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ABSTRACT

Large language models (LLMs) increasingly generate intermediate reasoning
structures — rubrics, checklists, proof graphs — to make their decisions more
interpretable. But are these structures causal mediators of the final answer, or dec-
orative by-products? We introduce a causal evaluation protocol that tests LLM
faithfulness via interventions to original prompt or corresponding intermediate
structures. Across nine models and four benchmarks with annotated intermedi-
ates, the protocol reveals a systematic gap: while models rely on structures more
than the original text (> 60% consistency under interventions to original prompt),
they fail to update under logically significant structural edits more than 50% of
the time. Surprisingly, models are more faithful to their self-generated structures
than to gold ones, suggesting that the act of generation elicits reasoning more ef-
fectively than passive consumption. Our study provides the causal and systematic
evidence that current LLMs treat intermediate structures as context rather than
true mediators of decision making.

1 INTRODUCTION

What happens if we edit a model’s reasoning steps? If an LLM is faithful to its intermediate
structures — rubrics, checklists, proof graphs — then logically significant edits should change its
final decision. If not, interventions lose their effect, undermining interpretability and human–AI col-
laboration. By human–AI collaboration we mean workflows where a human monitors, corrects, or
guides an AI system: a teacher adjusting a rubric item in automated grading, a fact-checker flipping
an evidence tag in claim verification, or a scientist editing a proof graph in multi-step reasoning.
In each case, the human expects that the correction propagates to the final outcome. If the model
ignores such edits, the collaboration becomes illusory — humans can view the reasoning, but cannot
steer it.

Intermediate structures are crucial for enabling large language models (LLMs) to handle multi-step
tasks, such as verifying factual claims, solving scientific questions, or supporting decision making.
They provide an explicit reasoning pathway that humans can inspect and edit, with the expectation
that such changes will be faithfully reflected in the final decision of the model (Sonkar et al., 2024;
Cabrera et al.; Bussone et al., 2015).

Faithfulness means that an explanation or intermediate output reflects the true decision process (Ja-
covi & Goldberg, 2020). Prior work shows that LLM-generated reasoning is often unfaithful (Turpin
et al., 2023; Lanham et al., 2023; Paul et al., 2024; Matton et al., 2025), raising doubts about when
such intermediates can be trusted. Since model reasoning, or chain-of-thought, can be used for
performance monitoring (Baker et al., 2025), faithfulness becomes a crucial issue.

In our work, we study the faithfulness of LLM to interventions on intermediate structures. Some-
times, intermediate structures can be used as input to deterministic systems such as verifiers or
interpreters (Kirchner et al., 2024; Wang et al., 2024). But even if deterministic systems could re-
place mediators in narrowly defined tasks, the central research question is whether LLMs can be
reliably steered by structured intermediates at all or are they ignored in favor of hidden shortcuts?

If models cannot be influenced by such structures, their reasoning remains a black box, limiting
interpretability and undermining human-AI collaboration (Figure 1). If they can, then structured
mediators provide actionable handles through which humans or external systems can intervene, cor-
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Figure 1: Illustration of causal intervention on intermediate structures. A model receives a task and
produces a filled rubric as an explicit intermediate reasoning step, which is then used to generate
a final score. By intervening on the rubric (e.g., correcting Q2 from True to False), we can test
whether the final prediction is causally mediated by this intermediate structure. If the score changes
consistently with the rubric edit, the model is faithful to the mediation; if the score ignores the
correction, the model is unfaithful and relies on hidden shortcuts.

rect, and guide model behavior—an essential property for deploying LLMs in real-world decision-
making workflows.

We introduce a causal evaluation protocol for testing whether LLMs faithfully rely on intermediate
reasoning structures when making final decisions (Section 2.3). The protocol applies two kinds of
interventions: (i) altering the intermediate structure while holding the input fixed, to test whether
decisions causally depend on the structure, and (ii) varying the input while holding the structure
fixed, to test whether models rely on the stated structure rather than surface cues. Faithfulness is then
measured with three indicators — Hold Structure, Vary Text (HSVT), Local Edit Consistency (LEC),
and Global Edit Consistency (GEC) (Section 2.2). Applying this framework to nine modern LLMs
across four benchmarks with gold intermediates (rubrics, checklists, proof graphs, and verification
queries), we find that while models rely on structured intermediates more than surface text (HSVT
> 60%), they are not causally mediated by them (LEC/GEC = 40–60%) (Sections 5.1 and 5.2).
Models are paradoxically more faithful to their own generated structures than to ground truth, global
structural breaks are more disruptive than local edits, and soft input variations preserve faithfulness
better than hard ones.

2 PROTOCOL FOR FAITHFULNESS EVALUATION OVER INTERMEDIATE
STRUCTURES

2.1 PROBLEM FORMULATION

We consider a setting where an LLM receives an input X (e.g., a science question-answer, claim
or hypothesis with supporting facts) and produces two outputs: an intermediate reasoning repre-
sentation M (e.g., a checklist, rubric, or structured proof) and a final decision Y (e.g., sentiment
label, correctness judgment, or entailment decision) which is based on M . Let U denote unobserved
factors, such as the model’s latent internal reasoning, that may influence both M and Y .

Because LLMs decode auto-regressively, we view this process as a two-stage generation: first M is
produced from pθ(M | X), and then Y is produced from

pθ(Y | X,M) =

|Y |∏
t=1

pθ(yt | X,M, y<t), (1)

where yt denotes the t-th token of the final decision. In the faithful case (Figure 2a), Y is functionally
determined by M (given X), so that task-relevant edits to M alter the final decision. In the unfaithful
case (Figure 2b), the model conditions on M structurally but relies semantically primarily on X or
latent knowledge U ; thus interventions on M fail to change Y . Here M may appear coherent while
exerting little or no causal influence on the decision.

This corresponds to a front-door structure (Pearl, 2001), where the visible reasoning M is the sole
conduit through which X affects Y during auto-regressive decoding. In the unfaithful case (Fig-
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X M Y

U

Task and Answer

Filled
grading rubric

Q1: True, Q2: True

Grade score = 2

(a) Front-door / faithful

X M M Y

U

do(M=M⋆)

Task and Answer

Filled
grading rubric

Q1: True, Q2: True

Intervened
grading rubric

Q1: True, Q2: False

Grade score = 2

(b) Shortcut / unfaithful

Figure 2: Causal framing of intervention on intermediate structure. (a) Faithful mediation: The
input X influences the final answer Y primarily through the explicit intermediate structure M , with
a possible confounder U . Edits to M therefore change Y , consistent with M being the causal
mediator. (b) Shortcut / unfaithful: Although Y is formally conditioned on both X and M , the
model may rely mainly on X or latent knowledge U , rendering M causally irrelevant. A double-
outlined node indicates a variable set by intervention via the do() operator (here, M is replaced by
M⋆). The intervention tests whether altering M changes Y : if Y remains unchanged, the model is
effectively ignoring the mediated pathway and defaulting to direct reliance on X or U .

ure 2b), a direct edge X → Y bypasses M , allowing the model to ignore the stated reasoning and
rely on latent knowledge from U . In such cases, M may appear coherent while having little or no
causal influence on Y .

We operationalize the faithfulness test via interventions on M (given X). Given a generated M ,
we construct an intervened version M⋆ using a dataset-specific transformation I(M) (e.g., flipping
checklist items, altering rubric entries, or rewiring proof edges) that changes reasoning content with-
out modifying X . The model is then re-prompted with M⋆ to produce Y ⋆. For a faithful model it is
necessary that

M⋆ ̸= M ⇒ Y ⋆ ̸= Y, (2)

under interventions that logically change the correct decision. Failure to update Y indicates that the
model is not using M as a true mediator but instead defaulting to shortcuts from X or U e.g. from
internal states.

2.2 FAITHFULNESS EVALUATION METRICS

We propose evaluation methodology from two complementary angles. First, we test whether model
decisions genuinely depend on the surface properties of the input text. Second, we ask whether
decisions are causally mediated by the structure itself. This decomposition separates two distinct
failure modes: reliance on cues from original text versus ignoring the mediator entirely.

Hold Structure, Vary Text (HSVT). We hold the intermediate structure M fixed and perturb
the input X with meaning-preserving edits (e.g., paraphrases, renamings, or style shifts) or totally
replacing input (e.g., replacing with different text, the intermediate structure was originally based
on). A faithful model should produce Ŷ ∗ as the predicted decision Ŷ before intervention. Formally,

HSV T =
1

N

N∑
i=1

1
[
Ŷi

∗
= Ŷi

∣∣∣M fixed, Xchanged
]
, (3)

where N is the number of samples. High HSVT indicates reliance on M rather than cues in X .

Local Edit Consistency (LEC). We flip individual elements of M (e.g., checklist entries, proof
edges) while keeping X fixed. A faithful model should update its decision Ŷj

∗
after the edit j to

3
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Algorithm 1 Inference with mediator intervention. In the Gold setting, we provide Mgold instead of
generating M̂ .

Require: Dataset D = {(xi,Mi, yi)}Ni=1, model pθ
1: for each (x,Mgold, y) ∈ D do
2: Construct prompt from x to predict mediator M̂ and decision Ŷ
3: Query pθ to generate a completion
4: Parse completion into (M̂, Ŷ )

5: Apply intervention I(M̂) 7→ M⋆

6: Compute counterfactual target C(M⋆) 7→ Ỹ

7: Form prompt (x,M⋆) and query pθ for decision Ŷ ⋆

8: Evaluate HSVT with (Ŷ ⋆, Ŷ ) and LEC\GEC with (Ŷ ⋆, Ỹ )
9: end for

match expected counterfactual target Ỹ . For each sample with K edits we calculate average over all
edits LECsample and the calculate the dataset score LEC:

LECsample =
1

K

K∑
j=1

1
[
Ŷ ∗
j = Ỹ

]
, LEC =

1

N

N∑
i=1

LECsample,i. (4)

Global Edit Consistency (GEC). We apply a global break to M that destroys all valid support.
Ŷ ∗
(gb) is the expected prediction after intervention. The decision should flip as in expected counter-

factual target Ỹ :

GECsample = 1
[
Ŷ ∗
(gb) = Ỹ

]
, GEC =

1

N

N∑
i=1

GECsample,i. (5)

Evaluation Settings. We distinguish two settings: (i) Predicted, where the model generates M̂

and then predicts Ŷ , and (ii) Gold, where the ground-truth structure Mgold is provided and used
to predict Ŷ . Applying interventions in both settings reveals whether failures stem from incorrect
generation of M̂ or from ignoring even correct, externally supplied structures. This also helps us to
understand the role of intermediate structures in idealized (gold) and real (predicted) setting.

2.3 IMPLEMENTATION PROTOCOL

We run two settings per example. In the predicted regime, the prompt contains only X (task + evi-
dence + an empty structured template), and the model must first generate M̂ (e.g., a filled checklist)
and then Ŷ . In the gold regime, we append the ground-truth mediator Mgold to the dialogue and ask
the model to output only Ŷ . This isolates whether the model can use a provided structure without
re-deriving the decision from X .

After the initial run, we construct M⋆ by applying dataset-specific edits to M while keeping X fixed:
(i) HSVT: replace or paraphrase X (hard: swap in another answer or table row; soft: paraphrase)
while holding M fixed; (ii) Local: flip individual slots or edges in M ; (iii) Global: apply a full
break (e.g., invert all rubric entries or cut all proof edges). For each intervention, we also compute
the expected counterfactual target Ỹ based on the altered mediator M⋆. We then re-prompt the
model with (X,M⋆) and obtain Ŷ ⋆, comparing it against Ŷ to evaluate HSVT or against Ỹ to
evaluate LEC\GEC. The protocol is summarized in Algorithm 1.

Importantly, our prompt design never explicitly instructs the model to maintain consistency between
M and Y . Instead, we describe the task objectives and provide few-shot examples without inter-
ventions. This ensures our evaluation measures the model’s intrinsic reliance on the mediator rather
than its ability to follow an instruction to “be faithful.” Prompt examples are given in Appendix A.1.
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To avoid stochastic variability, we disable sampling and decode deterministically (temperature = 0,
greedy). We enforce a minimal output schema (e.g., “Final grade: <float>” or a categorical label)
and extract Ŷ (and M̂ in the predicted regime) with simple pattern matching.

3 DATASETS AND INTERVENTIONS

We evaluate our framework on four datasets that instantiate the general protocol across different
reasoning formats and decision types. In all cases, the model first produces an intermediate structure
M , which we intervene on before re-querying the model for the final decision Y . This allows us to
test whether decisions are invariant to surface changes in X (HSVT) and whether they are causally
mediated by M (local/global edits).

RiceChem (Rubric Intervention) (Sonkar et al., 2024). A chemistry grading task where each
sample contains a question, a student answer, and a rubric of True/False sub-steps with real-valued
weights. The dataset comprised on 4 tasks, with each task having 5 to 8 checklist items. The
model fills M (the rubric), sums the weights of satisfied items, and outputs a score. For mediation,
we flip rubric entries, which directly changes the implied score; a faithful model should update
its prediction accordingly rather than re-deriving the score from latent knowledge. For HSVT, we
replace the student answer text X with another answer to the same question while keeping the rubric
fixed. A faithful model should output the same score, since M already determines it.

Averitec (QA–Rubric Intervention) (Schlichtkrull et al., 2023). A fact-checking dataset where
each claim is paired with binary support questions. Each sample has has from 1 to 3 support ques-
tions. We treat the answers to these sub-questions as M , which mediates the final verdict. Interven-
tions flip rubric entries (e.g., changing a sub-answer from “Yes” to “No”), requiring the model to
update the claim label accordingly. For HSVT, we paraphrase or stylistically alter the claim text X
while keeping the rubric unchanged. Faithful predictions should remain stable under these surface
variations.

EntailmentBank (Proof Intervention) (Dalvi et al., 2021). A multi-hop entailment task where
the model produces a structured proof M linking premises to a hypothesis, and outputs a final binary
decision whether the hypothesis is correct or not. We intervene by corrupting the proof (removing or
rewiring edges) while keeping textual content identical. Since all interventions yield invalid proofs,
a faithful model should flip its entailment decision. For HSVT, we paraphrase premises or rename
entities in X while leaving the proof fixed. Faithful models should preserve the entailment decision.

TabFact (Verification Query Intervention) (Wenhu Chen & Wang, 2020). A table-based fact
verification dataset where each statement is grounded in a structured query M over table cells and
operators. We intervene by altering the query (e.g., swapping columns or operators) while keeping
the statement text fixed, which should flip the entailment label if the model is faithful. For HSVT, we
substitute the original statement text X with a different statement from the dataset that corresponds
to the same table while holding the query constant. Faithful models should maintain the same
decision.

Counterfactual Targets. For each dataset, we define a counterfactual target Ỹ that reflects the
expected decision after intervention on M : (i) recomputed scores from edited rubrics in RiceChem,
(ii) flipped verdicts from inverted sub-answers in Averitec, (iii) not correct labels from broken proofs
in EntailmentBank, (iv) refuted labels from corrupted queries in TabFact. Evaluating against these
targets allows us to measure whether models’ predictions are causally mediated by the structures
they generate or consume.

4 RELATED WORK

Intermediate structures. Intermediate structures are widely used in decision-making systems to
decompose complex tasks, support monitoring, and enable verification. They appear in domains
such as education (rubric-based essay grading (Sonkar et al., 2024)), semantic parsing tasks (like
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Figure 3: With gold structure, the model is provided with ground-truth intermediate structure M .
With predicted structure, the model has to generate intermediate structure M from scratch. We
report metrics averaged over 4 datasets considered in the paper.

decomposition of the task into consecutive elements)(Lee et al., 2022; Yu et al.), contract review
(clause extraction) (Amazou et al., 2025), and clinical decision support, where transparency im-
proves professional trust (Bussone et al., 2015). In NLP and AI planning, intermediate structures
take the form of schema linking in text-to-query (Yu et al.; Li et al., 2023) or formal action sequences
in PDDL (Silver et al., 2022), both of which mediate between input and final execution. In this work,
we evaluate such settings through the lens of faithfulness: whether LLMs align their decisions with
structured intermediates and respond appropriately to interventions.

Reasoning faithfulness. Recent work has examined whether model-generated rationales faithfully
mediate predictions. (Turpin et al., 2023; Chua & Evans, 2025; Chen et al., 2024; Korbak et al.,
2025) test reasoning faithfulness by truncating, paraphrasing, or injecting mistakes, finding task-
dependent variation and showing that rationales are often helpful but not reliably causal. Also the
models verbalization was inspected of the use of injected hints (e.g., sycophancy, grader hacking,
metadata) and report very low “reveal rates”, concluding that test-time reasoning monitoring cannot
be relied upon to expose shortcut use (Lyu et al., 2023; Lanham et al., 2023). While faithfulness and
causality are closely related, most studies do not treat the rationale as an explicit causal mediator,
however it is an emergent topic recently – Paul et al. (2024) formalizes reasoning as a mediator and
propose FRODO method, which separates rationale generation and reasoning to improve mediated
effects and OOD robustness. Similarly, Tutek et al. (2025) quantify parametric faithfulness in a
causal framework instead of contextual faithfullness which was done in other works and what we do
in this work.

However, prior studies intervene only on free-form reasoning text, making edits hard to control
and benchmark targets difficult to align. In contrast, we select tasks with gold structured media-
tors—rubrics, checklists, proof graphs, and verifier queries—that serve as explicit causal handles.
By intervening on these mediators, we measure model faithfulness under both idealized (gold me-
diator) and realized (predicted mediator) settings, allowing us to disentangle failures from incorrect
structure generation versus failures from ignoring the structure altogether.

5 RESULTS

We evaluate our protocol on four benchmarks using models from four LLM families: Qwen 3,
Falcon 3, Gemma 2, and LLaMA 3. Our experiments cover a range of model sizes, including Qwen
(1.7B, 4B, 8B) (Yang et al., 2025), Falcon (Team, 2024) (3B, 7B), LLaMA Grattafiori et al. (2024)
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Figure 4: Left: with gold structure, the model is provided with ground-truth intermediate structure
M . With predicted structure, the model has to generate intermediate structure M from scratch.
Surprisingly, for some models the latter approach works better. Right: We measure correlation
between accuracies of predicting intermediate structure M and final answer Y . As expected, it is
positive for all datasets.

Table 1: R2 scores along with confidence intervals for final answer / structure prediction accuracy.

Dataset R2 95% CI

TabFact 0.408 (0.003, 0.867)
RiceChem 0.371 (0.040, 0.910)
AVeriTeC 0.600 (0.066, 0.964)
EntailmentBank 0.347 (0.175, 0.780)

(3.1 8B, 3.2 1B, 3.2 3B), and Gemma Team et al. (2024) (2B). All models are instruction-tuned. For
Qwen 3, we disable the built-in reasoning mode to ensure fair comparison across models. In Section
5.1 we compare performance metrics between gold and predicted evaluation settings, and in Section
5.2 we analyze faithfulness across evaluation settings and interventions.

5.1 PERFORMANCE IN GOLD AND PREDICTED SETTINGS

Gold structures do not always improve task performance. We compare performance in two
settings: gold structure, where the model is provided with ground-truth intermediate structure M ,
and predicted structure, where the model has to first generate M from scratch. On average across
four datasets, models perform better when gold structures are available (Figure 3). However, this is
not uniformly true: on EntailmentBank, some models achieve higher accuracy when generating their
own structures (Figure 4, left). Across all datasets, we observe such improvements in 7 out of 36
cases, with gains up to 49.5% (see Figure 7 in Appendix A.3). We hypothesize that this occurs when
the gold structure M is highly unlikely under the model’s predictive distribution. Conditioning on
such unlikely prefixes pushes the model into an out-of-distribution regime where its capabilities are
weaker, while unconstrained generation allows it to stay closer to training distribution and leverage
Chain-of-Thought reasoning (Wei et al., 2022).

Accurate structure prediction correlates with final task accuracy. We also measure the corre-
lation between accuracy in predicting intermediate structures and accuracy on the final answer. By
design, we expect models to solve tasks more reliably when they correctly reconstruct the interme-
diate structure. Indeed, on Figure 4, right side, we observe positive correlations across all datasets,
confirming that structural accuracy and decision accuracy are closely linked. For a quantitative
evaluation,we report R2 with 95% confidence intervals obtained via bootstrapping in Table 5.1.
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Figure 5: Faithfulness of LLMs to intermediate structures under different interventions. Results are
reported for 4 datasets and averaged across all models. Left: reliance on structures (HSVT). Right:
causal faithfulness under local vs. global interventions, shown separately for gold and predicted
structures (solid vs. striped bars).

5.2 FAITHFULNESS ANALYSIS

To determine whether models rely on their intermediate representations or treat them as mere deco-
rations, we apply our intervention protocol (described in Section 2.3) to both “gold” and “predicted”
settings. This allows us to distinguish between failures to generate accurate representations and
failures to utilize even accurate ones. The results are summarized in Figure 5, and key findings are
discussed below.

Models rely on intermediate structures, but they are not the dominant factor in their deci-
sions. High average HSVT scores across all datasets (with a mean exceeding 60% and reaching
over 75% for most individual models; see Appendix A.2) indicate that models rely primarily on the
provided structure for information. When the surface text is changed (e.g., paraphrased or replaced
with semantically similar inputs) or even totally replaced, the model’s decision remains consistent,
suggesting that it does not use input text cues. However, low LEC and GEC scores reveal a discon-
nect: LEC is below 40% on 3 out of 4 datasets and GEC falls below 40% on 2 out of 3 datasets,
dropping to under 15% on EntailmentBank. This suggests that reliance on structure does not lead to
causal mediation. Even when the structure is altered in ways that contradict the correct answer log-
ically (e.g., flipping rubric items or breaking logical chains), the model often makes the same final
decision. This suggests that the model bypasses the explicit reasoning process and instead relies on
indirect inferences from the input or its internal knowledge (U in the causal graph in Figure 2).

Global structural breaks are more disruptive than local edits. As shown in Figure 5, global
interventions (such as inverting all rubric entries in RiceChem or removing all edges supporting a
hypothesis in EntailmentBank) consistently elicit stronger reactions from models than local edits
(e.g., flipping a single checklist item). In two of three datasets, global faithfulness exceeds local
by 20–40%. This suggests that models tolerate minor inconsistencies within the structure, treating
them as noise or irrelevant details, while radical, system-wide changes are more likely to disrupt the
model’s internal state and trigger a re-evaluation.

Self-generated intermediate structures lead to higher faithfulness despite lower accuracy.
While models rely more heavily on gold structures (higher HSVT), they exhibit a greater degree
of causal faithfulness to the predicted ones: LEC and GEC scores are consistently higher when in-
tervening on self-generated mediators. On average, the gap is 10–15%, but it reaches 20–25% in
many cases—and exceeds 60% for specific models (see Appendix A.2). This indicates that although
models consider gold structures to be more authoritative anchors, they are also more responsive to
logical changes in structures they have generated themselves. This trend contrasts with overall task
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performance, as shown in Section 5.1: gold structures typically lead to higher final-answer accuracy,
whereas self-generated structures can sometimes harm performance. However, paradoxically, it is in
the predicted setting – where accuracy is often lower – that models demonstrate a stronger sensitivity
to edits. We hypothesize that generating a structure is an integral part of a model’s reasoning pro-
cess, as it embeds the model’s understanding into the generated structure, making subsequent edits
more effective. In contrast, passively consuming a predefined “correct” structure may lead a model
to treat it as context, ignoring the logical content, even if that structure improves accuracy on the
final task. This challenges the assumption that providing a perfect CoT (contextualized output) or
rubric (set of rules) will ensure faithful reasoning, as correctness does not necessarily imply causal
mediation.

Soft interventions preserve faithfulness more than the hard ones. Our experiments show that
“soft” interventions (such as paraphrasing or entity renaming) maintain faithfulness (i.e., high HSVT
and moderate LEC/GEC) more than “hard” interventions (like swapping entire answers or table
rows). Notably, HSVT under soft interventions is 20–30% higher on AVeriTeC and EntailmentBank
compared to RiceChem and TabFact. This suggests that while models are structurally anchored, they
still have some sensitivity to surface features of the input. Hard interventions can create a mismatch
between the input and the model’s structure, which the model may not be able to resolve without
resorting to latent shortcuts.

Figure 5 presents aggregated trends, but these patterns hold consistently at the model level. No-
tably, model size has little effect on faithfulness — small and large models exhibit similarly varied
behavior. For details, see Appendix A.2.

In summary, our causal intervention analysis reveals a systematic gap between structural reliance
and causal fidelity: models rely on intermediate structures when surface cues vary, but largely ignore
their logical content when it is altered. Faithfulness is not a binary property - it depends on the type
of intervention (global > local), the source of the structure (predicted > gold), and the nature of
the change (soft > hard). These findings emphasize that intermediate structures are not always
automatic causal mediators, even if they appear central to the output of a model.

6 CONCLUSION

We presented a causal protocol for evaluating the faithfulness of LLMs to their intermediate struc-
tures. By intervening on structured reasoning outputs such as rubrics, checklists, proof graphs, and
table queries, we assessed whether model decisions are causally mediated by these structures or by-
passed through latent shortcuts. Our experiments across four datasets and nine modern LLMs reveal
that while models rely on intermediate structures when surface cues are altered (high HSVT scores),
they often fail to update their predictions under logically significant local or global edits, indicating
weak causal dependence. Surprisingly, models are more faithful to their self-generated structures
than to gold ones, suggesting that the act of generation embeds reasoning into the structure in ways
that passive consumption does not. These results challenge the assumption that providing perfect
reasoning paths guarantees faithful use and highlight the need for new training and prompting meth-
ods that enforce causal reliance on intermediate structures. More broadly, our results suggest that
intermediate structures could serve as actionable mediators for human–AI collaboration through
structured reasoning interventions, but current LLMs do not reliably support this use.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. All four datasets used in
this study (RiceChem, Averitec, EntailmentBank, TabFact) are publicly available. Our evaluation
protocol is described in Section 2.3, with implementation details and deterministic decoding settings.
We release prompts used for both gold and predicted mediator settings in Appendix A.1, ensuring
that intervention strategies can be replicated. The large language models we evaluate (Qwen 3,
LLaMA 3, Falcon 3, Gemma 2) are publicly accessible in instruct-tuned versions. Finally, our
source code for running interventions, computing counterfactual targets, and reproducing all metrics
and figures is provided in the supplementary material to facilitate replication of results.
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USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used in this work as an assistive tool for polishing the text,
improving clarity, and suggesting alternative phrasings. They were not used for research ideation,
experimental design, analysis, or result generation. All scientific contributions, experiments, and
conclusions are the responsibility of the authors.
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Leslie Pack Kaelbling. Pddl planning with pretrained large language models. In NeurIPS 2022
foundation models for decision making workshop, 2022.

Shashank Sonkar, Kangqi Ni, Lesa Tran Lu, Kristi Kincaid, John S Hutchinson, and Richard G
Baraniuk. Automated long answer grading with ricechem dataset. In International Conference
on Artificial Intelligence in Education, pp. 163–176. Springer, 2024.

Falcon-LLM Team. The falcon 3 family of open models, December 2024. URL https:
//huggingface.co/blog/falcon3.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
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chain of thought faithfulness by unlearning reasoning steps. arXiv preprint arXiv:2502.14829,
2025.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Jianshu Chen Yunkai Zhang Hong Wang Shiyang Li Xiyou Zhou Wenhu Chen, Hongmin Wang and
William Yang Wang. Tabfact : A large-scale dataset for table-based fact verification. In Interna-
tional Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, April 2020.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

11

https://openreview.net/forum?id=4ub9gpx9xw
https://api.semanticscholar.org/CorpusID:5947965
https://api.semanticscholar.org/CorpusID:5947965
https://huggingface.co/blog/falcon3
https://huggingface.co/blog/falcon3


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu,
William Yang Wang, Zhiguo Wang, and Bing Xiang. Decaf: Joint decoding of answers and logical
forms for question answering over knowledge bases. In The Eleventh International Conference
on Learning Representations.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 PROMPTS

Here we present prompts for RiceChem and Tabfact with predicted mediator. In Gold mediator we
pass the model the gold mediator as generated one and only ask the model to output its final target.

RiceChem prompt (predicted mediator).

Role: You are an automated grader for a college-level chemistry class. First fill the checklist
strictly from the student’s answer, then compute the final grade.
Instructions

• Use only the given question and student’s answer.
• Keep the checklist exactly as provided (same order, wording, and weights).
• Replace each trailing <True/False> with True or False.
• Mark an item True only if it is explicitly satisfied in the answer.
• The final grade equals the sum of weights for items marked True.
• Output only:

1. Checklist: (the filled checklist, line-for-line)
2. Final grade (0--8): <float>

Few-shot examples
Example 1 Question: Why does removing successive electrons from silicon require in-
creasing energy? Answer: Each removal decreases repulsion and increases attraction to
the nucleus; the big jump occurs after the 4th electron since the 5th is from a lower shell.
Checklist: cites decreased electron–electron repulsion (weight: 1.0) (True/False): True
links repulsion decrease to stronger nuclear attraction (weight: 1.0) (True/False): True
explains 3rd/4th electrons same shell/core charge (weight: 1.0) (True/False): True
explains 5th electron from lower shell (weight: 1.0) (True/False): True
Final grade (0–8): 4.0
Example 2 Question: Why can atoms absorb only certain frequencies, but eject electrons
with any frequency above a threshold? Answer: Absorption requires exact energy dif-
ferences between levels; ejection only requires exceeding the threshold. Checklist: states
energy levels are quantized (weight: 1.5) (True/False): True
explains matching frequency to level gap (weight: 2.0) (True/False): True
notes threshold energy for ejection (weight: 1.0) (True/False): True
additional energy becomes kinetic energy (weight: 1.0) (True/False): True
Final grade (0–8): 5.5
Question
{QUESTION TEXT}
Student Answer
{STUDENT ANSWER}
Checklist
{ITEM 1} (weight: {w 1}) (True/False): <True/False>
{ITEM 2} (weight: {w 2}) (True/False): <True/False>
{ITEM 3} (weight: {w 3}) (True/False): <True/False>
. . .

TabFact prompt (predicted mediator).

Role: You are an expert table fact-checking system. First construct a Verifier Query in the
provided DSL that encodes the reasoning steps, then return the execution result as the final
verdict.
Instructions

• Use only the given claim and table.
• Construct a syntactically valid DSL expression that ends with =True or =False.
• The query must encode the logical verification of the claim (e.g., compare values,

filter rows, aggregate).
• The final verdict is the boolean result of executing the query: True or False.
• Output only:

1. Verifier Query: ¡DSL expression¿
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Figure 6: Faithfulness scores (HSVT, Local Edits, Global Edits) for each individual model across
all four datasets. Results are shown separately for gold (solid) and predicted (striped) structures.

2. Execution Result: <True/False>

Few-shot examples
Example 1 Table:
rank#athlete#nation#gold
1#Usain Bolt#Jamaica#2
2#Shawn Crawford#United States#1
Claim: Usain Bolt won more gold medals than Shawn Crawford.
Verifier Query: greater{hop{filter eq{all rows; athlete;
Usain Bolt}; gold}; hop{filter eq{all rows; athlete; Shawn
Crawford}; gold}}=True
Execution Result: True
Example 2 Table:
player#team#goals
Messi#PSG#30
Ronaldo#AlNassr#25
Claim: Ronaldo scored more goals than Messi.
Verifier Query: greater{hop{filter eq{all rows; player; Ronaldo};
goals}; hop{filter eq{all rows; player; Messi}; goals}}=True
Execution Result: False
Table
{TABLE CONTENT}
Claim
{STATEMENT}

A.2 FAITHFULNESS

Figure 6 presents per-model faithfulness results without aggregation. While the main trends are
already visible in the averaged Figure 5, the non-aggregated view reveals additional insights:

• No clear scaling trend: The size of the model does not consistently correlate with its
faithfulness. Larger models do not always outperform smaller ones in terms of LEC or
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Figure 7: Performance scores (final answer prediction accuracy) for each individual model across
all four datasets. Results are shown separately for gold (solid) and predicted (striped) structures.

GEC. The behavior of the models varies significantly even within the same family, making
it difficult to predict which model will perform best.

• Predicted is better than Gold holds per model. Despite this lack of consistency, the
paradox of higher causal faithfulness to self-generated structures is evident at the individual
model level. Most models show higher LEC and GEC under predicted mediators, even
though the gold scores may be lower.

A.3 PERFORMANCE

Figure 7 presents final answer prediction accuracy for each model without aggregation over datasets.

Gold structure is not always beneficial. In 7 out of 36 cases models perform better without gold
structure. This happens at least once on every dataset, suggesting that it could be a general phe-
nomenon, not related to individual dataset idiosyncrasies.
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