j^\top \theta^\star)^2 - \frac{m_2(\alpha_j, \beta_j)}{n_1} - \left(m_1^2(\alpha_j, \beta_j) + \frac{m_2^2(\alpha_j, \beta_j) + m_3(\alpha_j, \beta_j)m_1(\alpha_j, \beta_j)}{\mu_j^2} \right) \right| \\ & < K_j \left(\frac{1}{n_1 n_0^{1/3}} + \frac{1}{n_0^{3/2}} \right) \end{aligned} \quad (41)$$

1134 will hold with probability at least $1 - \exp(-Ln_0^{1/3})$. m_1, m_2, m_3 are defined in equation 14 and
 1135 equation 15. By equation 3, we have $\hat{\theta}^{1,proj,j} = v_j^\top \hat{\theta}^1$. In addition, since $V = (v_1, v_2, \dots, v_p)$ is an
 1136 orthonormal matrix, we have
 1137

$$1138 \sum_{j=1}^p \mathbb{E}(\hat{\theta}^{1,proj,j} - v_j^\top \theta^*)^2 = \sum_{j=1}^p \mathbb{E}(v_j^\top \hat{\theta}^1 - v_j^\top \theta^*)^2 = \mathbb{E}\|V^\top(\hat{\theta}^1 - \theta^*)\|^2 = \mathbb{E}\|\hat{\theta}^1 - \theta^*\|^2. \quad (42)$$

1141 Therefore, by summing over j on both sides of equation 41 and using simple union bound, we
 1142 established equation 8 with $K = \max_j K_j$ and
 1143

$$\begin{aligned} m_{1,j} &:= m_1(\alpha_j, \beta_j), \\ m_{2,j} &:= m_2(\alpha_j, \beta_j), \\ m_{3,j} &:= m_3(\alpha_j, \beta_j). \end{aligned}$$

□

1144
 1145
 1146
 1147
 1148
 1149 *Proof of Theorem 4.1.* We consider the transition dynamics of $\hat{\theta}^k$ in Algorithm 2. Since we designed
 1150 $X^{k,j}$ to be the rank one matrix correspond to singular vector v_j , therefore equation ?? reduces to a
 1151 one-dimensional estimation equation:

$$1153 \hat{\theta}^{k+1,proj,j} = v_j^\top \hat{\theta}^k + \frac{\sigma}{n_k} \sum_{i=1}^{n_k} \xi_i'^{k+1,j} \quad (43)$$

1154 where $\xi_i'^{k+1,j}$ is the truncated noise term after verification. By equation 36, we have
 1155

$$1158 \xi_i'^{k+1,j} \text{ i.i.d } \sim \mathcal{N}_{trunc} \left(-\frac{r}{\sigma} - \frac{\sigma_c}{\sigma} - v_j^\top \frac{\hat{\theta}^k - \theta_c}{\sigma}, \frac{r}{\sigma} + \frac{\sigma_c}{\sigma} - v_j^\top \frac{\hat{\theta}^k - \theta_c}{\sigma} \right). \quad (44)$$

1161 We consider the rotated standardized estimator

$$1164 \epsilon_j^k := v_j^\top \frac{\hat{\theta}^k - \theta_c}{\sigma} \quad \text{equivalently} \quad \epsilon^k := V^\top \frac{\hat{\theta}^k - \theta_c}{\sigma}.$$

1166 Since $\hat{\theta}^{k+1,proj,j} = v_j^\top \hat{\theta}^{k+1}$ by equation 38, equation 43 can be standardized as
 1167

$$1168 \epsilon_j^{k+1} = \epsilon_j^k + \frac{\sum_{i=1}^{n_k} \xi_i'^{k+1,j}}{n_k}, \quad \xi_i'^{k+1,j} \text{ i.i.d } \sim \mathcal{N}_{trunc}(-\beta - \epsilon_j^k, \beta - \epsilon_j^k) \quad (45)$$

1169 where $\beta = \frac{r}{\sigma} + \frac{\sigma_c}{\sigma}$. We note that equation 45 is exactly the same dynamics we consider in the proof
 1170 of Theorem A.2 with $\beta = -\alpha < \infty$. In other words, the evolution of the iterative estimator ϵ^k is
 1171 diagonal and each coordinate follows the same dynamics as the one dimensional gaussian iterative
 1172 mean estimator. From Theorem A.2, we know that there exists a constant $\rho < 1$ such that
 1173

$$1176 \mathbb{E}\|\epsilon_j^k\|^2 \leq \rho^{2k} \mathbb{E}\|\epsilon_j^0\|^2 + \sum_{j=0}^{k-1} \frac{\rho^{2(k-j)-1}}{n_j}, \quad j = 1, 2, \dots, p.$$

1179 This implies that
 1180

$$1181 \mathbb{E}\|\hat{\theta}^k - \theta_c\|^2 \leq \rho^{2k} \mathbb{E}\|\hat{\theta}^0 - \theta_c\|^2 + p\sigma^2 \sum_{j=0}^{k-1} \frac{\rho^{2(k-j)-1}}{n_j}.$$

□

1188 C ADDITIONAL DETAILS ON CVAE EXPERIMENTS
1189
11901191 **Data preprocessing.** We use MNIST (28×28 grayscale) and normalize pixel intensities to $[0, 1]$.
1192 Class labels are represented as one-hot vectors $y \in \{0, 1\}^K$ ($K=10$).
11931194
1195
1196 **Experiment Details.** We use a convolutional CVAE model consisting of an Encoder with two
1197 convolutional layers ($1 \rightarrow 32$ and $32 \rightarrow 64$ channels, 4×4 kernels, stride 2, with GELU activations),
1198 followed by a linear projection that outputs the mean and log-variance of a $d_z = 20$ -dimensional
1199 Gaussian latent space. The Decoder mirrors this structure: a linear layer maps the latent code to a
1200 $64 \times 7 \times 7$ tensor, which is upsampled by two transposed convolutional layers ($64 \rightarrow 32$ and $32 \rightarrow 1$
1201 channels, 4×4 kernels, stride 2, with GELU activations) to reconstruct 28×28 images. We train the
1202 CVAE with the standard objective, i.e., binary cross-entropy reconstruction loss plus KL divergence
1203 regularization.
12041205
1206 **Discriminator for filtering.** We additionally train a discriminator D to distinguish real from
1207 synthetic samples. D is implemented as a multi-layer perceptron: five fully connected layers with
1208 hidden sizes 512, 256, 128, and 64, each followed by a LeakyReLU activation, and a final linear
1209 layer mapping to a single logit. The output is passed through a sigmoid to yield the probability of the
1210 input being real. The discriminator is trained with binary cross-entropy, labeling real MNIST digits
1211 as positive and CVAE-generated digits as negative.
12121213
1214
1215 **Synthetic generation and filtering.** After each training round, we generate conditioned samples
1216 by drawing $z \sim \mathcal{N}(0, I)$, choosing labels y (uniform over classes unless specified), and decoding
1217 $\tilde{x} = g_\theta(z, y)$. To control sample quality, we score each (\tilde{x}, y) with the discriminator $D(\tilde{x}, y)$. For
1218 each class, we retain only the top 10% of generated samples with the highest discriminator scores.
1219 These filtered synthetic samples are then combined with the real dataset to form the training data for
1220 the next round.
12211222
1223
1224 **Supplementary Results on Test ELBO** We also evaluate generative performance using the test
1225 ELBO, a standard metric for VAEs. Compared to FID, ELBO proves substantially harder to im-
1226 prove—likely because ELBO penalizes per-pixel deviations, while FID emphasizes perceptual quality.
1227 We adopted a much more aggressive synthetic size schedule than in our earlier experiments. Starting
1228 from 500 real samples, we first increase the synthetic size to 30K—a point at which further increases
1229 yield diminishing returns—then linearly scale over 20 rounds until reaching 1M synthetic samples,
1230 which already stretched our computational budget.
12311232 Figure 5 reports test ELBO over these 20 rounds. Consistent with our bias-variance analysis, we
1233 observe clear improvement in the early stages (up to about round 5-10). After that, however, ELBO
1234 deteriorates beyond round 10.
12351236 We attribute this both to the verifier’s limitations, as discussed in the main text, and to the fact
1237 our verifier (implemented via a discriminator) emphasizes more on perceptual quality rather than
1238 likelihood-based reconstruction. This observation is also consistent with our theoretical prediction:
1239 verifier bias can lead to a reversal in loss trends, negating the early gains realized by bias-variance
1240 trade-offs.
12411242 As a result, our retrained models achieve much sharper, cleaner digits with significantly improved
1243 FID, even when ELBO stagnates or worsens. We believe that with stronger verifiers better aligned
1244 with the true data distribution, iterative retraining could improve not only perceptual metrics like FID
1245 but also likelihood-based metrics such as ELBO.
1246

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Figure 5: Test ELBO and reconstruction loss across retraining rounds.

1296 **D ADDITIONAL EXPERIMENTAL RESULTS**
12971298 **D.1 RANDOM SYNTHETIC DATA IN LINEAR REGRESSION**
12991300 In the main text, the synthetic covariates were aligned with a fixed orthonormal basis to simplify
1301 analysis and make the retraining dynamics easier to interpret. To show that the observed behavior
1302 is not tied to this structured design, we repeat the same iterative retraining experiment using fully
1303 random synthetic covariates sampled i.i.d. from a standard Gaussian distribution.1304 Figure 6 presents the results, corresponding directly to the two panels in Figure 2 of the main text, but
1305 under the random-design setting. The qualitative behavior remains the same: with a well-specified
1306 verifier, retraining contracts toward the verifier’s knowledge center and avoids collapse, whereas
1307 unfiltered retraining diverges. This confirms that the verifier-induced stability and improvement
1308 patterns hold beyond the orthonormal-design assumption.
1309

(a) Verifier with bias (random design)

(b) Verifier without bias (random design)

1320 Figure 6: Iterative synthetic retraining under random synthetic covariates, corresponding to the
1321 structured-design results in Figure 2.
13221323 **D.2 DIFFERENT VERIFIER SHAPES**
13241325 We further analyze how different geometric choices of the verifier region affect the acceptance rule
1326 and the resulting retraining dynamics. For any region \mathcal{R}_θ around a center θ_c , a synthetic point (x, y)
1327 is accepted whenever there exists a parameter perturbation Δ in the region that can explain y , i.e.
1328

1329
$$y = x^\top (\theta_c + \Delta) + \xi, \quad \Delta \in \mathcal{R}_\theta.$$

1330 This leads to the general acceptance requirement
1331

1332
$$|y - x^\top \theta_c| \leq \sup_{\Delta \in \mathcal{R}_\theta} |x^\top \Delta| + \sigma_c.$$

1333 Different verifier shapes correspond to different support functions $\sup_{\Delta \in \mathcal{R}_\theta} |x^\top \Delta|$.
13341335 **(1) Ellipsoidal verifier.** Consider the anisotropic ellipsoid
1336

1337
$$\mathcal{R}_\theta = \{\theta : (\theta - \theta_c)^\top A(\theta - \theta_c) \leq r^2\}, \quad A \succ 0.$$

1338 Let $\Delta = \theta - \theta_c$. Changing variables $\Delta = A^{-1/2}u$ with $\|u\|_2 \leq r$ yields
1339

1340
$$\sup_{\Delta^\top A \Delta \leq r^2} |x^\top \Delta| = r \|A^{-1/2}x\|_2 = r \sqrt{x^\top A^{-1}x}.$$

1341 Thus the acceptance condition becomes
1342

1343
$$|y - x^\top \theta_c| \leq r \sqrt{x^\top A^{-1}x} + \sigma_c.$$

1350 (2) **Polyhedral ℓ_1 verifier.** For the ℓ_1 knowledge region
 1351
$$\mathcal{R}_\theta = \{\|\theta - \theta_c\|_1 \leq r\},$$

 1352 the perturbation satisfies $\|\Delta\|_1 \leq r$. Using Hölder duality,

$$\sup_{\|\Delta\|_1 \leq r} |x^\top \Delta| = r\|x\|_\infty.$$

1353 The corresponding acceptance rule is
 1354

$$|y - x^\top \theta_c| \leq r\|x\|_\infty + \sigma_c.$$

1355 Although ellipsoidal and ℓ_1 (polyhedral) regions induce different forms of acceptance sets, both yield
 1356 the same qualitative retraining behavior: $\hat{\theta}^{(k)}$ consistently move toward the verifier center θ_c . The
 1357 empirical trajectories under both shapes are shown in Figure 7.

1358 Figure 7: Retraining trajectories under two different verifier shapes. In both cases, $\hat{\theta}^{(k)}$ empirically
 1359 converges toward the verifier center θ_c .
 1360

1361 D.3 MNIST-SPECIFIC FID EVALUATION

1362 The standard Fréchet Inception Distance (FID) is widely used in generative modeling, including on
 1363 MNIST, following prior work such as Dai & Wipf (2019); Leontev et al. (2020); Chan & Sithongu
 1364 (2024). Nonetheless, we agree that Inception embeddings are not tailored to handwritten digits and
 1365 may not fully capture perceptual similarity on MNIST.

1366 To address this point, we introduce a **MNIST-specific FID** variant. We train a lightweight convolutional
 1367 network directly on MNIST classification, and compute FID using the penultimate-layer
 1368 activations as the embedding space. This produces a domain-appropriate FID measure while preserv-
 1369 ing the same statistical structure as the original metric. These results confirm that our conclusions are
 1370 robust to the choice of embedding and do not depend on the use of vanilla FID.

1371 **Results.** Figures 8a and 8b report the new FID scores under our retraining framework for all verifier
 1372 sizes. Consistent with the standard FID curves in the main paper.

1373 Figure 8: **MNIST-specific FID using our MNIST-trained feature embedding.** Both results confirm
 1374 that our conclusions remain unchanged when replacing standard FID with a domain-specific metric.
 1375

1404
1405

D.4 QUALITATIVE EVALUATION OF GENERATED SAMPLES

1406
1407
1408
1409
1410
1411
1412

To complement the quantitative FID analysis, we present a compact qualitative comparison of representative MNIST samples generated under different retraining and verification regimes. All models begin from the same initialization trained on 500 real MNIST images. During retraining, the quality of the verifier plays a crucial role: in our experiments, a *weak verifier* is trained on only 500 real images together with an equal number of synthetic images, whereas a *strong verifier* has access to all 60,000 real MNIST images. This contrast provides a clear illustration of how verification quality affects synthetic retraining.

1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
14231430
1431
1432
1433
1434

Figure 9: **Qualitative comparison of generated MNIST samples across retraining and verification settings.** From left to right: the initial model trained on 500 real images; results after 10 rounds of synthetic-data retraining; and results after 40 rounds under three conditions—strong verifier (trained with 60k real images), weak verifier (trained with 500 real + 500 synthetic images), and no verification.

1435
1436
1437
1438
1439
1440
1441

The patterns in Figure 10 clearly illustrate the role of verifier. The strong verifier enables the generator to progressively sharpen digit structure and contrast, ultimately approaching the quality of a model trained directly on all 60,000 real MNIST images. In contrast, weak or absent verification allows synthetic gradients to drift, resulting in blurry or distorted digits. These qualitative observations closely match the quantitative FID trends reported in the main text.

1442
1443

D.5 DIFFERENT INITIAL SAMPLE SIZES

1444
1445
1446
1447
1448
1449

We assess the robustness of verifier-guided retraining by varying the number of real MNIST images used to train the initial CVAE (1k, 2k, 3k, 4k, 60k). For small and medium initial sample sizes, verifier filtering yields clear early FID improvements and then stabilizes performance, whereas unfiltered retraining quickly degrades. When the generator is initialized on all 60k real images, verifier filtering no longer improves FID over the initial model, but it still effectively prevents the severe collapse observed under unfiltered retraining.

1450
1451
1452
1453
1454
1455
1456
1457

We perform our main experiments in a low-real-data regime (e.g., with 500 initial images), where the verifier, having been trained on a much larger subset of MNIST, holds strictly more external knowledge than the generator. According to our theory, this is exactly the regime in which verifier-guided retraining should provide true improvement rather than simple stabilization, because the verifier contributes additional information. In contrast, when the generator is initialized on the full 60k training images, the verifier would need access to an even stronger source of external information to achieve improvement; otherwise it can only prevent collapse. For this reason, the small initial sample size serves as the most informative regime for highlighting the verifier’s knowledge-injection effect and demonstrating the improvement phenomena predicted by our theoretical framework.

1458
1459
1460
1461
1462
1463
1464
1465
14661467
1468 Figure 10: FID across retraining iterations under different initial sample sizes, comparing verifier-
1469 filtered and unfiltered synthetic retraining.
14701471 D.6 ADDITIONAL EXPERIMENTS ON LARGE-SCALE NEWS SUMMARIZATION
14721473 To further assess the generality of our theoretical predictions beyond image-based generative settings,
1474 we conducted additional experiments on the XSUM news-summarization dataset Narayan et al.
1475 (2018), a widely used natural-language benchmark. Our goal is to evaluate whether verifier-filtered
1476 synthetic retraining improves a pretrained language model’s performance on realistic natural-language
1477 tasks.1478
1479 **Base model and training setup.** We use the SmolLM2-135M model Allal et al. (2025) as our
1480 generator. We follow a similar experimental setup to Feng et al. (2024), who evaluate a single round
1481 of retraining on synthetic summaries. In contrast, our study focuses on the *multi-iteration* retraining
1482 regime, enabling us to examine how performance evolves over repeated generate–filter–retrain cycles.
1483 The model is first fine-tuned on 12.5% of the XSUM training set for one epoch using full-parameter
1484 training. We follow common summarization practice and employ greedy decoding for both generation
1485 and evaluation, given the low-entropy nature of news summarization.
14861487 **Synthetic retraining procedure.** After the initial fine-tuning step, we perform iterative synthetic
1488 retraining as follows:
14891490 1. Generate a synthetic summary y' for each of the 204,045 training articles using greedy decoding.
1491 2. For each article–summary pair (x, y') , compute the ROUGE-1 score between y' and its ground-
1492 truth summary y .
1493 3. Select the top 12.5% of synthetic examples according to ROUGE-1 (oracle filter).
1494 4. Retrain the model on these filtered synthetic examples.
1495 5. Repeat the generate–filter–retrain loop for multiple iterations, recording the ROUGE-1 score on
1496 the held-out test set after each iteration.
14971500 This setup directly mirrors our theoretical framework: high-quality filtering should improve perfor-
1501 mance during early iterations, followed by eventual plateauing as the model approaches the verifier’s
1502 “knowledge center”.
15031504 **Results.** Figure 11 reports the ROUGE-1 score across 15 rounds of synthetic retraining for both
1505 the filtered and unfiltered conditions. For the unfiltered condition, we retrain on the same number
1506 of synthetic examples as the filtered condition. The filtered retraining procedure yields a consistent,
1507 monotonic improvement during the first several iterations before stabilizing, in agreement with
1508 our theoretical predictions. In contrast, the unfiltered retraining baseline shows no meaningful
1509 improvement and fluctuates around its initial performance level, illustrating that synthetic retraining
1510 without quality control does not enhance performance. These results further show that our theory
1511 holds in large-scale settings, where the dynamics of synthetic retraining closely match our theoretical
predictions.

Figure 11: **ROUGE-1 score vs. iteration on the XSUM dataset.** Filtered retraining leads to consistent improvement across early rounds, while unfiltered retraining exhibits no significant gain.

Computational resources. All experiments were conducted on a dedicated cluster equipped with 4 NVIDIA A800 GPUs (256 GB memory each). Training and inference follow a standard full-finetuning pipeline with batch size 32, learning rate 5×10^{-5} , cosine scheduler, one training epoch, and maximum sequence length of 256.

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566 **E USE OF LARGE LANGUAGE MODELS**
1567

1568 The authors acknowledge the use of ChatGPT for assistance in improving plot figures, as well as for
1569 checking grammar and spelling. All scientific contributions, analyses, and interpretations are solely
1570 the work of the authors.
1571

1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619