
Under review as submission to TMLR

Noise Stability Optimization for Finding Flat Minima:
A Hessian-based Regularization Approach

Anonymous authors
Paper under double-blind review

Abstract

The training of overparameterized neural networks has received much study in recent liter-
ature. An important consideration is the regularization of overparametrized networks due
to their highly nonconvex and nonlinear geometry. In this paper, we study noise injection
algorithms, which can regularize the Hessian of the loss, leading to regions with flat loss sur-
faces. Specifically, by injecting isotropic Gaussian noise into the weight matrices of a neural
network, we can obtain an approximately unbiased estimate of the trace of the Hessian.
However, naively implementing the noise injection, such as by adding noise to the weight
matrices before backpropagation, presents limited empirical improvements. To address this
limitation, we design a two-point noise injection scheme, which injects noise to the weight
matrices along both positive and negative directions of the random noise. In particular,
this two-point scheme cancels out first-order expansion terms during the estimation of the
Hessian. We show that this regularization improves generalization by proving a PAC-Bayes
bound that depends on the trace of the Hessian and the radius of the fine-tuning region.
Extensive experiments validate that our approach can effectively regularize the Hessian and
improve generalization. First, our algorithm can outperform prior approaches on sharpness-
reducing training, showing up to a 2.4% increase in test accuracy (for fine-tuning pretrained
ResNets on six image classification datasets). The trace of the Hessian can be reduced by
15.8%, and the largest eigenvalue can be reduced by 9.7%, respectively. Second, the noise
injection algorithm can be combined with alternative regularization methods such as weight
decay and data augmentation. Third, we show that our approach can be used to improve
generalization in pretraining CLIP models and chain-of-thought fine-tuning.
Lastly, we also analyze the convergence of our algorithm. Our analysis builds on a connection
between minimizing noise-injected functions and stochastic optimization, leading to sharp
convergence rates of the above noise-injection algorithm.

1 Introduction

The loss landscape and its geometry properties are a recurring theme in the study of neural networks
(Keskar et al., 2017; Dinh et al., 2017; Hochreiter & Schmidhuber, 1997). Recently, the design of training
methods such as sharpness-aware minimization and stochastic weight averaging has led to improved empirical
performance in a wide range of settings (Izmailov et al., 2018; Foret et al., 2021; Wortsman et al., 2022).
The theoretical study of these training methods has also been explored (Andriushchenko & Flammarion,
2022). For instance, it has been shown that the sharpness-aware minimization algorithm (Foret et al., 2021)
has an implicit bias to surface regions whose largest eigenvalue of the Hessian is small (Wen et al., 2023;
Bartlett et al., 2023). In this paper, we study methods that can provide explicit regularization of the Hessian,
and we provide provable generalization guarantees of the methods. More formally, given an input function
f : Rd → R that represents the empirical risk of a neural network and a d-dimensional distribution P with
mean zero, we consider minimizing the noise-perturbed function

F (W) := E
U∼P

[f(W + U)] .

1

Under review as submission to TMLR

𝑾𝒊	
𝑼𝒊 −𝑼𝒊

∇𝑓(𝑊" + 𝑈")

∇𝑓(𝑊" − 𝑈")

𝑾𝒊#𝟏
𝐍𝐒𝐎	

Figure 1: An illustration of one update step in our algorithm. At each iteration i, we sample a random
variable Ui from a zero-mean distribution P (e.g., an isotropic Gaussian with variance σ2), where σ is a
hyper-parameter that controls the strength of the noise injection (hence the regularization). We query the
gradient of f , at f(Wi + Ui), and f(Wi − Ui), and take their average. This results in a two-point noise
injection scheme, whose computation cost is the same as sharpness-aware minimization (Foret et al., 2021),
and twice the cost of running SGD. Notice that in practice, we can also implement an extension of this
algorithm, which samples multiple Us. For details, see Algorithm 1.

Minimizing this perturbed function can improve the resilience of the neural network to noise injection, leading
to flatter loss surfaces and improved regularization (Nagarajan & Kolter, 2020; Dziugaite & Roy, 2017). For
instance, using PAC-Bayes analysis, one can identify a measure of the sharpness of loss surfaces based on the
trace of the Hessian (Tsuzuku et al., 2020; Ju et al., 2022). However, while noise injection algorithms can be
theoretically motivated as improving generalization, its practical implication is not always evident (Hinton &
Van Camp, 1993; An, 1996; Graves, 2011). To motivate our study, we start by conducting several empirical
studies to compare the performance of standard SGD and weight-perturbed SGD (WP-SGD), which first
injects random noise into the weight matrices of a neural network before computing its gradient in SGD.
For this empirical study, we fine-tune pretrained ResNets on three image classification tasks. To ensure
the validity of the analysis, we vary both the distribution of P and the variance of U . Our finding is that
WP-SGD does not offer clear benefits over SGD, which is also consistent with recent studies of weight noise
injection (Orvieto et al., 2023; Dauphin et al., 2024). However, we hypothesize that these results may be due
to the randomness of the noise injection rather than the ineffectiveness of the Hessian-based regularization.

Our approach to mitigate the randomness of the noise injection involves two parts. First, we add a negative
perturbation along W − U to cancel out the first-order expansion term of W + U (recall that U is a random
sample from P). Meanwhile, the second-order expansion term remains the same after this cancellation.
We term this modification a two-point noise injection scheme, analogous to the use of two-point gradient
estimates in zeroth-order optimization (Duchi et al., 2015). Second, we sample multiple perturbations
U1, U2, . . . , Uk at each epoch and take their averaged two-point (noise-injected) gradients. See Figure 1 for
an illustration of one update step, namely NSO in short.

A major advantage of our approach compared to prior approaches on reducing sharpness is that our approach
can provide an approximately unbiased estimate of the trace of the Hessian. We empirically validate this
claim across three real-world settings (see Figure 2, Section 2.2 for an illustration). By utilizing this property,
we show a PAC-Bayes bound that depends on the trace of the Hessian and the radius of the fine-tuning region.
We briefly describe this result, leaving a formal statement to Theorem 2.1. Let α be an upper bound on the
trace of the Hessian measured within the hypothesis space. Let r be the radius of the fine-tuning region,
measured in Euclidean geometry. Suppose there are n empirical samples from an unknown distribution. We
show a generalization bound that scales as O

(√
αr2

n

)
. Our proof utilizes a linear PAC-Bayes bound (Catoni,

2007; McAllester, 2013), but we optimize the variance of the prior and posterior distributions to derive this
result. A detailed proof sketch is presented in Section 2.3.

2

Under review as submission to TMLR

Table 1: Comparison between our approach (NSO) and SAM (Foret et al., 2021). In particular, the inductive
bias of SAM is based on the results of Wen et al. (2023). We use a list of notations to describe the comparison,
including: ∇2ℓ refers to the Hessian matrix of the loss function ℓ; λ1 and Tr refer to the largest eigenvalue
and the trace of an input matrix; α refers to the trace norm, taken over the maximum of the entire data
distribution (including the unseen test data samples); r is the radius of the fine-tuning region measured via
Euclidean distance; n is the number of samples in the training dataset; T is the total number of iterations
run by our algorithm.

Methods Inductive Bias Generalization Guarantee Convergence Rate

Sharpness-Aware Minimization (SAM) λ1[∇2ℓ] - -

Noise Stability Optimization (NSO) Tr[∇2ℓ]
√

αr2
n

(Theorem 2.1) O(
√

1
T

) (Theorem 4.2)

Next, we validate our approach through comprehensive experiments. First, for the setting of fine-tuning
pretrained ResNets. we compare our approach with four prior approaches including sharpness-aware min-
imization (Foret et al., 2021), tested on six image classification datasets. We show that our algorithm can
reduce the trace and the largest eigenvalue of the loss Hessian matrix by 15.8% and 9.7%, respectively,
compared to prior approaches. We also find that our approach can improve test accuracy by 2.4%. Second,
we show that by combining our approach with alternative regularization techniques (such as data augmen-
tation and distance-based regularization (Gouk et al., 2022)), we can further regularize the Hessian, leading
to 13.6% lower trace values and 16.3% lower test loss values, all averaged over the six datasets. Third,
we further extend our approach to two new settings, namely, multimodal pretraining and chain-of-thought
fine-tuning. The details are deferred to Section 3.2 and Section 3.3. Overall, we find that by using our
approach, we can consistently achieve better regularization of the Hessian as well as improved test accuracy
across all of these different settings and datasets.

Lastly, we analyze the convergence of our algorithm. In particular, we study the optimization properties
of minimizing noise-perturbed function F (W) using techniques from the stochastic optimization literature
(Ghadimi & Lan, 2013; Lan, 2020; Zhang, 2023; Carmon et al., 2020; Drori & Shamir, 2020). Altogether,
we can provide matching upper and lower bounds on the norm of the gradient of the iterates. Our analysis
also raises several new questions, which may be interesting for future work. For instance, can accelerated
gradient descent methods be applied to design flat-minima optimizers? Can recent advances in zeroth-order
optimization be leveraged to better regularize the training of transformer neural networks?

In summary, the contributions of this paper are three-fold. First, we present an algorithm that can provide
explicit regularization of the trace of the Hessian, and we show a PAC-Bayes bound to theoretically support
our approach. Second, we conduct experiments over a wide range of settings to validate our approach,
compared to prior sharpness-aware training algorithms, and alternative regularization methods. Third,
we analyze the convergence of our proposed algorithm, using techniques from the stochastic optimization
literature. In Table 1, we highlight the key aspects of our approach as compared to prior approaches.

Organization: The rest of this paper is organized as follows. In Section 2, we will present our approach.
We will start by presenting the motivating experiments. Then, we describe our algorithm and a PAC-Bayes
bound that depends on the Hessian. In Section 3, we present our experiments for validating the proposed
approach. In Section 4, we present an analysis of the convergence of our algorithm. In Section 5, we provide a
preliminary study of the Hessian-based regularization effect in an overparameterized matrix sensing problem.
In Section 6, we discuss the related works. Finally, in Section 7, we state the conclusion. In Appendix A and
Appendix B, we provide complete proofs of our theoretical results. In Appendix C, we provide additional
experimental results left from the main text.

2 Our Approach

In this section, we present our approach. First, to set up the stage, we will study the straightforward
implementation of noise injection by directly adding noise to the weight matrices of the neural network

3

Under review as submission to TMLR

before computing the gradients in backpropagation. We term this procedure as weight-perturbed SGD (or
WP-SGD in short). We will compare SGD with WP-SGD. Then, we describe our algorithm, and provide
empirical measurements of the trace of the Hessian, along with the true perturbation gaps observed in
practice. Finally, we will show a PAC-Bayes generalization bound, which depends on the trace of the
Hessian, as a theoretical justification of our approach.

2.1 Motivating Experiments

In this subsection, we will compare WP-SGD with standard SGD for fine-tuning pretrained models. We focus
on this setting because overfitting has been commonly observed (Wortsman et al., 2022). Thus, developing
training methods to improve generalization would be crucial. We consider fine-tuning a pre-trained ResNet-
34 on image classification datasets, including an aircraft recognition task (Aircraft) (Maji et al., 2013),
indoor scene recognition (Caltech-256) (Griffin et al., 2007), and medical image classification (retina images
for diabetic retinopathy classification) (Pachade et al., 2021). In WP-SGD, we sample a perturbation vector
from P and add it to the model weights in each iteration before computing the gradient. For WP-SGD,
we will sample the perturbation from an isotropic Gaussian distribution. Then, we will set the standard
deviation of U via cross-validation, choosing between 0.008, 0.01, and 0.012.

We report our findings in Table 2. We observe that the performance gap between SGD and WP-SGD is less
than 0.5%, about 0.75 standard deviations of the five independent tests. Furthermore, varying the type of
noise distribution does not change the results. In particular, we test four choices of P, including Gaussian,
the Laplace distribution, uniform distribution, and Binomial distribution. Similar to the Gaussian, we set
their standard deviations between 0.008, 0.01, and 0.012 using a validation set. We find that using the
Laplace or Uniform distribution achieves comparable performance to using Gaussian. However, using the
Binomial distribution results in significantly worse results.

Table 2: Comparing WP-SGD with standard SGD across four types of perturbation distributions, measured
over three image classification datasets. The results and their standard deviations are averaged over five
independent seeds. Recall that WP-SGD refers to normal weight perturbation (without the paired pertur-
bation). Note that the description of our approach (i.e., NSO) will be presented below; However, we include
the results of running NSO in this Table for ease of comparison.

Aircraft Indoor Retina Disease
P Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

SGD None 100.0% ± 0.0 59.8% ± 0.7 100.0% ± 0.0 76.0% ± 0.4 100.0% ± 0.0 61.7% ± 0.8

WP-SGD Gaussian 98.4% ± 0.2 60.4% ± 0.1 99.0% ± 0.3 76.3% ± 0.0 100.0% ± 0.0 62.3% ± 0.5
WP-SGD Laplace 98.3% ± 0.1 60.3% ± 0.3 98.9% ± 0.1 76.4% ± 0.3 100.0% ± 0.0 62.0% ± 0.1
WP-SGD Uniform 98.6% ± 0.3 60.3% ± 0.5 98.6% ± 0.3 76.6% ± 0.1 100.0% ± 0.0 62.3% ± 0.0
WP-SGD Binomial 19.6% ± 0.1 11.3% ± 0.1 18.2% ± 0.9 10.7% ± 0.1 58.1% ± 0.1 57.1% ± 0.0

NSO Gaussian 95.8% ± 0.4 62.3% ± 0.3 95.7% ± 0.2 77.4% ± 0.3 100.0% ± 0.0 66.6% ± 0.7
NSO Laplace 96.5% ± 0.3 61.9% ± 0.3 96.1% ± 0.3 77.1% ± 0.1 100.0% ± 0.0 65.9% ± 0.1
NSO Uniform 96.4% ± 0.4 61.9% ± 0.5 96.4% ± 0.2 76.8% ± 0.2 100.0% ± 0.0 65.7% ± 0.1
NSO Binomial 20.1% ± 0.1 14.3% ± 0.3 22.8% ± 0.1 17.9% ± 0.2 59.2% ± 0.1 57.8% ± 0.1

2.2 Description of Our Algorithm

The above experiment suggests that the straightforward implementation of noise injection does not bring
apparent benefits compared to SGD. In our approach, we make two modifications: (1) Two-point noise
injection: During the noise injection, we add the perturbation from both the positive and negative directions.
This is shown in Line 5. (2) Averaging multiple perturbations to stabilize the gradient: To stabilize the
randomness due to the noise injection, we average over multiple noise injections. This is described in Line
7. To justify the first modification, recall that P is a symmetric distribution. We use Taylor’s expansion on

4

Under review as submission to TMLR

both f(W + U) and f(W − U):

f(W + U) = f(W) + ⟨U, ∇f(W)⟩ + 1
2U⊤∇2f(W)U + O(∥Σ∥ 3

2
2

),

f(W − U) = f(W) − ⟨U, ∇f(W)⟩ + 1
2U⊤∇2f(W)U + O(∥Σ∥ 3

2
2

).

By definition, E [U] = 0, and E
[
UU⊤] = Σ. Thus, by taking the average of the above two equations, we can

get that

E
U∼P

[
1
2(f(W + U) + f(W − U))

]
= F (W) = f(W) + 1

2 ⟨Σ, ∇2f(W)⟩ + O
(

∥Σ∥
3
2
2

)
. (1)

The second modification reduces the variance of the stochastic gradient, using the fact that each perturbation
is independent of the others. The entire procedure is summarized in Algorithm 1. As a remark, two-point
gradient estimators are commonly used in zeroth-order convex optimization (Duchi et al., 2015). However,
the use of such two-point estimates to design flat minima optimizers appears novel to our knowledge.

Algorithm 1 Noise stability optimization (NSO) for regularizing the Hessian of neural networks
Input: Initialization W0 ∈ Rd, a function f : Rd → R
Require: An estimator g : Rd → Rd that for any W , returns g(W) s.t. E [g(W)] = ∇f(W)
Parameters: # perturbations k, # epochs T , step sizes η0, . . . , ηT −1

1: for i = 0, 1, . . . , T − 1 do
2: /* Compute the two-point averaged gradient over each independent noise injection */
3: for j = 0, 1, . . . , k − 1 do
4: Sample U

(j)
i independently from P

5: Let G
(j)
i = g

(
Wi + U

(j)
i

)
+ g
(
Wi − U

(j)
i

)
6: end for
7: Update iterates according to Wi+1 = Wi − ηi

2k

∑k
j=1 G

(j)
i

8: end for

Measurements of the trace of the Hessian and the perturbation: Next, we provide several empirical
examples to measure the approximation quality of Equation (1). Following the experimental setup described
earlier, we fine-tune pretrained models on a downstream task. After fine-tuning, we set the fine-tuned model
weight at the last epoch as W for taking all the measurements. We summarize the empirical findings below,
leaving experimental details to Appendix C. First, we show that Taylor’s expansion of the noise injection
is numerically accurate. We add perturbations to model weights by injecting isotropic Gaussian noise. We
then compute the perturbed loss minus the original loss value, averaged over 100 independent runs, and we
measure the trace of the Hessian as the average over the training dataset.

In Figure 2, we find that the trace of the Hessian provides an accurate approximation to the gap between
ℓQ and ℓ (recall that ℓQ is defined in equation (3)). After fine-tuning, we add random noise injections to the
fine-tuned model weight. We do this for 100 times and again measure the perturbed loss ℓQ on the training
set. We take the gap between ℓQ and ℓ and report that along with the magnitude of σ in the Table. We also
compute the trace of the Hessian using Hessian-vector product computation libraries. Our measurements
show that the error between the actual gap and the Hessian approximation is within 3%. As a remark, the
range of σ2 differs across architectures because of the differing scales of their weights.

2.3 Generalization Guarantee and Proof Sketch

Next, we present a PAC-Bayes bound, which depends on the trace of the Hessian as part of the bound on the
generalization gap. As a remark, the trace norm has been studied by earlier work in the setting of matrix
recovery (Srebro & Shraibman, 2005).

Concretely, we have a pretrained model in the fine-tuning setting, which can be viewed as the prior in PAC-
Bayes analysis. Once we have learned a hypothesis, it can be viewed as the posterior. Let D ⊆ X × Y be

5

Under review as submission to TMLR

0.020 0.025 0.030
σ

1

2

3

×10−2 MLP

Gap

Trace× σ2

2

0.0070 0.0075 0.0080
σ

1

2

3

×10−2 BERT

Gap

Trace× σ2

2

0.040 0.045 0.050
σ

2

4

6

×10−2 GNN

Gap

Trace× σ2

2

Figure 2: Illustration of the gap between the perturbed loss and the original loss, compared with the trace
of the Hessian multiplied by the variance of the Gaussian noise (see Equation (1)). The measurements are
taken over the fine-tuned model weight at the last epoch. We can see that the perturbation gap (which is
F (W) − f(W) more precisely) and σ2

2 Tr[∇2f(W)] turn out to be at the same order. Recall that σ refers
to the standard deviation of the Gaussian noise injected into the weight matrices. More specifically, σ is
a hyper-parameter that controls the strength of the noise injection (or the level of regularization upon the
Hessian).

an unknown data distribution, supported on the feature space X and the label space Y. Given n random
samples (x1, y1), (x2, y2), . . . , (xn, yn) drawn from D, the empirical loss (measured by loss function ℓ) applied
to a model fW (with W ∈ Rp) is:

L̂(W) = 1
n

n∑
i=1

ℓ(fW (xi), yi).

The population loss is L(W) = E(x,y)∼D [ℓ(fW (x), y)] . It is sufficient to think that the empirical loss is less
than the population loss, and the goal is to bound the gap from above (Shalev-Shwartz & Ben-David, 2014).

Let W be any learned hypothesis within the hypothesis space, denoted as H. The generalization bound
will apply uniformly to W within the hypothesis space, assuming that this space, centered at the pretrained
initialization, has a bounded radius of r > 0. We state the result as follows.
Theorem 2.1. Assume that the loss function is bounded between 0 and C for a fixed constant C. Suppose
that ℓ(fW (·), ·) is twice-differentiable in W and the Hessian matrix ∇2[ℓ(fW (·), ·)] is Lipschitz continuous
within the hypothesis space. With probability at least 1 − δ for any δ > 0, the following must hold, for any ϵ
close to zero:

L(W) ≤ (1 + ϵ)L̂(W) + (1 + ϵ)
√

Cαr2

n
+ O

(
n− 3

4 log(δ−1)
)

. (2)

where the trace norm of the hypothesis space taken over the data distribution D is given by

α := max
W ∈H

max
(x,y)∼D

Tr
[
∇2ℓ(fW (x), y)

]
.

Proof Sketch: We provide a high-level illustration of the proof of Theorem 2.1. Let Q denote the posterior
distribution. Specifically, we consider Q as being centered at the learned hypothesis W (which could be
anywhere within the hypothesis space), given by a Gaussian distribution N (W, σ2 Idp), where Idp denotes
the p by p identity matrix. Given a sample U ∼ N (0, σ2 Idp), let the perturbed loss be given by

ℓQ(fW (x), y) = E
U

[ℓ(fW +U (x), y)] . (3)

Then, let L̂Q(W) be the averaged value of ℓQ(fW (·), ·), taken over n empirical samples from the training
dataset. Likewise, let LQ(W) be the population average of ℓQ(fW (·), ·), in expectation over an unseen data
sample from the underlying data distribution.

Having introduced the notations, we start with the linear PAC-Bayes bound (Catoni, 2007; McAllester, 2013;
Alquier, 2021) (see Theorem A.1 for reference), stated as follows, which holds with probability 1 − δ for any

6

Under review as submission to TMLR

δ ∈ (0, 1):

LQ(W) ≤ 1
β

L̂Q(W) + C(KL(Q||P) + log(δ−1))
2β(1 − β)n , (4)

where β is a parameter chosen between (0, 1), P is a prior distribution, C is an upper bound on the
loss value. For the fine-tuning setting, P can be viewed as centered at the pretrained initialization, with
covariance matrix σ2 Idp.

Next, by Taylor’s expansion of ℓQ (see Lemma A.4 for the full result), we show that:

LQ(W) = L(W) + σ2

2 E
(x,y)∼D

[
Tr
[
∇2ℓ(fW (x), y)

]]
+ O(σ3), and

L̂Q(W) = L̂(W) + σ2

2n

n∑
i=1

Tr
[
∇2ℓ(fW (xi), yi)

]
+ O(σ3).

Since the Hessian operator is Lipschitz continuous by the assumption of Theorem 2.1, we can bound the gap
between the above two quantities using uniform convergence techniques (see Lemma A.5 for the result).

By plugging in the above results back to the PAC-Bayes bound of equation (4), after some calculation, we
can get that:

L(W) ≤ 1
β

L̂(W) + σ2(1 − β)α
2β

+ Cr2/2σ2

2β(1 − β)n + O

(
σ3 +

σ2√
p

√
n

+ log(δ−1)
n

)
.

In particular, the above uses the fact that the update weight parameters W are bounded within a ball of
radius r, and the derivation of the KL divergence can be found in Proposition A.2. By carefully choosing
both σ2 and β to minimize the above bound, we can obtain the result of equation (2). This summarizes the
high-level proof idea. The complete proof can be found in Appendix A.1.

3 Experiments

We now turn to the empirical validation of our proposed algorithm. Through extensive experiments, we
show that our algorithm can indeed improve generalization, and this improvement can be explained by the
regularization of the Hessian.

First, we apply our approach to fine-tune pretrained ResNets on various image classification datasets. We
find that NSO can regularize the Hessian of the loss surface much more significantly. We note reductions in
the trace and the largest eigenvalue of the loss Hessian by 15.8% and 9.7%, respectively. We notice that
NSO can outperform four previous sharpness-reducing methods by up to 2.4%. We control the amount of
computation in the experiments to allow for a fair comparison. We justify each step of the algorithm design
through ablation analysis.

Our method is compatible with alternative regularization techniques, including distance-based regulariza-
tion and data augmentation. Combining these methods with our approach leads to even more significant
improvement in both the Hessian regularization and the test performance.

Lastly, we show that our algorithm can also regularize the Hessian trace and improve the generalization
when applied to pretraining contrastive language-image models and fine-tuning language models on chain-
of-thought reasoning datasets.

3.1 Comparison with Sharpness-Aware Training

We now compare Algorithm 1 with five sharpness-reducing training methods, including Sharpness-Aware
Minimization (SAM) (Foret et al., 2021), Unnormalized SAM (USAM) (Agarwala & Dauphin, 2023), Adap-
tive SAM (ASAM) (Kwon et al., 2021), Random SAM (RSAM) (Liu et al., 2022), and Bayesian SAM
(BSAM) (Möllenhoff & Khan, 2023). During comparison, we control for the same amount of computation

7

Under review as submission to TMLR

by setting the number of sampled injections k = 1. Thus, all of these methods will cost twice the computa-
tion of SGD. For NSO, we sample perturbation from an isotropic Gaussian distribution and tune σ between
0.008, 0.01, and 0.012 using a validation split. For SAM, we tune the ℓ2 norm of the perturbation between
0.01, 0.02, and 0.05. We include SGD and Label Smoothing (LS) to calibrate these results, as they are both
widely used in practice. For each method, we run it with both momentum and weight decay. Since each
other training method involves its own set of hyper-parameters, we ensure they are carefully selected. The
details are tedious; See Appendix C for the range of values used for each hyper-parameter.

3.1.1 Empirical Findings

In Table 3, we report the comparison results between our approach with four baselines, including SGD,
SAM, unnormalized SAM (USAM), and adaptive SAM (ASAM).

We find that our approach reduces the trace of Hessian by 15.8% (on average). The largest eigenvalue of
the Hessian is also reduced by 9.7%. This finding is particular intriguing, since SAM has been motivated by
a min-max problem. As for test accuracy, our approach can provide up to 2.4% lift, with with an average
improvement of 1.2%. For ease of reading, we report the comparison with several remaining baselines in
Table 8, Appendix C. We also report the comparison of the largest eigenvalue in Table 9. All of these results
are averaged over five independent runs.

Table 3: Comparison between our approach (NSO) with SGD, sharpness-aware minimization (SAM), un-
normalized SAM (USAM), and adaptive SAM (ASAM). We fine-tune the ResNet-34 network on six image
classification datasets and report the test accuracy and the trace of Hessian using the model in the last epoch
of training. The results are averaged over five random seeds.

CIFAR-10 CIFAR-100 Aircrafts Caltech-256 Indoor Retina

Basic
Stats

Training 45,000 45,000 3,334 7,680 4,824 1,396
Validation 5,000 5,000 3,333 5,120 536 248
Test 10,000 10,000 3,333 5,120 1,340 250
Classes 10 100 100 256 67 5

Trace
(↓)

SGD 4128 ± 83 13188 ± 221 5471 ± 65 3674 ± 95 3629 ± 61 28607 ± 226
SAM 2429 ± 87 9227 ± 286 4499 ± 70 3285 ± 95 3159 ± 75 15444 ± 173
USAM 2352 ± 61 7382 ± 222 4298 ± 94 3174 ± 52 3072 ± 51 12068 ± 246
ASAM 2445 ± 63 9960 ± 313 4475 ± 69 3339 ± 78 3014 ± 53 14155 ± 136
NSO 1728 ± 79 5244 ± 89 3678 ± 83 2958 ± 77 2737 ± 90 10970 ± 146

Test Acc.
(↑)

SGD 96.1% ± 0.1 82.8% ± 0.1 60.5% ± 0.7 80.0% ± 0.1 76.7% ± 0.4 62.2% ± 0.8
SAM 97.0% ± 0.2 84.0% ± 0.4 62.3% ± 0.3 77.0% ± 0.4 77.2% ± 0.3 65.0% ± 0.3
USAM 96.9% ± 0.2 83.7% ± 0.2 61.9% ± 0.3 76.9% ± 0.2 76.7% ± 0.3 64.7% ± 0.1
ASAM 97.1% ± 0.1 84.2% ± 0.3 62.4% ± 0.5 77.3% ± 0.2 77.2% ± 0.2 65.2% ± 0.3
NSO 97.6% ± 0.4 84.9% ± 0.3 63.2% ± 0.3 78.1% ± 0.5 78.2% ± 0.3 67.0% ± 0.4

In Figure 3, we illustrate the measurements between SGD and our approach. Curiously, we find that the
trace of the Hessian also decreases for SGD, possibly due to implicit norm control of SGD. While both
reduce the trace of the Hessian, our approach indeed penalizes the Hessian more than SGD. Besides, the
generalization gap of the fine-tuned model is also lower by over 20%, and the test loss of the fine-tuned
model is lower as well.

Remark 3.1. In principle, the regularization effect of noise injection should be orthogonal to training meth-
ods such as momentum, weight decay, learning rate scheduling, etc. To this end, we performed comparisons
without using either momentum or weight decay. Our approach can again reduce the trace of the Hessian by
17.7% compared to the five sharpness-reducing methods on average, with up to 1.8% higher test accuracy.

3.1.2 Dissecting the Design of Algorithm 1

Next, we conduct ablation studies of two modifications in our approach: the use of negative perturbations,
and the sampling of multiple perturbations.

8

Under review as submission to TMLR

0 10 20 30
t

0.5

0.6

0.7

T
es

t
L

os
s

ResNet 34

SGD

NSO

0 10 20 30
t

2

4

6

8

T
ra

ce

×103 ResNet 34

SGD

NSO

0 10 20 30
t

0.0

0.3

0.6

0.9

1.2

G
en

er
al

iz
at

io
n

G
ap

ResNet 34

SGD

NSO

0 2 4 6
t

0.6

0.8

1.0

T
es

t
L

os
s

BERT Base

SGD

NSO

0 2 4 6
t

0.1

0.4

0.7

1.0

T
ra

ce

×104 BERT Base

SGD

NSO

0 2 4 6
t

0.0

0.2

0.4

0.6

0.8

G
en

er
al

iz
at

io
n

G
ap

BERT Base

SGD

NSO

Figure 3: Comparison between SGD and our approach (namely, NSO), for fine-tuning ResNet-34 and BERT-
Base, respectively, on an image and a text classification dataset. We report the test loss, the trace of the
Hessian, and the generalization gap for the trained model taken at the last epoch. For NSO, we sample
random perturbations using isotropic Gaussian distribution with standard deviation σ = 0.01 for both
settings.

Comparison between using or not using negative perturbation, after controlling computation
costs: Recall that our algorithm uses negative perturbations to zero out the first-order order in Taylor’s
expansion of F (W). We validate this by comparing the performance between using or not using the negative
perturbation. To ensure a fair comparison, we control for the same amount of computation costs. In
particular, for not using the negative perturbation, we sample two independent perturbations and take
their averaged stochastic gradient. Our finding is that using the negative perturbation achieves a 3.6%
improvement in test accuracy (on average), over not using the negative perturbation.

Effect of increasing the number of noise injection k: Recall that increasing the number of pertur-
bations k can reduce the variance of the estimated gradient. Thus, we consider increasing k in NSO and
compare that with a specific implementation of WP-SGD that uses the same amount of computation. We
find that using k = 2 perturbations improves the test accuracy by 1.2% on average compared to k = 1.
However, in our experiments, we also observe that increasing k over 3 does not bring any obvious improve-
ment. But this further increases the computation cost. It is conceivable that the stochastic gradients have
been relatively stabilized when k increases above a certain point.

Open discussion on noise variance scheduling as k increases: A natural question is whether one
can gradually increase or decrease the regularization strength by σ during training, similar to learning rate
scheduling. To facilitate this discussion, we test two schedules for adjusting σ. The first schedule is to linearly
increase σ to a specified value. The second schedule is to exponentially increase σ to reach a specified value.
In our preliminary experiments, we find that neither schedule offers significant performance improvements
over using a constant noise variance. However, it is plausible that one may be able to devise other types of
scheduling schemes, and we leave this for future work.

3.1.3 A Detailed Comparison between Our Approach and Sharpness-Aware Minimization (SAM)

Varying the radius of SAM: We provide a detailed comparison to SAM by varying the perturbation radius
of SAM (denoted as ρ). In order to illustrate this comparison, we vary ρ between 0.001, 0.002, 0.005, 0.01, 0.02,
and 0.05. We report both the validation accuracy and the trace of the Hessian, for SAM and unnormalized
SAM on an image classification dataset. We present the results in Table 4. We find that using a smaller
ρ (i.e., less than 0.01) results in worse results. Thus, in our experiments, we choose ρ in our comparison
between 0.01, 0.02, and 0.05.

9

Under review as submission to TMLR

Table 4: Results of varying the perturbation radius of SAM (denoted as ρ) and unnormalized SAM. We
report both the test accuracy and the trace of the Hessian based on the model trained at the last epoch. We
report both the averaged results and their standard deviations across five random seeds.

ρ 0.001 0.002 0.005 0.01 0.02 0.05

Trace
(↓)

SAM 4920 ± 158 4347 ± 166 4016 ± 80 3918 ± 94 3159 ± 75 3028 ± 78
Unnormalized SAM 4352 ± 169 3990 ± 70 3723 ± 87 3427 ± 57 3072 ± 51 3048 ± 22

Test Accuracy
(↑)

SAM 73.6 ± 0.2 74.4 ± 0.4 74.8 ± 0.6 75.2 ± 0.3 76.6 ± 0.5 73.8 ± 0.7
Unnormalized SAM 74.1 ± 0.1 74.1 ± 0.7 74.7 ± 0.5 74.6 ± 0.3 76.3 ± 0.3 73.1 ± 0.6

Varying the batch size of SAM: Next, we measure the sensitivity of our approach with respect to the
batch size. In particular, we vary the batch size between 8, 16, 32, and 64, in the setting of fine-tuning
ResNet-34 on two image classification datasets. Figure 4 illustrate the comparative results. To ensure a fair
comparison, we use the same number of gradient update steps for each batch size configuration. On the
indoor dataset, we find that our approach is less sensitive to different batch sizes compared to SAM. Across
all the batch sizes and both datasets, our approach consistently provides a stronger regularization of the
Hessian compared to SAM. The best results are achieved when the batch size is equal to 32. Thus, we use
this particular setting in our experiments.

8 16 32 64
Batch size

0.8

1.0

1.2

1.4

T
es

t
lo

ss

SAM

NSO

(a) Test loss, Indoor

8 16 32 64
Batch size

3

4

T
ra

ce

×103

SAM

NSO

(b) Hessian, Indoor

8 16 32 64
Batch size

1.0

1.4

1.8

2.2
T

es
t

lo
ss

SAM

NSO

(c) Test loss, Aircraft

8 16 32 64
Batch size

4

5

T
ra

ce

×103

SAM

NSO

(d) Hessian, Aircraft

Figure 4: Results of varying the batch size of our approach and SAM, ran on two image classification datasets
(indoor scene recognition and aircraft detection). We report the test loss and the trace of Hessian using the
model from the last epoch of training. The results are averaged over five random seeds.

3.1.4 Combining Our Approach with Alternative Regularization Methods

In this section, we show that the regularization of the Hessian can serve as a complement to existing, alter-
native regularization methods. To validate this, we combine our training approach with data augmentation,
and distance-based regularization (Gouk et al., 2022). In particular, the latter approach has been effective
for regularizing fine-tuning algorithms in practice (Gouk et al., 2022). For data augmentation, we use a
popular scheme that applies random horizontal flipping and random cropping sequentially to each training
image. For distance-based regularization, we penalize the ℓ2 distance between the fine-tuned model and the
pretrained initialization.

The results are shown in Figure 5. We find that combining our approach with each regularization method
further reduces the trace of the loss Hessian matrix by 13.6% on average. This further leads to 16.3% lower
test loss of the fine-tuned network, suggesting that our approach can be used on top of these preexisting
regularization methods.

3.2 Results for Pretraining Contrastive Language-Image Models

Next, we apply our approach to pretraining randomly-initialized models from scratch. We apply our al-
gorithm in place of SGD, to train contrastive language-image (CLIP) models (Radford et al., 2021) on a
dataset of image-caption pairs. In particular, we use the Conceptual Caption dataset (Sharma et al., 2018),
which contains 3.3 million image caption pairs. Each caption briefly describes the corresponding image, with

10

Under review as submission to TMLR

0 10 20 30
t

0.8

1.2

1.6

T
es

t
L

os
s

w/o dist. reg.

w/ dist. reg.

(a) Test loss, Distance-
based regularization

0 10 20 30
t

0.8

1.2

1.6

T
es

t
L

os
s

w/o data aug.

w/ data aug.

(b) Test loss, Data augmen-
tation

0 10 20 30
t

3

5

7

T
ra

ce

×103

w/o dist. reg.

w/ dist. reg.

(c) Hessian, Distance-based
regularization

0 10 20 30
t

3

5

7

T
ra

ce

×103

w/o data aug.

w/ data aug.

(d) Hessian, Data augmen-
tation

Figure 5: The regularization provided by noise injection can be combined with both distance-based regular-
ization and data augmentation.

ten tokens on average. We use a 12-layer Vision Transformer as the image encoder and a 12-layer GPT-2
transformer as the text encoder. We train the encoders jointly to maximize the cosine similarity between
the embedding of image caption pairs following the protocol of Radford et al. (2021).

Table 5 presents the results from comparing our approach with SAM (and SGD). For each algorithm, we
evaluate the trace of the loss Hessian and recall scores (of the top-10 scored images in retrieving images
from texts) on the development set. The results show that our approach can reduce the trace of the Hessian
by 17% compared to both SAM and SGD. In addition, our approach achieves 1.4% higher recall scores in
image retrieval.

Table 5: Results of comparing our approach with SAM and SGD, for pretraining CLIP on the Conceptual
Caption dataset (Radford et al., 2021). We report the recall score of image retrieval and the trace of Hessian
using the model in the last epoch of training. The results are averaged over five random seeds.

Trace (↓) λ1 (↓) Recall@10 (↑)

SGD 220 ± 24 41 ± 2.8 36.1% ± 0.3
SAM 144 ± 20 30 ± 1.1 36.9% ± 0.4

Our approach (NSO) 119 ± 34 22 ± 1.2 37.5% ± 0.3

3.3 Results for Chain-of-thought Fine-tuning

Lastly, we apply our algorithm to fine-tuning pretrained language models on chain-of-thought reasoning
datasets. The task is to generate the reasoning process, i.e., a chain of thoughts and the answer for a
given commonsense reasoning question Wei et al. (2022). We fine-tune pretrained GPT-2 models on two
question-answering datasets, namely Commonsense QA and Strategy QA (Ho et al., 2023).

Table 6 presents the results of applying our approach to chain-of-thought fine-tuning. In particular, we
evaluate the trace of the loss Hessian matrix, and the test accuracy of the fine-tuned model. The results
show that our approach can yield 25% lower trace values than SAM and SGD. In addition, we can obtain
5.3% higher test accuracy.

4 Convergence Analysis of Our Algorithm

We now study the convergence of Algorithm 1. Recall that our algorithm minimizes f(W) plus a regulariza-
tion term on the trace of Hessian. As is typical with regularization, the penalty is usually small relative to
the loss value. Thus, our goal is to find a stationary point of F (W) instead of f(W) because otherwise, we
would not have the desired Hessian regularization. We state the convergence to an ϵ-approximate stationary
point such that ∥∇F (W)∥ ≤ ϵ, for any small values of ϵ > 0. The analysis builds on standard assumptions
from the literature (Ghadimi & Lan, 2013; Duchi et al., 2015; Lan, 2020; Zhang, 2023).

11

Under review as submission to TMLR

Table 6: Results from comparing our approach for chain-of-thought fine-tuning on Commonsense QA and
Strategy QA datasets, ran on GPT-2 transformers. We report both the test accuracy and the trace of the
Hessian, using the trained model at the last epoch, and we provide the averaged results and their standard
deviations over five random seeds.

CommonsenseQA Trace (↓) λ1 (↓) Test Accuracy (↑)

SGD 372 ± 34 19 ± 0.8 27.7% ± 1.8
SAM 288 ± 15 15 ± 0.3 32.7% ± 1.4

Our approach (NSO) 208 ± 31 13 ± 0.6 39.2% ± 1.4

StrategyQA Trace (↓) λ1 (↓) Test Accuracy (↑)

SGD 294 ± 13 44 ± 1.5 68.9% ± 1.0
SAM 249 ± 33 42 ± 2.6 71.1% ± 1.2

Our approach (NSO) 193 ± 31 33 ± 1.8 75.2% ± 1.2

Assumption 4.1. Given a random seed z, let gz : Rd → Rd be a continuous function that gives an unbiased
estimate of the gradient: Ez [gz(W)] = ∇f(W), for any W ∈ Rd. Additionally, the variance is bounded in
the sense that Ez

[
∥gz(W) − ∇f(W)∥2

]
≤ σ2.

To help understand the above assumption, suppose there is a dataset of size n. Then, in SGD, the stochastic
gradient would be an unbiased estimate of the gradient of the entire dataset. As for the variance of the
gradient estimator, we note that as long as the ℓ2 norm of the gradient remains bounded, which will always
hold in practice, then the last equation of the above assumption will hold. We now state an upper bound
on the norm of the gradient of the returned solution.
Theorem 4.2. Let P be a distribution that is symmetric at zero. Let C and D be fixed, positive
constants. Let W0 ∈ Rd denote an arbitrary initialization. Suppose Assumption 4.1 holds. Suppose
F (W0) − minW ∈Rd F (W) ≤ D2, and f is Lipschitz-continuous. Let H(P) = E[∥U∥2]. There exists a
fixed learning rate η < C−1 such that if we run Algorithm 1 with ηi = η for all i, arbitrary number of
perturbations k, for T steps, the algorithm returns Wt, where t is a random integer between 1, 2, . . . , T , such
that in expectation over the randomness of Wt:

E
[
∥∇F (Wt)∥2

]
≤
√

2CD2(σ2 + C2H(P))
kT

+ 2CD2

T
, (5)

Recall that each iteration involves two sources of randomness stemming from gz and {U
(j)
i }k

j=1, respectively.
Let us define

δi = 1
2k

k∑
j=1

(
∇f
(
Wi + U

(j)
i

)
+ ∇f

(
Wi − U

(j)
i

))
− ∇F (Wi),

ξi = 1
2k

k∑
j=1

(
G

(j)
i − ∇f

(
Wi + U

(j)
i

)
− ∇f

(
Wi − U

(j)
i

))
,

for i = 0, . . . , T − 1. One can see that both δi and ξi have mean zero. The former is by the symmetry of P.
The latter is because gz is unbiased under Assumption 4.1. The following result gives their variance.
Lemma 4.3. In the setting of Theorem 4.2, for any i = 1, . . . , T , we have

E
[
∥ξi∥2

]
≤ σ2

k
and E

[
∥δi∥2

]
≤ C2H(P)

k
. (6)

The last step uses smoothness to show that ∥∇F (Wt)∥ keeps reducing. For details, see Appendix B.1. As
a remark, existing sharpness-reducing methods such as SAM (Foret et al., 2021) seem to suffer from issues
of oscillation (Bartlett et al., 2023) around the local basin, leaving a convergence analysis challenging to

12

Under review as submission to TMLR

achieve. By contrast, our approach can be analyzed with standard techniques from stochastic optimization
(Ghadimi & Lan, 2013).

Next, we construct an example to match the rate of the above analysis, essentially showing that the gradient
norm bounds are tight (under the current assumptions). We use an example from the work of Drori &
Shamir (2020). The difference here, in particular, is that we have to deal with the perturbations that have
been added to the objective. For t = 0, 1, . . . , d − 1, let et ∈ Rd be the basis vector in dimension d, whose
t-th coordinate is 1, while the remaining coordinates are all zero. Let f : Rd → R be defined as

f(W) = 1
2G

⟨W, e0⟩2 +
T −1∑
i=0

hi(⟨W, ei+1⟩), (7)

where hi is a piece-wise quadratic function parameterized by αi, defined as follow:

hi(x) =

Cα2
i

4 |x| ≤ αi,

− C
(

|x|−αi

)2

2 + Cα2
i

4 αi ≤ |x| ≤ 3
2 αi,

C
(

|x|−2αi

)2

2
3
2 αi ≤ |x| ≤ 2αi,

0 2αi ≤ |x|.

One can verify that for each piece above, ∇hi is C-Lipschitz. As a result, provided that G ≤ C−1, ∇f is
C-Lipschitz, based on the definition of f in equation (7).

The stochastic function F requires setting the perturbation distribution P. We set P by truncating an
isotropic Gaussian N(0, σ2 Idd) so that the i-th coordinate is at most 2−1αi−1, for i = 1, . . . , T . Additionally,
we set the initialization W0 to satisfy ⟨W0, ei⟩ = 0 for any i ≥ 1 while ⟨W0, e0⟩ ̸= 0. Finally, we choose the
gradient oracle to satisfy that the i-th step’s gradient noise ξi = ⟨ξi, ei+1⟩ei+1, which means that ξi is along
the direction of the basis vector ei+1. In particular, this implies only coordinate i + 1 is updated in step i,
as long as ⟨ξi, ei+1⟩ ≤ 2−1αi.
Theorem 4.4. Let the learning rates η0, . . . , ηT −1 be at most C−1. Let D > 0 be a fixed value. When
they either satisfy

∑T −1
i=0 ηi ≲

√
kT , or ηi = η < C−1 for any epoch i, then for the above construction, the

following must hold

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D

√
Cσ2

32k · T
. (8)

We remark that the above construction requires T ≤ d. Notice that this is purely for technical reasons. It
is an interesting question whether this condition can be removed or not. We briefly illustrate the key ideas
of the result. At step i, the gradient noise ξi plus the perturbation noise is less than 2−1αi + 2−1αi = αi at
coordinate i + 1 (by triangle inequality). Thus, h′

i(⟨Wt, ei+1⟩) = 0, which holds for all prior update steps.
This implies

∇f(Wi) = G−1⟨Wi, e0⟩.

Recall that F (W0) ≤ D2. This condition imposes how large the αi’s can be. In particular, we will set
αi = 2ηiσ/

√
k in the proof. Then, based on the definition of f(W0),

hi(⟨W0, ei+1⟩) = Cα2
i

4 , since ⟨W0 + U, ei+1⟩ ≤ αi.

In Lemma B.2, we then argue that the learning rates in this case must satisfy
∑T −1

i=0 ηi ≤ O(
√

T).

When the learning rate is fixed and at least Ω(T −1/2), we construct a piece-wise quadratic function (similar
to equation (7)), now with a fixed α. This is described in Lemma B.3. In this case, the gradient noise grows
by 1 − C−1η up to T steps. We then carefully set α to lower bound the norm of the gradient. Combining
these two cases, we conclude the proof of Theorem 4.4. For details, see Appendix B.2. As is typical in

13

Under review as submission to TMLR

lower-bound constructions, our result holds for a specific instance covering a particular learning rate range.
It may be interesting to examine a broader range of instances for future work.

The proof can also be extended to adaptive learning rate schedules. Notice that the above construction
holds for arbitrary learning rates defined as a function of previous iterates. Then, we set the width of each
function ht, αt, proportional to ηt > 0, for any ηt that may depend on previous iterates, as long as they
satisfy the constraint that

∑T −1
i=0 ηi ≤ O(

√
T).

We can show a similar lower bound for the momentum update rule. Recall this is defined as

Mi+1 = µMi − ηiGi, and Wi+1 = Wi + Mi+1, (9)

for i = 0, 1, . . . , T − 1, where Gi is the specific gradient at step i. To handle this case, we will need a more
fine-grained control on the gradient, so we consider a quadratic function as f(W) = C

2 ∥W∥2
. We leave the

result and its proof to Appendix B.3.

5 Dissecting Hessian: A Case Study in Overparameterized Matrix Sensing

Before proceeding, let us give an example to better understand the regularization effect of the Hessian.
We consider the matrix sensing problem, whose generalization properties are particularly well-understood
in the nonconvex factorization setting (Li et al., 2018). Let there be an unknown, rank-r positive semi-
definite matrix X⋆ = U⋆U⋆⊤ ∈ Rd×d. The input consists of a list of d by d Gaussian measurement matrix
A1, A2, . . . , An. The labels are given by yi = ⟨Ai, X⋆⟩, for every i = 1, 2, . . . n. The empirical loss is

L̂(W) = 1
2n

n∑
i=1

(
⟨Ai, WW ⊤⟩ − yi

)2
, where W ∈ Rd×d. (10)

When the loss reaches near zero (which implies the gradient also reaches near zero), it is known that multiple
local minimum solutions exist (Li et al., 2018), and the Hessian becomes

1
n

n∑
i=1

∥AiW∥2
F ≈ d ∥W∥2

F = d
∥∥WW ⊤∥∥

⋆
.

By prior results (Recht et al., 2010), among all X = WW ⊤ such that L̂(W) = 0, X⋆ has the lowest nuclear
norm. Thus, the regularization placed on L̂(W) is similar to nuclear norm regularization under interpolation.
We formalize this and state the proof below for completeness.
Proposition 5.1. In the setting above, for any W that satisfies L̂(W) = 0, the following must hold with
high probability:

Tr
[
∇2[L̂(U⋆)]

]
≤ Tr

[
∇2[L̂(W)]

]
+ O(n− 1

2). (11)

A similar statement holds if the trace operator is replaced by the largest eigenvalue of the Hessian in equation
(11). To see this, we look at the quadratic form of the Hessian to find the maximum eigenvalue. Let u be a
d2 dimension vector with length equal to one, ∥u∥ = 1. One can derive that:

λ1(∇2L̂(W)) = max
u∈Rd2 :∥u∥=1

u⊤∇2L̂(W)u = max
u∈Rd2 :∥u∥=1

1
n

n∑
i=1

⟨AiW, u⟩2 ≥ 1
d2n

n∑
i=1

∥AiW∥2
F .

The last step is by setting u = d−11d2 , whose length is equal to one. The detailed proof of Proposition 5.1
and derivations for the above step are deferred in Appendix A.2.

Simulation: We conduct a numerical simulation to verify the above result. We generate a low-rank matrix
U⋆ ∈ Rd×r from the isotropic Gaussian. We set d = 100 and r = 5. Then, we test three algorithms: gradient
descent (GD), weight-perturbed gradient descent (WP-GD), and Algorithm 1 (NSO). We use an initialization
U0 ∈ Rd×d where each matrix entry is sampled independently from N (0, 1) (the standard Gaussian).

14

Under review as submission to TMLR

Recall that WP-GD and NSO require setting σ. We choose σ between 0.001, 0.002, 0.004, 0.008, 0.0016. NSO
additionally requires setting the number of sampled perturbations k. We set k = 1 for faster computation.

Our findings are illustrated in Figure 6. We can see that all three algorithms can reduce the training MSE
to near zero, as shown in Figure 6a. Regarding the validation loss, GD suffers from overfitting the training
data, while both WP GD and NSO can generalize to the validation samples. Moreover, NSO manages to
reduce this validation loss further.

0 1000 2000 3000 4000 5000

Number of epochs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

T
ra

in
in

g
M

S
E

GD

NSO (k = 1)

WP GD

(a) Training loss

0 1000 2000 3000 4000 5000

Number of epochs

10−3

10−2

10−1

100

V
al

id
at

io
n

M
S
E

GD

NSO (k = 1)

WP GD

(b) Validation loss

Figure 6: Comparing the training and validation losses between GD, NSO, and WP-GD.

6 Discussions and Related Work

As mentioned in Section 1, the use of noise injection for training neural networks has been studied since
very early machine learning research (Hinton & Van Camp, 1993; An, 1996). We now elaborate more on
the findings from this literature. Graves (2011) develop a variational inference approach to test different
priors and posteriors (e.g., Delta, Laplace, Uniform, Gaussian) on recurrent neural networks. Camuto et al.
(2020) propose a layer-wise regularization scheme motivated by adaptation patterns of weights through
deeper layers. Bisla et al. (2022) conduct an extensive empirical study to document the connection between
sharpness and generalization in training neural networks. Orvieto et al. (2023) analyze Taylor’s expansion of
the stochastic objective after noise injection, examining the induced regularization in various neural network
training settings, and find that layer-wise perturbation can improve generalization and test accuracy.

Besides, there is a line of work on the connection between Hessian and sharpness through studying the
Edge of Stability in gradient descent dynamics (Cohen et al., 2021). In particular, this edge of stability
regime refers to scenarios where the learning rate goes out of bounds beyond the Lipschitz parameter of the
function, which is inverse to the largest eigenvalue of the Hessian matrix. Long & Bartlett (2023) identify
the edge of stability regime for the SAM algorithm, highlighting differences between SAM and gradient
descent in this regime. Closer to our work, Agarwala & Dauphin (2023) presents a detailed study of the
gradient dynamics of SAM, documenting various respects of this algorithm. They first analyze the full batch
gradient descent with unnormalized SAM in a quadratic regression model. This analysis suggests that at
initialization, full batch SAM presents limited suppression of the largest eigenvalue of the Hessian matrix.
Besides, they also show that as the batch size decreases, the regularization of SAM becomes stronger. This
work underscores the intricate dynamics of SAM due to its connection to the min-max problem, which is
computationally intractable (Daskalakis et al., 2021). Dauphin et al. (2024) provide an in-depth comparison
between SAM and weight noise by examining the structure of the Hessian during training. We note that our
results in Section 2.1, which show that weight noise remains ineffective (for fine-tuning), are consistent with
the findings of this work.

Additionally, Gaussian smoothing has been used to estimate gradients in zeroth-order optimization (Nesterov
& Spokoiny, 2017). Besides, recent research has investigated the query complexity of finding stationary points
of nonconvex functions (Carmon et al., 2020; Arjevani et al., 2023). These results provide a fine-grained
characterization of the iteration complexity of iterative methods under different orders of gradient oracles.

15

Under review as submission to TMLR

Lastly, the findings from our work suggest several avenues that seem ripe for future work. For instance,
can recent advancements in optimization be used to design better noise injection algorithms, for instance,
with faster convergence rates? To better understand the learning of neural networks, it seems that we need
to study the learning dynamics of the training algorithm. Can we better understand the effect of noise
injection on the Hessian during training? In addition, the geometric properties of large neural networks such
as GPT models still remain poorly understood. Our work highlights the need for more accurate empirical
measurements to better understand their working mechanisms.

7 Conclusion

This paper examines the regularization and generalization effects of noise injection for training neural net-
works. The study begins by noting that a straightforward implementation of injecting noise into weight
matrices (of a neural network) before computing the gradient in SGD does not perform well in practice.
Thus, an alternative, two-point noise injection scheme is proposed, and is shown to be effective through
extensive experiments. In particular, this new algorithm can be used to regularize the Hessian and improve
generalization. The results are tested on fine-tuning, pretraining, and instruction tuning. As a complement,
a PAC-Bayes generalization bound is provided to support the rationale of this approach. Finally, this paper
also presents a detailed convergence analysis of the proposed algorithm.

References
Atish Agarwala and Yann Dauphin. Sam operates far from home: eigenvalue regularization as a dynamical

phenomenon. In International Conference on Machine Learning, pp. 152–168. PMLR, 2023. 7, 15

Pierre Alquier. User-friendly introduction to pac-bayes bounds. arXiv preprint arXiv:2110.11216, 2021. 6

Guozhong An. The effects of adding noise during backpropagation training on a generalization performance.
Neural computation, 8(3):643–674, 1996. 2, 15

Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware minimization.
In ICML, 2022. 1

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth. Lower
bounds for non-convex stochastic optimization. Mathematical Programming, 199(1):165–214, 2023. 15

Francis Bach. Learning theory from first principles. Online version, 2021. 26

Peter L Bartlett, Philip M Long, and Olivier Bousquet. The dynamics of sharpness-aware minimization:
Bouncing across ravines and drifting towards wide minima. Journal of Machine Learning Research, 24
(316):1–36, 2023. 1, 12

Devansh Bisla, Jing Wang, and Anna Choromanska. Low-pass filtering sgd for recovering flat optima in the
deep learning optimization landscape. In International Conference on Artificial Intelligence and Statistics,
pp. 8299–8339. PMLR, 2022. 15

Alexander Camuto, Matthew Willetts, Umut Simsekli, Stephen J Roberts, and Chris C Holmes. Explicit
regularisation in gaussian noise injections. Advances in Neural Information Processing Systems, 33:16603–
16614, 2020. 15

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary points
i. Mathematical Programming, 184(1-2):71–120, 2020. 3, 15

Olivier Catoni. Pac-bayesian supervised classification: the thermodynamics of statistical learning. arXiv
preprint arXiv:0712.0248, 2007. 2, 6

Jeremy M Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on
neural networks typically occurs at the edge of stability. ICLR, 2021. 15

16

Under review as submission to TMLR

Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis. The complexity of constrained min-
max optimization. In Symposium on Theory of Computing, 2021. 15

Yann N Dauphin, Atish Agarwala, and Hossein Mobahi. Neglected hessian component explains mysteries in
sharpness regularization. arXiv preprint arXiv:2401.10809, 2024. 2, 15

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for deep
nets. In International Conference on Machine Learning, pp. 1019–1028. PMLR, 2017. 1

Yoel Drori and Ohad Shamir. The complexity of finding stationary points with stochastic gradient descent.
In ICML, 2020. 3, 13

John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for zero-order
convex optimization: The power of two function evaluations. IEEE Transactions on Information Theory,
2015. 2, 5, 11

Gintare Karolina Dziugaite and Daniel Roy. Computing nonvacuous generalization bounds for deep (stochas-
tic) neural networks with many more parameters than training data. UAI, 2017. 2

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for
efficiently improving generalization. ICLR, 2021. 1, 2, 3, 7, 12

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013. 3, 11, 13, 26

Henry Gouk, Timothy M Hospedales, and Massimiliano Pontil. Distance-based regularisation of deep net-
works for fine-tuning. In Ninth International Conference on Learning Representations 2021, 2022. 3,
10

Alex Graves. Practical variational inference for neural networks. Advances in neural information processing
systems, 24, 2011. 2, 15

Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007. 4

Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimizing the description
length of the weights. In Proceedings of the sixth annual conference on Computational learning theory, pp.
5–13, 1993. 2, 15

Namgyu Ho, Laura Schmid, and Se-Young Yun. Large language models are reasoning teachers. ACL, 2023.
11

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42, 1997. 1

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Averaging
weights leads to wider optima and better generalization. UAI, 2018. 1

Haotian Ju, Dongyue Li, and Hongyang R Zhang. Robust fine-tuning of deep neural networks with hessian-
based generalization guarantees. ICML, 2022. 2

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.
On large-batch training for deep learning: Generalization gap and sharp minima. ICLR, 2017. 1

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-aware
minimization for scale-invariant learning of deep neural networks. In ICML, 2021. 7

Guanghui Lan. First-order and stochastic optimization methods for machine learning, volume 1. Springer,
2020. 3, 11

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized matrix
sensing and neural networks with quadratic activations. In Conference On Learning Theory, pp. 2–47.
PMLR, 2018. 14

17

Under review as submission to TMLR

Yong Liu, Siqi Mai, Minhao Cheng, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Random sharpness-
aware minimization. Advances in Neural Information Processing Systems, 2022. 7

Philip M Long and Peter L Bartlett. Sharpness-aware minimization and the edge of stability. arXiv preprint
arXiv:2309.12488, 2023. 15

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained visual
classification of aircraft. arXiv preprint arXiv:1306.5151, 2013. 4

David McAllester. A pac-bayesian tutorial with a dropout bound. arXiv preprint arXiv:1307.2118, 2013. 2,
6, 20

Thomas Möllenhoff and Mohammad Emtiyaz Khan. Sam as an optimal relaxation of bayes. In International
Conference on Learning Representations, 2023. 7

Vaishnavh Nagarajan and J Zico Kolter. Deterministic pac-bayesian generalization bounds for deep networks
via generalizing noise-resilience. ICLR, 2020. 2

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions. Foundations
of Computational Mathematics, 17:527–566, 2017. 15

Antonio Orvieto, Anant Raj, Hans Kersting, and Francis Bach. Explicit regularization in overparametrized
models via noise injection. AISTATS, 2023. 2, 15

Samiksha Pachade, Prasanna Porwal, Dhanshree Thulkar, Manesh Kokare, Girish Deshmukh, Vivek Sa-
hasrabuddhe, Luca Giancardo, Gwenolé Quellec, and Fabrice Mériaudeau. Retinal fundus multi-disease
image dataset (rfmid): A dataset for multi-disease detection research. Data, 6(2):14, 2021. 4

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In ICML, 2021. 10, 11

Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization. SIAM review, 52(3):471–501, 2010. 14, 24

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014. 6

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned, hyper-
nymed, image alt-text dataset for automatic image captioning. In ACL, 2018. 10

Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In International conference on
computational learning theory, pp. 545–560. Springer, 2005. 5

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Normalized flat minima: Exploring scale invariant
definition of flat minima for neural networks using pac-bayesian analysis. In International Conference on
Machine Learning, pp. 9636–9647. PMLR, 2020. 2

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cambridge
University Press, 2019. 23, 24

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824–24837, 2022. 11

Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How does sharpness-aware minimization minimize sharpness?
ICLR, 2023. 1, 3

18

Under review as submission to TMLR

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig Schmidt. Model soups:
averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. In
International conference on machine learning, pp. 23965–23998. PMLR, 2022. 1, 4

Tong Zhang. Mathematical analysis of machine learning algorithms. Cambridge University Press, 2023. 3,
11

19

Under review as submission to TMLR

A Omitted Proofs from Section 2

Notations: We state a few standard notations first. Given two matrices X, Y having the same dimension,
let ⟨X, Y ⟩ = Tr[X⊤Y] denote the matrix inner product of X and Y . Let ∥X∥2 denote the spectral norm
(largest singular value) of X, and let ∥X∥F denote the Frobenius norm of X. We use the big-O notation
f(x) = O(g(x)) to indicate that there exists a fixed constant C independent of x such that f(x) ≤ C · g(x)
for large enough values of x.

A.1 Proof of Hessian-based PAC-Bayes Bound

We will use the following PAC-Bayes bound. For reference, see, e.g., Theorem 2, McAllester (2013).
Theorem A.1. Suppose the loss function ℓ(fW (x), y) lies in a bounded range [0, C] given any x ∈ X with
label y. For any β ∈ (0, 1) and δ ∈ (0, 1), with probability at least 1 − δ, the following holds:

LQ(W) ≤ 1
β

L̂Q(W) +
C
(
KL(Q||P) + log 1

δ

)
2β(1 − β)n . (12)

This result provides flexibility in setting β. Our results will set β to balance the perturbation error of Q and
the KL divergence between P and Q. We will need the KL divergence between the prior P and the posterior
Q in the PAC-Bayesian analysis. This is stated in the following result.
Proposition A.2. Suppose P = N(X, Σ) and Q = N(Y, Σ) are both Gaussian distributions with mean
vectors given by X ∈ Rp, Y ∈ Rp, and population covariance matrix Σ ∈ Rp×p. The KL divergence between
P and Q is equal to

KL(Q||P) = 1
2(X − Y)⊤Σ−1(X − Y).

Specifically, if Σ = σ2 Idp, then the above simplifies to

KL(Q||P) = ∥X − Y ∥2
2

2σ2 .

We will use Taylor’s expansion on the perturbed loss. This is stated precisely as follows.
Claim A.3. Let fW be twice-differentiable, parameterized by weight vector W ∈ Rp. Let U ∈ Rp be another
vector with dimension p. For any W and U , the following identity holds

ℓ(fW +U (x), y) = ℓ(fW (x), y) + U⊤∇ℓ(fW (x), y) + U⊤[∇2ℓ(fW (x), y)]U + R2(ℓ(fW (x), y)),

where R2(ℓ(fW (x), y))) is a second-order error term in Taylor’s expansion.

Proof. The proof follows by the fact that ℓ ◦ fW is twice-differentiable. From the mean value theorem, let
η ∈ Rp be a vector that has the same dimension as W and U . There must exist an η between W and U + W
such that the following equality holds:

R2(ℓ(fW (x), y)) = U⊤
(

∇2[ℓ(fη(x), y)] − ∇2[ℓ(fW (x), y)]
)

U.

This completes the proof of the claim.

Based on the above, we provide Taylor’s expansion of the gap between ℓQ and ℓ.
Lemma A.4. In the setting of Theorem 2.1, suppose each parameter is perturbed by an independent noise
drawn from N(0, σ2). Let ℓQ(fW (x), y) be the perturbed loss with noise perturbation injection vector on W .
There exist some fixed value C1 that do not grow with n and 1/δ such that∣∣∣∣ℓQ(fW (x), y) − ℓ(fW (x), y) − 1

2σ2 Tr
[
∇2[ℓ(fW (x), y)]

]∣∣∣∣ ≤ C1σ3.

20

Under review as submission to TMLR

Proof. We take the expectation over U for both sides of the equation in Claim A.3. The result becomes

E
U

[ℓ(fW +U (x), y)] = E
U

[
ℓ(fW (x), y) + U⊤∇ℓ(fW (x), y) + U⊤∇2[ℓ(fW (x), y)]U + R2(ℓ(fW (x), y))

]
.

Then, we use the perturbation distribution Q on EU [ℓ(fW +U (x), y)], and get

ℓQ(fW (x), y) = E
U

[ℓ(fW (x), y)] + E
U

[
U⊤∇ℓ(fW (x), y)

]
+ E

U

[
U⊤∇2[ℓ(fW (x), y)]U

]
+ E

U
[R2(ℓ(fW (x), y))] .

Since E[U] = 0, the first-order term will be zero in expectation. The second-order term becomes equal to

E
U

[
U⊤[∇2ℓ(fW (x), y)]U

]
= σ2 Tr

[
∇2[ℓ(fW (x), y)]

]
. (13)

The expectation of the error term R2(ℓ(fW (x), y)) be

E
U

[R2(ℓ(fW (x), y))] = E
U

[
U⊤(∇2[ℓ(fη(x), y)] − ∇2[ℓ(fW (x), y)]

)
U
]

≤ E
U

[
∥U∥2

2 ·
∥∥∇2[ℓ(fη(x), y)] − ∇2[ℓ(fW (x), y)]

∥∥
F

]
≲ E

U

[
∥U∥2

2 · C1∥U∥2

]
≲ C1σ3.

Thus, the proof is complete.

The last piece we will need is the uniform convergence of the Hessian operator. The result uses the fact that
the Hessian matrix is Lipschitz continuous.
Lemma A.5. In the setting of Theorem 2.1, there exist some fixed values C2, C3 that do not grow with
n and 1/δ, such that with probability at least 1 − δ for any δ > 0, over the randomness of the n training
examples, we have∥∥∥∥∥ 1

n

n∑
i=1

∇2[ℓ(fW (xi), yi)] − E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥
F

≤
C2
√

log(C3n/δ)√
n

. (14)

The proof will be deferred to Section A.1.2. With these results ready, we will now state the proof of the
Hessian-based generalization bound.

A.1.1 Proof of Theorem 2.1

Proof of Theorem 2.1. First, we separate the gap of L(W) and 1
β L̂(W) into three parts:

L(W) − 1
β

L̂(W) = L(W) − LQ(W) + LQ(W) − 1
β

L̂Q(W) + 1
β

L̂Q(W) − 1
β

L̂(W).

By Lemma A.4, we can bound the difference between L(W) and LQ(W) by the Hessian trace plus an error:

L(W) − 1
β

L̂(W) ≤ − E
(x,y)∼D

[
σ2

2 Tr
[
∇2[ℓ(fW (x), y)]

]]
+ C1σ3 +

(
LQ(W) − 1

β
L̂Q(W)

)
+ 1

β

(1
n

n∑
i=1

σ2

2 Tr
[
∇2[ℓ(fW (xi), yi)]

]
+ C1σ3

)
.

After re-arranging the terms, we can get the following:

L(W) − 1
β

L̂(W) ≤ − E
(x,y)∼D

[
σ2

2 Tr
[
∇2[ℓ(fW (x), y)]

]]
+ 1

nβ

n∑
i=1

σ2

2 Tr
[
∇2[ℓ(fW (xi), yi)]

]
︸ ︷︷ ︸

E1

+ 1 + β

β
C1σ3 + LQ(W) − 1

β
L̂Q(W)︸ ︷︷ ︸

E2

. (15)

21

Under review as submission to TMLR

We will examine E1 by separating it into two parts:

E1 = 1
β

(
1
n

n∑
i=1

σ2

2 Tr
[
∇2[ℓ(fŴ (xi), yi)]

]
− E

(x,y)∼D

[
σ2

2 Tr
[
∇2[ℓ(fW (x), y)]

]])
(16)

+ 1 − β

β

σ2

2 E
(x,y)∼D

[
Tr
[
∇2ℓ(fW (x), y)

]]
. (17)

We can use the uniform convergence result of Lemma A.5 to bound equation (16), leading to:

σ2

2β

(
1
n

n∑
i=1

Tr
[
∇2ℓ(fW (xi), yi)

]
− E

(x,y)∼D

[
Tr
[
∇2ℓ(fW (x), y))

]])

≤ σ2

2β
· √

p ·

∥∥∥∥∥ 1
n

n∑
i=1

Tr
[
∇2[ℓ(fW (xi), yi)]

]
− E

(x,y)∼D

[
Tr
[
∇2[ℓ(fW (x), y)]

]]∥∥∥∥∥
F

(by Cauchy-Schwarz)

≤
σ2√

p · C2
√

log(C3n/δ)
2β

√
n

. (18)

As for equation (17), we recall that

α := max
(x,y)∼D

Tr
[
∇2ℓ(fW (x), y)

]
.

Combined with equation (18), we have shown that

E1 ≤
σ2√

p · C2
√

log(C3n/δ)
2β

√
n

+ 1 − β

β

σ2

2 · α. (19)

As for E2, we will use the PAC-Bayes bound of Theorem A.1. In particular, we set the prior distribution P
as the distribution of U and we set the posterior distribution Q as the distribution of W + U . Thus,

E2 ≤
C
(
KL(Q||P) + log 1

δ

)
2β(1 − β)n ≤

C
(

∥W ∥2
2

2σ2 + log 1
δ

)
2β(1 − β)n ≤

C(r2

2σ2 + log δ−1)
2β(1 − β)n . (20)

The last step is because ∥W∥2 ≤ r by assumption of the hypothesis space. Combining equations (15), (19),
(20), we claim that with probability at least 1 − 2δ, the following must be true:

L(W) − 1
β

L̂(W) ≤
σ2√

p · C2
√

log(C3n/δ)
2β

√
n

+ 1 − β

β

σ2

2 α + 1 + β

β
C1σ3 +

C(r2

2σ2 + log 1
δ)

2β(1 − β)n . (21)

Thus, we will now choose σ and β ∈ (0, 1) to minimize the term above. In particular, we will set σ such
that:

σ2 = r

1 − β

√
C

αn
. (22)

By plugging in this setting to equation (21) and re-arranging terms, the gap between L(W) and L̂(W)/β
becomes:

L(W) − 1
β

L̂(W) ≤ 1
β

√
Cαr2

n
+ C2

√
2p log(C3n/δ)

2β
√

n
σ2 + 1 + β

β
C1σ3 + C

2β(1 − β)n log 1
δ

.

Let β be a fixed value close to 1 and independent of N and δ−1, and let ϵ = (1 − β)/β. We get

L(W) ≤ (1 + ϵ)L̂(W) + (1 + ϵ)
√

Cαr2

n
+ ξ, where

ξ = C2
√

2p log(C3n/δ)
2β

√
n

σ2 +
(

1 + 1
β

)
C1σ3 + C

2β(1 − β)n log 1
δ

.

Notice that ξ is of order O(n− 3
4 + n− 3

4 + log(δ−1)n−1) ≤ O(log(δ−1)n− 3
4). Therefore, we have finished the

proof of equation (2).

22

Under review as submission to TMLR

Discussions: In the case that f is a strongly convex function, the lowest eigenvalue of the Hessian is
bounded from below. Once the algorithm reaches the global minimizer, our result from Theorem 2 can be
used to provide a generalization bound based on the trace of the Hessian. Notice that the noise injection
will add some bias to this minimizer, leading to a sub-optimal empirical loss. To remedy this issue, one can
place the regularization of the Hessian as a constraint, similar to how ℓ2-regularization can be implemented
as a constraint.

A.1.2 Proof of Lemma A.5

In this section, we provide the proof of Lemma A.5, which shows the uniform convergence of the loss Hessian.

Proof of Lemma A.5. Let C, ϵ > 0, and let S = {W ∈ Rp : ∥W∥2 ≤ C}. There exists an ϵ-cover of S

with respect to the ℓ2-norm at most max
((3C

ϵ

)p
, 1
)

elements; see, e.g., Example 5.8 (Wainwright, 2019).
Let T ⊆ S denote the set of this cover. Recall that the Hessian ∇2[ℓ(fW (x), y)] is C1-Lipschitz for all
(W + U) ∈ S, W ∈ S. Then we have∥∥∇2[ℓ(fW +U (x), y)] − ∇2[ℓ(fW (x), y)]

∥∥
F

≤ C1 ∥U∥2 .

For parameters δ, ϵ > 0, let N be the ϵ-cover of S with respect to the ℓ2-norm. Define the event

E =
{

∀W ∈ T,

∥∥∥∥∥ 1
n

n∑
i=1

∇2[ℓ(fW (xi), yi)] − E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥
F

≤ δ
}

.

By the matrix Bernstein inequality, we have

Pr[E] ≥ 1 − 4 · |N | · p · exp
(

− nδ2

2α2

)
.

Next, for any W ∈ S, we can pick some W + U ∈ T such that ∥U∥2 ≤ ϵ. We have∥∥∥∥ E
(x,y)∼D

[
∇2[ℓ(fW +U (x), y)]

]
− E

(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥
F

≤ C1 ∥U∥2 ≤ C1ϵ∥∥∥∥∥∥ 1
n

n∑
j=1

∇2[ℓ(fW +U (xj), yj)] − 1
n

n∑
j=1

∇2[ℓ(fW (xj), yj)]

∥∥∥∥∥∥
F

≤ C1 ∥U∥2 ≤ C1ϵ.

Therefore, for any W ∈ S, we obtain:∥∥∥∥∥∥ 1
n

n∑
j=1

∇2[ℓ(fW (xj), yj)] − E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥∥
F

≤ 2C1ϵ + δ.

We will also set the value of δ and ϵ. First, set ϵ = δ/(2C1) so that conditional on E,∥∥∥∥∥∥ 1
n

n∑
j=1

∇2[ℓ(fW (xj), yj)] − E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥∥
F

≤ 2δ.

The event E happens with a probability of at least:

1 − 4|T |p · exp
(

− nδ2

2α2

)
= 1 − 4p · exp

(
log |T | − nδ2

2α2

)
.

We have log |T | ≤ p log(3B/ϵ) = p log(6CC1/δ). If we set

δ =
√

4pα2 log(3τCC1n/α)
n

23

Under review as submission to TMLR

so that log(3τCC1n/α) ≥ 1 (because n ≥ eα
3C1

and τ ≥ 1), then we get

p log(6CC1/δ) − nδ2/(2α2) =p log
(

6CC1
√

n√
4pα2 log(3τCC1n/α)

)
− 2p log (3τCC1n/α)

=p log
(

3CC1
√

n

α
√

p log(3τCC1n/α)

)
− 2p log (3τCC1n/α)

≤p log (3τCC1n/α) − 2p log (3τCC1n/α) (τ ≥ 1, log(3τCC1n/α) ≥ 1)
= − p log (3τCC1n/α) ≤ −p log(eτ). (3CC1n/α ≥ e)

Therefore, with a probability greater than
1 − 4|N |p · exp(−nδ2/(2α2)) ≥ 1 − 4p(eτ)−p,

the following estimate holds:∥∥∥∥∥∥ 1
n

n∑
j=1

∇2[ℓ(fW (xj), yj)] − E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥∥
F

≤
√

16pα2 log(3τCC1n/α)
n

.

Denote δ′ = 4p(eτ)−p, C2 = 4α
√

p, and C3 = 12pCC1/(eα). With probability greater than 1 − δ′, the final
result is: ∥∥∥∥∥ 1

n

n∑
i=1

∇2[ℓ(fW (xi), yi)] − E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥
F

≤ C2

√
log(C3n/δ′)

n
.

This completes the proof of Lemma A.5.

A.2 Proof of Proposition 5.1

Proof of Proposition 5.1. We can calculate the gradient as

∇L̂(W) = 1
n

n∑
i=1

(⟨Ai, WW ⊤⟩ − yi)AiW. (23)

For a particular entry Wj,k of W , for any 1 ≤ j, k ≤ d, the derivative of the above gradient with respect to
Wj,k is

1
n

n∑
i=1

(
[AiW]j,kAiW +

(
⟨Ai, WW ⊤⟩ − yi

)∂(AiW)
∂Wj,k

)
. (24)

When L̂(W) is zero, the second term of equation (24) above must be zero, because ⟨Ai, WW ⊤⟩ is equal to
yi, for any i = 1, . . . , n.

Now, we use the assumption that Ai is a random Gaussian matrix, in which every entry is drawn from a
normal distribution with mean zero and variance one. Notice that the expectation of ∥AiW∥2

F satisfies:

E
[
∥AiW∥2

F

]
= E

[
Tr
[
W ⊤A⊤

i AiW
]]

= Tr
[
W ⊤(d · Idd×d)W ⊤] = d · Tr

[
W ⊤W

]
= d ∥W∥2

F .

Thus, by concentration inequality for χ2 random variables (e.g., Wainwright (2019, equation (2.19))), the
following holds for any 0 < ϵ < 1,

Pr
[∣∣∣∣∣ 1n

n∑
i=1

∥AiW∥2
F − d ∥W∥2

F

∣∣∣∣∣ ≥ ϵd ∥W∥2
F

]
≤ 2 exp

(
−nϵ2

8

)
. (25)

This implies that ϵ must be smaller than O(n−1/2) with high probability. As a result, the average of ∥AiW∥2
F

must be d ∥W∥2
F plus some deviation error that scales with n−1/2 times the expectation.

By Theorem 3.2, Recht et al. (2010), the minimum Frobenius norm (∥W∥2
F

) solution that satisfies L̂(W) = 0
(for Gaussian random matrices) is precisely U⋆. Thus, we conclude that equation (11) holds.

24

Under review as submission to TMLR

B Omitted Proofs from Section 4

We say that f is C-Lipschitz continuous, if for any W1 ∈ Rd and W2 ∈ Rd, we have ∥∇f(W2) − ∇f(W1)∥ ≤
C ∥W2 − W1∥ . A corollary is that ∇F (W) is also C-Lipschitz.

B.1 Proof of Theorem 4.2

First, let us show that ∇F is C-Lipschitz. To see this, we apply the Lipschitz condition of the gradient inside
the expectation of F (W). For any W1, W2 ∈ Rd, by definition,

∥∇F (W1) − ∇F (W2)∥ =
∥∥∥∥∇ E

U∼P
[f(W1 + U)] − ∇ E

U∼P
[f(W2 + U)]

∥∥∥∥
=
∥∥∥∥ E

U∼P
[∇f(W1 + U) − ∇f(W2 + U)]

∥∥∥∥
≤ E

U∼P
[∥∇f(W1 + U) − ∇f(W2 + U)∥] ≤ C ∥W1 − W2∥ .

Next, we provide the proof for bounding the variance of δi and ξi for i = 0, 1, . . . , T − 1.

Proof. First, we can see that

E
U1

i
,...,Uk

i

[
∥δi∥2

]
= E

U1
i

,...,Uk
i

∥∥∥∥∥∥ 1

2k

k∑
j=1

(
∇f(Wi + U j

i) + ∇f(Wi − U j
i) − 2∇F (Wi)

)∥∥∥∥∥∥
2

= 1
k2

k∑
j=1

E
Uj

i

[∥∥∥∥1
2

(
∇f(Wi + U j

i) + ∇f(Wi − U j
i) − 2∇F (Wi)

)∥∥∥∥2
]

(26)

= 1
k

E
U1

i

[∥∥∥∥1
2

(
∇f(Wi + U1

i) + ∇f(Wi − U1
i)
)

− ∇F (Wi)
∥∥∥∥2
]

(27)

where in the second line we use that U j1
i and U j2

i are independent when j1 ̸= j2, in the last line we use fact
that U1

i , . . . , Uk
i are identically distributed. In the second step, we use the fact that for two independent

random variables U, V , and any continuous functions h(U), g(V), h(U) and g(V) are still independent (recall
that f is continuous since it is twice-differentiable). We include a short proof of this fact for completeness.
If U and V are independent, we have Pr[U ∈ A, V ∈ B] = Pr[U ∈ A] · Pr[V ∈ B], for any A, B ∈ Borel(R).
Thus, if h and g are continuous functions, we obtain

Pr[h(U) ∈ A, g(V) ∈ B] = Pr[U ∈ h−1(A), V ∈ g−1(B)]
= Pr[U ∈ h−1(A)] · Pr[V ∈ g−1(B)] = Pr[h(U) ∈ A] · Pr[g(V) ∈ B].

Thus, we have shown that

E
[
∥δi∥2

]
= 1

k
E

U∼P

[∥∥∥∥1
2

(
∇f(Wi + U) + f(Wi − U)

)
− ∇F (Wi)

∥∥∥∥2
]

. (28)

Next, we deal with the variance of the two-point stochastic gradient. We will show that

E
U

[∥∥∥∥1
2

(
∇f(W + U) + ∇f(W − U)

)
− ∇F (W)

∥∥∥∥2
]

≤ C2H(P). (29)

25

Under review as submission to TMLR

We mainly use the Lipschitz continuity of the gradient of F . The left-hand side of equation (29) is equal to

E
U

[∥∥∥∥1
2

(
∇f(W + U) − ∇F (W)

)
+ 1

2

(
∇f(W − U) − ∇F (W)

)∥∥∥∥2
]

≤E
U

[
1
2 ∥∇f(W + U) − ∇F (W)∥2 + 1

2 ∥∇f(W − U) − ∇F (W)∥2
]

(by Cauchy-Schwartz)

=1
2 E

U

[
∥∇f(W + U) − ∇F (W)∥2

]
(by symmetry of P since it has mean zero)

=1
2 E

U

[∥∥∥∥ E
U ′∼P

[∇f(W + U) − ∇f(W + U ′)]
∥∥∥∥2
]

≤1
2 E

U

[
E

U ′∼P

[
∥∇f(W + U) − ∇f(W + U ′)∥2

]]
≤1

2 E
U,U ′

[
C2 ∥U − U ′∥2

]
= 1

2C2 E
U,U ′

[
∥U∥2 + ∥U ′∥2

]
= C2H(P) (by equation (31))

As for the variance of ξi, we note that U
(1)
i , . . . , U

(j)
i are all independent from each other. Therefore,

E{
U

(j)
i

,z
(j)
i

}k

j=1

[
∥ξi∥2

]
= 1

4k
E

U,z

[
∥gz(W + U) − ∇f(W + U) + gz(W − U) − f(W − U)∥2

]
≤ 1

2k
E

U,z

[
∥gz(W + U) − ∇f(W + U)∥2 + ∥gz(W − U) − ∇f(W − U)∥2

]
≤σ2

k
.

The first step uses the fact that both gz(·) and f(·) are continuous functions The second step above uses
Cauchy-Schwartz inequality. The last step uses the variance bound of gz(·), Thus, the proof is finished.

Next, we show the convergence of the gradient, which is based on the classical work of Ghadimi & Lan
(2013).
Lemma B.1. In the setting of Theorem 4.2, for any η0, · · · , ηT −1 less than C−1 and a random variable
according to a distribution Pr[t = j] = ηj∑T −1

i=0
ηi

, for any j = 0, . . . , T − 1, the following holds:

E
[
∥∇F (Wt)∥2

]
≤ 2C∑T −1

i=0 ηi

D2 +
C
∑T −1

i=0 η2
i

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

])
∑T −1

i=0 ηi

. (30)

Proof. The smoothness condition on f implies the following domination inequality:

|F (W2) − F (W1) − ⟨∇F (W1), W2 − W1⟩| ≤ C

2 ∥W2 − W1∥2
. (31)

See, e.g., Bach (2021, Chapter 5). Here, we use the fact that ∇F (W) is L-Lipschitz continuous. Based on
the above smoothness inequality, we have

F (Wi+1)

≤F (Wi) + ⟨∇F (Wi), Wi+1 − Wi⟩ + C

2 η2
i

∥∥∥∥1
2

(
∇f(Wi + Ui) + ∇f(Wi − Ui)

)
+ ξi

∥∥∥∥2

=F (Wi) − ηi⟨∇F (Wi), δi + ξi + ∇F (Wi)⟩ + Cη2
i

2 ∥δi + ξi + ∇F (Wi)∥2

=F (Wi) −
(

ηi − Cη2
i

2

)
∥∇F (Wi)∥2 −

(
ηi − Cη2

i

)
⟨∇F (Wi), δi + ξi⟩ + Cη2

i

2 ∥δi + ξi∥2
.

26

Under review as submission to TMLR

Summing up the above inequalities for i = 0, 1, . . . , T − 1, we obtain
T −1∑
i=0

F (Wi+1) ≤
T −1∑
i=0

F (Wi) −
T −1∑
i=0

(
ηi − Cη2

i

2

)
∥∇F (Wi)∥2

−
T −1∑
i=0

(
ηi − Cη2

i

)
⟨∇F (Wi), δi + ξi⟩ +

T −1∑
i=0

Cη2
i

2 ∥δi + ξi∥2
,

which implies that
T −1∑
i=0

(
ηi − Cη2

i

2

)
∥∇F (Wi)∥2 (32)

≤F (W0) − F (WT) −
T −1∑
i=0

(
ηi − Cη2

i

)
⟨∇F (Wi), δi + ξi⟩ + C

2

T −1∑
i=0

η2
i ∥δi + ξi∥2

≤D2 −
T −1∑
i=0

(
ηi − Cη2

i

)
⟨∇F (Wi), δi + ξi⟩ + C

2

T −1∑
i=0

η2
i ∥δi + ξi∥2

. (33)

where in the last step, we use the fact that

F (W0) − F (WT) ≤ F (W0) − min
W ∈Rd

F (W) ≤ D2.

For any t = 0, 1, . . . , T − 1, notice that as long as 0 < ηt ≤ 1
C , then

ηt ≤ 2ηt − Cη2
t .

Hence, we have

1
2

T −1∑
t=0

ηt ∥∇F (Wt)∥2 ≤
T −1∑
t=0

(
ηt − Cη2

t

2

)
∥∇F (Wt)∥2

,

which implies that

1
2

T −1∑
i=0

ηi ∥∇F (Wi)∥2 ≤ D2 −
T −1∑
i=0

(
ηi − Cη2

i

)
⟨∇F (Wi), δi + ξi⟩ + C

2

T −1∑
i=0

η2
i ∥δi + ξi∥2

. (34)

Additionally, since Ut is drawn from a distribution with mean zero. Hence, by symmetry, we get that

E
Ut

[δt] = 1
2 E

Ut

[∇f(Wt − Ut) − ∇f(Wt + Ut)] = 0. (35)

Thus, if we take the expectation over U0, U1, . . . , UT −1, ξ0, ξ1, . . . , ξT −1, then

E [⟨∇F (Wi), δi + ξi⟩] = 0.

Recall that t is a random variable whose probability mass is specified in Lemma B.1. We can write equation
(34) equivalently as (below, we take expectation over all the random variables along the update since Wt is
a function of the previous gradient updates, for each t = 0, 1, . . . , T − 1, recalling that Pr[t = i] = ηi∑T −1

j=0
ηj

)

E
t; U0,...,UT −1,ξ0,ξ1,...,ξT −1

[
∥∇F (Wt)∥2

]
=

∑T −1
i=0 ηi E

[
∥∇F (Wi)∥2

]
∑T −1

i=0 ηi

≤
2D2 + C

∑T −1
i=0 η2

i E
[
∥δi + ξi∥2

]
∑T −1

i=0 ηi

=
2D2 + C

∑T −1
i=0 η2

i

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

])
∑T −1

i=0 ηi

.

27

Under review as submission to TMLR

where we use the fact that δi and ξi are independent for any i. Hence, we have finished the proof of equation
(30).

Based on the above result, we now finish the proof of the upper bound in Proposition 4.2.

Proof. Let the step sizes be equal to a fixed η for all epochs. Thus, Eq. (30) becomes

E
[
∥∇F (Wt)∥2

]
≤ 2

Tη
D2 + Cη

T

T −1∑
i=0

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

])
. (36)

By Lemma 4.3,
T −1∑
i=0

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

])
≤ T · σ2 + C2H(P)

k
. (37)

For simplicity, let us denote ∆ = σ2+C2H(P)
k . The proof is divided into two cases.

Case 1: ∆ is large. More precisely, suppose that ∆ ≥ 2CD2/T . Then, minimizing over η above leads us
to the following upper bound on the right-hand side of equation (36):√

2CD2∆
T

, (38)

which is obtained by setting

η =
√

2D2

C∆T
.

One can verify that this step size is less than 1
C since ∆ is at least 2CD2. Thus, we conclude that equation

(36) must be less than √
2CD2∆

T
=
√

2CD2(σ2 + C2H(P)))
kT

. (39)

Case 2: ∆ is small. In this case, suppose ∆ < 2CD2/T . Then, the right-hand side of equation (36) must
be less than

2D2

Tη
+ 2C2D2η

T
≤ 2CD2

T
. (40)

Thus, combining equations (39) and (40), we have completed the proof of equation (5).

B.2 Proof of Theorem 4.4

Recall our construction from Section 4 as follows. Let et be the basis vector for the t-th dimension, for
t = 0, 1, . . . , T − 1. Define f(W) as

f(W) = 1
2G

⟨W, e0⟩2 +
T −1∑
i=0

hi(⟨W, ei+1⟩),

where hi a quadratic function parameterized by αi, defined as follow:

hi(x) =

Cα2

i

4 |x| ≤ αi

− C(|x|−αi)2

2 + Cα2
i

4 αi ≤ |x| ≤ 3
2 αi

C(|x|−2αi)2

2
3
2 αi ≤ |x| ≤ 2αi

0 2αi ≤ |x|.

28

Under review as submission to TMLR

For technical reasons, we define a truncated perturbation distribution P as follows. Given a sample U from
a d-dimensional isotropic Gaussian N(0, Idd), we truncate the i-th coordinate of U so that Ũi = min(Ui, ai),
for some fixed ai > 0 that we will specify below, for all i = 0, 1, . . . , d − 1. We let P denote the distribution
of Ũ .

The proof of Theorem 4.4 is divided into two cases. In the first, we examine the case when the averaged
learning rate is O(T −1/2).

Lemma B.2. In the setting of Theorem 4.4, suppose the learning rates satisfy that
∑T −1

i=0 ηi ≤
√

D2kT
2σ2C ,

consider the function f(W) constructed in equation (7), we have

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D

√
Cσ2

32kT
.

Proof. We start by defining a gradient oracle by choosing the noise vectors {ξt}T −1
t=0 to be independent random

variables such that

ξt = ⟨ξt, et+1⟩et+1 and |⟨ξt, et+1⟩| ≤ σ√
k

, (41)

where et+1 is a basis vector whose (t + 1)-th entry is one and otherwise is zero. In other words, only the
(t + 1)-th coordinate of ξt is nonzero, otherwise the rest of the vector remains zero. We use ξ̄t to denote the
averaged noise variable as

ξ̄t = 1
k

k∑
i=1

ξ
(i)
t ,

where ξ
(i)
t is defined following the condition specified in equation (41). Thus, we can also conclude that

|⟨ξ̄t, et+1⟩| ≤ σ√
k

.

We consider the objective function f(W) : Rd → R defined above (see also equation (7), Section 4), with

αi = 2ηiσ√
k

, for i = 0, 1, . . . , T. (42)

We will analyze the dynamics of Algorithm 1 with the objective function f(W) and the starting point
W0 = D

√
G · e0, where G = max

{
C−1, 2

∑T −1
i=0 ηi

}
. For the first iteration, we have

W1 = W0 − η0

(1
2

k∑
i=1

(
∇f(W0 + U

(i)
0) + ∇f(W0 − U

(i)
0)
)

+ ξ̄0

)
= (1 − η0G−1)W0 − η0ξ̄0,

where U is a random draw from the truncated distribution P with ⟨U, ei⟩ = min{Pi, ai} for ai = ηi−1σ√
k

.
Next, from the construction of h1, we get

1
2
(
∇f(W1 + U) + ∇f(W1 − U)

)
= G−1⟨W1, e0⟩e0 + 1

2

(
h′

0
(
η0⟨ξ̄0, e1⟩ + ⟨U, e1⟩

)
e1 + h′

0
(
η0⟨ξ̄0, e1⟩ − ⟨U, e1⟩

)
e1

)
.

Here, using the fact that α0 = 2η0σ√
k

from equation (42) above, and the truncation of U , which implies
|⟨U, e1⟩| ≤ η0σ√

k
, and ⟨ξ̄0, e1⟩ ≤ σ√

k
, we obtain

∣∣η0⟨ξ̄0, e1⟩ + ⟨U, e1⟩
∣∣ ≤ 2η0σ√

k
= α0, and similarly

∣∣η0⟨ξ̄0, e1⟩ − ⟨U, e1⟩
∣∣ ≤ 2η0σ√

k
= α0,

29

Under review as submission to TMLR

which implies that
h′

0(η0⟨ξ̄0, e1⟩ + ⟨U, e1⟩) = h′
0(η0⟨ξ̄0, e1⟩ − ⟨U, e1⟩) = 0.

This is the first update. Then, in the next iteration,

W2 = W1 − η1

(
G−1⟨W1, e0⟩ + ξ̄1

)
= −(1 − η1G−1)(1 − η0G−1)W0 − η0ξ̄0 − η1ξ̄1.

Similarly, we use the fact that αi = 2ηiσ√
k

and the fact that |⟨U, ei+1⟩| ≤ ηiσ√
k

, which renders the gradient as
zero similar to the above reasoning. This holds for any i = 1, 2, . . . , T − 1.

At the t-th iteration, suppose we have that

Wt = W0

t−1∏
i=0

(
1 − ηiG

−1
)

−
t−1∑
i=0

ηiξ̄i.

Then by induction, at the (t + 1)-th iteration, we must have

Wt+1 = Wt − ηt

(
G−1⟨Wt, e0⟩ + ξ̄t

)
= W0

t∏
i=0

(
1 − ηiG

−1
)

−
t∑

i=0
ηiξ̄i. (43)

Next, from the definition of ht above, we have that

F (W0) − min
W ∈Rd

F (W) = F (W0) (the minimum can be attained at zero)

= 1
2G

(D
√

G)2 +
T −1∑
i=0

C

4

(2ηiσ√
k

)2
(since ⟨W0 + U, ei+1⟩ ≤ αi)

The above must be at most D2, which implies that we should set the learning rates to satisfy (after some
calculation)

1
T

(T −1∑
i=0

ηi

)2
≤

T −1∑
i=0

η2
i ≤ kD2

2Cσ2 . (44)

We note that for all z ∈ [0, 1], 1 − z
2 ≥ exp(log z

2). Thus, applying this to the right-hand side of equation
(43), we obtain that for any t,

t∏
i=0

(
1 − ηiG

−1
)

≥ 1
2 , (45)

where we recall that G = max{C−1, 2
∑T −1

i=0 ηi}. Essentially, our calculation so far shows that for all the hi

except h0, the algorithm has not moved at all from its initialization at W0 under the above gradient noise.
We thus conclude that

min
1≤i≤T

∥∇F (Wi)∥2 = min
1≤i≤T

(
G−1⟨W0, e0⟩

)2
(by the construction of F (·))

≥ 1
4G−2(D

√
G)2 (by equations (43) and (45))

= D2

4 min
{

C,
1

2
∑T −1

i=0 ηi

}
(recall the definition of G above)

≥ D2

4 min
{

C,

√
2Cσ2

2D
√

kT

}
(by equation (44))

≥ D

√
Cσ2

32kT
.

30

Under review as submission to TMLR

In the first step, we use the fact that ⟨ξ̄i, e0⟩ = 0, for all 0 = 1, 2, . . . , T − 1.

Thus, we have proved that equation (8) holds for Wi for any i = 1, 2, . . . , T . The proof of Lemma B.2 is
finished.

Next, let us consider the case of large, fixed learning rates.

Lemma B.3. In the setting of Theorem 4.4, suppose the learning rates satisfy that
∑T −1

i=0 ηi ≥
√

D2kT
2σ2C

and ηi = η for some fixed η ≤ C−1. Then, consider the function from equation (7), we have that
min1≤t≤T E

[
∥∇F (Wt)∥2

]
≥ D

√
Cσ2

32kT .

Proof. We define the functions g, parametrized by a fixed, positive constants α = 1−ρT

1−ρ · 2cησ, as follows:

g(x) =

 − C
2 x2 + C

4 α2 |x| ≤ α
2 ,

C
2 (|x| − α)2 α

2 ≤ |x| ≤ α,
0 α ≤ |x|.

One can verify that g has C-Lipschitz gradient, but g is not twice-differentiable. We also consider a chain-like
function:

f(W) = g(⟨W, e0⟩) +
d−1∑
t=0

C

2 ⟨W, et+1⟩2. (46)

From the definition of f , f also has C-Lipschitz gradient. Similar to equation (41), we start by defining an
adversarial gradient oracle by choosing the noise vectors {ξt}T −1

t=0 to be independent random variables such
that

ξt = ⟨ξt, et+1⟩,E
[
⟨ξt, et+1⟩2] = σ2, and |⟨ξt, et+1⟩| ≤ cσ,

where c is a fixed constant. We use ξ̄t to denote the averaged noise variable as

ξ̄t =
k∑

i=1
ξ

(i)
t .

Suppose {ξ
(i)
t }k

i=1 are i.i.d. random variables for any t, we have

|⟨ξ̄t, et+1⟩| ≤ cσ and E
[∥∥ξ̄t

∥∥2] ≤ σ2

k
. (47)

Next, we analyze the dynamics of Algorithm 1 with the objective function f(W) and the starting point
W0 =

∑d
i=1

√
D2

Cd · ei. In this case, by setting ηi = η for all i = 0, 1, . . . , T − 1. Recall that η < C−1. Denote
by ρ = Cη, which is strictly less than one.

Since ht is an even function, its derivative h′
t is odd. For the first iteration, we have

W1 = W0 − η
(1

2
(
∇f(W0 + U) + ∇f(W0 − U)

)
+ ξ̄0

)
= (1 − Cη)W0 − ηξ̄0.

where U is a truncate distribution of P ∼ N(0, Idd) with ⟨U, e0⟩ = min{P0, a0} and a0 = cησ.

Using the fact that α = 1−ρT

1−ρ · 2cησ, |⟨U, e0⟩| ≤ cησ, and ⟨ξ̄0, e0⟩ ≤ cσ, we have

g′(η⟨ξ̄0, e0⟩ + ⟨U, e0⟩) + g′(η⟨ξ̄0, e0⟩ − ⟨U, e0⟩) = −2Cη⟨ξ̄0, e0⟩.

31

Under review as submission to TMLR

Then, in the next iteration,

W2 = W1 − η
(

C

d∑
i=1

⟨W1, ei⟩ − Cηξ̄0 + ξ̄1

)
= (1 − Cη)2W0 − (1 − Cη)ηξ̄0 − ηξ̄1.

Similarly, we use the fact that α = 1−ρT

1−ρ · 2cησ and the fact that |⟨U, e0⟩| ≤ cησ, which renders the gradient
as g′(x) = −Cx, for any i = 1, 2, . . . , T − 1.

At the t-th iteration, suppose that

Wt = (1 − Cη)tW0 −
t−1∑
i=0

(1 − Cη)t−1−iηξ̄i.

Then by induction, at the (t + 1)-th iteration, we have

Wt+1 = Wt − η
(

C

d∑
i=1

⟨Wt, ei⟩ − C

t−1∑
i=0

(1 − Cη)t−1−iηξ̄i + ξ̄t

)
= (1 − Cη)t+1W0 −

t∑
i=0

(1 − Cη)t−1−iηξ̄i. (48)

Next, from the definition of F above, we have that

F (W0) − min
W ∈Rd

F (W) = F (W0)

= dC

2

(√D2

Cd

)2
+ C

4

(2(1 − ρT)cησ

(1 − ρ)

)2
, (since ⟨W0 + U, e0⟩ ≤ α)

which must be at most D2. Thus, we must have (after some calculation)

c2 ≤ D2(1 − ρ)2

2σ2ρ2(1 − ρT)2 .

We conclude that

min
1≤i≤T

E
[
∥∇F (Wi)∥2

]
= min

1≤i≤T
E

 d∑
j=1

C2⟨Wi, ej⟩2 + C2⟨Wi, e0⟩2

= min

1≤i≤T

(
dC2(1 − ρ)2t

(√D2

Cd

)2
+ σ2

k
· ρ2

t∑
i=0

(1 − ρ)2(t−1−i)
)

≥ min
1≤i≤T

(
CD2(1 − ρ)2t + σ2

k

ρ

2 − ρ

(
1 − (1 − ρ)2t

))
≥ min

{
CD2,

σ2

k

ρ

2 − ρ

}
≥ σ2

k
C

√
kD2

2Tσ2C

1

2 − C
√

kD2

2T σ2C

≥ D

√
Cσ2

16k · T
. (after some calculation)

Thus, we have proved this lemma.

Taking both Lemma B.2 and B.3 together, we thus conclude the proof of Theorem 4.4.

32

Under review as submission to TMLR

B.3 Proof of momentum lower bound

In this section, we prove the following result.
Theorem B.4. There exists a quadratic function f such that for the iterates W1, . . . , WT generated by
equation (9), we must have: min1≤t≤T E

[
∥∇F (Wt)∥2

]
≥ O

(
D
√

Cσ2

k·T
)
.

We will focus on a perturbation distribution P equal to the isotropic Gaussian distribution for this result.
In this case, we know that F (W) = f(W) + d. For the quadratic function f(W) = C

2 ∥W∥2, its gradient is
clearly C-Lipschitz. We set the initialization W0 ∈ Rd such that

F (W0) − min
W ∈Rd

F (W) = D2.

This condition can be met when we set W0 as a vector whose Euclidean norm is equal to

D

√√√√2 max
{

C−1, 2
T −1∑
i=0

ηi

}
.

The case when µ = 0. We begin by considering the case when µ = 0. In this case, the update reduces to
SGD, and the iterate Wt+1 evolves as follows:

Wt+1 =
(

1 − Cηt

)
Wt − ηtξ̄t, (49)

where we denote ξ̄t as the averaged noise k−1∑k
j=1 ξ

(j)
t , and the noise perturbation U

(j)
t cancelled out

between the plus and minus perturbations. The case when µ > 0 builds on this simpler case, as we will
describe below.

The key observation is that the gradient noise sequence ξ̄1, ξ̄2, . . . , ξ̄T forms a martingale sequence:

• For any i = 1, 2, . . . , T , conditioned on the previous random variables ξ
(j)
i′ for any i′ < i and any

j = 1, 2, . . . , k, the expectation of ξ̄i is equal to zero.

• In addition, the variance of ξ̄i is equal to k−1σ2, since conditional on the previous random variables,
the ξ

(j)
i s are all independent from each other.

The martingale property allows us to characterize the SGD path of ∥Wt∥2, as shown in the following result.
Lemma B.5. In the setting of Theorem B.4, for any step sizes η0, . . . , ηT −1 less than C−1, and any t =
1, . . . , T , the expected gradient of Wt, E

[
∥∇F (Wt)∥2

]
, is equal to

2CD2
t−1∏
j=0

(
1 − Cηj

)2 + Cσ2

k

t−1∑
i=0

η2
i

t−1∏
j=i+1

(
1 − Cηj

)2
.

Proof. By iterating over equation (49), we can get

Wt = W0

t−1∏
j=0

(
1 − Cηj

)
−

t−1∑
i=0

ηiξ̄i

t−1∏
j=i+1

(
1 − Cηj

)
.

Meanwhile,

∇F (Wt) = CWt ⇒ ∥∇F (Wt)∥2 = C2 ∥Wt∥2
.

33

Under review as submission to TMLR

Thus, by squaring the norm of Wt and taking the expectation, we can get

E
[
∥∇F (Wt)∥2

]
= C2 ∥W0∥2

t−1∏
j=0

(
1 − Cηj

)2

+ C2
t−1∑
i=0

E
[∣∣∣∣∣∣ηiξ̄i

t−1∏
j=i+1

(
1 − Cηj

)∣∣∣∣∣∣2]. (50)

Above, we use martingale property a), which says the expectation of ξ̄i is equal to zero for all i. In addition,
based on property b), equation (50) is equal to

C2
t−1∑
i=0

η2
i

 t−1∏
j=i+1

(
1 − Cηj

)2
E
[∥∥ξ̄i

∥∥2]
=C2σ2

k

t−1∑
i=0

η2
i

t−1∏
j=i+1

(
1 − Cηj

)2
.

To see this, based on the martingale property of ξ̄ again, the cross terms between ξ̄i and ξ̄j for different i, j
are equal to zero in expectation:

E
[
⟨ξ̄i, ξ̄j⟩|ξ̄j

]
= 0, for all 1 ≤ j < i ≤ T.

Additionally, the second moment of ξ̄i satisfies:

E
[∥∥ξ̄i

∥∥2] = σ2

k
, for any i = 1, . . . , T.

Lastly, let W0 be a vector such that

∥W0∥ = D
√

2C−1 ⇒ F (W0) − min
W ∈Rd

F (W) ≤ D2.

Setting ∥W0∥ = D
√

2C−1 in equation (50) leads to

E
[
∥∇F (Wt)∥2

]
= 2CD2

t−1∏
j=0

(
1 − Cηj

)2

+ C2σ2

k

t−1∑
i=0

η2
i

t−1∏
j=i+1

(
1 − Cηj

)2
.

Thus, we conclude the proof of this result.

We now present the proof for the case when
∑T −1

i=0 ηi ≤ O(
√

T). For this result, we will use the following
quadratic function:

f(W) = 1
2κ

∥W∥2
, where κ = max{C−1, 2

T −1∑
i=0

ηi}, (51)

Lemma B.6. Consider f given in equation (51) above. For any step sizes η0, . . . , ηT −1 less than C−1, the
following holds for the stochastic objective F :

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D2

2 max{C−1, 2
∑T −1

i=0 ηi}
.

34

Under review as submission to TMLR

Proof. Clearly, the norm of the gradient of F (W) is equal to

∥∇F (W)∥ = 1
κ

∥W∥ . (52)

Following the update rule in NSO, similar to equation (49), Wt evolves as follows:

Wt+1 =
(

1 − ηt

κ

)
Wt − ηtξ̄t, (53)

where ξ̄t has variance equal to σ2/k, according to the proof of Lemma B.5. By iterating equation (53) from
the initialization, we can get a closed-form equation for W

(1)
t , for any t = 1, 2, . . . , T :

Wt = W0

t−1∏
j=0

(
1 − ηj

κ

)
−

t−1∑
k=0

ηkξk

t−1∏
j=k+1

(
1 − ηj

κ

)
. (54)

Following equation (52), we can show that

∥∇F (W)∥2 = κ−2 ∥Wt∥2
.

Thus, in expectation,

E
[
∥∇F (Wt)∥2

]
= κ−2 E

[
∥Wt∥2

]
= κ−2 ∥W0∥2

t−1∏
j=0

(
1 − κ−1ηj

)2
+ κ−2

t−1∑
i=0

E

ηiξ̄i

t−1∏
j=i+1

(
1 − κ−1ηj

)2

= κ−2 ∥W0∥2
t−1∏
j=0

(
1 − κ−1ηj

)2
+ κ−2

t−1∑
i=0

η2
i

t−1∏
j=i+1

(
1 − κ−1ηj

)2
E
[∥∥ξ̄i

∥∥2]

= 2D2κ−1
t−1∏
j=0

(
1 − κ−1ηj

)2
+ σ2κ−2

k

t−1∑
i=0

η2
i

t−1∏
j=i+1

(
1 − κ−1ηj

)2
, (55)

where we use the definition of initialization W0 and the variance of ξ̄i in the last step. In order to tackle
equation (55), we note that for all z ∈ [0, 1],

1 − z

2 ≥ exp
(

log 1
2 · z

)
. (56)

Hence, applying equation (56) to the right-hand side of equation (55), we obtain that for any i = 0, 1, . . . , t−1,
t−1∏
j=i

(
1 − ηj

max{C−1, 2
∑T −1

j=i ηi}

)

≥ exp
(

log 1
2 ·

t−1∑
j=i

ηj

max{(2C)−1,
∑T −1

i=0 ηi}

)
≥ 1

2 .

Thus, equation (55) must be at least

E
[
∥∇F (Wt)∥2

]
≥ 2D2κ−1

4 + σ2κ−2

k

t−1∑
i=0

η2
i

4 . (57)

The above result holds for any t = 1, 2, . . . , T . Therefore, we conclude that

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D2

2 max{C−1, 2
∑T −1

i=0 ηi}
.

Thus, the proof of Lemma B.6 is finished.

35

Under review as submission to TMLR

Next we consider the other case when the learning rates are fixed.
Lemma B.7. There exists convex quadratic functions f such that for any gradient oracle satisfying Assump-
tion 4.1 and any distribution P with mean zero, if ηi = η < C−1 for any i = 1, . . . , T , or if

∑T −1
i=0 ηi ≲

√
T ,

then the following must hold:

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D

√
Cσ2

32k · T
. (58)

Proof. By Lemma B.6, there exists a function such that the left-hand side of equation (58) is at least

D2

2 max{C−1, 2
∑T −1

i=0 ηi}
≥ CD2

2 max{1, 2x−1
√

T}
= D2x

4
√

T
, (59)

which holds if
∑T −1

i=0 ηi ≤
√

Tx−1 for any fixed x > 0.

On the other hand, if
∑T −1

i=0 ηi ≥ x−1
√

T and ηi = η for a fixed η, then η > x−1/
√

T . By setting ηi = η for
all i in Lemma B.5, the left-hand side of equation (58) is equal to

min
1≤t≤T

(
2CD2(1 − Cη)2t + C2σ2

k

t−1∑
k=0

η2(1 − Cη)2(t−k−1)
)

.

Recall that η < C−1. Thus, ρ = Cη must be less than one. With some calculations, we can simplify the
above to

min
1≤t≤T

(
2CD2(1 − ρ)2t + σ2ρ2

k

1 − (1 − ρ)2t

1 − (1 − ρ)2

)
= min

1≤t≤T

(
σ2ρ

k(2 − ρ) + (1 − ρ)2t
(

2CD2 − σ2ρ

k(2 − ρ)

))
. (60)

If 2CD2 < σ2ρ
k(2−ρ) , the above is the smallest when t = 1. In this case, equation (60) is equal to

2CD2(1 − ρ)2 + σ2ρ2

k
≥ 1

1
2CD2 + k

σ2

= O(1).

If 2CD2 ≥ σ2ρ
k(2−ρ) , the above is the smallest when t = T . In this case, equation (60) is at least

σ2ρ

k(2 − ρ) ≥ σ2ρ

2k
≥ σ2Cx−1

2k
· 1√

T
. (61)

To conclude the proof, we set x so that the right-hand side of equations (59) and (61) match each other.
This leads to

x =
√

2σ2C

kD2 .

Thus, by combining the conclusions from both equations (59) and (61) with this value of x, we finally
conclude that if

∑T −1
i=0 ηi ≤

√
Tx−1, or for all i = 0, . . . , T −1, ηi = η < C−1, then in both cases, there exists

a function f such that equation (58) holds. This completes the proof of Lemma B.7.

The case when µ > 0. In this case, since the update of Wt also depends on the update of the momentum,
it becomes significantly more involved. One can verify that the update from step t to step t + 1 is based on

Xu =
[

1 − Cηt µ
Cηt µ

]
. (62)

Our analysis examines the eigenvalues of the matrix XuX⊤
u and the first entry in the corresponding eigenvec-

tors. Particularly, we show that the two entries are bounded away from zero. Then, we apply the Hölder’s
inequality to reduce the case of µ > 0 to the case of µ = 0, Lemma B.7 in particular.

36

Under review as submission to TMLR

Proof. First, consider a quadratic function

f(W) = 1
2C

∥W∥2
.

Clearly, f(W) is C-Lipschitz. Further, F (W) = f(W) + d, for P being the isotropic Gaussian. Let W0 be a
vector whose Euclidean norm equals D

√
2C. Thus,

F (W0) − min
W ∈Rd

F (W) = D2.

As for the dynamic of momentum SGD, recall that

Mt+1 = µMt − ηtGt and Wt+1 = Wt + Mt+1.

We consider the case where ηt = η for all steps t. In this case, we can write the above update into a matrix
notation as follows: [

Wt+1
Mt+1

]
=
[

1 − Cη µ
−Cη µ

] [
Wt

Mt

]
+ Cη

[
ξ̄t

ξ̄t

]
.

Let Xµ = [1 − Cη, µ; −Cη, µ] denote the 2 by 2 matrix (that depends on µ) above. Similar to Lemma B.5,
we can apply the above iterative update to obtain the formula for Wt+1 as:[

Wt+1
Mt+1

]
= Xt

u

[
W0
M0

]
+

t∑
i=0

CηXt−i
u

[
ξ̄i

ξ̄i

]
. (63)

By multiplying both sides by the vector e1 = [1, 0]⊤, and then taking the Euclidean norm of the vector
(notice that this now only evolves that Wt+1 vector on the left, and the Wt vector on the right), we now
obtain that, in expectation over the randomness of the ξ̄i’s, the following holds:

E
[
∥Wt+1∥2

]
= 2CD2(e⊤

1 Xt
ue1)2 + C2η2σ2

k

t∑
i=0

∥∥e⊤
1 Xi

ue
∥∥2

. (64)

Above, similar to Lemma B.5, we have set the length of W0 appropriately, so that its length is equal to
D

√
2C−1, which has led to the CD2 term above. Recall that M0 is equal to zero in the beginning. To get

the first term above, we follow this calculation:∥∥∥∥e⊤
1 Xt

µ

[
W0
M0

]∥∥∥∥2
= Tr

[
e⊤

1 Xt
µ

[
W0
M0

] [
W0
M0

]⊤

Xt
µ

⊤
e1

]

= Tr
[
e⊤

1 Xt
µ

[
CD2 0

0 0

]
Xt

µ
⊤

e1

]
= 2CD2(e⊤

1 Xt
µe1)2.

We use e = [1, 1]⊤ to denote the vector of ones. Now, we focus on the 2 by 2 matrix Xu (recall this is
the coefficient matrix on the right side of equation (63)). Let its singular values be denoted as λ1 and λ2.
In addition, to deal with equation (64), let α1 and α2 denote the first entry of Xu’s left singular vectors,
corresponding to a and b, respectively. Thus, we can write

(e⊤
1 Xi

µe)2 = α2
1λ2i

1 + α2
2λ2i

2 . (65)

Now, one can verify that λ2
1 and λ2

2 are the roots of the following quadratic equation over x:

x2 − ((1 − Cη)2 + (Cη)2 + 2µ2)x + µ2 = 0. (66)

37

Under review as submission to TMLR

This can be checked by first taking Xu times X⊤
u , then using the definition of the eigenvalues by calculating

the determinant of XuX⊤
u − x Id = 0. Thus, we have that λ1 and λ2 are equal to:

λ1, λ2 = (1 − Cη)2 + (Cη)2 + 2µ2 ±
√

((1 − Cη)2 + (Cη)2 + 2µ2)2 − 4µ2

2 . (67)

Now, α2
1 (and α2

2, respectively) satisfies that:

α2
1 = −Cη(1 − Cη) + µ2

(1 − Cη)2 + µ2 − λ1 + −Cη(1 − Cη) + µ2 . (68)

By enumerating the possible values of Cη between 0 and 1, one can verify that for a fixed value of µ, α2
1 and

α2
2 are both bounded below from zero. Therefore, we can claim that from equation (65),

α2
1λ2i

1 + α2
2λ2i

2 ≳ λ2i
1 + λ2i

2 . (69)

By the Hölder’s inequality,

(λ2i
1 + λ2i

2) 1
2i (1 + 1)1− 1

2i ≥ λ1 + λ2 = (1 − Cη)2 + (Cη)2 + 2µ2 (70)
≥ (1 − Cη)2 + (Cη)2, (71)

which implies that

λ2i
1 + λ2i

2 ≥ ((1 − Cη)2 + (Cη)2)i

2(2i−1) . (72)

Now, we consider two cases. If Cη < 1/2, then the above is greater than (1 − Cη)2i, which holds for any
i = 0, 1, . . . , T − 1. By way of reduction, we can follow the proof of Lemma B.7 to complete this proof. If
Cη > 1/2, then the above is greater than (Cη)2i. Again by following the proof steps in Lemma B.7, we can
show that

T
min
t=1

E
[
∥Wt∥2

]
≳ D

√
Cσ2

k · T
.

This completes the proof of Theorem B.4.

C Additional Experimental Results

Approximating perturbed loss using Hessian trace. Recall that we find that the trace of the Hessian
provides an accurate approximation to the gap between the perturbed loss and the trained model loss across
several neural networks. These include (1) a two-layer Multi-Layer Perceptron (MLP) trained on the MNIST
digit classification data set, (2) a twelve-layer BERT-Base model trained on the MRPC sentence classification
data set from the GLUE benchmark, and (3) a two-layer Graph Convolutional Network (GCN) trained on
the COLLAB node classification data set from TUDataset.

In more detail, we set both MLP and GCN with a hidden dimension of 128 for model architectures and
initialize them randomly. We initialize the BERT model from pretrained BERT-Base-Uncased. We train
each model on the provided training set for the training process until the training loss is close to zero.
Specifically, we train the MLP, BERT, and GCN models for 30, 10, and 100 epochs. We use the model
of the last epoch to measure the error in the approximation. We do this for 100 times and again measure
the perturbed loss ℓQ on the training set. We take the gap between ℓQ and ℓ and report that along with
the magnitude of σ in the Table. We also compute the trace of the Hessian using Hessian-vector product
computation libraries.

Table 7 reports the measurement of the Hessian trace and the empirical gap between ℓQ and ℓ, corresponding
to Figure 2. Our measurements show that the error between the actual gap and the Hessian approximation
is within 3%. As a remark, the range of σ2 differs across architectures because of the differing scales of their
weights.

38

Under review as submission to TMLR

Table 7: We find that the trace of the Hessian provides an accurate approximation to the gap between ℓQ
(recall that ℓQ is the perturbed loss) and ℓ. In particular, the measurements are taken over the fine-tuned
model weight W at the last epoch.

Multi-Layer Perceptron (MNIST) BERT Base (MRPC) Graph ConvNets (COLLAB)
σ Gap Measure σ Gap Measure σ Gap Measure

0.020 0.0122 ± 0.0027 0.0096 0.0070 0.0083 ± 0.0031 0.0095 0.040 0.0243 ± 0.0097 0.0278
0.021 0.0124 ± 0.0026 0.0106 0.0071 0.0088 ± 0.0031 0.0098 0.041 0.0266 ± 0.0141 0.0292
0.022 0.0137 ± 0.0042 0.0117 0.0072 0.0093 ± 0.0032 0.0101 0.042 0.0287 ± 0.0086 0.0306
0.023 0.0142 ± 0.0049 0.0128 0.0073 0.0098 ± 0.0034 0.0103 0.043 0.0297 ± 0.0109 0.0321
0.024 0.0152 ± 0.0046 0.0139 0.0074 0.0104 ± 0.0035 0.0106 0.044 0.0298 ± 0.0111 0.0336
0.025 0.0175 ± 0.0047 0.0151 0.0075 0.0110 ± 0.0036 0.0109 0.045 0.0313 ± 0.0092 0.0351
0.026 0.0182 ± 0.0038 0.0163 0.0076 0.0117 ± 0.0038 0.0112 0.046 0.0363 ± 0.0105 0.0367
0.027 0.0209 ± 0.0035 0.0176 0.0077 0.0124 ± 0.0040 0.0115 0.047 0.0414 ± 0.0109 0.0383
0.028 0.0215 ± 0.0049 0.0189 0.0078 0.0131 ± 0.0042 0.0118 0.048 0.0449 ± 0.0089 0.0400
0.029 0.0244 ± 0.0075 0.0203 0.0079 0.0139 ± 0.0044 0.0121 0.049 0.0455 ± 0.0160 0.0417
0.030 0.0258 ± 0.0059 0.0218 0.0080 0.0147 ± 0.0047 0.0124 0.050 0.0482 ± 0.0100 0.0434
RSS 2.74% 1.03% 2.16%

Additional comparisons to baseline methods. Table 8 reports additional comparisons between our
approach and several baselines, including label smoothing (LS), random-SAM (RSAM), and Bayesian SAM
(BSAM). We report the test accuracy and the trace of the Hessian for the model weights at the last epoch
of training on six image classification data sets. We observe that NSO also further reduces the trace of the
Hessian and improves the test accuracy over the baselines.

Table 8: Additional comparison between our approach (NSO), label smoothing (LS), random-SAM (RSAM),
and Bayesian SAM (BSAM), on top of Table 3.

CIFAR-10 CIFAR-100 Aircraft Caltech-256 Indoor Retina

Trace
(↓)

LS 2690 ± 85 10669 ± 363 5699 ± 72 3482 ± 85 3650 ± 82 17681 ± 193
RSAM 2379 ± 89 9762 ± 422 4665 ± 95 3224 ± 97 3425 ± 70 16950 ± 257
BSAM 2768 ± 54 9787 ± 465 4750 ± 55 3498 ± 38 3162 ± 73 16238 ± 286
Ours (NSO) 1728 ± 79 5244 ± 89 3678 ± 83 2958 ± 77 2737 ± 90 10970 ± 146

Test
Accuracy

(↑)

LS 96.9% ± 0.1 83.8% ± 0.1 59.0% ± 0.2 76.6% ± 0.2 76.5% ± 0.3 64.2% ± 0.7
RSAM 96.8% ± 0.1 84.0% ± 0.1 60.9% ± 0.4 76.4% ± 0.1 76.8% ± 0.5 65.9% ± 0.3
BSAM 96.9% ± 0.1 83.9% ± 0.2 61.0% ± 0.3 76.8% ± 0.3 76.4% ± 0.3 65.4% ± 0.2
Ours (NSO) 97.6% ± 0.4 84.9% ± 0.3 63.2% ± 0.3 78.1% ± 0.5 78.2% ± 0.3 67.0% ± 0.4

Table 9 reports the comparison of the largest eigenvalue of the Hessian, between NSO and baseline methods
on the six image classification data sets. We observe that NSO further reduces the largest eigenvalue of the
Hessian by 9.7% on average compared to the baselines.

In Figures 7-9, we illustrate the comparison of the trace, the largest eigenvalue of the Hessian matrix, and
the test loss, using the model at the last epoch of fine-tuning. We observe that our algorithm consistently
reduces the three measurements compared with SAM and SGD.

Implementation. We use the same training hyper-parameters for the experiments in Section 3. These
include a learning rate of 0.0002, momentum of 0.99, weight decay of 0.0001, batch size of 32, and training
epochs of 60. We reduce the learning rate by 0.1 every 20 epochs. We choose these hyper-parameters based
on a grid search on the validation split. The range of hyper-parameters in which we conduct a grid search
is as follows:

• Learning rate: 0.005, 0.002, 0.001, 0.0005, 0.0002, and 0.0001;

• Momentum: 0.9, 0.95, 0.99;

39

Under review as submission to TMLR

Table 9: Comparison of the largest eigenvalue of the Hessian (for model weights trained at the last epoch),
between NSO and SGD, label smoothing (LS), sharpness-aware minimization (SAM), unnormalized SAM
(USAM), adaptive SAM (ASAM), random-SAM (RSAM), and Bayesian SAM (BSAM). We fine-tune a
pretrained ResNet-34 neural network using each method on six image classification datasets. In all test
cases, we report the averaged result over five random seeds and the standard deviation across these five runs.

CIFAR-10 CIFAR-100 Aircraft Caltech-256 Indoor Retina

λ1
(↓)

SGD 1442 ± 63 4639 ± 95 1152 ± 40 1064 ± 44 1087 ± 56 8276 ± 91
LS 1311 ± 81 3051 ± 95 1144 ± 88 893 ± 79 764 ± 75 4296 ± 74
SAM 1326 ± 72 2625 ± 91 890 ± 90 948 ± 95 887 ± 53 4033 ± 52
USAM 1245 ± 43 2299 ± 98 592 ± 32 782 ± 38 755 ± 58 3893 ± 55
ASAM 1383 ± 73 2638 ± 86 615 ± 95 795 ± 72 697 ± 36 3925 ± 56
RSAM 1356 ± 69 2901 ± 121 895 ± 74 779 ± 68 988 ± 65 4537 ± 58
BSAM 1375 ± 86 2788 ± 177 972 ± 79 843 ± 97 939 ± 73 4123 ± 87
NSO 1070 ± 74 2059 ± 45 579 ± 59 643 ± 57 639 ± 72 3681 ± 66

Indoor Caltech-256 Aircrafts CIFAR-10 CIFAR-1000.0

0.3

0.6

0.9

1.2

T
r[
∇

2]

×104

NSO (k = 1) SAM SGD

Figure 7: Illustration of the trace of the Hessian measured at the last epoch of fine-tuning ResNet-34 on five
datasets.

Indoor Caltech-256 Aircrafts CIFAR-10 CIFAR-1000

1

2

3

4

λ
1[
∇

2]

×103

NSO (k = 1) SAM SGD

Figure 8: Reporting the λ1 of the Hessian matrix in the last iteration of fine-tuning ResNet-34 on five
datasets, comparing NSO with SAM and SGD. The results are averaged over five random seeds.

Indoor Caltech-252 Aircrafts CIFAR-10 CIFAR-1000

2

4

6

8

L
(f
W

)

×10−1

NSO (k = 1) SAM SGD

Figure 9: Illustration of the test loss measured at the last epoch of model fine-tuning. The results are run
from a pretrained ResNet-34 network across five image classification tasks.

• Weight decay: 0.01, 0.001, 0.0001;

• Epochs: 20, 40, and 60;

40

Under review as submission to TMLR

• Batch size: 16, 32, and 64.

Each baseline method has its own set of hyper-parameters. We also conduct a grid search for the hyper-
parameters specifically for each baseline.

• For label smoothing, we choose the weight of the loss calculated from the incorrect labels between
0.1, 0.2, and 0.3.

• For SAM and BSAM, we choose the ℓ2 norm of the perturbation between 0.01, 0.02, and 0.05.

• For ASAM, we choose the ℓ2 norm of the perturbation for the rescaled weights between 0.5, 1.0, and
2.0.

• For RSAM, we choose the ℓ2 norm of the perturbation between 0.01, 0.02, and 0.05 and the standard
deviation for sampling perturbation between 0.008, 0.01, and 0.012.

41

	Introduction
	Our Approach
	Motivating Experiments
	Description of Our Algorithm
	Generalization Guarantee and Proof Sketch

	Experiments
	Comparison with Sharpness-Aware Training
	Empirical Findings
	Dissecting the Design of Algorithm 1
	A Detailed Comparison between Our Approach and Sharpness-Aware Minimization (SAM)
	Combining Our Approach with Alternative Regularization Methods

	Results for Pretraining Contrastive Language-Image Models
	Results for Chain-of-thought Fine-tuning

	Convergence Analysis of Our Algorithm
	Dissecting Hessian: A Case Study in Overparameterized Matrix Sensing
	Discussions and Related Work
	Conclusion
	Omitted Proofs from Section 2
	Proof of Hessian-based PAC-Bayes Bound
	Proof of Theorem 2.1
	Proof of Lemma A.5

	Proof of Proposition 5.1

	Omitted Proofs from Section 4
	Proof of Theorem 4.2
	Proof of Theorem 4.4
	Proof of momentum lower bound

	Additional Experimental Results

