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Abstract

Non-exemplar class incremental learning (NECIL) aims to continuously assimi-
late new knowledge while retaining previously acquired knowledge in scenarios
where prior examples are unavailable. A prevalent strategy within NECIL miti-
gates knowledge forgetting by freezing the feature extractor after training on the
initial task. However, this freezing mechanism does not provide explicit training to
differentiate between new and old classes, resulting in overlapping feature represen-
tations. To address this challenge, we propose a Confusion-driven seLf-supervised
prOgressiVely weighted Ensemble leaRning (CLOVER) framework for NECIL.
Firstly, we introduce a confusion-driven self-supervised learning approach that
enhances representation extraction by guiding the model to distinguish between
highly confusable classes, thereby reducing class representation overlap. Secondly,
we develop a progressively weighted ensemble learning method that gradually
adjusts weights to integrate diverse knowledge more effectively, further minimizing
representation overlap. Finally, extensive experiments demonstrate that our pro-
posed method achieves state-of-the-art results on the CIFAR100, TinyImageNet,
and ImageNet-Subset NECIL benchmarks. 2

1 Introduction

Over the past few decades, deep neural networks have exhibited remarkable performance in various
domains [1, 2, 3, 4, 5]. Given that the real world is both open and dynamic, it is crucial for models to
continuously acquire and integrate new knowledge. However, directly fine-tuning a model on new
data often results in catastrophic forgetting [6], where the performance on previously encountered
data deteriorates significantly. To address this challenge, several class incremental learning (CIL)
methods [7, 8] store a subset of previous exemplars and replay them during the learning of new
tasks to preserve prior knowledge. Nevertheless, due to privacy concerns and storage limitations,
non-exemplar class incremental learning (NECIL) [9], which aims to continuously adapt to new
classes while preventing forgetting previously learned ones without retaining earlier samples, has
gained increasing attention from researchers.

Existing NECIL methods can be broadly classified into two categories: prototype-based methods
and frozen feature extractor-based methods, based on their training paradigms. Prototype-based
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Figure 1: (a) In self-supervised learning, substantial discrepancies exist in the representation distribu-
tions between raw classes and task-agnostic classes (sharing the same color but differing in shape).
Training a model to differentiate between these classes does not effectively enhance its capability
for representation extraction. (b) CDSSL introduces highly confusable task-agnostic classes, with
GBR and noise classes generated through color channel swapping and noise injection, respectively.
This approach aims to encourage the model to extract more discriminative representations. (c) The
accuracy curves for the ensemble model with varying numbers of experts indicate that adding a new
expert (during phases 1 and 3) consistently leads to performance degradation, which is effectively
mitigated by the proposed PWP strategy.

methods [9, 10, 11, 12] take advantage of the mean of class representations as prototypes to maintain
decision boundaries during model fine-tuning for incremental tasks. These prototypes serve as substi-
tutes for samples from previous classes, conveying distributional information that effectively mitigates
catastrophic forgetting. However, as the model undergoes continuous updates, these approaches
inevitably experience prototype degradation [12], wherein the preserved prototypes of old classes
diverge from their true distributions. In contrast, frozen feature extractor-based methods [13, 14, 15]
avoid degradation by freezing the feature extractor after training on the initial task, while maintaining
the stability of representations and mitigating forgetting. Despite these advantages, a notable draw-
back of this method is its propensity to induce representation overlap between new and old classes.
As the model is optimized solely for the initial class distribution, it lacks the necessary adaptability to
incorporate new class data effectively. Consequently, representations of new classes often exhibit
dispersed distributions or overlap with those of existing classes within a fixed representation space,
particularly when similarities exist along certain dimensions. This phenomenon hinders the establish-
ment of clear decision boundaries and significantly impairs classification performance in incremental
learning tasks.

There are currently two primary approaches to addressing representation overlap: self-supervised
learning (SSL) and ensemble learning. SSL [9, 16, 17] is utilized in the initial task to train the
feature extractor. SSL applies transformations to raw classes and assigns novel task-agnostic labels,
thereby constructing task-agnostic classes. Subsequently, by encouraging the model to discriminate
among these classes, SSL enhances the model’s generalization capability and effectively mitigates
representation overlap and confusion [18]. However, most studies [9, 18, 19, 20, 21] integrate SSL
with additional techniques aimed at improving representation extraction, thereby leaving much of
SSL’s inherent potential largely untapped. As shown in Fig. 1(a), the rotation transformation employed
in SSL significantly alters the representational distribution of raw classes, enabling the model to
distinguish these classes more easily even without SSL. As a result, it fails to effectively enhance
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the model’s ability to extract discriminative representations. Conversely, ensemble learning [22,
23, 24] capitalizes on multiple expert models to extract discriminative representations for each
class from diverse perspectives. This method effectively differentiates between new and old class
representations while minimizing their overlap. Nonetheless, introducing a new expert can lead
to performance degradation (see Fig. 1(c)). This issue stems from substantial heterogeneity in the
predictive capabilities exhibited by the experts. The first expert, trained on the base task, exhibits
stronger predictive capability and covers a broader range of classes than experts trained on incremental
tasks. This makes the first expert more reliable in the early training stages, while later experts remain
unreliable for a period after their introduction. Thus, a newly added expert, often with relatively
limited predictive capability, can interfere with predictions made by more experienced experts.

To address the aforementioned challenges, we introduce a novel NECIL framework, named Confusion-
driven seLf-supervised prOgressiVely weighted Ensemble leaRning (CLOVER). In this framework,
we propose a Confusion-Driven Self-Supervised Learning (CDSSL) method that enhances the model’s
capability for representation extraction by guiding it to differentiate between highly confusing classes
generated through color channel swapping and noise inception transformations (see Fig. 1(b)). This
approach effectively alleviates the issue of representation overlap between new and old classes.
Furthermore, we introduce a Progressively Weighted Prediction (PWP) strategy aimed at mitigating
the influence of unreliable experts within the ensemble model. Specifically, we assign an initially
low weight to new experts and incrementally increase their weight task by task until it reaches a
predetermined maximum value. The final prediction is then computed as a weighted sum of the
predictions from all experts. In conclusion, our main contributions are summarized as follows:

• We propose a Confusion-driven seLf-supervised progressiVely weighted Ensemble leaRning
framework named CLOVER for NECIL. This framework improves the model’s capability for
representation extraction by learning task-agnostic classes and diverse ensemble predictions.
These advancements strengthen the discriminative power for new classes, thereby mitigating
the representation overlap with old classes.

• We propose a confusion-driven self-supervised learning method that enhances the ability to
extract discriminative representations by guiding it to differentiate between highly confusing
task-agnostic classes generated through color channel swapping and noise injection. Fur-
thermore, we introduce a progressively weighted prediction strategy that gradually increases
the weight of new experts to mitigate performance degradation caused by unreliable new
experts within the ensemble model.

• Extensive experimental results on CIFAR100, TinyImageNet and ImageNet-Subset have
demonstrated the superior performance of our proposed CLOVER over other NECIL ap-
proaches.

2 Related Work

2.1 Non-Exemplar Class Incremental Learning

In general, NECIL methods can be broadly categorized into prototype-based methods [9, 12] and
frozen feature extractor-based methods [14, 15, 25].

Prototype-based methods investigate strategies for leveraging prototypes to deliver more accurate
insights regarding prior tasks, thereby effectively mitigating the phenomenon of knowledge forgetting.
For example, PASS [9] employed Gaussian noise to augment prototypes, providing distributional
information of old classes within the representation space to maintain decision boundaries of previous
tasks. SSRE [10] identified the primary challenge in NECIL as the overlap between the representations
of new and old classes and addressed this issue through a prototype selection mechanism, which
used prototypes to preserve prior knowledge while simultaneously facilitating the learning of new
tasks. NAPA-VQ [11] learned the topological relationships of the feature space to identify confusable
neighboring classes and used this information to generate representative prototypes for old classes,
thereby facilitating the delineation of boundaries between new and old classes and reducing overlap.
However, prototype-based methods inevitably suffer from representation shifts caused by the continual
updates to the feature extractor. To address this issue, a variety of methods [12, 26, 27] have been
proposed to alleviate representation shift by reconstructing the prototypes of previously learned
classes, thereby enhancing the accuracy and effectiveness of the information they convey about the old
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class distributions. More recently, DCMI [28] proposed a novel generation method for synthesizing
images with both semantic and domain consistency, which effectively facilitated knowledge retention.

On the other hand, frozen feature extractor-based methods keep the feature extractor fixed after
training the initial task and continually update the classifier to incorporate new tasks. Prototypical
networks [13] utilized frozen feature extractor to generate class prototypes, enabling classification
by calculating the distances to the prototype representations of each class. FeTrIL [15] generated
pseudo-features for old classes by applying a geometric shift to new class features based on the
difference between new and old class prototypes, which enabled the joint training of the classification
head with both new and old class features. FeCAM [14] emphasized the greater heterogeneity in the
distribution of new classes compared to old ones and classified the features based on the anisotropic
Mahalanobis distance to the prototypes after the first task. To bridge the significant distribution gap
between the real and the recorded features, DiffFR [18] constructed diffusion models to generate
features that closely resembled the real features and reconstructed them to enhance the robustness of
the classifier.

2.2 Self-Supervised Learning

In recent years, self-supervised learning (SSL) has proven to be an effective approach for learning
general representations from unlabeled data. This is accomplished through predefined proxy tasks,
such as rotation prediction [16], patch permutation [29], image colorization [30], inpainting [31], and
clustering [32]. These tasks help the model acquire task-agnostic features, enabling it to generalize
across various downstream tasks like few-shot learning [33] and semi-supervised learning [34], to
improve the model robustness [35], class imbalance [36], etc. Recently, SLA [17] demonstrated that
SSL can enhance supervised classification performance by augmenting the original labels through
input transformations.

In NECIL, PASS [9] employed rotation self-supervision to learn generalizable and transferable
features for future tasks. SASS [19] introduced an auxiliary classifier after each ResNet block to
perform self-supervised rotation classification, which facilitated the learning of more generalized
representations and achieved a better stability-plasticity trade-off. HRFSN [20] used random positive
samples to perform rotation prediction tasks, enabling the feature extractor to learn richer feature
representations through complex rotation prediction tasks. DiffFR [18] integrated SSL with instance
similarity constraints to train the feature extractor, reducing feature overlaps by applying class- and
instance-level discrimination constraints. Our CDSSL is implemented in a manner similar to the SSL
in PASS [9]. Building upon this, we guide the model to learn task-agnostic classes that are highly
ambiguous, thereby facilitating the extraction of more discriminative representations.

2.3 Growing Architectures and Ensemble Leaning

Architecture-based methods [37, 38] design task-specific parameters to adapt to new tasks while
maintaining performance on previous ones. Although these approaches substantially enhance per-
formance, the linear increase in parameters as the number of tasks increases becomes unsustainable.
Moreover, the effective integration of knowledge across tasks remains a significant challenge. To
address these issues, CoSCL [23] proposed an ensemble composed of a limited number of experts
and penalized the discrepancies in their feature representation predictions to promote cooperation.
SEED [39] developed a selective training ensemble of experts to mitigate forgetting, while leveraging
the diverse expertise of the specialists for joint prediction. However, the newly created experts in this
method lead to a significant decline in performance, causing the combined predictive capability of
the expert ensemble to be inferior to that of a single model. Therefore, this paper explores solutions
to address this issue.

3 Method

In this section, we first define the Non-Exemplar Class Incremental Learning (NECIL) scenario.
Then, we outline the training and inference process of the proposed CLOVER. Finally, we provide a
detailed introduction of the proposed confusion-driven self-supervised learning (CDSSL) method and
the progressively weighted prediction (PWP) strategy.
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Figure 2: Overview of our proposed CLOVER. For tasks t ≤ K − 1, the classes of the current task
are augmented to generate task-agnostic classes using transformations such as rotation, color channel
swapping, and noise injection. A new expert (f ◦ et) is subsequently introduced and trained on this
combined set of classes to enhance representation extraction capabilities and mitigate representation
overlap between new and old classes. During the inference phase, the input image is processed
through the ensemble model to generate expert-specific logits. These logits are then combined using
Eq. (2) to calculate the weighted mean logits, with the weights for each expert determined by the
proposed PWP strategy. Finally, the class prediction is obtained by performing the argmax operation
on these logits.

3.1 Preliminaries

NECIL emphasizes the capability to sequentially acquire knowledge across a series of unrelated
tasks without retaining or revisiting previously encountered examples. The training data for task
t ∈ {0, 1, 2, . . . , T} is defined as Dt = {Xt, Yt} =

{
xi
t, y

i
t

}Nt

i=1
, where Nt, xi

t and yit ∈ Ct represent
the number of training images, a training image and the corresponding label for task t, respectively.
Here, Ct is the set of classes associated with task t, and the class sets for each task are disjoint, i.e.,
C0∩C1∩· · ·∩CT = ∅. The model is evaluated on the combined test sets Z0∼t = Z0∪Z1∪· · ·∪Zt,
with the objective of accurately predicting both the classes of a new task and those of previously
learned tasks, where C0∼t = C0 ∪ C1 ∪ · · · ∪ Ct.

3.2 Overall Framework

As illustrated in Fig. 2, CLOVER is an ensemble model comprising K experts, including a shared
encoder f , K expert encoders ei and their corresponding linear classifier gi (i = 0, 1, . . . ,K − 1).
Notably, f is frozen after training the first task. For task t ≤ K − 1, CDSSL is employed to train
the expert t corresponding to task. After training, we freeze et and discard gt. Next, each existing
expert k ≤ t computes the representation of class c ∈ Ct and models it using a distinct Gaussian
distribution G(µc

k,Σ
c
k), which is preserved and employed for classification in a manner similar to

that of a prototype.

The inference process is similar to that of SEED [39]. The input x is passed through each expert to
obtain the expert-specific representation rk = ek(f(x)). We then compute the log-likelihood of rk
with respect to the distribution of each class within that expert:

lck(x) = −1

2
[ln(|

∑c

k
|) + S ln(2π) + (rk − µc

k)
T (

∑c

k
)−1(rk − µc

k)], (1)

where S is the representation dimension. It is worth noting that, since the new expert h (where
h > 0) does not have access to data from previous classes and cannot compute their representation
distributions, we set lih(x) = −∞ for i ∈ C0∼h−1 to indicate that predictions for these previous

classes are impossible. Subsequently, we apply the softmax function to these values l1k, l
2
k, . . . , l

|C|
k =

softmax (l1k, l
2
k, . . . , l

|C|
k ; τ) to obtain the predicted probabilities for each class within each expert,

where C is the set of all classes and τ represents the temperature. Finally, we calculate the weighted
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sum of the predicted probabilities from all experts by:

l̄(x) =

{
Mi−1∑
k=0

w̃k×lik

}|C|

i=1

, (2)

where w̃k = wk
Mi−1∑
j=0

wj

and Mi (i = 1, 2, . . . , |C|) represents the number of experts capable of

predicting class i (since each expert only retains the distributions of subsequent classes and performs
predictions after completing its training). wk denotes the prediction weight calculated using the
PWP method. Finally, class c = argmax(l(x)) with the highest probability is selected as the final
prediction.

3.3 Confusion-Driven Self-Supervised Learning

Considering a single expert, the feature extractor remains fixed following the initial training phase,
and the distributions of the newly introduced classes are directly derived from the mapping of the
frozen feature extractor. However, the absence of discriminative training between new and old classes
increases the likelihood of confusion, causing the model to forget previous knowledge. To reduce
the overlap of representations, we investigate the training methodology of feature extractor and
propose the CDSSL strategy. This strategy focuses on training the model to differentiate between
highly confusable task-agnostic classes, thereby enhancing its representation learning capabilities
and reducing the overlap between representations of new and old classes.

Specifically, as illustrated in Fig. 2, we apply several transformations to the given image xi ∈ Dk,
including rotation, color channel swapping, and noise inception:

x̃7i+j =


xi,

ratate(xi, j × 90◦),
GBR(xi),
BRG(xi),

xi + s× noise(0, 1),

j = 0
j ≤ 3
j = 4
j = 5
j = 6

(3)

and assign new label ỹ7i+j = 7yi + j, where ratate(xi, ) refers to rotate xi by 90◦, 180◦,
270◦. GBR(·) and BRG(·) indicate swapping RGB channels to GBR and BRG, respectively.
noise(0, 1) represents a value randomly sampled from a standard normal distribution. s denotes the
noise intensity, which is typically set to 0.5. It generalizes the original N-way classification problem
to a 7N-way classification problem. Next, we use cross-entropy loss to train the model:

L = Lce(gi(ei(f(x̃))), ỹ). (4)

Comparing the widely used 4N-way self-supervised tasks, as demonstated in [9, 18], we generated
new classes with higher levels of confusion by employing color channel swapping and noise inception.
Thus, our proposed CDSSL encourages the model to learn more distinctive features, enabling it to
more effectively differentiate between representations of new and old classes and thereby reducing
their overlap. It is noteworthy that these task-agnostic classes are excluded during the inference phase
and that their representation distributions across experts are neither computed nor stored.

3.4 Progressively Weighted Prediction

In NECIL, the base task typically constitutes half of the training data, with the remainder evenly
distributed across incremental tasks. Consequently, due to the varying creation times of experts, the
distributions of classes they cover differ significantly. Typically, newer experts encompass a narrower
range of predictable classes. When such an expert encounters an old class outside its prediction scope,
it often misclassifies it with high confidence. As shown in Fig. 1(c), such errors can mislead the
equally weighted joint prediction system, ultimately resulting in inferior performance of the ensemble
model compared to that of the individual models.

Therefore, considering that the number of predictable classes and the predictive ability vary across
experts, we propose the progressively weighted prediction method. Specifically, we assign a low
weight α to the new expert and progressively increase it by β, with the maximum weight being 1

K .
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Thus, the weight of each expert is defined as:

wi =

 1−
K−1∑
j=1

wj ,

min{α+ β × (t− i), 1
K },

i = 0
i > 0

(5)

where t denotes the current task. As shown in Eq. (2), a weighted average of the predictions from
each expert is then computed to derive the final outcome during joint prediction. In general, PWP
accounts for the varying predictive capabilities of each expert by assigning distinct weights, thereby
enhancing the joint prediction performance of the ensemble model in the early phase.

Table 1: Comparisons of the average accuracy and last accuracy (%) at different settings on CIFAR100,
TinyImageNet, and ImageNet-Subset. CEAT [40] and FGKSR [41] are based on the ViT [42]
structure, while all other methods are based on ResNet18 [43]. The result of SEED [39] is obtained
using the author’s official codebase, denoted by the asterisk (*). The best result is highlighted in bold,
whereas the second-best method is indicated by underlining.

CIFAR100 TinyImageNet ImageNet-Subset
Method 5 tasks 10 tasks 20 tasks 5 tasks 10 tasks 20 tasks 5 tasks 10 tasks 20 tasks

Avg Last Avg Last Avg Last Avg Last Avg Last Avg Last Avg Last Avg Last Avg Last
LwF_MC [44] 45.9 36.1 27.4 17.0 20.1 15.9 29.1 17.1 23.1 12.3 17.4 8.8 34.9 24.1 31.2 20.0 27.5 17.4

PASS [9] 63.5 55.7 61.8 49.0 58.1 48.5 49.6 41.6 47.3 39.9 42.1 32.8 63.1 52.6 61.8 50.4 55.2 46.1
SSRE [10] 65.9 56.3 65.0 55.0 61.7 50.5 50.4 41.7 48.9 39.9 48.2 39.8 69.5 58.5 67.7 57.5 61.2 50.1
FeTrIL [15] 66.3 - 65.2 56.3 61.5 - 54.8 - 53.1 - 52.2 - 72.2 - 71.2 - 67.1 -

PRAKA [12] 70.0 61.6 68.9 60.4 65.9 56.2 53.3 46.4 52.6 45.2 49.8 40.6 - - 69.0 61.3 - -
POLO [26] 69.0 - 68.0 - 65.7 - 54.9 47.0 53.4 45.3 49.9 40.4 70.8 59.5 69.1 57.9 - -
TASS [45] 68.8 59.3 67.4 57.9 62.8 53.8 55.1 44.1 54.2 43.9 52.8 43.6 74.3 63.1 72.6 57.9 68.8 57.6

FGKSR [41] 68.2 59.0 70.1 57.9 66.9 54.3 54.9 45.0 52.7 43.4 51.7 41.9 - - 70.2 61.4 - -
CEAT [40] 71.1 - 70.0 - 66.1 - 58.3 50.4 57.4 49.4 56.8 48.0 76.9 67.4 75.9 66.3 71.5 60.1
SEED* [39] 71.1 66.3 69.9 65.0 68.2 61.4 54.7 50.6 54.5 50.0 53.9 48.9 75.0 70.3 73.6 68.4 71.1 63.8
FeCAM [14] 70.9 62.1 70.8 62.1 69.4 58.5 59.6 52.8 59.4 52.8 59.3 52.8 78.3 70.9 78.2 70.9 75.1 66.3

CLOVER (Ours) 72.7 68.0 72.3 67.5 71.0 64.9 60.2 56.0 59.9 54.1 58.5 52.8 77.8 73.2 77.1 71.5 74.5 67.5

Figure 3: Illustration of the classification accuracy changes as tasks are being learned on CIFAR100
and TinyImageNet, which contains the complete curves. Precise data of our method is presented in
Appendix B.

4 Experiments

4.1 Experimental Setup

Datasets. We conduct extensive experiments on three benchmark NECIL datasets: CIFAR100 [46],
TinyImageNet [47], and ImageNet-Subset [48]. The CIFAR100 dataset comprises 100 classes, each
with 600 color images at a resolution of 32×32 pixels, including 500 images for training and 100
images for testing. TinyImageNet is a subset of the ImageNet [48] designed for image classification,
consisting of 200 classes, with each class containing 500 training images, 50 validation images, and
50 test images, all sized at 64×64 pixels. The ImageNet-Subset dataset, comprising 100 classes
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Table 2: Ablation study of each component of CLOVER on CIFAR100 and TinyImageNet. The
reported metric is average accuracy (%).

Component CIFAR100 TinyImageNet
Baseline CDSSL PWP 5 10 20 5 10 20

✓ 69.9 69.7 67.7 56.3 55.3 54.5
✓ ✓ 72.1 71.7 70.5 59.9 59.4 58.1
✓ ✓ 70.5 70.2 68.2 56.5 55.8 54.9
✓ ✓ ✓ 72.7 72.3 71.0 60.2 59.9 58.5

selected from ImageNet, contains about 13,000 training images and 50 test images per class, all
standardized to a resolution of 224×224 pixels. We follow the configuration from PASS [9] and
divide each dataset into three incremental settings: 5, 10, and 20 tasks.

Evaluation Metrics. We report two common metrics for CIL: the average accuracy and last
accuracy. The former evaluates overall performance during incremental learning by calculating the
average accuracy across all incremental phases. The latter assesses comprehensive performance upon
completion of all tasks, emphasizing its validity in mitigating forgetting and integrating knowledge.

Implementation Details and Reproducibility. We use ResNet18 [43] as the backbone (same as
SEED [39]). During the training phase, a linear classification head is employed, while a Bayesian
classifier is used in the inference phase. The number of experts K is set to 5. During training, the
batch size is set to 128 and the model is optimized by the SGD optimizer with an initial learning rate
0.1 and weight decay 1e-4. The learning rate is multiplied by 0.1 at epochs 60, 120 and 160. All
experiments are repeated three times and the average results are reported. The baseline is based on
SEED [39], trained on the first 5 tasks, and shares the parameters of the first 5 layers across all expert
models. Based on the aforementioned settings, all algorithms can be trained on a single NVIDIA
A100 GPU.

4.2 Benchmark Comparison
Table 1 compares CLOVER with state-of-the-art NECIL methods on the CIFAR100, TinyImageNet,
and ImageNet-Subset datasets. On CIFAR100, our CLOVER significantly outperforms the state-
of-the-art methods across 5, 10, and 20 tasks, achieving higher average accuracy of 1.6%, 1.5%,
and 1.6%, as well as improved last accuracy of 1.7%, 2.5%, and 3.5%, respectively. For 5 and
10 tasks on TinyImageNet, CLOVER exhibits superior average and last accuracy compared to the
leading competing method. However, when the number of tasks increases to 20, FeCAM achieves
better average accuracy. A similar trend is observed across all configurations on the ImageNet-
Subset. Nonetheless, CLOVER achieves the highest last accuracy among all methods evaluated,
underscoring its effectiveness in mitigating catastrophic forgetting while maintaining an optimal
balance between plasticity and stability. Fig. 3 presents the accuracy variation curves on CIFAR100
and TinyImageNet. Although CLOVER shows comparatively lower performance in early tasks, it
consistently outperforms other methods in last accuracy across all task settings on all three datasets.
This demonstrates CLOVER’s superior ability to preserve knowledge during incremental training,
establishing it as a highly competitive method even in long task settings.

4.3 Ablation Study

Ablation Study of Different Components. As presented in Table 2, we conduct ablation studies
on CIFAR100 and TinyImageNet across the all settings (5, 10 and 20 tasks). The results indicate
that CDSSL is a critical component, contributing to performance gains of 2.2%, 2.0% and 2.8%
on CIFAR100, as well as 3.6%, 4.1%, 3.6% on the TinyImageNet. Furthermore, incorporating
PWP yields an additional performance enhancement of approximately 0.5%. PWP complements
CDSSL by improving the collaborative inference ability of the multi-expert model, thereby offsetting
imbalances between experts and enhancing the model’s overall complementarity. Collectively, our
method achieves overall improvements range from 2–3% on CIFAR100 and 3–5% on TinyImageNet
compared to the baseline. Moreover, CDSSL exhibits significant performance advantages in longer
task sequences, highlighting the effectiveness of our approach in mitigating catastrophic forgetting.

Ablation Study of CDSSL. To verify the effectiveness of each transformation in CDSSL, an ablation
experiment is conducted on CIFAR100 and TinyImageNet in Table 3. The incorporation of rotation
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Table 3: Ablation study of each transformation in the CDSSL on the CIFAR100 and TinyImageNet.
Each transformation is applied independently without combinations or overlaps. The reported metric
is average accuracy (%).

Method CIFAR100 TinyImageNet
Baseline Rot Color Noise 5 10 20 5 10 20

✓ 69.9 69.7 67.7 56.3 55.3 54.5
✓ ✓ 70.7 70.8 69.2 57.2 55.9 54.9
✓ ✓ 70.5 70.0 68.3 56.4 55.3 54.6
✓ ✓ 70.3 69.9 68.1 56.4 55.4 54.6
✓ ✓ ✓ 71.6 71.3 70.1 59.2 58.3 57.2
✓ ✓ ✓ 71.8 71.3 70.1 59.3 58.0 57.0
✓ ✓ ✓ 71.1 70.3 68.5 56.7 55.6 55.0
✓ ✓ ✓ ✓ 72.1 71.7 70.5 59.9 59.4 58.1

Figure 4: Accuracy of first/new task at each phase. The first row illustrates the variation in clas-
sification accuracy for the first task throughout the training process. The second row presents the
classification accuracy of new tasks at various stages of training. Our CDSSL method enables more
effective learning of new tasks while minimizing the impact on existing knowledge.

transformations yields average accuracy improvements of 0.8%, 1.1%, and 1.5% on CIFAR100, and
0.9%, 0.6%, and 0.4% on TinyImageNet, reflecting the performance gains achieved through rotation-
based SSL methods commonly employed in existing studies. However, as illustrated in Fig. 1(a),
the rotational transformation significantly alters the distribution of class representations, making it
difficult for the model to learn highly discriminative features from such a simple task. To address this
limitation, we propose an extension to the rotation-based SSL method by incorporating color channel
swapping and noise inception transformations within our CDSSL. This strategy generates new classes
that closely resemble their original counterparts, allowing the model to improve its representation
learning by distinguishing between these highly similar classes. Specifically, the integration of
color channel swapping resulted in additional average accuracy gains of 0.9%, 0.5%, and 0.9% on
CIFAR100, alongside improvements of 2.0%, 2.4%, and 2.3% on TinyImageNet. Moreover, further
incorporating noise inception transformations contributed an additional performance boost of at least
0.4%. Overall, we demonstrate both the effectiveness and necessity of each transformation employed
in CDSSL while highlighting its substantial superiority over conventional SSL methods.

4.4 Representation Quality and Generalization Performance Comparison with SSL

In Fig. 4, we compare the effects of CDSSL, SSL, and baseline on the accuracy of the first task and new
tasks during incremental training. The results indicate that CDSSL outperforms the other methods,
significantly improving the accuracy of the first task while maintaining high performance for new
tasks. In contrast, although SSL also achieves comparable results, its performance is markedly inferior
to that of CDSSL. These findings suggest that CDSSL offers superior representational capabilities in
incremental learning tasks compared to SSL, facilitating more effective category differentiation and
is more suitable for NECIL.
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4.5 Visualization

Fig. 5 shows a t-SNE visualization [49] of the dynamic changes in the representation space of the
first expert during the early stages of training on CIFAR100. Specifically, we visualize the feature
representations of visible classes at two distinct time points: 1) after training on 50 classes and adding
2 new classes, and 2) after training on 50 classes and adding 4 new classes. The introduction of 2
new classes leads to a slight overlap between the representation distributions of new and old classes
within the Baseline. As more new classes are introduced, SSL struggles to effectively reduce the
overlap between new and old classes, whereas CDSSL maintains a clear separation. Furthermore,
CDSSL enhances the cohesion within each class’s distribution, indicating that the model has acquired
more representative and discriminative features. This improvement reflects an enhanced capability
for feature extraction, which is essential for addressing inter-class overlap.

Figure 5: The visualization illustrates the distribution of class representations following the application
of SSL and CDSSL, respectively. Initially, the model was trained on the first task containing 50
classes (denoted by circles). Subsequently, new classes (denoted by triangles) were incrementally
introduced at each step, with the progression depicted from top to bottom.

5 Conclusion

In this paper, we develop CLOVER, an innovative framework for NECIL that aims to minimize the
overlap between new and old classes within the representation space. Within this framework, we
propose a CDSSL approach that not only employs rotation transformations commonly utilized in
traditional self-supervised learning methods but also generates highly confusable task-agnostic classes
through color channel swapping and noise injection. The model is subsequently trained to differentiate
these classes, significantly enhancing its feature extraction capabilities and thereby mitigating the
overlap between representations of new and old classes. Furthermore, we introduce an ensemble
model to improve the discrimination of unknown classes and then present a progressively weighted
prediction strategy to address interference caused by newly introduced experts within the ensemble
model. The quantitative and qualitative results on three widely used datasets have demonstrated that
our method achieves state-of-the-art performance, particularly excelling in improving last accuracy.
It is worth noting that both plasticity and stability are crucial in NECIL, and thus, developing a
method that can enhance both simultaneously is of substantial value. The proposed CDSSL introduces
confusing classes to increase the training difficulty, thereby improving the model’s discriminative
capability between representations of new and old classes. This enables the model to maintain strong
performance across both unknown and previously learned classes. Such an approach by enhancing
training difficulty through the introduction of confusing classes offers an effective and promising
direction for advancing non-exemplar class-incremental learning, and it holds potential for further
extension to more complex or large-scale incremental learning scenarios in future research.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims stated in the abstract and introduction accurately reflect the
contributions and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Appendix F.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We introduce our method in detail in Section 3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all the information needed to reproduce the main experimental
results of the paper in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We open-source the code. We do not need to release any data, as we use
publicly available datasets.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed information about the experimental setup in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments are repeated three times and the average results are reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide detailed information about the computing resources needed for the
experiments in Section 4.1 and Appendix E.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in our paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential broader impacts of our work in Appendix F.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all the relevant assets used in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We use publicly available datasets, so this issue does not arise.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We use publicly available datasets, so this issue does not arise.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in our research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

In the appendix of this paper, Section A provides a detailed introduction to the evaluation metrics.
Subsequently, Section B offers the detailed values of the accuracy curves on CIFAR100 and TinyIm-
ageNet datasets. Section C presents a more comprehensive and detailed ablation study. Section D
comprehensively demonstrates the advantages of CDSSL over SSL from multiple perspectives, such
as performance and visualization. Section E conducts an analysis of the model’s scalability and
investigates the rationale behind CDSSL’s adoption of three specific transformations: rotation, color
channel permutation, and noise injection. Finally, Section F discusses the potential limitations and
the broad impacts of our method.

A Evaluation Metrics

We utilize two evaluation metrics commonly applied in NECIL to assess the performance of different
models under various settings. Each metric is defined formally below.

Average Accuracy. Avg is defined as the average accuracy across all incremental stages, providing a
comprehensive metric for fairly evaluating the overall incremental performance of different methods.
Letting an,m represents the accuracy of task n after the training of phase m. The average accuracy is
expressed as follows:

Avg =
1

T + 1

T∑
m=0

m∑
n=0

an,m. (6)

Last Accuracy. Last evaluates the model’s final performance on the validation sets of all previously
encountered tasks, serving as a key metric for assessing its ability to mitigate catastrophic forgetting,
integrate knowledge across tasks, and maintain robust generalization. Last accuracy is defined as
follows:

Last =

T∑
i=0

ai,T . (7)

B Detailed Values of the Accuracy Curves

To facilitate comparisons in future research, we present the detailed values of the accuracy curves (as
depicted in Fig. 3 of the main text) in Tables 4, 5 and 6.

Table 4: Detailed values of classification accuracy under the setting of 5 tasks.

Dataset Phase
0 1 2 3 4 5

CIFAR100 81.70 74.68 72.6 70.49 68.70 67.99
TinyImageNet 65.82 61.47 60.60 59.48 57.56 56.02

Table 5: Detailed values of classification accuracy under the setting of 10 tasks.

Dataset Phase
0 1 2 3 4 5 6 7 8 9 10

CIFAR100 81.62 78.33 74.55 73.53 72.69 71.36 70.13 69.26 68.65 68.12 67.45
TinyImageNet 66.62 66.40 62.27 60.94 61.00 60.47 59.46 58.13 56.51 55.39 54.12
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Table 6: Detailed values of classification accuracy under the setting of 20 tasks.

Dataset Phase
0 1 2 3 4 5 6 7 8 9

CIFAR100 83.25 79.33 77.96 77.47 74.69 73.07 72.24 71.21 70.56 70.51
TinyImageNet 65.72 64.36 63.47 62.24 61.03 60.35 59.70 59.78 59.73 59.16

Dataset Phase
10 11 12 13 14 15 16 17 18 19 20

CIFAR100 70.37 69.89 69.42 68.57 67.76 67.39 66.78 65.91 65.51 65.23 64.90
TinyImageNet 58.64 58.21 57.74 57.30 56.65 55.84 55.17 54.71 54.05 53.25 52.80

C More Ablation Study

C.1 Components Ablation for ImageNet-Subset

To further verify the generalizability of CLOVER, we conduct components ablation on the ImageNet-
Subset dataset, as illustrated in Table 7.

Table 7: Ablation study of each component of CLOVER on ImageNet-Subset. The reported metric is
average accuracy (%).

Component ImageNet-Subset
Baseline CDSSL PWP 5 10 20

✓ 75.1 73.9 71.1
✓ ✓ 77.7 76.8 74.3
✓ ✓ ✓ 77.8 77.1 74.5

C.2 Ablation Study of CDSSL for ImageNet-Subset

We conduct ablation studies on the various transformations of CDSSL on the ImageNet-Subset dataset.
As presented in Table 8, the diverse transformations within CDSSL yield substantial performance
improvements, confirming the effectiveness of our CDSSL approach on large-scale datasets.

Table 8: Ablation study of each transformation in the CDSSL on ImageNet-Subset. The reported
metric is average accuracy (%).

Method ImageNet-Subset
Baseline Rot Color Noise 5 10 20

✓ 75.1 73.9 71.1
✓ ✓ 76.7 75.6 73.4
✓ ✓ ✓ 77.4 76.5 73.9
✓ ✓ ✓ ✓ 77.7 76.8 74.3

C.3 Number of Shared Layers

In Table 9, we compare the performance of CLOVER under different parameter configurations
(adjusted by varying the number of shared layers f ) with SEED [39], which is likewise an ensemble-
based model. The first expert, extensively trained on the initial task with abundant data, demonstrates
strong representation extraction capabilities. By sharing certain layers with the first expert, the
representation extraction capabilities of the other experts are enhanced, leading to an overall im-
provement in CLOVER’s performance. Notably, the best results are achieved when 5 layers are
shared. Furthermore, CLOVER maintains robust performance even with reduced parameter counts,
consistently outperforming SEED. These results strongly validate the effectiveness of the proposed
method.
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Table 9: Comparisons of the average accuracy and last accuracy (%) with various shared layers on
CIFAR100.

Method #Params
CIFAR100

5 tasks 10 tasks 20 tasks
Avg Last Avg Last Avg Last

SEED* [39] 56.0M 71.1 66.3 69.9 65.0 68.2 61.4
CLOVER(0 shared) 56.0M 72.6 67.5 72.1 66.8 71.0 64.5
CLOVER(5 shared) 55.4M 72.7 68.0 72.3 67.5 71.0 64.9
CLOVER(9 shared) 53.3M 72.6 67.9 72.2 67.3 70.9 64.6

CLOVER(13 shared) 44.9M 72.4 67.5 72 66.9 70.4 64.1

Figure 6: The impact of the number of experts in CLOVER on both the average accuracy and last
accuracy.

C.4 Number of Experts

In Fig. 6, we investigate the impact of the number of experts on the average accuracy and the last
accuracy attained by CLOVER. As the number of experts increases from 1 to 4, CLOVER exhibits
consistent improvements in both average accuracy and last accuracy on 5, 10, and 20 task settings.
However, as the number of experts continues to increase, the average accuracy of CLOVER in 5 and
10 tasks scenarios exhibits a declining trend, with no significant enhancement observed in the last
accuracy. While additional performance improvements can be achieved in 20 tasks setting, these
enhancements are not uniformly effective across all configurations and result in a substantial rise in
parameter count. Consequently, we ultimately adopt CLOVER with five experts (i.e., K=5), following
the methodology outlined by SEED [39], to ensure a fair and equitable comparison.

C.5 The Sensitivity of Hyper-parameter α and β

In PWP, the parameters α and β play a critical role in determining weight allocation. To investigate
their impact, we conduct a sensitivity analysis on CIFAR100 and TinyImageNet, as presented in
Table 10. Given that the maximum weight for a new expert is constrained to 0.2 (as K = 5), we
vary α within the range 0.15, 0.10, 0.05 and allow the weight to reach its maximum either after
one task or two tasks. Notably, a higher initial α yields better performance in short-task settings,
while a lower initial α is advantageous in long-task scenarios. This distinction arises from the fact
that, in long-task settings, newly introduced experts have access to less training data, leading to less
reliable predictions that can be effectively mitigated by assigning them lower weights. Overall, PWP
demonstrates robustness to variations in α and β, consistently achieving significant improvements.

D Further Comparison with SSL

D.1 Representation Quality and Generalization Performance Comparison

To assess the effectiveness of CDSSL, we conduct a comparative analysis of its impact on the accuracy
of both the first task and the new tasks, in comparison with SSL and the baseline, across the CIFAR100
and ImageNet-Subset datasets during incremental training, as illustrated in Fig. 7. The proposed
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CDSSL achieves higher accuracy on both the first task and new task across all evaluated datasets,
highlighting the generalizability of its improved representation extraction capabilities.

Table 10: Robustness testing of hyper-parameters α and β on CIFAR100 and TinyImageNet. The first
row, where α and β equal to −, represents the results obtained without PWP. The reported metric is
average accuracy (%).

Parameters CIFAR100 TinyImageNet
α β 5 10 20 5 10 20
− − 72.1 71.7 70.5 59.9 59.4 58.1

0.15 0.05 72.7 72.0 70.9 60.2 59.9 58.5
0.025 72.7 72.1 70.9 60.1 59.9 58.5

0.10 0.10 72.7 72.1 70.9 60.1 59.9 58.5
0.05 72.7 72.3 71.0 59.9 59.9 58.6

0.05 0.15 72.7 72.2 71.0 59.8 59.9 58.6
0.075 72.6 72.2 71.1 59.7 59.9 58.6

Figure 7: Accuracy of first/new task at each phase on CIFAR100 and ImageNet-Subset.

D.2 Quantitative Comparison

To more clearly demonstrate the advantages of CDSSL over traditional SSL, Table 11 compares
the performance of the Baseline enhanced with CDSSL versus that enhanced with traditional SSL.
The experimental results show that CDSSL achieves superior performance across all settings. This
improvement arises from the introduction of highly confusable task-agnostic classes in CDSSL, which
enable the model to extract the most discriminative features for various class. Consequently, CDSSL
significantly minimizes the overlap in representation between new and old classes, thereby improving
the model’s capacity for incremental learning.

D.3 The Similarity Between Various Task-Agnostic Classes and the Raw Classes

In Fig. 8, we compare the KL divergence [50] between the raw classes and task-agnostic classes,
generated through rotation, color channel swapping, and noise injection, on CIFAR100. A smaller

Table 11: Quantitative comparison between CDSSL and SSL. The reported metric is average accuracy
(%).

Method CIFAR100 TinyImageNet ImageNet-Subset
5 10 20 5 10 20 5 10 20

Baseline 69.9 69.7 67.7 56.3 55.3 54.5 75.1 73.9 71.1
Baseline+SSL 70.7 70.8 69.2 57.2 55.9 54.9 76.7 75.6 73.4

Baseline+CDSSL 72.1 71.7 70.5 59.9 59.4 58.1 77.7 76.8 74.3
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Figure 8: KL divergence between task-agnostic and raw classes on CIFAR100.

Figure 9: t-SNE visualization of raw classes and task-agnostic classes on CIFAR-100 and TinyIma-
geNet. Samples with similar colors correspond to the same raw class, while different marker shapes
represent task-agnostic classes derived by applying distinct transformations.

KL divergence indicates greater similarity between the representation distributions, leading to a
higher likelihood of confusion. Furthermore, Fig. 9 provides an intuitive visualization of the spatial
relationships between the raw and task-agnostic classes. These results indicate that task-agnostic
classes generated via color channel swapping and noise injection are more susceptible to confusion
with the raw classes.

E More Analysis

E.1 Parameter Scalability Analysis

To better demonstrate scalability of CLOVER, Fig. 10 illustrates the variation in model parameters
across incremental phases. Simply, throughout the training process from Task 0 to Task 4, the number
of parameters increases by approximately 11.2M with each new task that arrives. Beyond this stage,
no additional experts are incorporated, and the number of parameters remains stable at 55.4M.

E.2 More Transformation Experiments

To validate the effectiveness and generalizability of the transformations employed in CDSSL, Table 12
presents a comparison of the performance improvements achieved by different transformations. The

26



Figure 10: Variation of model parameter count across incremental phases.

Table 12: Comparison of model performance on CIFAR100 and TinyImageNet datasets after applying
various transformations. “Blurring” applys 5×5 Gaussian blur kernels with standard deviations of
1.0. “CenterCrop” crops a 224×224 image to 192×192 and then resizes it back to 224×224. The
reported metric is average accuracy (%).

Method CIFAR100 TinyImageNet
5 10 20 5 10 20

Baseline 69.9 69.7 67.7 56.3 55.3 54.5
Baseline+Rot 70.7 70.8 69.2 57.2 55.9 54.9
Baseline+Color 70.5 70.0 68.3 56.4 55.3 54.6
Baseline+Noise 70.3 69.9 68.1 56.4 55.4 54.6
Baseline+Blurring 70.3 69.9 68.2 56.1 55.9 54.3
Baseline+CenterCrop 71.4 70.5 69.0 55.8 54.7 54.3

results indicate that not all transformations yield effective results, as some may perform well on
CIFAR-100 while exhibiting poor performance on TinyImageNet. In contrast, the transformations in
CDSSL (rotation, color channel swapping, and noise injection) consistently improve performance
across datasets, demonstrating superior generalizability.

In addition, an excessive number of task-agnostic classes may lead to an overemphasis on task-
agnostic knowledge, which can impede class recognition. To investigate this phenomenon, Table 13
demonstrates the results of CDSSL enhanced with blurring, cropping and more color channel swapping
(i.e. swapping RGB channels to RBG, GRB and BGR) transformations and compares them with those
produced by CDSSL alone. While these transformations improved performance on CIFAR-100, they
adversely affected TinyImageNet due to its greater number of categories and finer details requiring
more effective feature extraction.

Table 13: Comparison of model performance on the CIFAR-100 and TinyImageNet datasets after
applying additional transformations beyond Baseline + CDSSL. “MoreColor” refers to the creation
of new classes by swapping the RGB channels into RBG, GRB, and BGR. The reported metric is
average accuracy (%).

Method CIFAR100 TinyImageNet
5 10 20 5 10 20

Baseline+CDSSL 72.1 71.7 70.5 59.9 59.4 58.1
Baseline+CDSSL+Blurring 72.3 71.7 70.9 59.8 58.7 57.6
Baseline+CDSSL+CenterCrop 73.1 72.6 70.9 60.1 58.6 57.7
Baseline+CDSSL+MoreColor 72.4 71.9 70.9 59.7 58.5 58.0
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Table 14: Comparison of the average accuracy (%) of different methods under the class-balanced
setting.

Method CIFAR100
5 10 20

EFC [51] - 60.87 55.78
SEED 70.9 69.3 62.9

Baseline 71.1 66.7 60.3
Baseline+CDSSL 73.2 71.0 66.7

Table 15: Evolution of average Bhattacharyya distance during training under the 5-task setting on
CIFAR-100.

Method Task
Baseline SSL CDSSL 0 1 2 3 4 5

✓ 7.62 6.75 6.19 5.76 5.38 5.05
✓ ✓ 10.17 9.34 8.85 8.41 8.06 7.74
✓ ✓ 12.12 11.02 10.34 9.77 9.31 8.89

E.3 Performance under the class-balanced setting

To further evaluate the effectiveness of CDSSL across different incremental learning configurations,
we conduct experiments under the class-balanced setting, where each task contains an equal number
of classes. As presented in Table 14, CLOVER exhibits strong performance and generalizability,
with CDSSL achieving a 6.4% improvement in average accuracy under the long-task setting and
consistently surpassing existing methods across all settings. These results further attest to the
robustness and adaptability of CDSSL in diverse incremental learning scenarios.

E.4 Quantitative Analysis of Inter-Class Distribution Confusion

To intuitively demonstrate the effectiveness of our method in enhancing inter-class separability,
the Bhattacharyya distance [52, 53] is employed as a metric to quantify the overlap between two
probability distributions, where a greater overlap corresponds to a smaller distance, while a lesser
overlap yields a larger one. This metric effectively captures the degree of separability and the clarity
of class boundaries. The Bhattacharyya distance is calculated as follows:

DB =
1

8
(µ1 − µ2)

TΣ−1(µ1 − µ2) +
1

2
ln(

|Σ|√
|Σ1||Σ2|

) (8)

where µ1,µ2 denote the mean vectors of the two class distributions, Σ1, Σ2 are the corresponding
covariance matrices, Σ = 1

2 (Σ1 +Σ2) represents the average covariance matrix, and | · | denotes the
determinant.

Based on this metric, we track the average class-boundary clarity throughout the training process
under the 5-task setting of CIFAR-100, as summarized in Table 15. The results show that CDSSL
effectively improves class separability by increasing the Bhattacharyya distance, thereby reducing
confusion and overlap between class representation distributions.

F Limitations and Broader Impacts

Limitations. In this study, we propose a method for non-exemplar class incremental learning.
However, the approach relies on a base task with abundant training data and has not yet been validated
in a setting where all tasks contain an equal amount of data. Moreover, the training cost of our
method is relatively high. Specifically, we extend the original N-way classification task to a 7N-way
classification task, thereby increasing the training time. In addition, compared to single-model
approaches, our method employs an ensemble model, which results in a larger number of parameters.
To address the high training cost, future work will focus on developing strategies that reduce both
training time and parameter size, aiming to achieve a more favorable balance between performance
and computational efficiency.
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Broader Impacts. Non-exemplar class incremental learning, which enables the continuous accumu-
lation of knowledge without retaining old samples, is of considerable significance in the current era
of growing data privacy concerns. Our proposed CLOVER framework fully leverages the advantage
that frozen models are inherently resistant to catastrophic forgetting during updates, focusing on
mitigating representation overlap between old and new classes. CLOVER synergistically combines
self-supervised learning and ensemble learning to effectively and non-conflictually address this
challenge, offering a novel pathway for future researchers to combat forgetting. Moreover, the idea of
enhancing the representation extraction capabilities of frozen models to further alleviate representa-
tion overlap, as explored in this work, presents a promising direction for continued investigation and
may foster further advancements in the field. Overall, our study advances the development of machine
learning and introduces an innovative solution to the domain of non-exemplar class incremental
learning.

29


	Introduction
	Related Work
	Non-Exemplar Class Incremental Learning
	Self-Supervised Learning
	Growing Architectures and Ensemble Leaning

	Method
	Preliminaries
	Overall Framework
	Confusion-Driven Self-Supervised Learning
	Progressively Weighted Prediction

	Experiments
	Experimental Setup
	Benchmark Comparison
	Ablation Study
	Representation Quality and Generalization Performance Comparison with SSL
	Visualization

	Conclusion
	Evaluation Metrics
	Detailed Values of the Accuracy Curves
	More Ablation Study
	Components Ablation for ImageNet-Subset
	Ablation Study of CDSSL for ImageNet-Subset
	Number of Shared Layers
	Number of Experts
	The Sensitivity of Hyper-parameter  and 

	Further Comparison with SSL
	Representation Quality and Generalization Performance Comparison
	Quantitative Comparison
	The Similarity Between Various Task-Agnostic Classes and the Raw Classes

	More Analysis
	Parameter Scalability Analysis
	More Transformation Experiments
	Performance under the class-balanced setting
	Quantitative Analysis of Inter-Class Distribution Confusion

	Limitations and Broader Impacts

