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ABSTRACT

Synthetic data has been increasingly used to train frontier generative models. How-
ever, recent study raises key concerns that iteratively retraining a generative model
on its self-generated synthetic data may keep deteriorating model performance, a
phenomenon often coined model collapse. In this paper, we investigate ways to
modify the synthetic retraining process to avoid model collapse, and even possibly
help reverse the trend from collapse to improvement. Our key finding is that by
injecting information through an external synthetic data verifier, whether a human
or a better model, synthetic retraining will not cause model collapse. Specifically,
we situate our theoretical analysis in the fundamental linear regression problem,
showing that verifier-guided retraining yields early improvements when the verifier
is accurate, and in the long run the parameter estimate converges to the verifier’s
knowledge center. Our theory predicts that the performance of synthetic retraining
will have early gains but eventually plateaus or even reverses, unless the verifier
is perfectly reliable. Indeed, our experiments on both linear regression as well as
Conditional Variational Autoencoder (CVAE) trained on MNIST data also confirm
these theoretical insights.

1 INTRODUCTION

The use of synthetic data has gained significant traction due to its ability to reduce data collection
costs and enhance privacy protection, with applications in computer vision (Wood et al., [2021)),
healthcare (Azizi et al.,|2021; Santangelo et al.,|2025)), and finance (Potluru et al., [2023). A growing
body of work has demonstrated that training with synthetic data can improve performance, especially
when real data are scarce or expensive to obtain (Shrivastava et al., 2017; Doersch & Zisserman, 2019
Liu et al.| 2023} [Tremblay et al., 2018)). However, recent studies caution that recursively training
models on synthetic data alone can lead to a degradation of quality, a phenomenon often termed
model collapse (Shumailov et al.,|[2024; |[Dohmatob et al., [2024azb:c; |Alemohammad et al.| 2023}
Gerstgrasser et al., [2024)).

In practice, synthetic data are rarely used in raw form. Instead, practitioners often apply filtering steps
to remove low-quality synthetic samples before retraining. For example, in natural language gener-
ation, synthetic sentences may be screened using grammar checkers or LLM-as-a-judge pipelines;
in computer vision, synthetic images may be filtered using pretrained discriminators or human an-
notation; in recommendation and preference learning, synthetic feedback is often validated against
external heuristics or known user signals (Tu et al.| [2024; Iskander et al., [2024; [Lupidi et al.| [2024;
Lampis et al., 2023} Zhang et al.|[2024). A common abstraction across these approaches is the use of
a verifier that evaluates candidate synthetic samples and retains only those passing verification.

While intuitively appealing, it remains unclear whether such verifier-based filtering truly improves
model training. Existing studies provide partial insights in specific tasks—such as classification with
noisy labels (Feng et al, 2024) or preference-driven data selection (Ferbach et al., 2024)—but a
general statistical framework for understanding the impact of verifiers on retraining dynamics is still
lacking. In particular, we lack a systematic theory that characterizes both the short-term benefits of
verifier filtering and its long-term consequences for iterative retraining.
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Our contributions. We develop a statistical framework to analyze retraining on verified synthetic
data, focusing on linear regression — a canonical model for principled study of model collapse
(Dohmatob et al., 2024ab; (Gerstgrasser et al., 2024) — while also empirically extending insights to
real-world generative settings. Our contributions can be summarized as follows:

* Does verification help? We show that verifier filtering can indeed improve model training.
Our results provide formal conditions under which retraining on verified synthetic data
yields performance gains relative to unfiltered retraining.

» When does it help? We characterize the regimes in which verification leads to improvement
versus degradation, highlighting the role of synthetic sample size, verifier bias, and verifier
strength. This provides a concrete answer to when verification is beneficial.

* Why does it help? We identify the mechanism underlying these improvements: a verifier-
induced bias—variance trade-off in the short term, and convergence of the retrained model
toward the verifier’s knowledge center in the long term. These results reveal distinct
asymptotic performance phases depending on verifier quality.

» Empirical validation. We validate our theory through both simulations and real-data experi-
ments, including linear regression and conditional variational autoencoder (CVAE) models,
showing that our theoretical predictions align with observed training dynamics.

These together offer a comprehensive understanding about the role of external verifiers in synthetic
retraining, helping explain whether, when, and why verification can mitigate model collapse.

1.1 RELATED WORK

Understanding and mitigating model collapse. Recent research has shown that relying heavily on
synthetic data for training can lead to model collapse, a degradation in model quality over successive
training iterations. Intuitively, model collapse refers to the phenomenon where repeated retraining
on synthetic data produces worse models rather than better ones. A number of recent studies
have provided evidence of collapse. For instance, |[Shumailov et al.|(2024) showed that recursively
training solely on synthetic data induces distribution shift that leads to collapse. [Dohmatob et al.
(2024b) demonstrated that even small proportions of synthetic data can harm performance. In
linear models, Dohmatob et al.|(2024a) analyzed collapse mechanisms explicitly, while[Dohmatob
et al.|(2024c) linked degradation to altered neural scaling laws. To mitigate collapse, some studies
propose accumulating data across iterations rather than replacing it entirely, which stabilizes training
(Gerstgrasser et al., [2024; Dey & Donoho, [2024). Others, such as/Alemohammad et al.| (2023), argue
that only incorporating fresh data fully avoids collapse.

However, showing that collapse does not occur is not sufficient. Ultimately, the goal of retraining is
not merely to avoid deterioration but to achieve improvement, since better models are the essential
objective in practice. Yet prior work has largely stopped at diagnosing collapse or proposing strategies
that stabilize performance, without demonstrating conditions under which retraining can strictly
improve models. This gap motivates our focus on verifier-filtered synthetic data, an approach
closely aligned with industry practice, where synthetic samples are routinely refined through external
feedback mechanisms. By analyzing this setting, we provide a theoretical foundation for when and
why retraining can lead to genuine model improvement.

Filtering and selecting synthetic data. A complementary line of work investigates filtering
strategies to improve synthetic data quality. Empirical studies have shown that training on filtered
synthetic data can mitigate collapse and sometimes even enhance performance (Zhang et al.| [2024;
Lampis et al.| 2023 [Haluptzok et al.| 2022} [Zelikman et al., 2022} |Patwa et al.| 2024). These
results suggest that filtering may offer a pathway toward improvement rather than mere stabilization.
Theoretically, Ferbach et al.|(2024)) interpret curation as a form of implicit preference optimization,
while Feng et al.| (2024) analyze verifier-based filtering in classification, modeling the verifier by a
single error-rate parameter. They identify a sharp phase transition: filtering either achieves perfect
accuracy or complete failure, depending on verifier quality.

In contrast, our analysis provides a more nuanced characterization. We show that in regression,
performance varies smoothly with the verifier’s bias and variance, rather than undergoing a sharp
threshold effect. Moreover, we provide finite-sample rates that explicitly capture the interplay between
real and synthetic data sizes. These distinctions highlight that while empirical work suggests filtering
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can drive improvement, a comprehensive theoretical understanding of the transition dynamics has
been lacking. Our framework aims to fill this gap by rigorously analyzing verifier-filtered retraining
under a linear model, thereby offering insights into when filtering not only prevents collapse but also
yields strict improvement.

2 VERIFIER-GUIDED SYNTHETIC RETRAINING IN LINEAR REGRESSION

In this section, we formalize our model of synthetic retraining with verification in the linear regression
setting, where the objective is to estimate the coefficient vector 6*.

Setup. Consider the linear model

y=x'0"+¢,
where ¢ ~ N(0,02), z € RP, and §* € RP is the unknown parameter of interest. We evaluate
estimators using the mean squared error (MSE), i.e., E||0 — 6*||2.

Suppose we have access to a verifier that encodes prior knowledge suggesting that the true parameter
lies within a certain region. For analytical clarity, we model this knowledge as a spherical constraint:

B.(6:.):={0eRP: 06 <r},

with fixed (but unknown) center 6. and radius .

Verifier rule. The verifier does not reveal 6. or r directly. Instead, it provides binary feedback
indicating whether a given (real or synthetic) data point (z;, y;) is consistent with the sphere constraint.
Specifically, the verifier outputs Yes if

lyi — x 0c| < rllai|| + o, (1)

and No otherwise. This rule is motivated by the expectation bound

E[ly: — o] 0c|] = E[Ja] (0" — 00) + &) < rlle]l + Blea| = rlla]| + /20

Since the true o might be unknown in practice, o, serves as an estimate of the true o.

Motivation. We adopt this binary verifier model for both practical and theoretical reasons: (i) In
practice, eliciting simple yes/no feedback is far less noisy and more cost-effective than asking verifiers
to directly specify 6. or . Indeed, in many applications verifiers may not even know these quantities
explicitly. (ii) This design mirrors the success of comparison-based feedback in reinforcement
learning from human feedback (RLHF), where binary or relative judgments are easier for humans (or
automated raters) to provide than absolute scores. Such binary responses have become a standard
tool in preference alignment for large language models, where LLM raters and human evaluators
provide pairwise or accept/reject judgments that effectively guide learning at scale. ((Ouyang et al.
2022; Wettig et al.} [2024))

Thus, although simple, the binary verifier captures both the practical constraints of real-world
feedback and the theoretical tractability needed for analysis, while serving as a natural mechanism to
filter synthetic data during retraining.

Synthetic Retraining with Verifier Filtering We begin with a set of real data (X°,Y?), where
X0 € R™*P and Y € R"0, The initial estimator §° is obtained via Ordinary Least Squares (OLS):

00 = (x0T x0)~1x0TyO, )

We then proceed with iterative synthetic retraining, where each round follows a generate—verify—
retrain scheme:

* Generate: Y'! is generated by the following formula and X! is generated by the design
detailed below: A
Yi=X"+¢t, &~ N(0,0%0).
« Verify: Each synthetic sample (z},y}) is passed through the verifier condition equation
Only the verified subset is retained, denoted (X', Y'").
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* Retrain: A new OLS estimator is computed using only the verified data:

0 = (x" xV)yix Ty 3)
For subsequent iterations & > 1, we repeat this procedure:
gk eenerae (Xk+17yk+1) verify (Xk+1”Yk+1’) rewain k41 (4)

Because learning proceeds through the conditional Y* | X*, synthetic retraining requires specifying
the covariate design X*; labels Y* are then generated conditionally via the model under verifier
constraints. In principle, one could construct X * arbitrarily; however, to ensure mathematical clarity
and keep the theorem tractable, we adopt a targeted design. We align the synthetic covariates with a

fixed orthonormal set {v1, ..., v,} and construct X k¥ in a block-structured form by repeating each
T
v, as rows: k T
J X¥=(v1,.00y Vayeiry ey, Upyeo. ).
—— ——
copies of v1  copies of va copies of vy,

After verifier filtering, each orthogonal direction v; retains exactly n; samples. This block design

diagonalizes the transition operator gk s GF 1, By aligning synthetic samples with fixed orthogonal
directions, we remove the rotational variability that arbitrary designs would introduce across iterations
and decouple the dynamics along singular directions. In particular, choosing {v; } as the right singular
vectors of the real data matrix X° yields the cleanest interpretation, making explicit how verifier
bias, synthetic sample size, and noise variance interact. This choice clarifies both the short-term
bias-variance tradeoff and the long-term convergence behavior, and we will adopt it in the following
analysis.

This construction mirrors curating data along approximately orthogonal factors (e.g., topical axes
like politics, economics, sports). It is not unique: alternatives (canonical basis, isotropic random
directions) can yield similar qualitative conclusions, with potentially different constants or rates.

3 ON THE NEAR-TERM IMPROVEMENT UNDER SYNTHETIC RETRAINING

This section investigates the verifier’s role in synthetic retraining: does it help, when does it help,
and why does it help? We focus on one round and show that verifier-guided retraining can improve
performance under mild assumptions. The key mechanism is a verifier-induced bias—variance trade-
off. We first present an error decomposition that isolates this trade-off, then provide a quantitative
one-step bound that reveals how synthetic sample size, verifier bias/strength, determine improvement
versus degradation. We conclude with design implications that inform the experiments in Section [5]

3.1 SOURCE OF IMPROVEMENT: BIAS—VARIANCE TRADE-OFF

To address the question of when and why verifier-guided synthetic retraining improves estimation, we

analyze the mean squared error (MSE) of the one-step estimator §' in estimating the true regression
coefficient §*. The MSE admits the following decomposition:
E|6' — 6*| = By, [Tr(\/ar(él 169)) ] + B

E[él | éo} —o! )

The first term in equation [5is the synthetic variance: it captures additional estimation noise from
the randomness in synthetic data generation. This variance decreases at rate 1/n, with the synthetic
sample size n1, but is unaffected by the real sample size ny. Hence, with abundant synthetic data,
this term becomes negligible.

The second term is the verification error, which measures the deviation of the conditional mean
estimator E(#' | 6°) from 6*. This error depends both on the accuracy of the verifier (i.e., its potential
bias) and the quality of the initial estimator §°, which improves with larger n.

To further disentangle the verification error, we decompose it as

Eg, . Tr(Var(E {él | éo})) +EGY — 672 ©6)

E[él | éo} _ ¢

4
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Here, the first term is the verification variance, reflecting variance reduction achieved by discarding
inconsistent synthetic samples, while the second is the verification bias, capturing systematic
deviation introduced by verifier bias.

Putting these together, the full decomposition is

E|6" — 6*|2 = By, [Tr(Var(él | éO))} —|—Tr<Var(E [él | éOD) FIEGY - 042, ()

. . . . . Verification Bias
Synthetic Variance Verification Variance

This decomposition highlights the central trade-off: verifier filtering reduces variance but may
introduce bias. Verified synthetic data leads to improvement precisely when the variance reduction
outweighs the bias introduced. In particular, when the verifier is sufficiently accurate and the synthetic

sample size n; is large, the MSE of 6! can be strictly smaller than that of the real-data estimator 6o,

3.2 CHARACTERIZING IMPROVEMENT IN ONE-ROUND RETRAINING

The next theorem characterizes the MSE of one-step estimator 61 in In particular, it shows that
after one step of verifier-guided synthetic retraining, model can improve given that the bias of the
verifier is small.

Theorem 3.1. Suppose each eigenvalue of the design matrix X° is w(\/no).ﬂ Then there exist
constants my j,msj € Rand msj € (0,1) for j = 1,...,p, depending only on r,X°,0*,0,, as
well as constants K, L > 0 such that:

p 2
1 - ma, i my,;ma,; +ms 1 1

1 2 2, 2 5J »J 2,

7]E||9 —Q*H —E — +m1j+—2j <K ﬁ“rﬂ
o ‘ ni ' H ning/ nd!
Jj=1 —— J 17 0
Synthetic Variance Verification Bias+Variance
(3)

holds with probability at least 1 — p exp (—Ln(l)/ 3), where ny denotes the post-verification sample
size.

Remark 1. The constants my j, ma ;, m3 ; (identified explicitly in Appendix@) are moments of a
truncated Gaussian distribution induced by the verifier.

* my 4, M3 ;: capture the directional bias between 0. and 0* along the j-th singular direction;

* My ;: quantifies the variance reduction along that direction, and always satisfies my ; < 1.
In particular, if 0. = 0%, then my ; =m3; =0forallj=1,...,p.

Theorem [3.1]reveals that improvement can be achieved after one step of verifier-guided synthetic
retraining. For comparison, the MSE of the initial estimator §° is

1 a0 I _
S EI0" =071 =D w5 )
j=1

When the verifier bias is small (so m; j, m3 ; =~ 0), the verification bias+variance term

2
2 mi,;ms,i+m;
ij + 'u?

is strictly smaller than the real-data variance /,Lj_g. Thus, whenever n; is sufficiently large, the bound
in equation [§]improves upon the baseline equation[9] The gap between them quantifies the additional
knowledge injected by the verifier through synthetic retraining.

This result highlights why verifier-guided retraining is practically useful: in regimes where real data
are scarce but synthetic data can be generated cheaply, the verifier serves as a mechanism to filter and

'That is, each dimension is well-represented in the original data. This holds easily when, e.g., the feature
data is drawn i.i.d. from a full-rank distribution.



Under review as a conference paper at ICLR 2026

refine synthetic samples so that they effectively amplify limited real-world evidence. In practice, this
suggests that retraining with a moderately accurate verifier can substantially reduce estimation error
without requiring more real data, a setting that frequently arises in modern machine learning systems
where data collection is costly but simulators or generative models are available.

As we will demonstrate empirically in Section[5] this bias—variance trade-off is not confined to the
linear model. It also manifests in complex models such as VAEs, where the benefit of synthetic
retraining is most pronounced during the early stages of training on the MNIST dataset.

4 ITERATIVE RETRAINING AS A MARKOV PROCESS, CONTRACTION AND
CONVERGENCE TO THE KNOWLEDGE CENTER

In the previous subsection, we showed that one-step verifier-guided retraining can improve estimation
accuracy through bias-variance trade-offs. This raises a natural question:

Q: If a single round of verifier-filtered retraining improves performance, can such improvement
be sustained over multiple rounds, and what is the eventual outcome?

In this subsection, we address this question. We want to understand the nature of the long-term
dynamics of iterative verifier-guided retraining though studying the linear regression model. Prior
to presenting our main results, we clarify the terminology frequently employed in the literature on
model collapse, focusing on its meaning in our linear regression setting.

« Model Degradation/Collapse: lim sup, . E||6% — 6*|]2 > E||6* — 6*]|2.

« Model Improvement: lim sup,_, . E||0F — 0*|2 < E||0* — 6*]]2.
Our key finding is that both behaviors can occur in long-term iterative retraining. The outcome de-
pends critically on three factors: the growth rate of synthetic data, the verifier’s bias, and the verifier’s
strength (i.e., its ability to reduce variance). Over time, iterative retraining injects increasingly more
verifier knowledge into the estimator, while the contribution from the original data gradually decays.
As a result, the verifier and the generative model family eventually dominate the limit behavior,
driving the estimator #* toward the verifier’s knowledge center ...

This dynamic gives rise to three distinct phases of long-term behavior:

* (1) Unbiased verifier: If the verifier is unbiased (i.e., f. = 6%), iterative retraining yields
continuous improvement and the estimator converges to the true parameter.

* (2) Mildly biased verifier: With small bias, iterative retraining can improve performance in
the short term by reducing variance, but performance eventually plateaus or deteriorates as
verifier bias accumulates.

* (3) Strongly biased verifier: With large bias, iterative retraining leads to degradation and
may even cause collapse in the limit.

Among these, case (2) is particularly relevant in practice. It highlights a cautionary message: while
synthetic retraining can initially boost accuracy, it cannot guarantee sustained improvement unless the
verifier is highly reliable. Since ensuring a perfectly unbiased verifier is unrealistic, the influence of
the original data will eventually vanish, leaving the verifier (and the chosen generative model family)
to dictate the long-term outcome.

Formally, the following theorem characterizes the long-term behavior of the estimator 6% in linear
regression under iterative verifier-guided retraining.
Theorem 4.1. There exist a synthetic retraining process and some constant 0 < p < 1 such that:
R R o p2i) -t
E[|0* — 0] < p*E[|0° — 0.]|* + po® Y F—or. (10)

na
§=0 J

In particular, if limy_, oo N, = 00, then limy_, oo EHék —6.*=0.
The proof of Theorem [4.1]is provided in Appendix [B] where concentration bounds and supermartin-

gale inequalities are used to establish convergence. Here we focus on the main intuition and highlight
the key novelty of our analysis.
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The central observation is that the iterative retraining procedure equation ] induces a Markov process:
the next state 9+ depends only on the current state §*. Formally, the update can be expressed as

0K = T(0%) + ey, (11)

where T'(+) is a deterministic mapping determined by verifier filtering, and 71 is a sub-Gaussian
noise term due to the randomness of synthetic samples at iteration k + 1. Crucially, we show that 7°(-)
is a contraction mapping, and that the variance of the noise decays at the rate Var(ny4+1) < 1/ng11.

This perspective allows us to view equation [[T]as a discretized stochastic differential equation (SDE).
As ng — o0, the noise term vanishes and the dynamics are dominated by the deterministic contraction
T (ék), which drives the recursion toward its fixed point—the verifier’s knowledge center .. The
presence of the verifier is therefore essential: it is precisely what transforms the update rule into a
contraction, guaranteeing convergence.

By contrast, in prior work on model collapse without a verifier (e.g., Gerstgrasser et al.|(2024); Xu
et al.|(2025)), the update reduces to the identity mapping. In that case, increasing the synthetic sample
size can suppress noise accumulation and ensure bounded error (i.e., E||ék — 0*]|? < 00), but there is
no contraction and hence no convergence or sustained improvement. The critical difference between
T(-) and the identity is exactly the knowledge extracted from the verifier through synthetic data. Our
analysis is the first to formally show that the verifier fundamentally alters the long-term dynamics: it
continuously injects knowledge, iteration by iteration, so that the estimator moves closer to 6. over
time.

This contribution also clarifies a common misconception: even with a perfect verifier (f, = 8*) and
infinitely many synthetic samples in one iteration, convergence cannot occur in a single step. As
shown in Theorem@ while infinite samples remove the synthetic variance term, the verification
bias+variance term persists. Thus, convergence requires the iferative action of the verifier, which
gradually aligns the estimator with the truth.

We observe the same phenomenon in our CVAE experiments on MNIST (Section[5). During early
iterations, enlarging the synthetic sample size substantially improves the model; however, beyond a
threshold, further increases bring diminishing returns.

5 EXPERIMENTS

In this section, we evaluate our method in two settings: linear regression simulation, which mirrors
the theoretical assumptions, and a Conditional Variational Autoencoder (CVAE) on MNIST, which
demonstrates practical behavior under iterative retraining and filtering. In both cases, the results
closely align with our theoretical predictions.

5.1 SIMULATION: LINEAR REGRESSION

Setting. We consider the linear model y = T 6* + &, with € ~ N(0,1), 0* € RP, and » € RP. An
initial OLS estimator is fitted on a small real dataset (X, Y?), after which we conduct K iterative
rounds of synthetic top-up aligned with the right singular vectors of X°.

One-step Synthetic Retraining. Figure[T|reflects The-
orem [3.1] because it compares the loss of the real-data 0 20

estimator A° with that of the one-step verified synthetic = .. o
estimator 0. In this experiment, we set 0* = 1g and de- i ,, | s é‘f ‘«‘f
fine the verifier’s belief center as 8, = 6* + 6 - 1, where .2 &
§ controls the verifier’s bias relative to the truth. The g " S
verification radius 7 determines how strictly synthetic @€ » uw D
samples are filtered: smaller r enforces tighter accep- T T Ty LS U
tance around 6., while larger r admits looser acceptance. Center Deviation: ¢

Using 100 real samples and 200 verified synthetic sam-

ples per singular direction, we find that verifier-guided Figure 1: One-step verifier-guided retrain-
retraining outperforms the real-only baseline when ver- ing vs. real-only baseline

ifier bias is small (green region), whereas excessive bias leads to degradation (red region). This
experiment empirically confirms the short-term bias—variance trade-off formalized in Theorem 3.1
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Iterative Synthetic Retraining. Similarly, Figure [2a] confirms Theorem [4.1] because it shows that
under a biased verifier, the retraining estimator converges to the verifier’s ‘knowledge center” 6. In
this experiment, the sample size increases linearly from 100 to 5500 over 60 rounds, with 6* = 13
and 6. = 6* + 0.1 - 1. The results also show that convergence is faster with a smaller verification
radius. In Figure[2b] we repeat the experiment with an unbiased verifier (6. = 6* = 1g). In this case,
verifier-guided retraining achieves consistently lower error than retraining without verification. These
findings provide empirical support for our long-term analysis in Theorem .1 demonstrating how the
contraction effect of the verifier yields convergence in practice.

[6% — 6] vs Iteration

|6 —6°| vs Iteration

0.8
NN Training sample size
0.7 Y \'/: S| — 500-2000
s . —— 1000-4000
™N 0. =l a7 N
06 N2 NGt —— 20008000
¥ 05 XN "
(<> i — Filtered
| o NV U — =+ Unfiltered
IS/ /~a
1 4 / Nema~-
X 03] | _,’ SRR RSN
D koo
0.1
0.0
[ 10 20 30 40 50 60 [ 10 20 30 40 50 60
Iteration Iteration
(a) Verifier with bias (b) Verifier without bias

Figure 2: Iterative synthetic retraining with and without bias.

5.2 CONDITIONAL VARIATIONAL AUTOENCODERS (CVAE) ON MNIST

We also conduct experiments on real-world image generation to demonstrate the applicability of our
theory beyond linear regression.

Setting. To make the bias—variance trade-off and verifier-injection effects clearly observable, we
initialize the CVAE with only 500 real MNIST images, creating a challenging low-resource scenario.
A discriminator, trained on varying amounts of real data together with an equal number of synthetic
samples, serves as the verifier. It assigns each synthetic sample a probability of being real, and we
retain the top 10% per digit. This 10% threshold is motivated by a one-step synthetic retraining study:
across synthetic sizes and filtering thresholds, retaining the top 10% yielded the best balance between
quality and diversity. Overly strict filtering produces high-quality but low-diversity samples, while
overly loose filtering yields diverse but lower-quality samples.

The number of retained samples n; follows two schedules: (i) a fixed sample size, or (ii) a linear
growth schedule. We then retrain the CVAE on the retained synthetic data and repeat this procedure
until performance stabilizes. Empirically, beyond 40 iterations the Fréchet Inception Distance (FID)
no longer improves, so we report results up to 40 rounds as a conservative steady-state horizon.
Generative quality is measured by the FID between generated data and real data. For more details on
model architecture, training, and evaluation, see Appendix

Results. Because our verifier—implemented as a discriminator—provides feedback biased toward
perceptual realism rather than likelihood calibration, we report FID as the primary metric in the main
text and defer likelihood-based reconstruction metrics (ELBO/bpd) to Appendix [C} Figure [3a|reports
FID across retraining iterations. With a strong verifier (trained on the full real dataset and an equal
amount of synthetic data), we observe rapid FID improvement within the first 15 rounds, even under
small fixed-size schedules (green (20K) and orange (5K) curves). Afterward, the improvement slows
and eventually plateaus. In contrast, synthetic retraining without a verifier leads to severe degradation.
This behavior closely mirrors our theory: (i) early gains arise from the short-term bias-variance
trade-off (Theorem [3.1), and (ii) long-term stability is predicted by the contraction effect of verifier
filtering (Theorem4.1)).

Figure [ provides qualitative evidence. Compared to the baseline CVAE trained on 500 real samples,
the model retrained for 40 rounds with verified synthetic data produces significantly sharper and more
realistic images. By contrast, the model retrained without verification deteriorates after 40 rounds,
consistent with model collapse. The choice of 40 rounds corresponds to the point at which loss and
FID stabilize, so further retraining brings no additional benefit.
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The plateau highlights verifier limitations: because the verifier is relatively simple, it may overempha-
size certain styles or patterns in synthetic data that are easier to distinguish from real data, thereby
introducing bias. For reference, a CVAE trained on all 60K real samples achieves an FID of 17.56 and
reconstruction error of 71.52, while the best synthetic model (red curve) after 40 verified retraining
iterations reaches 21.17 and 91.21, respectively.

Finally, Figure [3bexamines how verifier quality affects retraining. Here, the CVAE is trained with
20K synthetic samples per round. As expected, stronger verifiers (trained on more real data) yield
larger FID improvements, whereas weaker verifiers cause the FID curve to plateau early and can even
degrade performance.

We also report test ELBO in Appendix [C] Although ELBO is harder to improve than FID under our
current verifier design, the same theoretical predictions persist: (i) the verifier prevents collapse, (ii)
early gains reflect the bias—variance trade-off, and (iii) performance eventually plateaus and can even
reverse after ~10 iterations.

FID vs Model-Fitting Iteration FID vs Model-Fitting Iteration

Training sample size

140 Verifier training size
— 2% — 500
sk 1«
— 20k 120 -
___ Linear growth

— 10k

& (10k~256Kk) 0] \ — 20k
200 M — a0k
a =]
T 4 — Filtered T =0 60k
150 == Unfiltered N
100 0 \—\/\/\’\/\/\/\/\

0 5 10 15 20 25 30 35 a0 [ 5 10 15 20 25 30 35 a0
Model-Fitting Iteration Model-Fitting Iteration

(a) Filtering and training sample size. (b) Verifier quality.

Figure 3: FID results across retraining rounds. (a) Effect of filtering and retained sample size. (b)
Effect of verifier quality, varied by training data size. Together, the plots highlight how both sample
selection and verifier strength shape generative performance.
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Figure 4: Samples generated by the CVAE at different stages: Left: model trained in the first round
on 500 real images, Middle: model after 40 rounds with filtering under a linear sample growth
schedule (10k—256k), Right: model after 40 rounds without filtering under the same linear schedule.

6 DISCUSSION

Our study provides a theoretical and empirical characterization of verifier-guided synthetic retraining.
We show that the process yields short-term gains by reducing variance through verifier filtering, but
in the long run the estimator converges to the verifier’s knowledge center. This explains both the
promise and the risk of such methods: a high-quality verifier can inject reliable external knowledge,
while a biased verifier inevitably steers the model away from the truth. Viewed through the lens of
information elicitation, our framework formalizes how external signals are incorporated recursively
into training and why the outcome reflects the verifier’s information.

At the same time, our framework has limitations. We have focused on linear regression as the
analytical testbed, and although extensions to generative models such as VAEs validate the theory
qualitatively, further generalization is needed. Future work includes developing sharper bounds for
nonlinear models, exploring alternative synthetic design strategies beyond block orthogonalization,
and studying verifier dynamics in large-scale language and vision models.
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APPENDIX OVERVIEW

This appendix contains: Appendix A (1-D Gaussian toolkit), Appendix B (reduction and full proof
for linear regression), Appendix C (additional details on CVAE experiments), Appendix D (use of
large language models)

A ONE-DIMENSIONAL GAUSSIAN TOOLKIT

In this section, we provide a toolkit for analyzing the one-dimensional Gaussian mean estimation
problem with verifier-filtered synthetic data. This toolkit serves as the foundation for our analysis of
the linear regression models. We will establish several key lemmas and theorems that characterize
the MSE of the mean estimator under the one-dimensional Gaussian model. These results will be
instrumental in proving Theorem [3.1]and Theorem[d.1]in Appendix [B]

A.1 SETUP AND NOTATIONS

We consider the one-dimensional mean estimation problem where the real data X{,..., X 30 are
independently and identically distributed (i.i.d.) from a Gaussian distribution:

X?a e aXS,O ‘/]\9 N(}L,O’2),

with known variance o2,

In our setting, a verifier exists and encodes external knowledge that the true mean lies in an interval

. = X1+ +Xn, . .
[a,b] (i.e.u € [a,b]). Therefore, X0 = % is the empirical mean of real data, which
minimizes MSE if no extra information is supplied. We are interested in whether data verification
could effectively inject new information and improve over X°. Consider the following synthetic data

generation and filtering procedure:

' o
* Generate n; synthetic data X{, ..., X} " N (X0, 02).
* Retain X! € [a,b] as X]1,. .. ,X;ll,l, and estimate y using X! = - S~ X/,

nj
We will compare the estimator X * with X© and formally characterize when data verification enhances
or degrades model performance - i.e., when E(X' — ;)2 < E(X? — 11)? or not. Our key finding is
that X! introduces the core bias-variance trade-off that underpins model improvement or degradation.
We will characterize the MSE of X! which reveals how key quantities such as the real and synthetic
sample size, the verifier’s bias and variance will decide performance of the filtering strategy. These
insights provide intuition for extending verifier-guided re-training to more complex settings.

We first review some notation and key results for the truncated normal distribution, which will be
used in the subsequent sections. Consider a one-dimensional normal distribution X ~ N (u, 0?) and
let X’ be its truncated version restricted to the interval [a, b]. The distribution of X’ is the called the
truncated normal distribution, denoted as X' ~ N (x|u,0?) - 1{,<z<p}. The mean and variance of
the truncated normal distribution X’ are given analytically:

o P(t) — (=) a—p b—p
E[XM_M_G@(”TTM)_(I)(%) = p+ omg( — )
I IR =Y () B e = R A = B L=
VarlXu) = o = =g o ey (@(2) @(a;))
::g%@(“;“,b;“) (12)

where ¢(x) and ®(z) denote the standard normal density and cumulative distribution functions,
respectively. Standardizing X via Z := % and setting

a— b—u

p= :

o = s
g

13)

12
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the expression in equation T2 become:
E[Z'] = mi(a, B)
Var(Z'") = ma(a, 8) (14)
where Z' ~ N (2|0, 1) 1 {q<z<py is the standardized truncated normal distribution. For convenience,
we write Nirunc(a, 8) := N(2]0,1)-1{4<q<py. Thus, my and mg correspond to the first and second

central moments of the standardized truncated normal distribution. In addition, we also define the
third central moment of the standardized truncated normal distribution:
ms(a, B) :=E(Z —EZ')?
_ (B =1)e(B) — (a® —1)é(a)  3(¢(B) — $(a))(BS(B) — ag(a))
(@(8) — @(a)) (@(8) — @(a))?
2(4(8) — p())?
_—— 15
(@(5) — 0(a))? 4>

In particular, 0 < mso(a, 8) < 1 for any o < § and mq (e, 8) = ms(a,8) =0ifa+ 5 =0.

A.2 CHARACTERIZATION OF E(X?! — ;1)2, BIAS-VARIANCE TRADE-OFF, AND MODEL
IMPROVEMENT

Theorem A.1. Assume that ny > ng > 100. Then there exists constant K, depending only on o and
B, such that

1o ma(a, f) m3(a, B) +ms(a, B)yma (e, B)
SEE -2 - PO (i a,p) +
o ny no
——
Synthetic Variance Verification Bias+Variance
1 1
<K|—5+55 (16)
ning ng

holds with probability at least 1 — exp (—%ném).

Proof of Theorem It will be convenient to reparameterize the sample mean estimators by center-
ing them around the true mean. Specifically, we define the residuals:

o
(= TH N0, L), (17)

g no

Note that X! is the mean of n; i.i.d. samples from the truncated normal distribution N'(z| X, o%) -
1{4s<z<b}- The MSE of X! can be decomposed as follows:

E[(X" — 1)’] =Exo Exi g0 (X' = p)?]
— Exo [Var(X' [, X°) + (EIX" | X°] - po)’]

ma(a — €, —€1)
ni

= 0’FExo [ ] +Exgo [(X° —p—omi(a—e,B8—€))’]

2

) %Eq mefer=e1,f = 1)) +o°E [<m1(0‘ —e,B—€)+ 61)2] (18)

For the first term in we consider the event F; := {|61| < n51/3}, the function mo(-,-) is

Lipschitz continuous in a neighborhood of («, 3), so we have
(1) M,
ma(a— 1,8 — @) = ma(e )| = lai| - mi (@ =&, 8-)| < 5. (19)
N

13



Under review as a conference paper at ICLR 2026

for some £ € (0, €1), where we define

My = Sup 'm a_fvﬁ_f) ;
€<

1003

and M is a constant independent of ng as long as ng > 100. Event £ hold with high probability:

1/3 1/3
oo (<47)  ew(-20) 19
1/3> < N
1| < ng >1l—-—— 2L >1—-——~ 72 >]_exp|—-%]|.
0 | NCIPR T V//2-1001/6 ( 2 )

Then we consider then second term in[T8] The Taylor expansion of the function

m1(61) = ml(a —€, B - 61)

up to the third-order terms is:

1
mi(er) = my(a, B) — [1 — ma(a, B)] €1 + img(a, B)e? + 6m§3)(§)6‘;’, for some £ € (0,¢€1),
(20)
where m§3> (&) denotes the third derivative of m4 evaluated at some point between 0 and €;. Then we
can get

1 2
E., [(ml(a e B—e)+ 61)2} —E <m1( B) +ma(a, B)er + smala, Bl + 6m(3)(§)61>

m3 (e, 8) +mi(e, B)ms(a, B) n 3m3(a, B)

ng 4n(2)

1 m{® (€)
iR (ml(m 8) + ma(a, Ber + ~ms(a, ﬁ)e%) ™ ()

= m%(a,ﬂ) +

2 3 !
(3)?
+E<m3;®£>. Q1)

First, using the fact that there exists constant M/ that only depends on « and 3, such that |m§3) (z)| <
M for any x, we have:

®)
E l(ml( ,B) + ma(a, Ber + ;mg(a,ﬁ)ef) 13(6)6“;’]

<& | (e, )|+ ma(a Blal + hmata, 8 ) - Sl

M . M M
=E {3|m1(045)|61|‘3 + ?mz(a, 5)|€1|4 + 6m3(0‘vﬂ)||61|5]

for some constant K; depending only on « and 3.

Secondly, the last term in equation 21]is bounded by:

(3)2 2 2 _6
my (§) M S5M=o K.
TS| < SoEl] = 2 < o

E
- 36

3 = 3>
12nj ng
for some constant K.

So the second term in [T8]is bounded by

Ee, [(ml(a —e,f—ea)+ 61)2} —mi(a, B) — ms () + (e fjms(a. B) < 52 (22)
no ng

for some constant K.

Combining[T8] [T9] and 22| completes the proof.
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A.3 ITERATIVE RETRAINING AND LONG-TERM DYNAMICS IN ONE-DIMENSIONAL
GAUSSIAN MEAN ESTIMATION

Now consider the verifier-guided synthetic retraining in the Gaussian mean estimation setting. The
iterative retraining process can be described by the following algorithm.

Algorithm 1 Iterative Verifier-Guided Retraining for Gaussian Mean Estimation

1: Input: Initial estimate X° from real data

2: fork=0,1,2,... do

3 Draw &; ~ N N (0,0?) and construct synthetic samples X} = X* + ¢,.

4: Retain pomts with a < XF < b, yielding ny, verified samples {X/* : i =1,2,...n4}.
5 Xk+1 an X/k

6: end for ’

Algorithm ! 1| defines a Markov process {X°, X1 ... X* ...}, where the conditional distribution
p(XF+1XF) is given by

B B N B Nk k+1 _Xk b_X'k
p(XFHHXFY . XRH ZX”UZZ:#a EF 1 i4d ~ Nipume( — ) @3

The following theorem summarizes these findings:

Theorem A.2. Let X* be the Markov process determined by equation|23|with initial condition
2

0 NN(071)7

ng
and assume ny, is non-decreasing in k. Then the following statements hold:

* If]al, |b| < oo, there exists a constant 0 < p < 1 such that,

]E<Xka+b>2<p2kE(X0a+b kzlﬂ
) < .
=0

nj

Moreover, if limy,_ oo nj, = 00, limy_y00 E| X* — ‘ITH’F =0
e If —oo = a < b < oo, then liminfy_,oo X¥ = —00. If —00 < a < b = o0, then
lim sup,,_, ., X* = oc.
Proof of Theorem[A.2] Define
Xk —
e = L (24)
o

which represents the standardized error of the estimator X k. Tt is easy to see that ¢ € [a, ] &
XF* € [a,b], where , (3 are defined in equation Therefore, it suffices to consider the standardized
process {ex, k =0,1,2,...}. equationcan be standardized as:

an 1k+1
k1
€kt1 = €k + %; EFMY ~ Nogune (@ — €k, B — €x) (25)
k

For convenience, we shift the noise terms f;kﬂ in equationto have mean zero. Therefore, we
introduce

To.p(x) ::x+E[Z|a—x§Z§B—x], Vo, () ::Var(Z‘a—nggﬁ—x).
(26)
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where Z ~ N(0,1).
Therefore, equation [23|can be rewritten as

ert1 = Topler) + Mes1 (27)

1 Nk (glk-&-l

where n1 = = >0, (G
tion25] In particular, we have

— Efgkﬂ) is the average of independent mean zero noise in equa-

Ua
E[r1 [ Fi] =0, Var(ng41 | Fr) = %

where Fy, := o(€o,m1, . - ., Nx) and ny, is the (post-filtering) batch size at round k.
It is easy to see that
Top(x)=z+mi(a—=z,08—x),
Va,p() = ma(a -, 8 — ),
0,5(%) = Va,p(x).

We first consider |al, |b] < co. In this case, we first show that the derterministic part T, g(z) in
equation [27]is a global contraction. Since —oco < a < 3 < 0o, we have

sup T}, 4(z) =supVar(Z | a —z < Z < B—z)=Var(Z| |Z| < \a—;ﬂD =p<l
rz€R z€R
Therefore, T, g(x) is a global contraction. By the contractive mapping theorem that 7,, 5(x) has a
unique fixed point =*, which solves «* = T, g(z*). It is easy to see that
a+f

7t =Top(x") = a* =" +E(Z|a—2"<Z<B-2") = 2" = 5 (28)

By the mean-value theorem,

a—+p a+f
Topler) — ——1 < plex — ——I
2 2
Let Vi, := (e — QT'H;)Q we have
a+ By vapsler) 2 atpBy P
BV, = (T, - : < _aT P2y P
Vi [ ex] = (Tapler) - —5—=)" + = poler ——5—) o
Taking expectations yields
EViy < P2EV, + 2. (29)
Nk
Unrolling equation 29
=1 a(k—1-j)
EVi < p*EVp + p> (30)
=0

It is easy to see that

. 2 p21=d) i

j=0

Therefore, by the Cauchy-Schwarz inequality, limy_,o, E€7 < oo easily follows. Moreover, when
nk — 00, let g; := p* and a; := 1/n; — 0. A standard ¢'-convolution argument shows (g * a), :=

_ 1 Bk=1-7) ) )
Zf:é h—1—ja; = E?Zé % — 0. Therefore limy_, oo EV;, = limy o0 E(ex — ”‘TW)Q =0.
J
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Now we consider the case —0o = a < b < oo (equivalently —oo = o < 8 < 00). We will show that
liminfg_, o € = —00 a.s..

Let t; := 8 — €, and the recursion equation can be rewritten for ¢j:
ter1 =tk + A(tk) = Mt1s
where A(ty) = —E(Z|Z < S —ex) =E[Z | Z > —ti].
Consider the hitting time 737 := inf{k : t;, > M} for any M > 0. Fix M > 0 and define
m(M) := }’Iéllj\l’dl)\(t) =E[Z|Z>-M] >0,
which is strictly positive the fact that A\(t) > 0 and A(t) is a decreasing function. On the event

{Tm > K} wehavet; < M forj=0,...,K — 1, hence A(¢;) > m(M). Summing the recursion
yields

K-1 K-1
tg =ty + Z )\(tj) — Z Nj+1 > t0+Km(M) — Sk,
§=0 §=0
where Sk = Zf;ol Mj+1 and to = B — € is Fo-measurable (hence random). Therefore,
{ru > K} C {SK2t0+Km(M)—M}. 31)
Define the (random) burn-in index
2(M —to)
o= [
P m(an)
Then for all K > K,
M
to+ K m(M) — M > m(2 ) k.
and equation [31] gives, conditionally on Fy,
M
{ruy > K} C {SK > m(2 )K}, forall K > K. (32)

Next, we will show that Sk is a sub-exponential random variable in event {7); > K}. Since
Sk =0 i = ) ED N (5;3“ - Eggﬁl), we will first show that £/ — B¢/ is
sub-exponential.

Since fgﬁl ~ Nirunc (=00, 8 — €;) = Niunc(—00, t;), on the event {75, > K} we have

I R <t —E[Z | Z <t;] <M —E[Z | Z < M| :=b(M) < .
The above inequality follows from the fact that t — E[Z | Z < t] is an increasing function of ¢ and
tj < Mforj=0,...,K—1ontheevent {ry; > K}. Inaddition, Var(¢/ ') = Var(Z|Z < t;) <
1. Therefore, §£J+1 — ]Ef;jH is mean zero, bounded above by b(M) with Var (5?“ — Eﬁf“) <L
By Bennet/Bernstein MGF inequality, we have
)\(fij+1—]E£;j+l) )\2

~2(1—=b(M)N/3)’

for 0 < XA < ﬁ This shows that le-j o E{Z{j *1 is sub-exponential with pa-
rameters SE(1,2b(M)/3). By standard properties of sub-exponential random variables,
M = X (€0 BT is SE(/ng, 26(M)/(3n,)) and Sk = SIS nya s
SE(Z?:Ol 1/n;,2b6(M)/(3n41)) since n; is non-decreasing. Therefore, for any ¢ > 0 we have
tail bound

1 2 nit 1 nt?  nt
P(Sk >t) < — - mi < —p Wit '
(Sk 2 t) < exp ( zmm{zji—ol 1/n;’ 2b(M)}> - eXp( o min{ = " 2b(M) }>

log Ee

(33)
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Use the tail bound equation [33]in equation[32] we have

M

P(ry > K | Fo) <P (SK > m(2 )K> < exp ( - c(M)an) (34)
for all K > Ko with (M) = min { %G5, 2001
P(TM > K) :E[P(T]w > K | ]:0)]

<E {exp ( _ c(M)an) 1{K>KO}} FP(K < Kp) (35)

Let K — o0 in equation we get P(tyy < oo) = 1. Since M is arbitrary, this implies
liminfy_, o € = —00 a.s..

The case —0o < a < b = oo can be proved in the same way, therefore is omitted.

18
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B PROOFS OF ALL THEOREMS IN SECTION 2]

Because of our special synthetic data design, the OLS estimator is equivalent to learning each
coordinate of # along the orthogonal directions {v;} separately. We can therefore rewrite the
retraining procedure as follows:

Algorithm 2 Iterative Verifier-Guided Retraining in Linear Regression

1: Input: Real data (X°,Y?)

2: Compute initial estimator §° = (X0 ' X0)~1x0"y?©

3: Let X = USV'T be the SVD of X, with right singular vectors V = (v1,...,v,)
4: fork=0,1,2,...do

5: fory;=1,...,pdo

6: Construct synthetic design matrix X**17 with all rows equal to v
7: Generate synthetic responses Y +1.7 = Xk +1igk 4 geht1i where ¢5+19 ~ N(0, 1)
8 Apply verifier to each (fo’J , yf i ) and retain valid samples satisfying
k+1,5 k+1,j k41,5
ly; T = (@) Tl < wllaf |+ o (36)
9: yielding ny, verified samples ('a:;kﬂ’j, yng’j).
10: Compute one-dimensional estimator
Qk+1.prog.i — g/k+1vj (37)
11: end for
12: Update overall estimator:
~ p ~ ..
pF+1 — Z vj9k+17pmj,] (38)
j=1
13: end for

Proof of Theorem BT} We consider the one dimensional projection estimator of 617777 defined in
equation[37] The filter condition equation [36]is equivalent to:

|O'£i1’j + UjT(éO —0.) <r+o.
= yllj = agjvj + vaéo € (—r ~ 2y va90,7“ + 24 ’UJTHC) . (39)
o o
Note that 80 ~ N(6*, (XOTXO)*102) and v; is the j-th right singular vector of XY, therefore
0] 6° ~ N(v]6*,0%u;?). Therefore, 61773 = y'!:7 correspond to the verifier-filtered mean

estimator of a one-dimensional Gaussian mean estimation problem with true mean va 6, variance
o?p;? and filtering interval (—r — 2 + v 6c, 7 + 2= + v 0,). Let

—r — 0.+ UJ-T(GC —6%)

ij = o }
r+o.+v) (0. — 0%)
B = < ; < . (40)

Under the assumption p; = w(/ng), there exists a constant L > 0, such that u > Lny for all
7 =1,...,p. Therefore, by Theorem@ there exists constant K ; depending only on o, 3; such
that if n; > ng > 100,

%E(él,projj o 0;9*)2 _ mZ(Zjl'aﬁj) . <m%(aj7ﬂj) +

1 1
< Kj ( 1/3 + 3/2) “h
ning ng
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will hold with probability at least 1 — exp(—Lné/ 3). m1,ms, mg are defined in equation (14| and
equation [15| By equation 3| we have 177037 = v; 0. In addition, since V = (vy, vz, ..., vp) is an
orthonormal matrice, we have

P P
DS RO — 0] 0%)? =Y E(v] 0" — 0] 0%)> =E||[VT (6! - 0")|> = E[|6" — 6*]*. (42)
, =

Therefore, by summing over j on both sides of equation 1] and using simple union bound, we

established equation[§|with K = max; K; and

my ;= mi(ay, B)),
ma,j = ma(ay, B),
mg’]— = mg(aj,ﬁj).

O

Proof of Theorem[{.1] We consider the transition dynamics of 0% in Algorlthml 2| Since we designed
X% to be the rank one matrix correspond to singular vector v;, therefore equation ?? reduces to a
one-dimensional estimation equation:

Nk
pk+1,proj.j _ . T Ak o 1k+1,5
9+,Proj]_vj9 +FZ£Z J (43)
k“
where §;k+1’j is the truncated noise term after verification. By equation , we have

- roo 0k —0. r o ok — 0
§£k+1,3 iid~ j\/trunc <_ ——=- 0;767 -+ —= - /Uj—ric . (44)
o 0 o o 0 o
We consider the rotated standardized estimator
6 — 0. 0 — 0.
E._ T c . k._ 1T c
€; 1= ; . equivalently €°: =V et
Since Gk +1.prodd — u;'—ék“ by equation equationcan be standardized as
an tk+1,7 .
E+1 k k+15 . k k
= ==L & iid ~ Nipune (—8 — €§,8 =€) (45)
Nk

where 3 = ~ 4 Z<. We note that equationis exactly the same dynamics we consider in the proof

of Theorem with 3 = —a < occ. In other words, the evolution of the iterative estimator €" is
diagonal and each cordinates follows the same dynamics as the one dimensional gaussian iterative
mean estimator. From Theorem[A.2] we known that there exists a constant p < 1 such that

k2 — 2k .02 L p2lki)-1
El|le5[? < p**E|€] +27, i=1,2,...,p.
j=0

This implies that

Ak 2 2k 2 2k 1,02(k -1
E[|6* — 6c]* < p**E[|6° — 0.]|> + po® Y
§=0 J
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C ADDITIONAL DETAILS ON CVAE EXPERIMENTS

Data preprocessing. We use MNIST (28 x 28 grayscale) and normalize pixel intensities to [0, 1].
Class labels are represented as one-hot vectors y € {0, 1}% (K=10).

Experiment Details. We use a convolutional CVAE model consisting of an Encoder with two
convolutional layers (1—32 and 32—64 channels, 4 x 4 kernels, stride 2, with GELU activations),
followed by a linear projection that outputs the mean and log-variance of a d, = 20-dimensional
Gaussian latent space. The Decoder mirrors this structure: a linear layer maps the latent code to a
64 x 7 x 7 tensor, which is upsampled by two transposed convolutional layers (64—32 and 32—1
channels, 4 x 4 kernels, stride 2, with GELU activations) to reconstruct 28 x 28 images. We train the
CVAE with the standard objective, i.e., binary cross-entropy reconstruction loss plus KL divergence
regularization.

Discriminator for filtering. We additionally train a discriminator D to distinguish real from
synthetic samples. D is implemented as a multi-layer perceptron: five fully connected layers with
hidden sizes 512, 256, 128, and 64, each followed by a LeakyReL U activation, and a final linear
layer mapping to a single logit. The output is passed through a sigmoid to yield the probability of the
input being real. The discriminator is trained with binary cross-entropy, labeling real MNIST digits
as positive and CVAE-generated digits as negative.

Synthetic generation and filtering. After each training round, we generate conditioned samples
by drawing z ~ N(0, I), choosing labels y (uniform over classes unless specified), and decoding
Z = go(2,y). To control sample quality, we score each (Z,y) with the discriminator D(Z,y). For
each class, we retain only the top 10% of generated samples with the highest discriminator scores.
These filtered synthetic samples are then combined with the real dataset to form the training data for
the next round.

Supplementary Results on Test ELBO We also evaluate generative performance using the test
ELBO, a standard metric for VAEs. Compared to FID, ELBO proves substantially harder to im-
prove—Ilikely because ELBO penalizes per-pixel deviations, while FID emphasizes perceptual quality.
We adopted a much more aggressive synthetic size schedule than in our earlier experiments. Starting
from 500 real samples, we first increase the synthetic size to 30K—a point at which further increases
yield diminishing returns—then linearly scale over 20 rounds until reaching 1M synthetic samples,
which already stretched our computational budget.

Figure [5] reports test ELBO over these 20 rounds. Consistent with our bias-variance analysis, we
observe clear improvement in the early stages (up to about round 5-10). After that, however, ELBO
deteriorates beyond round 10.

We attribute this both to the verifier’s limitations, as discussed in the main text, and to the fact
our verifier (implemented via a discriminator) emphasizes more on perceptual quality rather than
likelihood-based reconstruction. This observation is also consistent with our theoretical prediction:
verifier bias can lead to a reversal in loss trends, negating the early gains realized by bias-variance
trade-offs.

As aresult, our retrained models achieve much sharper, cleaner digits with significantly improved
FID, even when ELBO stagnates or worsens. We believe that with stronger verifiers better aligned
with the true data distribution, iterative retraining could improve not only perceptual metrics like FID
but also likelihood-based metrics such as ELBO.

21



Under review as a conference paper at ICLR 2026

Test Loss vs Iteration
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Figure 5: Test ELBO and reconstruction loss across retraining rounds.
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