
Fast John Ellipsoid Computation with Differential
Privacy Optimization

Xiaoyu Li1, Yingyu Liang2,3 , Zhenmei Shi2 , Zhao Song4 , Junwei Yu5
1University of New South Wales, 2University of Wisconsin-Madison,

3The University of Hong Kong,
4The Simons Institute for the Theory of Computing at UC Berkeley,

5University of California, Berkeley
xiaoyu.li2@student.unsw.edu.au, yingyul@hku.hk, zhmeishi@cs.wisc.edu,

magic.linuxkde@gmail.com, yujunwei04@berkeley.edu

Determining the John ellipsoid - the largest volume ellipsoid contained within a
convex polytope - is a fundamental problem with applications in machine learn-
ing, optimization, and data analytics. Recent work has developed fast algorithms
for approximating the John ellipsoid using sketching and leverage score sampling
techniques. However, these algorithms do not provide privacy guarantees for sen-
sitive input data. In this paper, we present the first differentially private algorithm
for fast John ellipsoid computation. Ourmethod integrates noise perturbationwith
sketching and leverages score sampling to achieve both efficiency and privacy. We
prove that (1) our algorithm provides (ϵ, δ)-differential privacy and the privacy
guarantee holds for neighboring datasets that are ϵ0-close, allowing flexibility in
the privacy definition; (2) our algorithm still converges to a (1 + ξ)-approximation
of the optimal John ellipsoid in Θ(ξ−2(log(n/δ0) + (Lϵ0)

−2)) iterations where n is
the number of data point, L is the Lipschitz constant, δ0 is the failure probabil-
ity, and ϵ0 is the closeness of neighboring input datasets. Our theoretical analysis
demonstrates the algorithm’s convergence and privacy properties, providing a ro-
bust approach for balancing utility and privacy in John ellipsoid computation. This
is the first differentially private algorithm for fast John ellipsoid computation, open-
ing avenues for future research in privacy-preserving optimization techniques.

1. Introduction
Determining the John ellipsoid (JE), involving calculating the best-fitting ellipsoid around a dataset,
is a key challenge inmachine learning, optimization, and data analytics. The John ellipsoid has been
widely used in various applications, such as control and robotics [1, 2], obstacle collision detec-
tion [3], bandit learning [4, 5], Markov Chain Monte Carlo sampling [6], linear programming [7],
portfolio optimization problems with transaction costs [8], and many so on. The objective of the
John ellipsoid is to find the ellipsoid with the maximum volume that can be inscribed within a
given convex, centrally symmetric polytope P , which is defined by a matrix A ∈ Rn×d as follows.
Definition 1.1 (Symmetric convex polytope, Definition 4.1 in [9]). LetA ∈ Rn×d be a matrix with full
rank and a⊤i is the i-th row of A for i ∈ [n]. The symmetric convex polytope P is defined as

P := {x ∈ Rd : |⟨ai, x⟩| ≤ 1,∀i ∈ [n]}.

Recently, [10] introduced sketching techniques (Definition 3.10) to accelerate the John Ellipsoid
computations, and [9] further speed up the John Ellipsoid algorithm by integrating the leverage
score sampling method with the sketching technique, so they make John Ellipsoid computations
can be run in practical time.

On the other hand, in many scenarios, it is essential and crucial to ensure that the ellipsoid’s param-
eters are determined without revealing sensitive information about any individual data point while

Second Conference on Parsimony and Learning (CPAL 2025).

still allowing for the extraction of useful statistical information. For example, in bandit learning,
we would like to provide privacy for each round of sensitive pay-off value while still getting some
low-regret policy. Thus, in this work, we would like to ask and answer the following question,

Can we preserve the privacy of individual data points in fast John Ellipsoid’s computation?

Our answer is positive by utilizing differential privacy (DP). By integrating differential privacy,
our method provides a robust balance between data utility and privacy, enabling researchers and
analysts to derive meaningful insights from data without compromising individual privacy. More-
over, the use of differential privacy in this context helps comply with data protection regulations,
fostering trust in data-driven technologies.

1.1. Our Contributions
Wefirst introduce the basic background ofDP. Since for a polytope represented byA ∈ Rn×d, chang-
ing one row of the polytope matrix A would result in a great variation in the geometric property.
Therefore, using the general definition of neighborhood dataset fails towork. In ourwork, we define
the ϵ0-closed neighborhood polytope, which ensures the privacy of Algorithm 1with high accuracy.
Thus, we consider two polytopes/datasets to be neighboring if they are ϵ0-close.
Definition 1.2 (Neighboring polytopes). Let P, P ′ be two polytopes defined by A,A′, respectively. We
say that P and P ′ are ϵ0-close if there exists exact one i ∈ [n] such that ∥Ai,∗ − A′

i,∗∥2 ≤ ϵ0, and for all
j ∈ [n] \ {i}, Aj,∗ = A′

j,∗.

Then, the differential privacy guarantee can be defined as the following.
Definition 1.3 (Differential privacy). A randomized mechanismM : D → R with domain D and range
R satisfies (ϵ, δ)-differential privacy if for any two neighboring dataset, D,D′ ∈ D and for any subset of
outputs S ⊆ R it holds that

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] + δ.

We propose the first algorithm for fast John ellipsoid computation that ensures differential privacy.
Our work demonstrates the algorithm’s convergence and privacy properties, providing a robust
approach for balancing utility and privacy in John ellipsoid computation.
Theorem 1.4 (Main Results, informal version of Theorem 4.1). Let ξ be the accuracy parameter, δ0
be the probability of failure, L be the Lipschitz constant, and n be the number of data points. Consider ϵ0-
close neighboring polytopes. For all ξ, δ0 ∈ (0, 0.1), when T = Θ(ξ−2(log(n/δ0) + (Lϵ0)

−2)), we have
that Algorithm 1 provides (1 + ξ)-approximation to John Ellipsoid with probability 1 − δ0. Furthermore,
for any ϵ ≤ O(TL2ϵ20), Algorithm 1 is (ϵ, δ)-differentially private for any δ > 0 if we choose proper noise
distribution. The running time of Algorithm 1 achieves O((nnz(A) + dω)T), where ω ≈ 2.37 denotes the
matrix-multiplication exponent [11–15].

Our contributions can be summarized as the following:

• DPoptimizationmechanism: Weprovide a novel general DP-optimization analysis frame-
work (Lemma 6.6) for truncatedGaussian noise, wherewe can showour final DP guarantee
(Theorem 6.7) easily.

• Fast DP-JE convergence: We provide a convergence analysis (Theorem 7.2) for our fast
DP-JE algorithm (Algorithm 1) under truncatedGaussian noise perturbationwithDP guar-
antee (Theorem 4.1).

• Perturbation analysis of the weighted leverage score: We provide a comprehensive anal-
ysis of weighted leverage score perturbation (Lemma 5.1), which can be applied to many
other fundamental problems of machine / statistical learning, e.g., kernel regression.

Roadmap. This paper is organized as follows: in Section 2, we study the related work about dif-
ferential privacy, John Ellipsoid, leverage score, and sketching techniques. In Section 3, we define

2

notations used throughout our work. In Section 4, we demonstrate our main theorem about conver-
gence and privacy of Algorithm 1. Then, in Section 5, we analyzed the Lipschitz of neighborhood
polytope. Next, we demonstrate the differential privacy guarantee in our John Ellipsoid algorithm
in Section 6. In Section 7, we show that our Algorithm 1 could solve John Ellipsoid with high accu-
racy and excellent running time. Finally, we conclude our work in Section 8.

2. Related Work

John Ellipsoid Algorithm and Its Applications. The John Ellipsoid Algorithm, initially proposed
by [16], provides a powerful method for approximating any convex polytope by its maximum vol-
ume inscribed ellipsoid. This foundational work has spurred extensive research into optimization
techniques for solving the John Ellipsoid problem within polynomial time constraints. Among the
seminal contributions, [17, 18] introduced first-order methods, which significantly improved com-
putational efficiency. Furthermore, [19–21] developed approaches utilizing interior point methods
to enhance the precision and speed of solving the John Ellipsoid problem. Recent advancements
have continued to push the boundaries of this algorithm. [10] employed fixed point iteration tech-
niques, leading to the derivation of a more robust solution to the John Ellipsoid. Moreover, they
introduced innovative sketching techniques that accelerated computational processes. Building on
this, [9] integrated leverage score sampling into these sketching techniques, further optimizing the
algorithm’s performance, and [22] used quantum techniques to further speed up the computation
of John Ellipsoids. The implications of the John Ellipsoid Algorithm extend far beyond theoretical
mathematics, impacting various fields. In the realm of linear bandit problems, research by [4, 5]
has shown significant advancements. Experimental design methods have also seen improvements
due to contributions from [23, 24]. In linear programming, the algorithm has provided enhanced
solutions, with notable work by [25]. Control theory applications have been advanced through
research by [2], and cutting plane methods have been refined as demonstrated by [26]. The al-
gorithm’s influence in statistics is also noteworthy; for instance, it plays a critical role in Markov
chain techniques for sampling convex bodies, as explored by [27] and developed for random walk
sampling by [6, 28].

Differential Privacy Analysis and Applications. Differential privacy has become one of the most
essential standards for data security and privacy protection since it was proposed in [29]. There
are plenty of related work focusing on providing a guarantee for existing algorithms, data struc-
tures, and machine learning by satisfying the definition of differential privacy, such as [30–35, 35–
63]. In addition, recently, there are emerging privacy mechanisms that improve traditional privacy
guarantees, such as Gaussian, Exponential, and Laplacian mechanisms [64]. For example, [65]
introduced a truncated Laplace mechanism, which has been demonstrated to achieve the tightest
bounds among all (ϵ, δ)-DP distribution.

Sketching and Leverage Score. Our work improves the efficiency of the John Ellipsoid algorithm
by leveraging sketching and score sampling. Sketching, a widely used technique, has advanced nu-
merous domains, including neural network training, kernel methods [66, 67], and matrix sensing
[68]. It has been applied to distributed problems [69, 70], low-rank approximation [71–73], and
generative adversarial networks [74]. In addition, projected gradient descent [75], tensor-related
problems [76, 77], and signal interpolation [78] have benefited significantly from sketching. Lever-
age scores, introduced by [79, 80], are pivotal in linear regression and randomized linear algebra,
optimizing tasks such as matrix multiplication, CUR decompositions [81, 82], and tensor decom-
positions [82]. Moreover, leverage score sampling can be used in kernel learning [83]. Recent re-
search has further extended the application of leverage score sampling. Studies by [66, 84–87] have
demonstrated the ability to leverage score sampling to significantly enhance the efficiency of vari-
ous algorithms and computational processes. These advancements underscore the versatility and
effectiveness of leverage scores in optimizing performance across diverse fields.

3

3. Preliminary
Firstly, in Section 3.1, we introduce notations used in our work. Then, in Section 3.2, we demonstrate
background knowledge about John Ellipsoid and the techniques we use to improve the running
time of the John Ellipsoid algorithm, such as leverage score sampling and sketching. Finally, we
introduce the techniques of leverage score sampling and sketching in Section 3.3.

3.1. Notations
In this paper, we utilize Pr[] to denote the probability. We use E[] to represent the expectation. For
vectors x ∈ Rd and y ∈ Rd, we denote their inner product as ⟨x, y⟩, i.e., ⟨x, y⟩ =

∑d
i=1 xiyi. In

addition, we denote x⊤
i as the i-th row of X . We use xi,j to denote the j-th coordinate of xi ∈ Rn.

We use ∥x∥p to denote the ℓp norm of a vector x ∈ Rn. For example, ∥x∥1 :=
∑n

i=1 |xi|, ∥x∥2 :=
(
∑n

i=1 x
2
i)

1/2, and ∥x∥∞ := maxi∈[n] |xi|. We use aux to represent auxiliary inputs in an adaptive
mechanism. We use erf to denote the Gaussian error function.

For n > d, for any matrix A ∈ Rn×d, we denote the spectral norm of A by ∥A∥, i.e., ∥A∥ :=
supx∈Rd ∥Ax∥2/∥x∥2. We use ∥A∥F to represent the Frobenius norm of A , i.e., ∥A∥F :=

(
∑n

i=1

∑k
j=1 A

2
i,j)

1/2. We use σmax(A) to denote the maximum singular value of a matrix A and
use σmin(A) to denote the minimum singular value of a matrix A. We use κ(A) = σmax(A)/σmin(A)
to denote the condition number of the matrix A. We use nnz(A) to denote the number of non-zero
entries in matrix A.

3.2. Background Knowledge of John Ellipsoid
In this subsection, we introduced background knowledge about the John Ellipsoid algorithm, such
as its definition, optimality criteria, and (1 + ξ)-approximate John Ellipsoid.

According to Definition 1.1, since P is symmetric, the John Ellipsoid solution has to be centered at
the origin. Any ellipsoidE that is centered at the origin can be represented by the form x⊤G−2x ≤ 1,
where G is a positive definite matrix. Therefore, the optimal ellipsoid can be found by searching
over the possible matrix G as discussed in [10]:
Definition 3.1 (Primal program of JE computation). The primal program of JE computation is

Maximize log((det(G))2),

subject to : G ⪰ 0

∥Gai∥2 ≤ 1,∀i ∈ [n].

[10] demonstrated that the optimal Gmust satisfy the condition G−2 = A⊤ diag(w)A, where A is a
matrix and w is a vector in Rn

≥0. Consequently, by searching over all possible w, the dual optimiza-
tion problem can be formulated:
Definition 3.2 (Dual program of JE computation). The dual program of JE computation is

Minimize

n∑
i=1

wi − log det(

n∑
i=1

wiaia
⊤
i)− d, (1)

subject to : wi ≥ 0, ∀i ∈ [n].

[88] shows that the optimal solution w must satisfy the following conditions:
Lemma 3.3 (Optimal solution, Proposition 2.5 in [88]). Let Q :=

∑n
i=1 wiaia

⊤
i ∈ Rd×d. A weight w

is optimal for program (1) if and only if
n∑

i=1

wi = d,

a⊤j Q
−1aj = 1, if wi ̸= 0

a⊤j Q
−1aj < 1, if wi = 0.

4

Other than deriving the exact John Ellipsoid solution, we give the definition of (1+ξ)-approximation
to the exact solution, which is our goal in the fast DP-JE algorithm.
Definition 3.4 ((1+ ξ)-approximate John Ellipsoid, Definition 4.3 in [9]). For ξ > 0, we say w ∈ Rn

≥0

is a (1 + ξ)-approximation of program (Eq. (1)) if w satisfies
n∑

i=1

wi = d, and a⊤j Q
−1aj ≤ 1 + ξ, ∀j ∈ [n].

Lemma 3.5 ((1 + ξ)-approximation is good rounding, Lemma 3.5 in [9]). Let P be defined as Defini-
tion 1.1. Let w ∈ Rn be a (1 + ϵ)-approximation of program (Eq. (1)). Using that w, we define

E := {x ∈ Rd : x⊤(

n∑
i=1

wiaia
⊤
i)x ≤ 1}.

Then the following holds:
1√
1 + ϵ

· E ⊆ P ⊆
√
d · E.

Moreover, vol(1√
1+ϵ

E) ≥ exp(−dϵ/2) · vol(E∗) where E∗ is the exact John ellipsoid of P and vol is volume
function.
Remark 3.6. The exact John Ellipsoid solution, as defined by the optimality criteria in Lemma 3.3, provides a
precise characterization of the ellipsoid. However, finding this exact solution can be computationally intensive
due to its constraints. On the other hand, Definition 3.4 defines a relaxed version of the exact optimality
condition, and Lemma 3.5 demonstrates that the approximate John Ellipsoid is a good approximation to the
exact John Ellipsoid. Compared to finding the exact solution, the approximate solution only requires solving
a less stringent optimization problem, which can significantly reduce computational complexity.

3.3. Leverage Score and Sketching
In this subsection, we demonstrate the definition of leverage score, the convexity of the logarithm of
the leverage score, and the sketching matrix, which are essential in our John Ellipsoid Algorithm 1
and convergence analysis.
Definition 3.7 (Leverage score). Given a matrix A ∈ Rn×d with full column rank, we define its leverage
score to be A(A⊤A)−1A⊤ ∈ Rn×n.
The leverage scores measure the statistical importance of rows in a matrix. We also consider the
weighted version of levearge scores, called Lewis weights.
Definition 3.8 (Lewis weight). The ℓp Lewis weights w for matrix A ∈ Rn×d is defined as the unique
vector w so that for all i ∈ [n],

wi = w
1
2−

1
p

i a⊤i (A
⊤ diag(w)1−

2
pA)−1ai.

Given a matrix A, let h : Rn → Rn be the function defined as h(w) = (h1(w), h2(w), · · · , hn(w))
where ∀i ∈ [n], we have

hi(w) = a⊤i (

n∑
j=1

wjaja
⊤
j)

−1ai = a⊤i (A
⊤ diag(w)A)−1ai.

Hence, computing the ℓ∞ Lewis weights is equivalent to solving the following fixed point problem:
wi = wihi(w), ∀i ∈ [n].

[10] observed that calculating ℓ∞ Lewis weight is equivalent to determining the maximal volume
inscribed ellipsoid in the polytope. By using the technique in [9], we find that ℓ∞ Lewis weight is
theweighted version of the standard leverage score. Therefore, by applying leverage score sampling
techniques to Algorithm 1, we achieve speed up the calculation of Lewis weight in our fast John
Ellipsoid algorithm similar to [9].

Now, we introduce the convexity lemma, used in demonstrating the correctness of Algorithm 1.

5

Lemma 3.9 (Convexity, Lemma 3.4 in [10]). For i ∈ [n], let ϕi : Rn → R be the function defined as

ϕi(v) = log hi(v) = log(a⊤i (

n∑
j=1

vjaja
⊤
j)

−1ai).

Then, ϕi is convex.

Here, we give the main idea of the sketching matrix, which we utilized to speed up the running
time to find John Ellipsoid in Algorithm 1.
Definition 3.10 (Sketching). We define the sketching matrix Sk ∈ Rs×d as a random matrix where each
entry in the matrix is drawn i.i.d. from N (0, 1).

4. Main Results
In this section, we demonstrate the main result of our work. By combining differential privacy and
fast JohnEllipsoid computation, wedemonstrate thatAlgorithm1 solved the JohnEllipsoid problem
with a differential privacy guarantee, high accuracy, and efficient running time (Theorem 4.1).
Theorem 4.1 (Main Results, informal version of Theorem F.1). Let v ∈ Rn be the result of Algorithm 1.
Define L as in Theorem 5.1. For all ξ, δ0 ∈ (0, 0.1), when T = Θ(ξ−2(log(n/δ0)+ (Lϵ0)

−2)), the following
holds for all i ∈ [n]:

Pr[hi(v) ≤ (1 + ξ)] ≥ 1− δ0.

In addition,
n∑

i=1

vi = d.

Thus, Algorithm 1 gives (1 + ξ)-approximation to the exact John ellipsoid.
Furthermore, suppose the input polytope in Algorithm 1 represented by A ∈ Rn×d satisfies σmax(A) ≤
poly(n) and σmin(A) ≥ 1/poly(n). Let ϵ0 ≤ O(1/ poly(n)) be the closeness of the neighboring polytopes
defined in Definition 1.2 and L ≤ O(poly(n)) be the Lipschitz defined in Theorem 5.1. Then for the ϵ0-close
neighboring polytopes, for any ϵ ≤ O(TL2ϵ20), Algorithm 1 is (ϵ, δ)-differentially private for any δ > 0 if we
choose the noise scale

σ ≥ Ω(
Lϵ0

√
T log(1/δ)

(1− 2Lϵ0)ϵ
).

The runtime of Algorithm 1 is O((nnz(A) + dω)T), where ω ≈ 2.37 represents the matrix multiplication
exponent [11–15].

Our Theorem 4.1 showed that our Algorithm 1 can approximate the ground-truth JE with a small
error, i.e., (1 + ξ), while our algorithm holds (ϵ, δ)-DP guarantee. Furthermore, our algorithm has
the same running complexity, i.e., nnz(A) + dω as the previous work [9].

Our algorithm uses three main techniques. First, in Line 14-15, we use the weighted leverage score
sampling method to approximate the weighted matrix representation of the convex polytope, i.e.,
Bk in Line 13. Then, in Line 16, we use a sketching matrix to reduce the dimension of the weighted
matrix representation of the convex polytope. Finally, in Line 19-20, we inject our truncated Gaus-
sian noise into the weighted leverage score to make our algorithm differential privacy.

5. Lipschitz Analysis of ℓ∞-Lewis Weights
Before heading to the privacy analysis of Algorithm 1, we state the following theorem that derives
the Lipschitz of the ϵ0-close neighborhood polytope. This analysis ensures that the variation in each
iteration of converging to the final approximation of John Ellipsoid could be bounded by L · ϵ0 in
Algorithm 1. This bound is indispensable in the privacy analysis of Algorithm 1 in Section 6.

6

Algorithm 1 Fast Algorithm for Differential Privacy Approximating John Ellipsoid (Fast DP-JE)

1: procedure FastApproxDPJE(A ∈ Rn×d, noise scale σ)
2: ▷ A symmetric polytope given by −1n ≤ Ax ≤ 1n, where A ∈ Rn×d

3: s← Θ(ξ−1)
4: T ← Θ(ξ−2(log(n/δ0) + (Lϵ0)

−2))
5: ξ0 ← Θ(ξ)
6: N ← Θ(ξ−2

0 d log(nd/δ1))

7: σ ← Θ(
Lϵ0
√

T log(1/δ)

(1−2Lϵ0)ϵ
)

8: for i = 1← n do
9: Initialize w1,i =

d
n

10: end for
11: for k = 1, · · · , T − 1 do
12: Wk = diag(wk)
13: Bk =

√
WkA

14: Compute the O(1)-approximation for the leverage score of Bk

15: Create a diagonal sampling matrix Dk ∈ Rn×n based on leverage score
16: Generate a random sketching Sk ∈ Rs×d defined in Definition 3.10
17: for i = 1→ n do
18: wk+1,i ← 1

s∥Sk(B
⊤
k DkBk)

−1/2√wk,iai∥22
19: Choose zk+1,i ∼ N T (µ, σ2, [−0.5, 0.5])
20: wk+1,i = wk+1,i(1 + zk+1,i)
21: end for
22: end for
23: for i = 1→ n do
24: ui =

1
T

∑T
k=1 wk,i

25: end for
26: for i = 1→ n do
27: vi =

d∑n
j=1 uj

ui

28: end for
29: V = diag(v) ▷ V is a diagonal matrix formed from the elements of v
30: return V and A⊤V A ▷ (1 + ξ)-approximation of John Ellipsoid within the polytope
31: end procedure

Theorem 5.1 (Lipschitz Bound for ℓ∞-Lewis weights of ϵ0-close polytope, informal version of The-
orem C.15). Let A,A′ ∈ Rn×d where a⊤i and a′i

⊤ denote the i-th row of A and A′, respectively, for
i ∈ [n] and suppose A and A′ are only different in j-th row with ∥aj − a′j∥2 ≤ ϵ0. Suppose that
Wk = diag(wk) where Ω(1) ≤ wk,i ≤ 1 for every i ∈ [n]. Let f(wk, A) := (f(wk, A)1, . . . , f(wk, A)n)
where f(wk, A)i := wia

⊤
i (A

⊤WkA)−1ai for every i ∈ [n]. Suppose that ϵ0 ≤ O(σmin(A)). Then there
exists L = poly(n, d, κ(A), σ−1

min(A), σmax(A)) such that
∥f(wk, A)− f(wk, A

′)∥2 ≤ L · ϵ0.

Proof sketch of Theorem 5.1. The proof involves analyzing how small perturbations in the input ma-
trix A affect the resulting Lewis weights. By applying the perturbation theory of singular values
and pseudo-inverses, we can bound the changes in Lewis weights caused by the small perturba-
tion and demonstrate that the difference in the Lewis weights between the original and perturbed
matrices is proportional to ϵ0, which ensures that the Lewis weights remain stable under small per-
turbations.

6. Differential Privacy Analysis
In this section, we demonstrate our privacy analysis of Algorithm 1. Firstly, in Section 6.1, we in-
troduce background knowledge on differential privacy about the sequential mechanism. Next, we
show that Algorithm 1 achieves (ϵ, δ)-DP in Section 6.2.

7

6.1. Basic Definitions of Differential Privacy
In this subsection, we introduce the basic definitions of differential privacy and sequential mech-
anisms. Since our John Ellipsoid Algorithm 1 is an iterative algorithm that converges to the exact
solution step by step, we need to use privacy techniques for the sequential mechanism [89], which
means that the input of the algorithm depends on previous output. First, we listed privacy-related
concepts about sequential mechanisms for the purpose of privacy analysis.
Definition 6.1 (Sequential mechanism). We define a sequential mechanismM consisting of a sequence
of adaptive mechanismsM1,M2, · · · ,Mk whereMi :

∏i−1
j=1Rj ×D → Ri.

Here, we give the definition of privacy loss, which measures the strength of privacy on a sequential
mechanism.
Definition 6.2 (Privacy loss). For neighboring databases D,D′, a sequential mechanismM, auxiliary
input aux, and an outcome o ∈ R, we define the privacy loss c as the following

c(o;M, aux, D,D′) := log
Pr[M(aux, D) = o]

Pr[M(aux, D′) = o]
.

In our work, the privacy analysis of Algorithm 1 relies on bounding moments of loss of privacy in
the sequential mechanism. Thus, we introduce α(λ) to denote the logarithm of moments of loss of
privacy.
Definition 6.3. We define the logarithm of moment generating function of c(o;M, aux, D,D′) as the fol-
lowing

αM(λ; aux, D,D′) := log E
o∼M(aux,D)

[expλc(o;M, aux, D,D′)].

Definition 6.4. We define the maximum of αM(λ; aux, D,D′) taken over all auxiliary inputs and neighbor-
ing databases D,D′ as the following

αM(λ) := max
aux,D,D′

αM(λ; aux, D,D′).

Finally, we introduce truncatedGaussian noisewe used to ensure the privacy ofAlgorithm 1. Unlike
[89], which utilized standard Gaussian noise, we use truncated Gaussian instead. This is because
truncated Gaussian noise could ensure that that error of Algorithm 1 caused by adding noise can
be bounded by the accuracy parameter ξ, see details in Appendix E.4.
Definition 6.5 (Truncated Gaussian). We say that a random variable zn is from a truncated Gaussian
distribution with mean 0 and variance σ2 over the interval [−0.5, 0.5], i.e., zn ∼ N T (0, σ2, [−0.5, 0.5]) , if
its probability density function is defined as

µ0(zn) =
1

σ

ϕ(znσ)

Φ(0.5σ)− Φ(−0.5
σ)

for zn ∈ [−0.5, 0.5],

where ϕ and Φ are pdf and cdf of the standard Gaussian.
Similarly, we use µ1(zn) to denote the pdf of N T (β, σ2, [−0.5, 0.5]),

µ1(zn) =
1

σ

ϕ(zn−β
σ)

Φ(0.5−β
σ)− Φ(−0.5−β

σ)
for zn ∈ [−0.5, 0.5].

To simplify the pdf of truncatedGaussian, we defineCσ, Cβ,σ, γβ,σ asCσ := Φ(0.5/σ)−Φ(−0.5/σ), Cβ,σ :=
Φ((0.5− β)/σ)− Φ((−0.5− β)/σ), and γβ,σ := Cσ/Cβ,σ.

6.2. Differential Privacy Optimization
Then, we can proceed to the privacy analysis of Algorithm 1. In Lemma 6.6, we show a general
result on the upper bound about the moment of adding truncated Gaussian noise in a sequential
mechanism.

8

Lemma 6.6 (Bound of α(λ), informal version of Lemma D.6). Let D,D′ ∈ D be the ϵ0-close neighbor-
hood polytope in Definition 1.2. Suppose that f : D → Rn with ∥f(D) − f(D′)∥2 ≤ β. Let z ∈ Rn be a
truncated Gaussian noise vector in Definition D.4. Let σ = mini σi and σ ≥ β. Then for any positive integer
λ ≤ γβ,σ/4, there exists C0 > 0 such that the mechanismM(d) = f(d) + z satisfies

αM(λ) ≤
C0λ(λ+ 1)β2γ2

β,σ

σ2
+O(β3λ3γ3

β,σ/σ
3).

Proof Sketch of Lemma D.6. Our goal is to bound the logarithm of the moment αM(λ). This is equiv-
alent to the bound

E
zn∼µ1

[(µ1(zn)/µ0(zn))
λ] =

λ+1∑
t=0

(
λ+ 1

t

)
E

zn∼µ0

[(
µ1(zn)− µ0(zn)

µ0(zn)
)t]. (2)

By basic algebra, the sum of the first two terms of Eq. (2) is 1. The third term can be bounded by
C0λ(λ+ 1)β2γ2

β,σ

σ2
.

To bound the rest of the summation for t ≥ 4, we consider 3 cases: zn ≤ 0, 0 ≤ zn ≤ β, zn ≤ β ≤ 0.5.
We bound each term of Eq. (2) by separating them into the summation of the three cases. We derive
that for the term t = 4, it could be bounded by

O(β3λ3γ3
β,σ/σ

3).

With our choice of λ ≤ 1/4γβ,σ and σ ≥ β, we find that all the higher order terms are dominated by
the third term. Thus, we derive the upper bound for αM(λ).

αM(λ) ≤
C0λ(λ+ 1)β2γ2

β,σ

σ2
+O(β3λ3γ3

β,σ/σ
3).

Therefore, combining Lemma 6.6 and the result of our Lipschitz analysis in Theorem 5.1, we demon-
strate that Algorithm 1 achieved (ϵ, δ)-differential privacy.
Theorem 6.7 (John Ellipsoid DP main theorem, informal version of Theorem D.7). Suppose that
the input polytope in Algorithm 1 represented by A ∈ Rn×d satisfies σmax(A) ≤ poly(n) and σmin ≥
1/ poly(d). There exists constants c1 and c2 so that given number of iterations T , for any ϵ ≤ c1Tγβ

2γLϵ0,σ ,
Algorithm 1 is (ϵ, δ)-differentially private for any δ > 0 if we choose

σ ≥ c2
Lϵ0

√
T log(1/δ)

(1− 2Lϵ0)ϵ

Proof Sketch of Lemma D.7. Since in Theorem 5.1, we demonstrate that ϵ0-close polytope can be
bounded by Lϵ0. Thus, we substitute β in Lemma 6.6 with Lϵ0. Since Algorithm 1 has T itera-
tion, we could apply the composition lemma for adaptive mechanism, described in Appendix D.4,
to Lemma 6.6. Therefore, we have

α(λ) ≤ TC0L
2ϵ20λ

2γ2
Lϵ0,σσ

−2.

To satisfy the tail bound in Appendix D.4 and Lemma 6.6, we need to satisfy
TC0L

2ϵ20λ
2γ2

Lϵ0,σσ
−2 ≤ λϵ/2,

exp(−λϵ/2) ≤ δ.

Therefore, by solving the system of inequality, we can show that Algorithm 1 is (ϵ, δ)-DP with our
choice of σ

Remark 6.8. [89] achieved differential privacy on stochastic gradient descent with privacy loss defined on
sequential mechanism. To control the gradient perturbation, our moment bound αM(λ) uses the difference
between the output of neighborhood datasets, while the moment bound in [89] needs the gradient to be less
than or equal to 1. In addition, [89] only works when the algorithm adds noise for a small portion of datasets.
In our setting, we derive the moment bound by adding noise for each data.

9

7. John Ellipsoid Algorithm Convergence
In this section, we demonstrate that our Algorithm 1 could converge to a good approximation of
exact John Ellipsoid with high probability under efficient running time.

First, we define ŵk+1,i := ∥(B⊤
k Bk)

−1/2√wk,iai∥22 and w̃k+1,i := ∥(B⊤
k DkBk)

−1/2√wk,iai∥22. Intu-
itively, ŵk+1,i represents the ideal Lewis weight, and w̃k+1,i denotes the Lewis weight computed
using the leverage score sampling matrix. Then we introduce the technique of telescoping, which
we utilize to separate the total relative error into ideal error ŵk+1,i/ŵk,i, leverage score sampling
error ŵk,i/w̃k,i, sketching error w̃k,i/wk,i, and error from truncated Gaussian noise wk,i/wk,i.
Lemma 7.1 (Telescoping lemma, informal version of Lemma E.3). Let T denote the number of main
iterations executed in our fast JE algorithm. Let u be the vector generated during Algorithm 1. Then for each
i ∈ [n], we have

ϕi(u) ≤
1

T
log

n

d
+

1

T

T∑
k=1

log
ŵk,i

w̃k,i
+

1

T

T∑
k=1

log
w̃k,i

wk,i
+

1

T

T∑
k=1

log
wk,i

wk,i
.

Then, we proceed to our convergence main theorem, which demonstrates that Algorithm 1 could
converge a good approximation of John Ellipsoid with high accuracy.
Theorem 7.2 (Convergence main theorem, informal version of Theorem E.12). Let u ∈ Rn be
the non-normalized output of Algorithm 1, δ0 be the failure probability. For all ξ ∈ (0, 1), when T =
Θ(ξ−2(log(n/δ0) + (Lϵ0)

−2)), it holds that for all i ∈ [n],
Pr[hi(u) ≤ (1 + ξ)] ≥ 1− δ0.

Moreover, it holds that
n∑

i=1

vi = d.

Therefore, Algorithm 1 finds (1 + ξ)-approximation to the exact John ellipsoid solution.

Proof Sketch of Theorem 7.2. Our goal is to show the leverage score hi(u) is less than or equal to (1+ξ)
with probability 1 − δ0. Therefore, we need to bound each term in Lemma 7.1 by ξ. With the use
of concentration inequality, we derive the high bound probability bound for the error of sketch-
ing, leverage score sampling, and truncated Gaussian noise. Combining the bound for each term
together, we observe that when

T = Θ(ξ−2 log(n/δ0)),

we have

log hi(u) ≤ log(1 + ξ),∀i ∈ [n].

Next, by our choice of vi in Line 27 of Algorithm 1, we use the definition of leverage score hi(v) to
show that

hi(v) ≤ (1 + ϵ).

8. Conclusion
We presented the first differentially private algorithm for fast John ellipsoid computation, integrat-
ing noise perturbation with sketching and leverage score sampling. Our method provides (ϵ, δ)-
differential privacy while converging to a (1 + ξ)-approximation in O(ξ−2(log(n/δ0) + (Lϵ0)

−2))
iterations. This work demonstrates a robust approach for balancing utility and privacy in geometric
algorithms, opening avenues for future research in privacy-preserving optimization techniques.

10

References
[1] Fabrizio Dabbene, Didier Henrion, and Constantino M Lagoa. Simple approximations of

semialgebraic sets and their applications to control. Automatica, 78:110–118, 2017.

[2] Yukai Tang, Jean-Bernard Lasserre, and Heng Yang. Uncertainty quantification of set-
membership estimation in control and perception: Revisiting the minimum enclosing ellip-
soid. In 6th Annual Learning for Dynamics & Control Conference, pages 286–298. PMLR, 2024.

[3] Elon Rimon and Stephen P Boyd. Obstacle collision detection using best ellipsoid fit. Journal
of Intelligent and Robotic Systems, 18:105–126, 1997.

[4] Sébastien Bubeck, Nicolo Cesa-Bianchi, and Sham M Kakade. Towards minimax policies for
online linear optimization with bandit feedback. In Conference on Learning Theory, pages 41–1.
JMLR Workshop and Conference Proceedings, 2012.

[5] Elad Hazan and Zohar Karnin. Volumetric spanners: an efficient exploration basis for learn-
ing. Journal of Machine Learning Research, 2016.

[6] Yuansi Chen, Raaz Dwivedi, Martin J Wainwright, and Bin Yu. Fast mcmc sampling algo-
rithms on polytopes. Journal of Machine Learning Research, 19(55):1–86, 2018.

[7] Yin Tat Lee and Aaron Sidford. Path findingmethods for linear programming: Solving linear
programs in o (vrank) iterations and faster algorithms for maximum flow. In 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science, pages 424–433. IEEE, 2014.

[8] Weiwei Shen and Jun Wang. Transaction costs-aware portfolio optimization via fast lowner-
john ellipsoid approximation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015.

[9] Zhao Song, Xin Yang, Yuanyuan Yang, and Tianyi Zhou. Faster algorithm for structured john
ellipsoid computation. arXiv preprint arXiv:2211.14407, 2022.

[10] Michael B Cohen, Ben Cousins, Yin Tat Lee, and Xin Yang. A near-optimal algorithm for
approximating the john ellipsoid. In Conference on Learning Theory, pages 849–873. PMLR,
2019.

[11] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In
Proceedings of the forty-fourth annual ACM symposium on Theory of computing (STOC), pages
887–898. ACM, 2012.

[12] François Le Gall and Florent Urrutia. Improved rectangularmatrixmultiplication using pow-
ers of the coppersmith-winograd tensor. InProceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1029–1046. SIAM, 2018.

[13] JoshAlman andVirginia VassilevskaWilliams. A refined lasermethod and fastermatrixmul-
tiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 522–539. SIAM, 2021.

[14] Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for
matrix multiplication: from alpha to omega. In Proceedings of the 2024 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 3792–3835. SIAM, 2024.

[15] Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei
Zhou. More asymmetry yields faster matrix multiplication. In Proceedings of the 2025 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2025.

[16] Fritz John. Extremumproblemswith inequalities as subsidiary conditions, studies and essays
presented to r. courant on his 60th birthday, january 8, 1948, 1948.

11

[17] LeonidGKhachiyan. Rounding of polytopes in the real numbermodel of computation.Math-
ematics of Operations Research, 21(2):307–320, 1996.

[18] Piyush Kumar and E Alper Yildirim. Minimum-volume enclosing ellipsoids and core sets.
Journal of Optimization Theory and applications, 126(1):1–21, 2005.

[19] Yurii Nesterov andArkadii Nemirovskii. Interior-point polynomial algorithms in convex program-
ming. SIAM, 1994.

[20] Leonid G Khachiyan and Michael J Todd. On the complexity of approximating the maximal
inscribed ellipsoid for a polytope. Technical report, Cornell University Operations Research
and Industrial Engineering, 1990.

[21] Peng Sun and Robert M Freund. Computation of minimum-volume covering ellipsoids. Op-
erations Research, 52(5):690–706, 2004.

[22] Xiaoyu Li, Zhao Song, and Junwei Yu. Quantum speedups for approximating the john ellip-
soid. arXiv preprint arXiv:2408.14018, 2024.

[23] Corwin L Atwood. Optimal and efficient designs of experiments. The Annals of Mathematical
Statistics, pages 1570–1602, 1969.

[24] ZeyuanAllen-Zhu, Yuanzhi Li, Aarti Singh, and YiningWang. Near-optimal design of exper-
iments via regretminimization. In International Conference onMachine Learning, pages 126–135.
PMLR, 2017.

[25] Yin Tat Lee and Aaron Sidford. Path finding ii: An\˜ o (m sqrt (n)) algorithm for the mini-
mum cost flow problem. arXiv preprint arXiv:1312.6713, 2013.

[26] Sergei Pavlovich Tarasov. The method of inscribed ellipsoids. In Soviet Mathematics-Doklady,
volume 37, pages 226–230, 1988.

[27] Han Huang. John ellipsoid and the center of mass of a convex body. Discrete & Computational
Geometry, 60:809–830, 2018.

[28] Santosh Vempala. Geometric random walks: a survey. Combinatorial and computational geom-
etry, 52(573-612):2, 2005.

[29] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sen-
sitivity in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Con-
ference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pages 265–284. Springer,
2006.

[30] Hossein Esfandiari, Vahab Mirrokni, and Shyam Narayanan. Tight and robust private mean
estimationwith few users. In International Conference onMachine Learning, pages 16383–16412.
PMLR, 2022.

[31] Alexandr Andoni, Piotr Indyk, Sepideh Mahabadi, and Shyam Narayanan. Differentially
private approximate near neighbor counting in high dimensions. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), pages 43544–43562, 2023.

[32] Yeshwanth Cherapanamjeri, Sandeep Silwal, David P Woodruff, Fred Zhang, Qiuyi Zhang,
and Samson Zhou. Robust algorithms on adaptive inputs from bounded adversaries. arXiv
preprint arXiv:2304.07413, 2023.

[33] Vincent Cohen-Addad, Chenglin Fan, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-
Fard, Nikos Parotsidis, and Jakub M Tarnawski. Near-optimal correlation clustering with
privacy. Advances in Neural Information Processing Systems, 35:33702–33715, 2022.

12

[34] WeiDong, ZijunChen, Qiyao Luo, Elaine Shi, andKeYi. Continual observation of joins under
differential privacy. Proceedings of the ACM on Management of Data, 2(3):1–27, 2024.

[35] Alireza Farhadi, MohammadTaghi Hajiaghayi, and Elaine Shi. Differentially private densest
subgraph. In International Conference on Artificial Intelligence and Statistics, pages 11581–11597.
PMLR, 2022.

[36] Sivakanth Gopi, Yin Tat Lee, Daogao Liu, Ruoqi Shen, and Kevin Tian. Private convex opti-
mization in general norms. InProceedings of the 2023Annual ACM-SIAMSymposium onDiscrete
Algorithms (SODA), pages 5068–5089. SIAM, 2023.

[37] Xuechen Li, Daogao Liu, Tatsunori B Hashimoto, Huseyin A Inan, Janardhan Kulkarni, Yin-
Tat Lee, and Abhradeep Guha Thakurta. When does differentially private learning not suffer
in high dimensions? Advances in Neural Information Processing Systems, 35:28616–28630, 2022.

[38] Sivakanth Gopi, Yin Tat Lee, and Daogao Liu. Private convex optimization via exponential
mechanism. In Conference on Learning Theory, pages 1948–1989. PMLR, 2022.

[39] Ziyue Huang and Ke Yi. Approximate range counting under differential privacy. In 37th In-
ternational Symposium on Computational Geometry (SoCG 2021). Schloss-Dagstuhl-Leibniz Zen-
trum für Informatik, 2021.

[40] Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and
Moshe Shenfeld. A new analysis of differential privacy’s generalization guarantees. arXiv
preprint arXiv:1909.03577, 2019.

[41] Ping Li and Xiaoyun Li. Smooth flipping probability for differential private sign random
projection methods. Advances in Neural Information Processing Systems, 36, 2024.

[42] Alessandro Epasto, Vahab Mirrokni, Shyam Narayanan, and Peilin Zhong. k-means cluster-
ing with distance-based privacy. Advances in Neural Information Processing Systems, 36, 2024.

[43] Justin Y Chen, ShyamNarayanan, and Yinzhan Xu. All-pairs shortest path distances with dif-
ferential privacy: Improved algorithms for bounded and unbounded weights. arXiv preprint
arXiv:2204.02335, 2022.

[44] Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi Nissim, Thatchaphol Saranurak, and
Uri Stemmer. Dynamic algorithms against an adaptive adversary: generic constructions and
lower bounds. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Comput-
ing, pages 1671–1684, 2022.

[45] Shyam Narayanan. Private high-dimensional hypothesis testing. In Conference on Learning
Theory, pages 3979–4027. PMLR, 2022.

[46] Shyam Narayanan. Better and simpler lower bounds for differentially private statistical esti-
mation. arXiv preprint arXiv:2310.06289, 2023.

[47] Chenglin Fan and Ping Li. Distances release with differential privacy in tree and grid graph.
In 2022 IEEE International Symposium on Information Theory (ISIT), pages 2190–2195. IEEE,
2022.

[48] Chenglin Fan, Ping Li, and Xiaoyun Li. k-median clustering via metric embedding: towards
better initializationwith differential privacy. Advances inNeural Information Processing Systems,
36, 2024.

[49] Ping Li and Xiaoyun Li. Differential privacy with random projections and sign random pro-
jections. arXiv preprint arXiv:2306.01751, 2023.

13

[50] Marek Eliáš, Michael Kapralov, Janardhan Kulkarni, and Yin Tat Lee. Differentially private
release of synthetic graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 560–578. SIAM, 2020.

[51] Jiahao Yu, Haozheng Luo, Jerry Yao-Chieh Hu, Wenbo Guo, Han Liu, and Xinyu Xing. En-
hancing jailbreak attack against large language models through silent tokens. arXiv preprint
arXiv:2405.20653, 2024.

[52] Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Differential privacy of cross-
attention with provable guarantee. arXiv preprint arXiv:2407.14717, 2024.

[53] Jiuxiang Gu, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Differential privacy
mechanisms in neural tangent kernel regression. arXiv preprint arXiv:2407.13621, 2024.

[54] Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential pri-
vacy: fast algorithm for dynamic kronecker projection maintenance. In International Confer-
ence on Machine Learning, pages 32418–32462. PMLR, 2023.

[55] Lianke Qin, Rajesh Jayaram, Elaine Shi, Zhao Song, Danyang Zhuo, and Shumo Chu. Adore:
Differentially oblivious relational database operators. arXiv preprint arXiv:2212.05176, 2022.

[56] Zhao Song, Yitan Wang, Zheng Yu, and Lichen Zhang. Sketching for first order method:
efficient algorithm for low-bandwidth channel and vulnerability. In International Conference
on Machine Learning, pages 32365–32417. PMLR, 2023.

[57] Filippo Galli, Catuscia Palamidessi, and Tommaso Cucinotta. Online sensitivity optimization
in differentially private learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 12109–12117, 2024.

[58] E Chen, Yang Cao, and Yifei Ge. A generalized shuffle framework for privacy amplification:
Strengthening privacy guarantees and enhancing utility. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 11267–11275, 2024.

[59] Rob Romijnders, Christos Louizos, Yuki M Asano, and Max Welling. Protect your score:
Contact-tracing with differential privacy guarantees. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 14829–14837, 2024.

[60] Tao Qi, Huili Wang, and Yongfeng Huang. Towards the robustness of differentially private
federated learning. Proceedings of the AAAI Conference on Artificial Intelligence, 38(18):19911–
19919, Mar. 2024. doi: 10.1609/aaai.v38i18.29967. URL https://ojs.aaai.org/index.php/
AAAI/article/view/29967.

[61] Yekun Ke, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Dpbloomfilter: Secur-
ing bloom filters with differential privacy. arXiv preprint arXiv:2502.00693, 2025.

[62] Jerry Yao-Chieh Hu, Erzhi Liu, Han Liu, Zhao Song, and Lichen Zhang. On differentially
private string distances. arXiv preprint arXiv:2411.05750, 2024.

[63] Erzhi Liu, Jerry Yao-Chieh Hu, Alex Reneau, Zhao Song, and Han Liu. Differentially private
kernel density estimation. arXiv preprint arXiv:2409.01688, 2024.

[64] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foun-
dations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

[65] Quan Geng, Wei Ding, Ruiqi Guo, and Sanjiv Kumar. Tight analysis of privacy and utility
tradeoff in approximate differential privacy. In International Conference on Artificial Intelligence
and Statistics, pages 89–99. PMLR, 2020.

14

[66] Jason D Lee, Ruoqi Shen, Zhao Song, Mengdi Wang, et al. Generalized leverage score sam-
pling for neural networks. Advances in Neural Information Processing Systems, 33:10775–10787,
2020.

[67] Zhao Song, David Woodruff, Zheng Yu, and Lichen Zhang. Fast sketching of polynomial
kernels of polynomial degree. In International Conference on Machine Learning, pages 9812–
9823. PMLR, 2021.

[68] Yichuan Deng, Zhihang Li, and Zhao Song. An improved sample complexity for rank-1 ma-
trix sensing. arXiv preprint arXiv:2303.06895, 2023.

[69] David P Woodruff and Peilin Zhong. Distributed low rank approximation of implicit func-
tions of amatrix. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pages
847–858. IEEE, 2016.

[70] Christos Boutsidis, David PWoodruff, and Peilin Zhong. Optimal principal component anal-
ysis in distributed and streaming models. In Proceedings of the forty-eighth annual ACM sympo-
sium on Theory of Computing, pages 236–249, 2016.

[71] Kenneth LClarkson andDavid PWoodruff. Low-rank approximation and regression in input
sparsity time. Journal of the ACM (JACM), 63(6):1–45, 2017.

[72] Ilya Razenshteyn, Zhao Song, and David P Woodruff. Weighted low rank approximations
with provable guarantees. In Proceedings of the forty-eighth annual ACM symposium on Theory
of Computing, pages 250–263, 2016.

[73] Zhao Song, David PWoodruff, and Peilin Zhong. Low rank approximationwith entrywise l1-
norm error. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
pages 688–701, 2017.

[74] Chang Xiao, Peilin Zhong, and Changxi Zheng. Bourgan: Generative networks with metric
embeddings. Advances in neural information processing systems, 31, 2018.

[75] Zhaozhuo Xu, Zhao Song, and Anshumali Shrivastava. Breaking the linear iteration cost
barrier for some well-known conditional gradient methods using maxip data-structures. Ad-
vances in Neural Information Processing Systems, 34:5576–5589, 2021.

[76] Xingguo Li, Jarvis Haupt, and David Woodruff. Near optimal sketching of low-rank tensor
regression. Advances in Neural Information Processing Systems, 30, 2017.

[77] Huaian Diao, Zhao Song, Wen Sun, and David Woodruff. Sketching for kronecker product
regression and p-splines. In International Conference onArtificial Intelligence and Statistics, pages
1299–1308. PMLR, 2018.

[78] Zhao Song, Baocheng Sun, OmriWeinstein, and Ruizhe Zhang. Sparse fourier transform over
lattices: A unified approach to signal reconstruction. arXiv preprint arXiv:2205.00658, 2022.

[79] Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for ma-
trices i: Approximating matrix multiplication. SIAM Journal on Computing, 36(1):132–157,
2006.

[80] Petros Drineas, Michael W Mahoney, and Shan Muthukrishnan. Sampling algorithms for l2
regression and applications. In Proceedings of the seventeenth annual ACM-SIAM symposium on
Discrete algorithm, pages 1127–1136, 2006.

[81] MichaelWMahoney and Petros Drineas. Curmatrix decompositions for improved data anal-
ysis. Proceedings of the National Academy of Sciences, 106(3):697–702, 2009.

15

[82] Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank approxima-
tion. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
2772–2789. SIAM, 2019.

[83] Tamás Erdélyi, Cameron Musco, and Christopher Musco. Fourier sparse leverage scores and
approximate kernel learning. Advances in Neural Information Processing Systems, 33:109–122,
2020.

[84] NamanAgarwal, ShamKakade, Rahul Kidambi, Yin Tat Lee, Praneeth Netrapalli, and Aaron
Sidford. Leverage score sampling for faster accelerated regression and erm. arXiv preprint
arXiv:1711.08426, 2017.

[85] Neophytos Charalambides, Mert Pilanci, and Alfred O Hero. Gradient coding with iterative
block leverage score sampling. IEEE Transactions on Information Theory, 2024.

[86] David Woodruff and Amir Zandieh. Leverage score sampling for tensor product matrices
in input sparsity time. In International Conference on Machine Learning, pages 23933–23964.
PMLR, 2022.

[87] Alessandro Rudi, Daniele Calandriello, Luigi Carratino, and Lorenzo Rosasco. On fast lever-
age score sampling and optimal learning. Advances in Neural Information Processing Systems,
31, 2018.

[88] Michael J Todd. Minimum-volume ellipsoids: Theory and algorithms. SIAM, 2016.

[89] MartinAbadi, AndyChu, IanGoodfellow, HBrendanMcMahan, IlyaMironov, Kunal Talwar,
and Li Zhang. Deep learningwith differential privacy. In Proceedings of the 2016 ACMSIGSAC
conference on computer and communications security, pages 308–318, 2016.

[90] George BDantzig. Maximization of a linear function of variables subject to linear inequalities.
Activity analysis of production and allocation, 13:339–347, 1951.

[91] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceed-
ings of the sixteenth annual ACM symposium on Theory of computing, pages 302–311, 1984.

[92] PravinMVaidya. An algorithm for linear programmingwhich requires o (((m+n) n 2+(m+
n) 1.5 n) l) arithmetic operations. In Proceedings of the nineteenth annual ACM symposium on
Theory of computing, pages 29–38, 1987.

[93] James Renegar. A polynomial-time algorithm, based on newton’s method, for linear pro-
gramming. Mathematical programming, 40(1):59–93, 1988.

[94] Pravin M Vaidya. Speeding-up linear programming using fast matrix multiplication. In 30th
annual symposium on foundations of computer science, pages 332–337. IEEE Computer Society,
1989.

[95] Samuel I Daitch and Daniel A Spielman. Faster approximate lossy generalized flow via inte-
rior point algorithms. In Proceedings of the fortieth annual ACM symposium on Theory of comput-
ing, pages 451–460, 2008.

[96] Yin Tat Lee andAaron Sidford. Path finding i: Solving linear programswith\˜ o (sqrt (rank))
linear system solves. arXiv preprint arXiv:1312.6677, 2013.

[97] Yin Tat Lee andAaron Sidford. Solving linear programswith sqrt (rank) linear system solves.
arXiv preprint arXiv:1910.08033, 2019.

[98] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. Journal of the ACM (JACM), 68(1):1–39, 2021.

16

[99] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current
matrix multiplication time. In Conference on Learning Theory, pages 2140–2157. PMLR, 2019.

[100] Jan van den Brand. A deterministic linear program solver in current matrix multiplication
time. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 259–278. SIAM, 2020.

[101] Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense linear
programs in nearly linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, pages 775–788, 2020.

[102] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic matrix
inverse for faster lps. In STOC, 2021.

[103] Zhao Song and Zheng Yu. Oblivious sketching-based central path method for linear pro-
gramming. In International Conference on Machine Learning, pages 9835–9847. PMLR, 2021.

[104] Yuzhou Gu and Zhao Song. A faster small treewidth sdp solver. arXiv preprint
arXiv:2211.06033, 2022.

[105] Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song. A faster
interior point method for semidefinite programming. In 2020 IEEE 61st annual symposium on
foundations of computer science (FOCS), pages 910–918. IEEE, 2020.

[106] Zhao Song, Mingquan Ye, and Lichen Zhang. Streaming semidefinite programs: o(\sqrt{n})
passes, small space and fast runtime. arXiv preprint arXiv:2309.05135, 2023.

[107] Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. A faster quan-
tum algorithm for semidefinite programming via robust ipm framework. arXiv preprint
arXiv:2207.11154, 2022.

[108] Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Solving sdp
faster: A robust ipm framework and efficient implementation. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 233–244. IEEE, 2022.

[109] Zhao Song, Zhaozhuo Xu, and Lichen Zhang. Speeding up sparsification using inner product
search data structures. arXiv preprint arXiv:2204.03209, 2022.

[110] Lianke Qin, Zhao Song, Lichen Zhang, and Danyang Zhuo. An online and unified algo-
rithm for projection matrix vector multiplication with application to empirical risk mini-
mization. In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent, editors, Proceed-
ings of The 26th International Conference on Artificial Intelligence and Statistics, volume 206
of Proceedings of Machine Learning Research, pages 101–156. PMLR, 25–27 Apr 2023. URL
https://proceedings.mlr.press/v206/qin23a.html.

[111] Yuzhou Gu, Zhao Song, and Lichen Zhang. A nearly-linear time algorithm for structured
support vector machines. arXiv preprint arXiv:2307.07735, 2023.

[112] Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast optimization view: Reformulating
single layer attention in llm based on tensor and svm trick, and solving it in matrix multipli-
cation time. arXiv preprint arXiv:2309.07418, 2023.

[113] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency.
arXiv preprint arXiv:1610.05492, 2016.

[114] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learn-
ing for health: Distributed deep learning without sharing raw patient data. arXiv preprint
arXiv:1812.00564, 2018.

17

[115] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit
confidence information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC
conference on computer and communications security, pages 1322–1333, 2015.

[116] Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by
inverting them. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 5188–5196, 2015.

[117] Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convolutional
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
4829–4837, 2016.

[118] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural
information processing systems, 32, 2019.

[119] Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and Sanjeev Arora. Evaluating gradient
inversion attacks and defenses in federated learning. Advances in neural information processing
systems, 34:7232–7241, 2021.

[120] Caridad Arroyo Arevalo, Sayedeh Leila Noorbakhsh, Yun Dong, Yuan Hong, and Binghui
Wang. Task-agnostic privacy-preserving representation learning for federated learning
against attribute inference attacks. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pages 10909–10917, 2024.

[121] Yuting Ma, Yuanzhi Yao, and Xiaohua Xu. Ppidsg: A privacy-preserving image distribu-
tion sharing scheme with gan in federated learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 14272–14280, 2024.

[122] Dashan Gao, Sheng Wan, Lixin Fan, Xin Yao, and Qiang Yang. Complementary knowledge
distillation for robust and privacy-preserving model serving in vertical federated learning.
Proceedings of the AAAI Conference on Artificial Intelligence, 38(18):19832–19839, Mar. 2024. doi:
10.1609/aaai.v38i18.29958. URL https://ojs.aaai.org/index.php/AAAI/article/view/
29958.

[123] Yangsibo Huang, Yushan Su, Sachin Ravi, Zhao Song, Sanjeev Arora, and Kai Li. Privacy-
preserving learning via deep net pruning. arXiv preprint arXiv:2003.01876, 2020.

[124] Yangsibo Huang, Zhao Song, Danqi Chen, Kai Li, and Sanjeev Arora. Texthide: Tackling
data privacy in language understanding tasks. In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 1368–1382, 2020.

[125] TH Hubert Chan, Hao Xie, and Mengshi Zhao. Privacy amplification by iteration for admm
with (strongly) convex objective functions. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 11204–11211, 2024.

[126] Yangsibo Huang, Zhao Song, Kai Li, and Sanjeev Arora. Instahide: Instance-hiding schemes
for private distributed learning. In International conference on machine learning, pages 4507–
4518. PMLR, 2020.

[127] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American statistical association, 58(301):13–30, 1963.

[128] Hermann Weyl. Das asymptotische verteilungsgesetz der eigenwerte linearer partieller dif-
ferentialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung). Mathe-
matische Annalen, 71(4):441–479, 1912.

[129] Per-ÅkeWedin. Perturbation theory for pseudo-inverses. BIT Numerical Mathematics, 13:217–
232, 1973.

18

Appendix
Roadmap. In Section A, we introducemore relatedwork in linear programming and privacy. Next,
in Section B, we introduce background knowledge and tools involved in our work. Then, in Sec-
tion C, we demonstrate the analysis about Lipschitz of ϵ0-close polytope. In Section D, we show
that Algorithm 1 satisfies the DP guarantee. In Section E, we analyze the convergence and correct-
ness of our John Ellipsoid algorithm. Finally, in Section F, we demonstrate our main theorem by
combining privacy guarantee and correctness of Algorithm 1.

A. More Related Work

In this section, we introduce more related work that inspires our research.

Linear Programming andSemidefinite Programming Linear programming is a fundamental com-
puter science and optimization topic. The Simplex algorithm, introduced in [90], is a pivotalmethod
in linear programming, though it has an exponential runtime. The Ellipsoidmethod, which reduces
runtime to polynomial time, is theoretically significant but often slower in practice compared to the
Simplex method. The interior-point method, introduced in [91], is a major advancement, offering
both polynomial runtime and strong practical performance on real-world problems. This method
opened up a new avenue of research, leading to a series of developments aimed at speeding up
the interior point method for solving a variety of classical optimization problems. John Ellipsoid
has deep implication in the field of linear programming. For example, in interior point method,
John Ellipsoid is utilized to find path to solutions [7]. The interior point method has a wide impact
on linear programming as well as other complex tasks, such as [7, 92–104]. Moreover, the interior
method and John ellipsoid are fundamental to solving semidefinite programming problems, such
as [104–108].

Linear programming and semidefinite programming are widely applied in the field of machine
learning theory, particularly in topics such as empirical riskminimization [99, 109, 110] and support
vector machines [111, 112].

Privacy and Security Data privacy and security have become a critical issue in the field of machine
learning, particularly with the growing use of deep neural networks. As there is an increasing
demand for training deep learning models on distributed and private datasets, privacy concerns
have come to the forefront.

To address these concerns, various methods have been proposed for privacy-preserving deep learn-
ing. These methods often involve sharing model updates [113] or hidden-layer representations
[114] rather than raw data. Despite these precautions, recent studies have shown that even if raw
data remains private, sharing model updates or hidden-layer activations can still result in the leak-
age of sensitive information about the input, referred to as the victim. Such information leakage
might reveal the victim’s class, specific features [115], or even reconstruct the original data record
[116–118]. This privacy leakage presents a significant threat to individuals whose private data have
been utilized in training deep neural networks. Moreover, privacy and security have been studied in
other fields in machine learning, such as attacks and defenses in federated learning [119–122], deep
net pruning [123], language understanding tasks [124], alternating direction method of multipliers
(ADMM) [125], and distributed learning [126].

B. Baisc Tools

Fact B.1 (Cauchy-Schwarz inequality). For vectors u, v ∈ Rn, we have

⟨u, v⟩ ≤ ∥u∥2 · ∥v∥2

19

Definition B.2 (Moment Generating Function of Gaussian). LetZ ∼ N (µ, σ2), the moment generating
function of Z is:

MZ(t) = E[etZ] = exp(tµ+
t2σ2

2
)

Lemma B.3 (Hoeffding’s bound, [127]). Let X1, X2, ..., Xn denote n independent bounded variables in
[ai, bi].Let X =

∑n
i=1 Xi,then we have

Pr[|X − E[X]| ≥ t] ≤ 2 exp(−2t2/
n∑

i=1

(bi − ai)
2).

C. Lipschitz Analysis on Neighborhood Polytopes
In this section, we delve into our analysis of the Lipschitz of ϵ0-close polytope. This analysis is
crucial in showing the differential privacy guarantee of Algorithm 1. Firstly, in Section C.1, we
provide some facts on matrix norm. Then, in Section C.2, we derive more matrix norm bounds on
advanced matrix operation. Next, we demonstrate the bound on the norm of leverage score for
neighborhood datasets in Section C.3.

C.1. Basic Facts on Matrix Norm
In this section, we list basic facts about matrix norm.
Fact C.1. Let A ∈ Rn×d be a matrix. Then we have

∥A∥ ≤ ∥A∥F .

Fact C.2. Let A ∈ Rn×d be a matrix where a⊤i is the i-th row of A. Then we have
∥ai∥2 ≤ σmax(A).

Fact C.3. Let A,B ∈ Rn×d, x ∈ Rd. Then the following two statements are equivalent:

• ∥BB⊤ −AA⊤∥ ≤ ϵ.
• ∥x⊤BB⊤x− x⊤AA⊤x∥ ≤ ϵ · x⊤x.

LemmaC.4 (Perturbation of singular value, [128]). LetA,B ∈ Rn×d. Let σi(A) denote the i-th singular
value of A, then we have for any i ∈ [d],

∥σi(A)− σi(B)∥ ≤ ∥A−B∥.

Lemma C.5 (Perturbation of pseudoinverse, [129]). Let A,B ∈ Rn×d. Then we have
∥A† −B†∥ ≤ 2max{∥A†∥2, ∥B†∥2} · ∥A−B∥.

Fact C.6. Let A,B ∈ Rn×d, x ∈ Rd. Then we have

• Part 1. ∥A∥ = ∥A⊤∥ = σmax(A) ≥ σmin(A).
• Part 2. ∥A−1∥ = ∥A∥−1.
• Part 3. σmax(B)− ∥A−B∥ ≤ σmax(A) ≤ σmax(B) + ∥A−B∥.
• Part 4. σmin(B)− ∥A−B∥ ≤ σmin(A) ≤ σmin(B) + ∥A−B∥.
• Part 5. ∥Ax∥2 ≤ ∥A∥ · ∥x∥2.

C.2. Bounds on Matrix Norm
In this subsection, given constraints on the spectral norm of the difference of matrices, we derive
upper bounds on the spectral norm of operations defined by matrices.

Firstly, we show the constraints on the effect of perturbation on singular values.

20

Lemma C.7. If the following conditions hold:

• ∥A−B∥ ≤ ϵ0.
• ϵ0 ≤ 0.1σmin(A).

Then we have

• σmax(B) ∈ [0.9σmax(A), 1.1σmax(A)].
• σmin(B) ∈ [0.9σmin(A), 1.1σmin(A)].

Proof. We can show

σmax(B) ≤ σmax(A) + ∥A−B∥
≤ σmax(A) + ϵ0

≤ σmax(A) + 0.1σmax(A)

= 1.1σmax(A)

where the first step follows from Fact C.6, the second and third steps follow from conditions, and
the last step follows from basic algebra.

Next, we can show

σmax(B) ≥ σmax(A)− ∥A−B∥
≥ σmax(A)− ϵ0

≥ σmax(A)− 0.1σmax(A)

= 0.9σmax(A)

where the first step follows from Fact C.6, the second and third steps follow from conditions, and
the last step follows from basic algebra.

Hence, we have

σmax(B) ∈ [0.9σmax(A), 1.1σmax(A)].

Similarly, we can show

σmin(B) ∈ [0.9σmin(A), 1.1σmin(A)]

using similar steps.

Then, we demonstrate the effect of singular value perturbation on gram matrix.
Lemma C.8. If the following conditions hold:

• ∥A−B∥ ≤ ϵ0.
• ϵ0 ≤ 0.1σmin(A).

Then we have
∥(B⊤B)−1∥ ∈ [0.7σmax(A)−2, 1.3σmin(A)−2]

Proof. First, we show that

∥B⊤B∥ ≤ ∥B⊤∥ · ∥B∥
≤ σmax(B)2

≤ 1.3σmax(A)2.

21

where the first step follows from basic algebra, the second step follows from Part 1. of Fact C.6, and
the last step follows from Lemma C.7.

Hence, we have
∥(B⊤B)−1∥ = ∥B⊤B∥−1

≥ (1.3σmax(A)2)−1

≥ 0.7σmax(A)2.

where the first step comes from Part 2. of Fact C.6, the second step follows from ∥B⊤B∥ ≤
1.3σmax(A)2, and the last step follows from basic algebra.

Next, we can show
∥B⊤B∥ ≥ ∥B⊤∥ · ∥B∥

≥ σmin(B)2

≥ 0.8σmin(A)2.

where the first step comes from basic algebra, the second step comes from Part 1. of Fact C.6, and
the last step follows from Lemma C.7.

Hence, we have
∥(B⊤B)−1∥ = ∥B⊤B∥−1

≤ (0.8σmin(A)2)−1

≤ 1.3σmin(A)2.

where the first step derives from Part 2. of Fact C.6, the second step comes from ∥B⊤B∥ ≥
0.8σmin(A)2, and the last step comes from basic algebra.

Next, we demonstrate the effect of perturbations on the spectral norm of the difference between
matrices.
Lemma C.9. If the following conditions hold

• ∥A−B∥ ≤ ϵ0

• ϵ0 ≤ 0.1σmin(A)

Then we have

• ∥A⊤A−A⊤B∥ ≤ σmax(A) · ϵ0

• ∥A⊤B −B⊤B∥ ≤ 1.1σmax(A)ϵ0

Proof. We can show that
∥A⊤A−A⊤B∥ ≤ ∥A⊤∥ · ∥A−B∥

= σmax(A) · ∥A−B∥
≤ σmax(A) · ϵ0

where the first step follows from simple algebra, the second step follows from Fact C.6, and the last
step follows from the assumption in the Lemma statement.

We can show that
∥A⊤B −B⊤B∥ ≤ ∥B∥ · ∥A⊤ −B⊤∥

≤ 1.1σmax(A) · ∥A−B∥
≤ 1.1σmax(A) · ϵ0

where the first step uses simple algebra, the second step utilizes Fact C.6, and the last step derives
from the assumption in the Lemma statement.

22

Following the above lemma, we proceed to demonstrate the difference between two-gram matrices
caused by perturbation on the singular value.
Lemma C.10. If the following conditions hold

• ∥A−B∥ ≤ ϵ0

• ϵ0 ≤ 0.1σmin(A)

Then, we have
∥A⊤A−B⊤B∥ ≤ 2.1σmax(A) · ϵ0

Proof. We can show that

∥A⊤A−B⊤B∥ = ∥A⊤A−A⊤B +A⊤B −B⊤B∥
≤ ∥A⊤A−A⊤B∥+ ∥A⊤B −B⊤B∥
≤ σmax(A)ϵ0 + 1.1σmax(A)ϵ0

= 2.1σmax(A) · ϵ0

where the first step derives from simple algebra, the second step is by the triangle inequality, the
last step derives from Lemma C.9, and the last step comes from basic algebra.

Then, we introduce condition numbers to bound the spectral norm on the inverse of the difference
of two-gram matrices.
Lemma C.11. If the following conditions hold

• ∥A−B∥ ≤ ϵ0.
• ϵ0 ≤ 0.1σmin(A).

Then we have
∥(AA⊤)−1 − (BB⊤)−1∥ ≤ 8κ(A)σ−3

min(A)ϵ0.

Proof. We can show

∥(A⊤A)−1 − (B⊤B)−1∥ ≤ 2max{∥(A⊤A)−1∥2, ∥(B⊤B)−1∥2} · ∥(A⊤A)− (B⊤B)∥
≤ 2 · (1.3/σmin(A)2)2 · ∥(A⊤A)− (B⊤B)∥
≤ 2 · (1.3/σmin(A)2)2 · (2.1σmax(A) · ϵ0)
≤ 8κ(A)σmin(A)−3ϵ0,

where the first step is by Lemma C.5, the second step is by Lemma C.7, the third step comes from
Lemma C.10, the last step derives from κ(A) = σmax(A)

σmin(A) and 2.1 · (1.3)2 · 2.1 ≤ 8.

C.3. Bounds of Lewis Weights on Neighborhood Datasets
In this subsection, we discuss bounds on Lewis weight and finally derive the Lipschitz bound for
ℓ∞ Lewis weights of ϵ0-close polytope.

Firstly, we derive the effect of the perturbation on one row of matrix A on the spectral norm of the
difference between weighted matrices.
Lemma C.12. If the following conditions hold

• Let A,A′ ∈ Rn×d.
• Let a⊤i denote the i-th row of A for i ∈ [n].

23

• Suppose A and A′ is only different in j-th row, and ∥aj − a′j∥2 ≤ ϵ0.
• Suppose thatWk = diag(wk) where wk,i ∈ [Ω(1), 1] for every i ∈ [n].

Then we have
∥W 1/2

k A−W
1/2
k A′∥ ≤ ϵ0.

Proof. Let B = W
1/2
k A and B′ = W

1/2
k A′. We have

∥B −B′∥ = ∥W 1/2
k A−W

1/2
k A′∥

≤ ∥W 1/2
k A−W

1/2
k A′∥F

≤

√√√√ n∑
i=1

∥wk,iai − wk,ia′i∥22

= ∥wk,iaj − wk,ia
′
j∥2

≤ |wk,i|∥aj − a′j∥2
= ϵ0

where the first step comes from the definition of B,B′, the second step is the result of Fact C.1, the
third step comes from the definition of Frobenius norm, the fourth step utilizes that A and A′ only
differs in j-th row, the fifth step derives from basic algebra, and the last step is from wk,i ∈ [0, 1] and
∥aj − a′j∥2 ≤ ϵ0.

Followed from Lemma C.12, we derive the bound for perturbation on (A⊤WKA)−1

Lemma C.13. If the following conditions hold

• Let A,A′ ∈ Rn×d.
• Let a⊤i denote the i-th row of A for i ∈ [n].
• Suppose A and A′ is different in j-th row, and ∥aj − a′j∥2 ≤ ϵ0

• Suppose thatWk = diag(wk) where wk,i ∈ [Ω(1), 1] for every i ∈ [n].
• Suppose that ϵ0 ≤ O(σmin(A)).

Then we have
∥(A⊤WkA)−1 − (A′⊤WkA

′)−1∥ ≤ O(8κ(A)σ−3
min(A)ϵ0).

Proof. By Lemma C.12, we have

∥W 1/2
k A−W

1/2
k A′∥ ≤ ϵ0.

We can show that

∥(A⊤WkA)−1 − (A′⊤WkA
′)−1∥ ≤ 8κ(W

1/2
k A)σ−3

min(W
1/2
k A)ϵ0

≤ O(8κ(A)σ−3
min(A)ϵ0).

where the first step is the result of Lemma C.11 and the second step is fromwk,i ∈ [Ω(1), 1] for every
i ∈ [n].

Next, we introduce f , an algorithm that computes Lewis weight. And we derive the upper bound
of change in f caused by perturbation on input A.
Lemma C.14. If the following conditions hold

24

• Let A,A′ ∈ Rn×d.
• Let a⊤i denote the i-th row of A for i ∈ [n].
• Suppose A and A′ is different in j-th row, and ∥aj − a′j∥2 ≤ ϵ0

• Suppose thatWk = diag(wk) where wk,i ∈ [Ω(1), 1] for every i ∈ [n].
• Let f(wk, A) := (f(wk, A)1, . . . , f(wk, A)n)

• Let f(wk, A)i := wia
⊤
i (A

⊤WkA)−1ai for i ∈ [n].
• Suppose that ϵ0 ≤ O(σmin(A)).
• Let ϵ1 = Θ(8κ(A)σ−3

min(A)ϵ0).

Then we have

• Part 1. For i ̸= j, |f(wk, A)i − f(wk, A
′)i| ≤ ϵ1 · σmax(A)2.

• Part 2. |f(wk, A)j − f(wk, A
′)j | ≤ ϵ1(σmax(A) + ϵ0)

2 + ϵ0σmin(W
1/2
k A)2(2σmax(A) + ϵ0)

Proof. Proof of Part1. For i ̸= j, we have

|f(wk, A)i − f(wk, A
′)i| = |wk,ia

⊤
i (A

⊤WkA)−1ai − wk,iai
⊤(A′⊤WkA

′)−1ai|

≤ |wk,i| · |a⊤i (A⊤WkA)−1ai − ai
⊤(A′⊤WkA

′)−1ai|

≤ |a⊤i (A⊤WkA)−1ai − ai
⊤(A′⊤WkA

′)−1ai|
≤ ϵ1 · a⊤i ai
= ϵ1 · ∥ai∥2

≤ ϵ1 · σmax(A)2

where the first step follows from the definition of f , the second definition comes from basic algebra,
the third step comes from wk,i ∈ [0, 1], the fourth step derives from Lemma C.13 and Fact C.3, the
fifth step utilizes basic algebra, and the last step derives from Fact C.2.

Proof of Part 2. Next, we define

C1 := a⊤j (A
⊤WkA)−1aj − a′j

⊤
(A⊤WkA)−1a′j ,

C2 := a′j
⊤
(A⊤WkA)−1a′j − a′j

⊤
(A′⊤WkA

′)−1a′j .

We first bound C1. We can show that

|C1| = |a⊤j (A⊤WkA)−1aj − a′j
⊤
(A⊤WkA)−1a′j |

= |a⊤j (A⊤WkA)−1aj − a′j
⊤
(A⊤WkA)−1aj + a′j

⊤
(A⊤WkA)−1aj − a′j

⊤
(A⊤WkA)−1a′j |

= | (aj − a′j)
⊤(A⊤WkA)−1ai︸ ︷︷ ︸

C3

+ a′j
⊤
(A⊤WkA)−1(ai − a′j)︸ ︷︷ ︸

C4

|

≤ |C3|+ |C4|.

where the first step follows from the definition of C1, the second and third steps follow from basic
algebra, and the last step follows from the triangle inequality.

For C3, we have

|C3| = |(aj − a′j)
⊤(A⊤WkA)−1ai|

≤ ∥(aj − a′j)∥2 · ∥(A⊤WkA)−1ai∥
≤ ∥(aj − a′j)∥2 · ∥(A⊤WkA)−1∥ · ∥ai∥2

25

≤ ϵ0 · σmin(W
1/2
k A)2 · σmax(A)

where the first step comes fromdefinition ofC3, the second step utilizes Cauchy-Schwarz inequality,
the third step derives from Part 5 of Fact C.6, and the last step comes from Lemma assumptions,
Fact C.2 and Part 2 of Fact C.6.

For C4, we have

|C4| = |a′j
⊤
(A⊤WkA)−1(aj − a′j)|

≤ ∥a′j∥2 · ∥(A⊤WkA)−1(aj − a′j)∥
≤ ∥a′j∥2 · ∥(A⊤WkA)−1∥ · ∥aj − a′j∥2
≤ (∥aj∥2 + ϵ0) · σmin(W

1/2
k A)2 · ϵ0

≤ (σmax(A) + ϵ0) · σmin(W
1/2
k A)2 · ϵ0

where the first step comes from the definition of C3, the second step is from Cauchy-Schwarz in-
equality, the third step derives from Part 5 of Fact C.6, and the fourth step is from ∥aj − a′j∥ ≤ ϵ0
and Part 2 of Fact C.6, and the last step comes from Fact C.2.

Combining the bounds of |C3| and |C4|, we have

|C1| ≤ ϵ0 · σmin(W
1/2
k A)2 · (2σmax(A) + ϵ0)

We next bound C2. We can show that

|C2| = |a′j
⊤
(A⊤WkA)−1a′j − a′j

⊤
(A′⊤WkA

′)−1a′j |

≤ ϵ1a
′
j
⊤
a′j

≤ ϵ1∥a′j∥2

≤ ϵ1(∥aj∥+ ϵ0)
2

≤ ϵ1(σmax(A)2 + ϵ0)
2

where the first step follows from the definition ofC2, the second step follows from Lemma C.11 and
Fact C.3, and the third step follows from basic algebra, and the last step follows from ∥aj−a′j∥ ≤ ϵ0.

We can show that

|f(wk, A)j − f(wk, A
′)j | = |wk,ia

⊤
i (A

⊤WkA)−1ai − wk,ia
′
j
⊤
(A′⊤WkA

′)−1a′j |
= |wk,iC1 + wk,iC2|
= |wk,i||C1 + C2|
≤ |C1|+ |C2|

≤ ϵ1(σmax(A)2 + ϵ0)
2 + ϵ0σmin(W

1/2
k A)2(2σmax(A) + ϵ0)

where the first step stems from the definition of f , the second step comes from the definition of
C1, C2, the third step is from basic algebra, the fourth step comes from wk,i ≤ 1 and triangle in-
equality, and the last step derives from the bounds of |C1| and |C2|.

Finally, we could bound the max difference between outputs for f for two ϵ0-close input polytopes
A,A′.
Theorem C.15 (Lipschitz Bound for ℓ∞ Lewis weights of ϵ0-close polytope, formal version of The-
orem 5.1). If the following conditions hold

• Let A,A′ ∈ Rn×d where a⊤i and a′i⊤ denote the i-th row of A and A′, respectively, for i ∈ [n].
• Suppose that A and A′ are only different in j-th row, and ∥aj − a′j∥2 ≤ ϵ0

• Suppose that Wk = diag(wk) where wk,i ∈ [0, 1] for every i ∈ [n].

26

• Let f(wk, A) := (f(wk, A)1, . . . , f(wk, A)n)

• Let f(wk, A)i := wia
⊤
i (A

⊤WkA)−1ai for i ∈ [n].
• Suppose that ϵ0 ≤ O(σmin(A)).
• Let L = poly(n, d, κ(A), σ−1

min(A), σmax(A))

Then, we can show
∥f(wk, A)− f(wk, A

′)∥2 ≤ L · ϵ0.

Proof. For proof purpose, we set ϵ1 = 8(W
1/2
k A)σ−3

min(W
1/2
k A)ϵ0. We can show that

∥f(wk, A)− f(wk, A
′)∥22 =

n∑
i=1

|f(wk, A)i − f(wk, A
′)i|2,

= (
∑

i∈[n]\{j}

|f(wk, A)i − f(wk, A
′)i|2) + |f(wk, A)j − f(wk, A

′)j |2

≤ (n− 1)(ϵ1 · σmax(A)2)2 + (ϵ1(σmax(A) + ϵ0)
2 + ϵ0σmax(A)2(2σmax(A) + ϵ0))

2

= L2ϵ20

where the first step is from the definition of ℓ2 norm, the second step comes from basic algebra, the
third step derives from Lemma C.14, and the last step comes from observing that the right-hand-
side is the product of ϵ20 and a polynomial in other parameters.

D. Differentially Private John Ellipsoid Algorithm
Firstly, in Section D.1, we present tools used in the proof of our main Lemma D.6 about bound-
ing moments. Then, in Section D.2, we introduced truncated Gaussian noise and derived moments
bound on truncated Gaussian about differential privacy. Next, in Section D.3, we proceed to our
main theorem about the privacy of Algorithm 1. Finally, in Section D.4, we introduce the composi-
tion lemma used in our privacy proof.

D.1. Facts and Tools
In this subsection, we demonstrate basic numerical and probability tools utilized in later proofs.
Lemma D.1. Let µ0 be the probability density function of N(0, 1), z is a random variable with distribution
µ0. For any a ∈ R,

E
z∼µ0

[exp(
2az

2σ2
)] = exp(

a2

2σ2
)

Proof. We proceed with the proof with the moment generating function of the Gaussian variable,
described in Definition B.2.

Recall Definition B.2, we have

MZ(t) = E[etZ] = exp(tµ+
t2σ2

2
)

Therefore, we get

E
z∼µ0

[exp(
2az

2σ2
)] = E

z∼µ0

[exp(
az

σ2
)]

= exp(0 +
1

2
(
a

σ2
)2σ2)

= exp(
a2

2σ2
)

27

where the first step stems from simplification, the second step is by setting µ = 0 and t = a
σ2 in

moment generating function of Gaussian variable, and the final step comes from basic algebra.

Fact D.2. For any σ ≥ 1, we have
1

2
(exp(1/σ2)− 1) ≤ 1

σ2

Proof. It’s easy to show the inequality using the Taylor expansion of the exponential function.

D.2. Moments Bound for Truncated Gaussian Noise
In this subsection, we first introduced the relevant definition of truncated Gaussian and defined
some variables. Then, we proceed to the proof of Lemma D.6 about moment bound with truncated
Gaussian noise.

Firstly, we introduce the truncated Gaussian we used to ensure the privacy of Algorithm 1.
Definition D.3 (Truncated Gaussian). Given a random variable zi with truncated Gaussian distribution
N T (µ, σ2, [−0.5, 0.5]), its probability density function is defined as

g(zi) =
1

σ

ϕ(zi−µ
σ)

Φ(0.5−µ
σ)− Φ(−0.5−µ

σ)
for zi ∈ [−0.5, 0.5]

where ϕ and Φ are pdf and cdf of the standard Gaussian.
We also define constantsCσ, Cβ,σ, k to simplify the pdf ofN T (0, σ2, [−0.5, 0.5]) andN T (β, σ2, [−0.5, 0.5])

Cσ := Φ(0.5/σ)− Φ(−0.5/σ)
Cβ,σ := Φ((0.5− β)/σ)− Φ((−0.5− β)/σ)

γβ,σ :=
Cσ

Cβ,σ

Here, we give the definition of truncated Gaussian noise in vector form.
Definition D.4 (Truncated Gaussian vector). We define the truncated Gaussian noise vector z =
(z1, z2, · · · , zn), where each zi follows Definition 6.5

Now, we’ll derive the lower and upper bounds of γβ,σ for the purpose of differential privacy proof
of Algorithm 1.
Lemma D.5. Let γβ,σ be the one introduced in Definition 6.5. Given σ ≥ β, the following bound of γβ,σ
holds

1 ≤ γβ,σ ≤
1

1− 2β

Proof. According to the definition of γβ,σ , we have

γβ,σ =
Φ(0.5/σ)− Φ(−0.5/σ)

Φ((0.5− β)/σ)− Φ((−0.5− β)/σ)

Firstly, we consider the numerator,

Φ(0.5/σ)− Φ(−0.5/σ) = 1

2
(1 + erf(

0.5/σ√
2

))− 1

2
(1 + erf(−0.5/σ√

2
))

=
1

2
(1 + erf(

0.5/σ√
2

))− 1

2
(1− erf(

0.5/σ√
2

))

28

=
1

2
(erf(

0.5/σ√
2

) + erf(
0.5/σ√

2
))

= erf(
0.5/σ√

2
)

where the first step comes from the definition of cdf for standard normal distribution, the second
step comes from the property erf(−x) = −erf(x), the third step utilizes basic algebra, and the last is
by simplification.

We simplify the denominator similarly,

Φ((0.5− β)/σ)− Φ((−0.5− β)/σ) =
1

2
(1 + erf(

(0.5− β)/σ√
2

))− 1

2
(1 + erf(

(−0.5− β)/σ√
2

))

=
1

2
(1− erf(

(0.5− β)/σ√
2

))− 1

2
(1− erf(

(0.5 + β)/σ√
2

))

=
1

2
(erf(

(0.5− β)/σ√
2

) + erf(
(0.5 + β)/σ√

2
))

where the first step comes from the definition of cdf for standard normal distribution, the second
step comes from the property erf(−x) = −erf(x), and the third step utilizes basic algebra.

Combine them together, we have

γβ,σ =
2erf(0.5/σ√

2
)

erf((0.5−β)/σ√
2

) + erf((0.5+β)/σ√
2

)

For the lower bound of γβ,σ , we observe that as β approaches to 0, γβ,σ ≥ 1.

We can also derive the upper bound of γβ,σ ,

γβ,σ ≤
erf(0.5/σ√

2
)

erf((0.5+β)/σ√
2

)

≤ 1

1− 2β

where the first step comes from basic algebra, and the second step uses erf(x) ≈ 2√
πx
.

Here, we show our lemma on bounding the moment of privacy loss with our choice of truncated
Gaussian noise.
LemmaD.6 (Bound of α(λ) in sequential mechanism, formal version of Lemma 6.6). LetD,D′ ∈ D
be η-close neighborhood polytope in Definition 1.2. Suppose that f : D → Rn with ∥f(D)− f(D′)∥2 ≤ β.
Let z ∈ Rn be a truncated Gaussian noise vector in Definition D.4. Let σ = minσi and σ ≥ β.
Then for any positive integer λ ≤ 1/4γβ,σ , there exists C0 > 0 such that the mechanismM(d) = f(d) + z
satisfies

αM(λ) ≤
C0λ(λ+ 1)β2γ2

β,σ

σ2
+O(β3λ3γ3

β,σ/σ
3)

Proof. SinceD,D′ are neighborhood dataset, we can fixD′ and letD = D′∪{Di}i∈[n]. Without loss
of generality, we can assume f(Dn) = β and for any i ∈ [n− 1], f(Di) = 0. Thus,M(D) andM(D′)
have identical distributions other than the last coordinate. Then, we reduce it to a problem of one
dimension.

Let µ0(zn) denote the probability density function of N T (0, σ2, [−0.5, 0.5])

And let µ1(zn) denote the probability density function of N T (β, σ2, [−0.5, 0.5])

29

Thus we have,

M(D′) ∼ µ0(zn),

M(D) ∼ µ1(zn)

Recall Definition 6.3,

αM(λ; aux, D,D′) = log E
o∼M(aux,D)

[expλc(o;M, aux, D,D′)]

And recall Definition 6.2,

c(o;M, D,D′) = log
Pr[M(D) = o]

Pr[M(D′) = o]

We omit aux in Definition 6.2 becauseM here does not involve any auxiliary input.

Substitute µ0 and µ1 into c(o;M, D,D′), we get

c(o;µ0, µ1, D,D′) = log
Pr[µ1 = o]

Pr[µ0 = o]
(3)

Plug Eq. (3) into Definition 6.3, we get

αM(λ;D,D′) = log E
o∼M(d)

[exp(λ log
Pr[µ1 = o]

Pr[µ0 = o]
)] (4)

Thus,

αM(λ;D,D′) = log E
zn∼µ1

[(µ1(zn)/µ0(zn))
λ]

≤ E
zn∼µ1

[(µ1(zn)/µ0(zn))
λ]

where the first step follows from simplifying Eq. (4), the second step uses the property of logarithm.

We want to show that

E
zn∼µ1

[(µ1(zn)/µ0(zn))
λ] ≤ αM(λ)

and E
zn∼µ0

[(µ0(zn)/µ1(zn))
λ] ≤ αM(λ)

for some explicit αM(λ) to be determined later.

Since in our setting, both µ0(zn) and µ1(zn) are Gaussian variables, we only need to bound one of
them by symmetry of Gaussian.

We consider

E
zn∼µ1

[(µ1(zn)/µ0(zn))
λ] = E

zn∼µ0

[(µ1(zn)/µ0(zn))
λ+1].

The above equality is obtained by the change of variable method in probability theory.

Using binomial expansion, we have

E
zn∼µ0

[µ1(zn)/µ0(zn))
λ+1] = E

zn∼µ0

[(1 + (µ1(zn)− µ0(zn))/µ0(zn))
λ+1]

=

λ+1∑
t=0

(
λ+ 1

t

)
E

zn∼µ0

[(
µ1(zn)− µ0(zn)

µ0(zn)
)t]. (5)

where the first step utilizes basic algebra, and the second step is by binomial expansion.

The first term in Eq. (5) is 1 by simple algebra, and the second term is

E
zn∼µ0

[
µ1(zn)− µ0(zn)

µ0(zn)
] =

∫ 0.5

−0.5

µ0(zn)
µ1(zn)− µ0(zn)

µ0(zn)
dzn

30

=

∫ 0.5

−0.5

µ1(zn) dzn −
∫ 0.5

−0.5

µ0(zn) dzn

= 1− 1 = 0.

where the first step is from the definition of expectation, the second step stems from basic algebra,
and the last step utilizes the property of probability density function.

Recall Lemma D.1, for any a ∈ R, Ez∼µ0 exp(2az/2σ
2) = exp(a2/2σ2), thus

E
zn∼µ0

[(
µ1(zn)− µ0(zn)

µ0(zn)
)2] = E

zn∼µ0

[(1− γβ,σ · exp(
2znβ

2σ2
− β2

2σ2
))2]

= 1− 2γβ,σ E
zn∼µ0

[exp(
2znβ

2σ2
− β2

2σ2
)] + E

zn∼µ0

[γ2
β,σ exp(

4znβ

2σ2
− 2β2

2σ2
)]

= 1− 2γβ,σ exp(
β2

2σ2
) · exp(−β

2

2σ2
)) + γ2

β,σ exp(
4β2

2σ2
) · exp(−2β

2

2σ2
)

= γ2
β,σ exp(

β2

σ2
) + 1− 2γβ,σ (6)

where the first step comes from substituting the density function of µ0 and µ1, the second step
follows from expanding the square, the third step comes from Lemma D.1, and the final step comes
from basic algebra.

Thus, the third term in the binomial expansion Eq. (5)

(
1 + λ

2

)
E

zn∼µ0

[(
µ1(zn)− µ0(zn)

µ0(zn)
)2] ≤ λ(λ+ 1)

2
E

zn∼µ0

[(
µ1(zn)− µ0(zn)

µ0(zn)
)2]

=
λ(λ+ 1)

2
(γ2

β,σ exp(
β2

σ2
) + 1− 2γβ,σ)

=
λ(λ+ 1)

2
(γ2

β,σ exp(
β2

σ2
) + (γβ,σ − 1)2 − γ2

β,σ)

≤ λ(λ+ 1)

2
(γ2

β,σ(exp(
β2

σ2
)− 1) + (γβ,σ − 1)2)

≤
λ(λ+ 1)β2γ2

β,σ

σ2
+

λ(λ+ 1)(γβ,σ − 1)2

2

where the first step utilizes the definition of combination, the second step is the result of Eq. (6), the
third step is by basic algebra, the fourth step comes from combining like terms, and the final step
follows from basic algebra.

By our choice of σ ≥ β, there exists C0 > 0 to bound the third term in Eq. (5)(
1 + λ

2

)
E

zn∼µ0

[(
µ1(zn)− µ0(zn)

µ0(zn)
)2] ≤

C0λ(λ+ 1)β2γ2
β,σ

σ2

To bound the remaining terms, we first note that by standard calculus, we can bound |µ0(zn) −
µ1(zn)| by separating it into 3 parts.

Firstly, we have the following bound for all zn ≤ 0.

|µ0(zn)− µ1(zn)| =
1

σ
|ϕ(zn/σ)

Cσ
− ϕ((zn − β)/σ)

Cβ,σ
|

=
1

σ
| 1
Cσ
· 1√

2πσ
exp(− z2n

2σ2
)− 1

Cβ,σ
· 1√

2πσ
exp(− (z − β)2

2σ2
)|

=
1√
2πσ2

|exp(−z
2
n/2σ

2)

Cσ
− exp(−(zn − β)2/2σ2)

Cβ,σ
|

31

=
1√
2πσ2

|exp(−z
2/2σ2)

Cσ
− exp(−(z2 − 2βz + β2)/2σ2)

Cβ,σ
|

=
1√
2πσ2

exp(− z2n
2σ2

)| 1
Cσ
− 1

Cβ,σ
· exp(2βzn − β2

2σ
)|

=
1

Cσ

1√
2πσ2

exp(− z2n
2σ2

)|1− Cσ

Cβ,σ
· exp(2βzn − β2

2σ
)|

= µ0(zn)|1−
Cσ

Cβ,σ
· exp(2βzn − β2

2σ
)|

≤ µ0(zn)
Cσ

Cβ,σ
· −2βzn + β2

2σ2

≤ −Cσ(βzn − β2)µ0(zn)

Cβ,σσ2
(7)

where the first step comes from the definition of µ0, µ1, the second step is from the probability
density function of truncated Gaussian, the third step stems from basic algebra, the fourth step is
from expanding the square, the fifth step uses basic algebra, the sixth step is from basic algebra, the
seventh step derives from the definition of µ0, the eighth step follows by Taylor series, and the final
step derives from basic algebra.

Similarly, for all zn such that β ≤ zn ≤ 0.5, we have

|µ0(zn)− µ1(zn)| =
1√
2πσ2

(
1

Cβ,σ
exp(− (zn − β)2

2σ2
)− 1

Cσ
exp(− z2n

2σ2
))

=
1√
2πσ2

(
1

Cβ,σ
exp(− (zn − β)2

2σ2
)− 1

Cσ
exp(− (zn − β)2 + 2znβ − β2

2σ2
))

=
1

Cβ,σ

1√
2πσ2

exp(
−(zn − β)2

2σ2
)(1− Cβ,σ

Cσ
exp(−2znβ − β2

2σ2
))

= µ1(zn)(1−
Cβ,σ

Cσ
exp(−2znβ − β2

2σ2
))

≤ µ1(zn)
2znβ − β2

2σ2

Cβ,σ

Cσ

≤ β(zn − β)µ1(zn)

σ2

Cβ,σ

Cσ

≤ Cβ,σznβµ1(zn)

Cσσ2
(8)

where the first step derives from the definition of µ0, µ1, the second step is from the probability
density function of truncated Gaussian, the third step uses basic algebra, the fourth step comes
from the definition of µ1, the fifth step is the result of Taylor series, the sixth step follows by basic
algebra, and the final step comes from reorganization.

For all zn such that 0 ≤ zn ≤ β, we have

|µ0(zn)− µ1(zn)| ≤
Cσβ

2µ0(zn)

Cβ,σσ2
(9)

where we derive the bound by pluging zn = 0 in Eq. (7).

We can then divide the expectation into three parts and bound them individually,

E
zn∼µ0

[(
µ1(zn)− µ0(zn)

µ0(zn)
)t] ≤

∫ 0

−0.5

µ0(zn)|(
µ1(zn)− µ0(zn)

µ0(zn)
)t|dzn

+

∫ β

0

µ0(zn)|(
µ1(zn)− µ0(zn)

µ0(zn)
)t|dzn

32

+

∫ 0.5

β

µ0(zn)|(
µ1(zn)− µ0(zn)

µ0(zn)
)t|dz.

Notice the fact that Ezn∼N (0,σ2)[|zn|t] ≤ σt(t − 1)!! by Gaussian moments. Therefore, the first term
can then be bounded by∫ 0

−0.5

µ0(zn)|(
µ1(zn)− µ0(zn)

µ0(zn)
)t|dzn ≤

∫ 0

−0.5

µ0(zn)|(
−Cσ(βzn − β2)

Cβ,σσ2
)t|dz

≤ Ct
σβ

t

Ct
β,σσ

2t

∫ 0

−0.5

µ0(zn)|(zn − β)t|dzn

=
Ct−1

σ βt

Ct
β,σσ

2t

∫ 0

−0.5

ϕ(zn/σ)|(zn − β)t|dz

≤ (2β)tCt−1
σ (t− 1)!!

2Ct
β,σσ

t

where the first step is the result of Eq. (7), the second step is from factoring out constants, the third
step follows by the definition of µ0 andCσ , and the final step comes fromGaussianmoments bound.

The second term is at most∫ β

0

µ0(zn)|(
µ1(zn)− µ0(zn)

µ0(zn)
)t|dzn ≤

∫ β

0

µ0(zn)|(
Cσβ

2

Cβ,σσ2
)t|dzn

=
Ct

σβ
2t

Ct
β,σσ

2t

∫ β

0

µ0(zn)dzn

=
Ct−1

σ β2t

Ct
β,σσ

2t

∫ β

0

ϕ(zn/σ)dzn

≤ Ct−1
σ β2t

Ct
β,σσ

2t

where the first step derives fromEq. (9), the second step is from factoring out the constants, the third
step is from the definition of µ0 and Cσ , and the final step stems from the property of probability
density function.

Similarly, the third term is at most∫ 0.5

β

µ0(zn)|(
µ1(zn)− µ0(zn)

µ0(zn)
)t|dzn ≤

∫ 0.5

β

µ0(zn)|(
Cβ,σznβµ1(zn)

Cσσ2µ0(zn)
)t|dzn

=
Ct

β,σβ
t

Ct
σσ

2t

∫ 0.5

β

µ0(zn)|(
znµ1(zn)

µ0(zn)
)t|dzn

=
Ct

β,σβ
t

Ct
σσ

2t

∫ 0.5

β

(
Cσ

Cβ,σ
)t · µ0(zn) exp(

2βtzn − β2t

2σ2
)ztndzn

=
βt

σ2t

∫ 0.5

β

µ0(zn) exp(
2βtzn − β2t

2σ2
)ztndzn

=
βt

Cσσ2t

∫ 0.5

β

ϕ(z/σ) exp(
2βtzn − β2t

2σ2
)ztndzn

≤ βt exp(β2(t2 − t)/2σ2)

Cσσ2t

∫ 0.5

0

ϕ(
zn − βt

σ
)ztndzn

≤ (2β)t exp(β2(t2 − t)/2σ2)(σt(t− 1)!! + (βt)t)

2Cσσ2t

where the first step is the result of Eq. (8), the second step derives from factoring out constants,
the third step is from plugging the density function of µ0 and µ1 into the expression, the fourth

33

step is by simplification, the fifth step derives from the definition of µ0 the sixth step comes from
U -substitution in calculus, and the final step follows by Gaussian moment bound.

Finally, we can show that our choice of parameters is valid. By plugging above bounds into Eq. (5),
we observe that with constraints on σ, β, λ, γβ,σ in the Lemma statement, it’s obvious that higher-
order terms with t > 3 will be dominated by the t = 3 term. Therefore, we conclude that

αM(λ) ≤
C0λ(λ+ 1)β2γ2

β,σ

σ2
+O(β3λ3γ3

β,σ/σ
3)

D.3. Privacy of Fast John Ellipsoid Algorithm with Truncated Noise
By combining the above moment bounds in Lemma D.6 and tail bounds in Theorem D.8, we can
proceed to derive our main theorem, which demonstrates that the John Ellipsoid algorithm is dif-
ferentially private.
Theorem D.7 (John Ellipsoid DP Main Theorem, formal version of Theorem 6.7). Suppose the input
polytope in Algorithm 1 represented by A ∈ Rn×d satisfies σmax(A) ≤ poly(n) and σmin(A) ≥ 1/ poly(n).
Under our definition of ϵ0-close neighborhood polytope, described in Definition 1.2, let L be the Lipschitz
of such polytope. Then there exists constants c1 and c2 so that given number of iterations T , for any ϵ ≤
c1TL

2ϵ20(1− 2Lϵ0)
−1, Algorithm 1 is (ϵ, δ)-differentially private for any δ > 0 if we choose

σ ≥ c2
Lϵ0

√
T log(1/δ)

(1− 2Lϵ0)ϵ

Proof. According to Lemma D.6, we have σ ≥ β and λ ≤ 1/4γβ,σ . According to Theorem C.15, we
can set β = Lϵ0.

According to Lemma D.5 and substituting β with Lϵ0, we have

γLϵ0,σ ≤
1

1− 2Lϵ0

By the composability of moment bounds in TheoremD.8 and Lemma D.6, we have the following by
substituting γβ,σ with γLϵ0,σ and β with Lϵ0

α(λ) ≤ TC0L
2ϵ20λ

2γ2
Lϵ0,σσ

−2

According to Theorem D.8, we need to ensure the followings so that Algorithm 1 is (ϵ, δ)-
differentially private.

TC0L
2ϵ20λ

2γ2
Lϵ0,σσ

−2 ≤ λϵ/2,

exp(−λϵ/2) ≤ δ.

Therefore, when ϵ = c1TL
2ϵ20(1− 2Lϵ0)

−1, we can satisfy all of these conditions by setting

σ ≥ c2
Lϵ0

√
T log(1/δ)

(1− 2Lϵ0)ϵ

D.4. Composition Lemma for Adaptive Mechanisms
In this section, we list the powerful composition lemma for the adaptive mechanism proposed
in [89], which we utilized to demonstrate the privacy guarantee on Algorithm 1.

34

TheoremD.8 (Theorem 2 in [89]). Let k be an integer, representing the number of sequential mechanisms
inM. We define αM(λ) as

αM(λ) := max
aux,D,D′

αM(λ; aux, D,D′),

where the maximum is taken over all auxiliary inputs and neighboring databases D,D′. Then

1. [Composability] Suppose that a mechanismM consists of a sequence of adaptive mechanisms
M1, · · · ,Mk whereMi :

∏i−1
j=1Rj ×D → Ri. Then, for any λ > 0

αM(λ) ≤
k∑

i=1

αMi
(λ)

2. [Tail bound] For any ϵ > 0, we have the mechanismM is (ϵ, δ)-differentially private where
δ = min

λ
exp(αM(λ)− λϵ)

E. Convergence Proof for DP John Ellipsoid Algorithm
Firstly, in Section E.1, we include the previous proposition and corollary used to show the conver-
gence of our John Ellipsoid algorithm. Then, in Section E.2, we introduce our telescoping lemma.
In Section E.3, we demonstrate the high probability bound in the error caused by leverage score
sampling and sketching in Algorithm 1. Next, in Section E.4, we discuss the high probability bound
on the error caused by adding truncated Gaussian noise. Then, we show the upper bound of ϕ in
Section E.5. Finally, we demonstrate the convergence and correctness of Algorithm 1 in Section E.6.

E.1. Previous Work in John Ellipsoid Algorithm
In this subsection, we list some findings in previous work that help us to show the convergence of
Algorithm 1.
Proposition E.1 (Bound on ŵ(k), Proposition C.1 in [10]). For completeness we define ŵ(1) = w(1). For
k ∈ [T] and i ∈ [n], 0 ≤ ŵ

(k)
i ≤ 1. Moreover, ∑n

i=1 ŵ
(k)
i = d.

Corollary E.2 (Corollary 8.5 in [9]). Let ξ0 denote the accuracy parameter defined as Algorithm 1. Let δ0
denote the failure probability.
Then we have with probability 1− δ0, the inequality below holds for all i ∈ [n]

(1− ξ)w̃i ≤ ŵi ≤ (1 + ξ)w̃i.

E.2. Telescoping Lemma
In this subsection, we demonstrate the telescoping lemma, a technique we choose to show the con-
vergence proof. We demonstrate the convergence and accuracy of Algorithm 1 by deriving the
upper bound of the logarithm of the leverage score.

Now, we present the telescoping lemma for our fast JE algorithm. While the telescoping lemma
(Lemma 6.1 [9]) deals with sketching and leverage score sampling, our lemma considers the cir-
cumstance where the truncated Gaussian noise is included to ensure the privacy of John Ellipsoid
algorithm.
Lemma E.3 (Telescoping, Algorithm 1, formal version of Lemma 7.1). Let T denote the number of
iterations in the main loop in our fast JE algorithm. Let u be the vector obtained in Algorithm 1. Thus for
each i ∈ [n], we have

ϕi(u) ≤
1

T
log

n

d
+

1

T

T∑
k=1

log
ŵk,i

w̃k,i
+

1

T

T∑
k=1

log
w̃k,i

wk,i
+

1

T

T∑
k=1

log
wk,i

wk,i

35

Proof. We define u and w as the following

u := (u1, u2, · · · , un).

For k ∈ [T − 1], we define

wk := (wk,1, · · · , wk,n)

and

wk+1 := (wk,1h1(wk), · · · , wk,nhn(wk)).

Now we consider ϕi(u), defined in Lemma 3.9

ϕi(u) = ϕi(
1

T

T∑
k=1

wk)

≤ 1

T

T∑
k=1

ϕi(wk)

=
1

T

T∑
k=1

log hi(wk)

=
1

T

T∑
k=1

log
ŵk+1,i

wk,i

=
1

T

T∑
k=1

log
ŵk+1,i

ŵk,i
· ŵk,i

w̃k,i
· w̃k,i

wk,i
· wk,i

wk,i

=
1

T
(

T∑
k=1

log
ŵk+1,i

ŵk,i
+

T∑
k=1

log
ŵk,i

w̃k,i
+

T∑
k=1

log
w̃k,i

wk,i
+

T∑
k=1

log
wk,i

wk,i
)

where the first step is from the definition of u, the second step is from Lemma 3.9, the third step
utilizes the definition of hi, the fourth step derives from the definition of wk+1, the fifth step derives
from basic algebra, the last step is from logarithm arithmetic.

E.3. High Probability Bound of Sketching and Leverage Score Sampling
In this subsection, we first demonstrate the high probability bound for leverage score sampling.
Then, we demonstrate the high probability bound for the error of sketching in Algorithm 1.
Lemma E.4. Let δ be the failure probability. Then for any ξ0 ∈ [0, 0.1], if T > ξ−1

0 log(n/d), with probability
1− δ, we have

1

T

T∑
k=1

log
ŵk,i

w̃k,i
≤ ξ0

Proof. By Corollary E.2, we have with probability of 1− δ, we can derive

1

T

T∑
k=1

log
ŵk,i

w̃k,i
≤ log(1 + ξ0)

≤ ξ0

Now, we proceed to derive the high probability bound of sketching. Here, we list a Lemma from [9]
on the error of sketching.

36

Lemma E.5 (Lemma 6.3 in [9]). We have the following for failure probability for sketching δ ∈ [0, 0.1]

Pr[
w̃k,i

wk,i
≥ 1 + ξ] ≤

(nd)
α
T e

4α
s

(1 + ξ)α
.

Furthermore, with appropriate s, T , we have the following hold with large n and d:

Pr[
w̃k,i

wk,i
≥ 1 + ξ] ≤ δ

n

Applying the above lemma, we derive the error caused by sketching in our setting.
Lemma E.6. Let δ be the failure probability. Then for any ξ1 ∈ [0, 0.1], if T > ξ−1

1 log(n/d), we have the
following hold for all i ∈ [n] with probability 1− δ:

1

T

T∑
k=1

log
w̃k,i

wk,i
≤ ξ1

Proof. By Lemma E.5, we have with high probability

log
w̃k,i

wk,i
≤ log(1 + ξ1).

By the central limit theorem, with probability 1− δ, we have

1

T

T∑
k=1

log
w̃k,i

wk,i
≤ log(1 + ξ1)

≤ ξ1

E.4. High Probability Bound of Adding Truncated Gaussian Noise
In this subsection, we demonstrate the error bound of adding Truncated Gaussian noise. Here is
the fact about the upper bound of the logarithm.
Fact E.7. For z ∈ [−0.5, 0.5], then

log(
1

1 + z
) ≤ 2|z|.

Proof. It is clear that log(1
1+z) ≤ 2|z| holds when z ∈ [0, 0.5] since log(1

1+z) ≤ 0 and 2|z| ≥ 0 for
z ∈ [0, 0.5]. Next, we show that this also holds when z ∈ [−0.5, 0]. Let h(z) = −2z − log(1

1+z).
Then h′(z) = 1

1+z − 2 ≤ 0. Hence h is decreasing on [−0.5, 0] and h(−0.5) = 1− log(2) > 0. Hence
log(1

1+z) ≤ 2|z|when z ∈ [−0.5, 0].

Then, we derive the upper bound on the expectation of truncated Gaussian noise.
Lemma E.8. For any σ ∈ [0, 0.1], let Z ∼ N T (0, σ2; [−0.5, 0.5]). Then

E[|Z|] ≤ σ.

Proof. The pdf of Z is

f(z) =
1

σ

ϕ(z/σ)

Φ(0.5/σ)− Φ(−0.5/σ)
for z ∈ [−0.5, 0.5]

where ϕ and Φ are pdf and cdf of the standard Gaussian.

37

Then we have

E[|Z|] =
∫ 0.5

−0.5

|z| 1
σ

ϕ(z/σ)

Φ(0.5/σ)− Φ(−0.5/σ)
dz

=

∫ 0.5

0

2z
1

σ

ϕ(z/σ)

Φ(0.5/σ)− Φ(−0.5/σ)
dz

=
1

σ

2

Φ(0.5/σ)− Φ(−0.5/σ)

∫ 0.5

0

zϕ(z/σ)dz

=
2σ

Φ(0.5/σ)− Φ(−0.5/σ)

∫ 0.5/σ

0

uϕ(u)du

where the first step follows from the definition of expectation, the second step follows from the
symmetry of Z, the third step follows from simple rearranging, and the last step follows from u :=
z/σ.

Now, we evaluate the following integral:∫ 0.5/σ

0

uϕ(u)du =
1− e−(0.5/σ)2/2

√
2π

≤ 1√
2π

.

From standard Gaussian table, for σ ≤ 0.1, we have
Φ(0.5/σ)− Φ(−0.5/σ) ≥ Φ(5)− Φ(−5) ≥ 0.999.

Hence

E[|Z|] ≤
√

2/π

Φ(0.5/σ)− Φ(−0.5/σ)
σ ≤ σ.

Combining previous bounds, we can show that the error is caused by adding noise in one certain
iteration.
Lemma E.9. We have

E[log
wk,i

wk,i
] ≤ 2σ

where the randomness is derived from the truncated Gaussian noise in wk,i.

Proof. By Fact E.7 and Lemma E.8, we have

E[log
wk,i

wk,i
] = E[log

wk,i

wk,i(1 + zk,i)
]

= E[log
1

1 + zk+1,i
]

≤ E[2 · |zk+1,i|]
≤ 2σ

where the first step is from wk,i := wk,i(1+ zk,i), the second step stems from basic algebra, the third
step comes from Fact E.7, the last step follows from Lemma E.8.

Finally, applying concentration inequality, we can show the total error caused by truncatedGaussian
noise in Algorithm 1.
Lemma E.10. Let δ be the failure probability. Then for any ξ2 ∈ [0, 0.1], if T > ξ−2

2 log(1/δ), with proba-
bility 1− δ, we have

1

T

T∑
k=1

log
wk,i

wk,i
≤ ξ2.

where the randomness is from the truncated Gaussian noise in wk,i.

38

Proof. The range of log wk,i

wk,i
is [log(2/3), log 2]. Applying Hoeffding’s inequality shows that for t > 0,

Pr[

T∑
k=1

log
wk,i

wk,i
≥ 2σT + t] < exp(− 2t2

T (log 3)2
).

Pick t = 2σT . Then we get

Pr[

T∑
k=1

log
wk,i

wk,i
≥ 4σT] < exp(− 8σ2T

(log 3)2
).

It implies that if T > σ−2 log(1/δ), with probability 1− δ, we have
T∑

k=1

log
wk,i

wk,i
≤ 4σT.

Set ξ2 = 4σ, we have

1

T

T∑
k=1

log
wk,i

wk,i
≤ ξ2

E.5. Upper Bound of ϕi

In this subsection, we derive the upper bound of ϕi by combining the error bound for truncated
Gaussian noise and the error bound of leverage score sampling and sketching.
Lemma E.11 (ϕi). Consider the vector u generated in Algorithm 1, and let the number of iterations in the
main loop of the algorithm be T and s = 1000/ξ1. With probability 1− δ, the following inequality holds for
all i ∈ [n]

ϕi(u) ≤
1

T
log(

n

d
) + ξ0 + ξ1 + ξ2.

Proof. To begin with, by Lemma E.3, we have that

ϕi(u) ≤
1

T
log

n

d
+

1

T

T∑
k=1

log
ŵk,i

w̃k,i
+

1

T

T∑
k=1

log
w̃k,i

wk,i
+

1

T

T∑
k=1

log
wk,i

wk,i

By Lemma E.4, we have with probability 1− δ/3, for all i ∈ [n]:

1

T

T∑
k=1

log
ŵk,i

w̃k,i
≤ ξ0

By Lemma E.6, with probability 1− δ/3, the following holds for all i ∈ [n]:

1

T

T∑
k=1

log
w̃k,i

wk,i
≤ ξ1

Next, by Lemma E.10, with probability 1− δ/3, for all i ∈ [n]:

1

T

T∑
k=1

log
wk,i

wk,i
≤ ξ2.

Putting everything together, with 1− δ, for all i ∈ [n], we have

ϕi(u) ≤
1

T
log(

n

d
) + ξ0 + ξ1 + ξ2.

39

E.6. Convergence Result
Finally, we proceed to the convergence main theorem, which demonstrates that Algorithm 1 could
find a good approximation of John Ellipsoid with our choice of parameters.
Theorem E.12 (Convergence main theorem, formal version of Theorem 7.2). Let u ∈ Rn be the
non-normalized output of Algorithm 1, δ0 be the failure probability. For all ξ ∈ (0, 1), when T =
Θ(ξ−1 log(n/d) + ξ−2 log(1/δ)), we have

Pr[hi(u) ≤ (1 + ξ),∀i ∈ [n]] ≥ 1− δ0

In addition,
n∑

i=1

vi = d

Thus, Algorithm 1 finds (1 + ξ)-approximation to the exact John ellipsoid solution.

Proof. We set

ξ0 = ξ1 = ξ2 =
ξ

8

and

T = Θ(ξ−1 log(n/δ) + σ−2 log(1/δ))

By Lemma E.11, with succeed probability 1− δ. We have for all i ∈ [n],

log hi(u) = ϕi(u)

≤ 1

T
log(

n

d
) + ξ0 + ξ1 + ξ2

≤ ξ

2
≤ log(1 + ξ)

where the first step comes from the definition of ϕ, the second step utilizes Lemma E.11, the third
step comes from our choice of T and ξ, and the last step follows by for all ξ ∈ [0, 1], ξ

2 ≤ log(1 + ξ)

Since we choose vi = d∑n
j=1 uj

ui, then we have

n∑
i=1

vi = d.

Next, we have

hi(v) = a⊤i (A
⊤V A)−1ai

= a⊤i (
d∑n

i=1 ui
A⊤UA)−1ai

=

∑n
i=1 ui

d
hi(u)

≤ (1 + ϵ) · hi(u)

≤ (1 + ϵ)2

where the first step comes from the definition of hi(v), the second step follows by the definition of
V , the third step comes from the definition of hi(u), the fourth step comes from Lemma E.1, the last
step derives from hi(u) ≤ 1 + ϵ.

Thus, we complete the proof.

40

F. Proof of Main Theorem

In this section, we introduce our main theorem, which shows that while satisfying privacy guaran-
tee, our Algorithm 1 achieves high accuracy and efficient running time.
Theorem F.1 (Main Results, formal version of Theorem 4.1). Let v ∈ Rn be the result fromAlgorithm 1.
Define L as in Theorem 5.1. For all ξ, δ0 ∈ (0, 0.1), when T = Θ(ξ−2(log(n/δ0)+(Lϵ0)

−2)), the inequality
below holds for all i ∈ [n]:

Pr[hi(v) ≤ (1 + ξ)] ≥ 1− δ0

In addition,
n∑

i=1

vi = d

Thus, Algorithm 1 gives (1 + ξ)-approximation to the exact John ellipsoid.
Furthermore, suppose the input polytope in Algorithm 1 represented by A ∈ Rn×d satisfies σmax(A) ≤
poly(n) and σmin(A) ≥ 1/poly(n). Let ϵ0 ≤ O(1/ poly(n)) be the closeness of the neighboring polytopes
defined in Definition 1.2 and L ≤ O(poly(n)) be the Lipschitz defined in Theorem 5.1. Then there exists
constant c1 and c2 so that given number of iterations T , for any ϵ ≤ c1TL

2ϵ20(1 − 2Lϵ0)
−1, Algorithm 1 is

(ϵ, δ)-differentially private for any δ > 0 if we choose

σ ≥
c2Lϵ0

√
T log(1/δ)

(1− 2Lϵ0)ϵ

The runtime of Algorithm 1 achieves O((nnz(A) + dω)T), where ω ≈ 2.37 represent the matrix-
multiplication exponent.

Proof. It derives from Theorem E.12 and Theorem D.7. The running time analysis is the same as
Algorithm 1 in [9].

41

