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Abstract

Existing Large Language Models (LLMs) en-001
force uniform computation across all tokens.002
We analyze the correlation between the input-003
output difference of self-attention block and004
Feed-Forward Network (FFN) within the same005
transformer layer, and find that these two differ-006
ential vectors are highly correlated. Thus, we007
propose to dynamically skip the FFN blocks008
based on the self-attention difference and in-009
troduce Diffential Layer Skipping (DiffSkip)010
to show that LLMs are inherently dynamic-011
depth models, capable of adjusting computa-012
tional depth when generating different tokens.013
DiffSkip employs a lightweight router module014
to dynamically skip a set of FFN blocks in015
LLMs and only requires efficient fine-tuning016
while keeping the whole LLM frozen. Ex-017
perimental results demonstrate that DiffSkip018
effectively enables dynamic FFN skipping in019
decoder-only language models, even in contin-020
uous token generation tasks where many layer-021
skipping methods struggle.022

1 Introduction023

Large language models (LLMs) (Ouyang et al.,024

2022; Dubey et al., 2024; Liu et al., 2024) have025

demonstrated remarkable capabilities across di-026

verse tasks (Zhu et al., 2023; Basyal and Sanghvi,027

2023; Jiang et al., 2024). These models operate028

through a next-token-prediction mechanism, en-029

abling them to tackle complex problems via step-030

by-step reasoning. However, regardless of the pre-031

diction complexity, tokens are processed through032

the same number of transformer layers. To enable033

dynamic computation, prior works (Raposo et al.,034

2024; Zeng et al., 2023) introduce a router that035

makes a binary decision at each layer, determining036

whether to skip the layer or not. In their imple-037

mentation, the router is jointly trained with the038

transformer from scratch. Although this approach039

allows the transformer to learn representations that040
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Figure 1: Cosine similarity between Self-attention Input-
Output Differences (∆Attn = Attn(x) − x) and FFN
Input-Output Differences (∆FFN = FFN(h) − h)
across different layers in Llama-3-8B-Instruct. The
input-output differences of the self-attention and FFN
exhibit a high correlation across most layers, except for
the first and last few layers.

provide valuable signals for routing, it comes with 041

significant training overhead. This motivates us to 042

explore whether effective routing signals can be 043

obtained from a pre-trained model. 044

In this paper, we demonstrate that pre-trained 045

large language models already possess the rout- 046

ing signals for dynamic computation. Our key 047

insight is that the self-attention input-output dif- 048

ference, ∆Attn = Attn(x)− x, is correlated with 049

the feed-forward network (FFN) input-output dif- 050

ference, ∆FFN = FFN(h) − h. Here, x and h 051

represent the inputs to the self-attention block and 052

the FFN block, respectively. In our experiments, 053

we observe strong correlations between ∆Attn and 054

∆FFN across various datasets (Figure 1), includ- 055

ing single-token generation tasks like ARC (Clark 056

et al., 2018) and HellaSwag (Zellers et al., 2019), 057

as well as multi-token generation tasks such as 058

GSM8K (Cobbe et al., 2021) and BBH (Suzgun 059

et al., 2023). This correlation implies that ∆Attn 060

can be used to predict the transformation that the 061
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Figure 2: Visualization of token-wise FFN block skip-
ping with DiffSkip. The color gradient from light blue
to dark blue indicates the number of FFN blocks utilized
during token generation, ranging from 0 to 16.

FFN would apply, thereby enabling us to deter-062

mine whether the subsequent FFN transformation063

is necessary.064

Based on this insight, we propose Differential065

Layer Skipping (DiffSkip), a method that uses the066

self-attention input-output difference ∆Attn as a067

routing signal for dynamic FFN skipping. Specif-068

ically, DiffSkip employs two key components in069

each layer: (1) a router that takes ∆Attn as input to070

determine whether individual tokens skip or pass071

through the FFN, and (2) an adaptor that aligns the072

latent spaces of tokens that skip the FFN with those073

that undergo FFN computation. Importantly, the074

router and the adaptor are the only components that075

are tunable, while the rest of the transformer pa-076

rameters remain frozen. By stacking multiple such077

layers, DiffSkip enables tokens to dynamically skip078

FFN blocks during inference, effectively creating079

paths of varying depths through the network for080

each token based on its computational need.081

To optimize routing efficiency, we introduce a082

skipping loss that works in conjunction with the083

original next-token prediction loss. This loss func-084

tion is designed to encourage FFN skipping by085

penalizing the number of FFN blocks utilized. We086

implement this as an L2 loss on the expected num-087

ber of blocks preserved per token, which enables088

routers across different layers to jointly optimize089

for the skipping objective. In practice, we find090

that our expectation-based approach leads to im-091

proved performance compared to designs that ap-092

ply penalties to routers independently (Tan et al.,093

2024; He et al., 2024a). Furthermore, to adapt094

the skipping strategy to the difficulty of the genera-095

tion task, we incorporate token-wise weighting into096

the loss. High-perplexity tokens, indicating harder097
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Figure 3: Pipeline for the routing mechanism. The
router generates a gating score g based on the self-
attention difference ∆Attn. If g > τ , the token represen-
tation x is routed to the FFN; if g ≤ τ , it is processed
by the lightweight adaptor.

predictions, receive smaller penalties for preserv- 098

ing FFNs, while low-perplexity tokens, associated 099

with simpler predictions, are encouraged to skip 100

more. Although we adopt next-token perplexity as 101

a lightweight proxy for prediction difficulty in this 102

work, future research could explore more advanced 103

strategies. 104

Experimental results demonstrate that DiffSkip 105

effectively enables dynamic FFN skipping in 106

decoder-only language models, even in continuous 107

token generation tasks where many pruning meth- 108

ods struggle. For example, when applying DiffSkip 109

to Llama-3-8B with 8 FFN blocks skipped, it main- 110

tains 91.3% of the original performance. To bet- 111

ter understand how DiffSkip dynamically allocates 112

computational depth to different tokens, we visu- 113

alize the layer usage of each token in Figure 2. 114

DiffSkip processes answer tokens that require com- 115

putation through more blocks, such as "180" in 116

"= 180 students" and the first "36" in "= 36 teach- 117

ers". Interestingly, although the final answer "36" 118

is numerically identical to the first "36" in "= 36 119

teachers", it is assigned fewer blocks since it is 120

simply a copy of the previous result and does not 121

require deep processing. More examples will be 122

discussed in Section 3.4. 123

2 Methods 124

DiffSkip is a plug-in method that applies to a pre- 125

trained decoder-only language model. It adds a 126

router and an adaptor to enable dynamic FFN skip- 127

ping. The router takes the self-attention input- 128

output difference ∆Attn as input and produces the 129

gating scores G = [g1, g2, ..., gT ], where T is the 130

number of tokens. Based on the gating scores 131

2



G and a pre-defined threshold τ , tokens are par-132

titioned into two groups: those routed to the FFN133

(Figure 3 left) and those routed to the lightweight134

adaptor (Figure 3 right). In the following subsec-135

tions, we describe the implementation details and136

the design of our loss function.137

2.1 Router Design138

In this section, we present our implementation of139

the routing mechanism. Figure 3 illustrates the140

routing pipeline in a transformer block. The key141

insights guiding our design are:142

Attention Block Difference: The attention op-143

eration acts as a preparatory step for the FFN, with144

its input-output differences highly correlated to the145

transformations performed by the FFN (Figure 1).146

This correlation allows the router to infer the extent147

of FFN processing needed for each token, enabling148

informed decisions on whether to skip or engage149

the FFN.150

Latent Space Alignment: Hidden representa-151

tions that skip the FFN might not be in the same152

latent space as those processed by the FFN. To153

address this, we use an adaptor to align the latent154

spaces of the skipped ones with those that undergo155

FFN processing.156

Let X = [x1, x2, . . . , xT ] ∈ RT×d denote the157

input hidden states, where T represents the number158

of tokens and d represents the number of hidden159

dimensions. We compute the attention output and160

subtract it from the input X to obtain the difference161

∆Attn:162

∆Attn = softmax
(QK⊤

√
d

)
V Wo − X, (1)163

where Q = XWq, K = XWk, V = XWv. The164

router then uses the difference to predict the gating165

scores G:166

G = [g1, g2, ..., gT ] = σ(Router(∆Attn)), (2)167

where σ denotes the sigmoid function to restrict168

the scores gi between 0 and 1. The router is im-169

plemented as a bottlenecked MLP with a router170

head:171

Router(z) = Whead · (Wup · tanh(Wdownz)), (3)172

where Wdown ∈ Rdr×d, Wup ∈ Rd×dr , and173

Whead ∈ R1×d are the down-projection, up-174

projection, and router head matrices, respectively,175

with dr as the bottleneck dimension.176

The gating scores G determine how the input 177

hidden states H = [h1, h2, . . . , hT ] of FFN block 178

are processed. Hidden states hi with gi > τ are 179

routed to the FFN, while those with gi ≤ τ skip the 180

FFN. For hidden states routed to the FFN (Figure 3 181

left), they are processed by the standard transformer 182

block modules and then multiplied by their gating 183

scores gi to enable gradient backpropagation to the 184

router. For hidden states that skip the FFN (Figure 3 185

right), they are processed by a lightweight adaptor 186

and multiplied by 1− gi. The entire process can be 187

formalized as: 188

x′i =

{
gi · FFN(Norm(hi)) + hi, if gi > τ

(1− gi) · A(Norm(hi)) + hi, if gi ≤ τ
(4) 189

where x′i is the output hidden state for token i, 190

Norm denotes layer normalization, FFN is the feed- 191

forward network, and A(·) is the lightweight adap- 192

tor. We implement the Adaptor as a tiny FFN with 193

greatly reduced intermediate dimension. 194

2.2 Skipping Loss 195

To balance computational efficiency and gener- 196

ation quality, we introduce a skipping loss that 197

works jointly with the next-token prediction loss. 198

Specifically, we minimize the L2 loss on the ex- 199

pected number of preserved FFN blocks, encour- 200

aging routers across different layers to jointly op- 201

timize their skipping decisions. The gating scores 202

Gl = [gl1, gl2, . . . , glT ] for each layer l can be seen 203

as the probability of preserving the FFN block. The 204

expected number of preserved blocks for each to- 205

ken is computed as: 206

E(G) =

[
L∑
l=1

gl1,
L∑
l=1

gl2, ...,
L∑
l=1

glT

]
, (5) 207

where E(G) is a vector of length T , with each 208

element representing the expected number of pre- 209

served blocks for the corresponding token. The 210

skipping loss is then defined as the weighted L2 211

loss of this expectation: 212

Lskip =

T∑
t=1

wt

(
L∑
l=1

glt

)2

, (6) 213

where W = [w1, w2, ..., wT ] are token-specific 214

weights. Each weight wt is computed as the re- 215

ciprocal of the next-token prediction perplexity: 216
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wt = 1/Perplexity(yt|y<t). This ensures that to-217

kens with lower perplexity encourage more skip-218

ping, while tokens with higher perplexity preserve219

computational depth. We note that perplexity-220

based weighting is a minimalistic design choice,221

and future work could explore more advanced met-222

rics for measuring prediction difficulty or com-223

putation budget allocation. The final loss is the224

weighted sum of the skipping loss and the original225

language modeling loss:226

L = α ∗ Lskip + Llm. (7)227

3 Experiments228

3.1 Implementation Details229

Hyperparameters. For the router, we implement a230

bottlenecked MLP according to Equation 2, where231

we set the bottleneck dimensions dr to d/16, with232

d being the model’s hidden dimension. The projec-233

tion layer employs a tiny FFN with an intermediate234

dimension of dffn/16, where dffn represents the235

original FFN intermediate dimension. Our gating236

function is implemented using SparseMixer (Liu237

et al., 2023). Based on empirical findings of prior238

work (Men et al., 2024; Sun et al., 2024) that early239

transformer layers exhibit limited sparsity and are240

less amenable to skipping, we deploy routers only241

in the latter half of the transformer layers. The loss242

function balancing coefficient α in Equation 6 was243

empirically set to 1e− 3 during training on Llama-244

3-8B (Dubey et al., 2024). This value achieved245

an average skipping rate of approximately 8 FFN246

blocks for generation.247

Training Protocol. We optimize our model248

using AdamW with the following configuration:249

learning rate = 1e − 4, β1 = 0.9, β2 = 0.999,250

ϵ = 1e − 8, and weight decay = 0.01. The train-251

ing process spans 3 epochs on the tulu-v2 (Ivison252

et al., 2023) dataset which consists of 326k dia-253

logues, incorporating a warmup ratio of 0.03 and254

utilizing a global batch size of 64. The complete255

training procedure for a DiffSkip based on Llama-256

3-8B model requires approximately 7 hours on 8257

NVIDIA A100 GPUs.258

3.2 Main Results259

In this section, we present the main results of our260

experiments. Using Llama-3-8B-Instruct (Dubey261

et al., 2024) as the base model for FFN skipping,262

we compare the proposed DiffSkip with other skip-263

ping methods. Let k represent the number of layers264

skipped by these methods. For the 32-layer Llama- 265

3-8B-Instruct, we evaluate the methods with k = 4 266

and k = 8. 267

Benchmarks. We evaluate our method 268

on diverse benchmarks. For understanding 269

tasks (single token generation), we use 5-shot 270

MMLU (Hendrycks et al., 2021), which consists 271

of multiple-choice questions across STEM and hu- 272

manities; 5-shot HellaSwag (Zellers et al., 2019), 273

which evaluates commonsense inference through 274

sentence completion; and 5-shot Winogrande (Sak- 275

aguchi et al., 2020), which tests commonsense 276

reasoning via Winograd Schema challenges. For 277

sequence generation tasks (multiple tokens), we 278

evaluate on 5-shot GSM8K (Cobbe et al., 2021) 279

for multi-step mathematical word problems, zero- 280

shot BBH (Suzgun et al., 2023) for diverse rea- 281

soning tasks ranging from logical deduction to al- 282

gorithmic thinking, and zero-shot XSum (Narayan 283

et al., 2018) for concise news article summarization. 284

All evaluations are conducted using lm-evaluation- 285

harness (Gao et al., 2024) codebase, with accuracy 286

(acc) for MMLU and Winogrande, normalized ac- 287

curacy (acc norm) for HellaSwag, exact match for 288

GSM8K and BBH, and ROUGE for XSum. All the 289

datasets are used in accordance with their respec- 290

tive licenses. 291

Baselines. We tested several layer-skipping 292

methods on LLaMa-3-8B-Instruct as baselines for 293

comparison. For comparison, we set these methods 294

to skip only the Feed-Forward Network (FFN) part 295

of the transformer block: 296

• EarlyExit (Elhoushi et al., 2024): This method 297

skips the last k consecutive layers during de- 298

coding and corrects the generation results us- 299

ing speculative decoding (Leviathan et al., 300

2023). For comparison, we skip only the Feed- 301

Forward Network (FFN) part of the trans- 302

former block and avoid using speculative de- 303

coding for correction. 304

• ShortGPT (Men et al., 2024): This approach 305

uses cosine similarity between the input and 306

output of a layer to assess its importance, prun- 307

ing the k least important layers. In our experi- 308

ments, we measured the cosine similarity for 309

the FFN blocks and pruned the k least impor- 310

tant FFN blocks. 311

• LaCo (Yang et al., 2024): This method em- 312

ploys a Reserving-Differences-while-Seeking- 313

Common (RDSC) Layer Merge strategy to 314
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Methods Single-Token Generation Multi-Token Generation Retain
%MMLU Hellaswag Winogrande GSM8K BBH XSum

Vanilla 67.3 70.6 74.4 67.9 52.4 12.2 100.0%

Skip k = 4 FFN Blocks

EarlyExit 66.1 65.7 68.0 2.1 8.7 3.4 55.0%
ShortGPT 65.8 61.3 68.9 0.0 8.8 1.0 50.0%
LaCo 67.2 69.7 64.9 58.4 42.9 11.6 91.5%
MindSkip 65.7 65.2 68.9 2.4 5.5 3.1 53.7%
DiffSkip(Ours) 66.3 73.2 74.3 64.8 50.2 12.3 99.0%

Skip k = 8 FFN Blocks

EarlyExit 66.5 52.4 64.5 0.0 2.9 2.8 48.0%
ShortGPT 65.6 52.2 66.5 0.0 2.8 0.3 44.8%
LaCo 65.7 63.0 60.4 6.6 22.7 8.6 65.3%
MindSkip 64.8 54.2 67.0 0.4 4.6 1.8 47.9%
DiffSkip(Ours) 62.4 68.7 74.2 57.8 44.6 10.7 91.3%

Table 1: Performance comparison based on Llama-3-8B-Instruct, which consists of 32 layers. Retain % represents
the percentage of average retained benchmark performance compared with the original LLM.

reduce the total number of layers. For our im-315

plementation, we applied the merge operation316

to reduce k FFN blocks.317

• MindSkip (He et al., 2024a): This method318

uses sequence-level routing, where a router de-319

cides whether the entire sequence should skip320

or preserve a layer. We trained it to skip FFN321

blocks on the same tulu-v2 (Ivison et al., 2023)322

dataset and adjusted the skipping penalty to323

ensure that the expected number of skipped324

FFN blocks per generated token is approxi-325

mately k.326

For our method, we aim to control the expected327

number of skipped FFN blocks to be k. To ensure328

a consistent number of skipped blocks, we trained329

multiple models with different weights α and eval-330

uated their performance. For each task, we report331

the results corresponding to the model configura-332

tion that achieves the target number k of skipped333

FFN blocks. We will later show the performance334

of DiffSkip with a fixed penalty weight α across335

these tasks.336

As shown in Table 1, while all the methods337

perform comparably on single-token generation338

tasks (e.g., MMLU, HellaSwag, and Winogrande),339

the baseline approaches suffer a significant perfor-340

mance drop on multi-token generation tasks such341

as GSM8K, BBH, and XSum. In contrast, DiffSkip342

delivers more consistent performance across both343

task types. When skipping 4 FFN blocks, our344

method preserved 100.7% of the original perfor-345

mance on single-token generation tasks and 97.4%346

on multi-token generation tasks. When skipping 8347

FFN blocks, our method preserved 96.6% of the 348

original performance on single-token generation 349

tasks and 86.0% on multi-token generation tasks. 350

The results suggest that single-token generation 351

benchmarks might be more robust to FFN skipping 352

compared to multi-token generation tasks. 353

3.3 Skipping Pattern Analysis 354

In this section, we analyze the skipping behav- 355

ior of DiffSkip across different tasks and model 356

sizes. We conduct experiments using Llama-3.2- 357

3B-Instruct (Dubey et al., 2024), Llama-2-7B- 358

Instruct, Llama-3-8B-Instruct, and Llama-2-13B- 359

Instruct, training each model with a fixed penalty 360

weight of α = 1e − 3 on Tulu-v2 (Ivison et al., 361

2023) for 3 epochs. The total number of layers in 362

these models is 28, 32, 32, and 40, respectively. We 363

apply the routing mechanism only to the latter half 364

of the layers in each model. Table 2 summarizes the 365

results. For simplicity, we omit the "Instruct" suffix 366

in the table. Each group of three rows corresponds 367

to a different base model. 368

DiffSkip performs consistently across different 369

tasks for LLMs trained with a fixed penalty weight. 370

On average, continuous generation tasks (GSM8K, 371

BBH, XSum) skip more FFNs compared to under- 372

standing tasks (MMLU, HellaSwag, Winogrande), 373

resulting in larger performance loss. 374

We find that the skipping patterns vary signif- 375

icantly with model size. Larger models, such as 376

Llama-2-13B, skip more FFN blocks on average 377

(9.1 FFN blocks) compared to smaller models like 378

Llama-3.2-3B (3.1 FFN blocks). Smaller mod- 379

els demonstrate higher sensitivity to FFN skip- 380
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Model MMLU Hellaswag Winogrande GSM8K BBH XSum

Llama-3.2-3B 61.7 70.6 65.7 71.9 47.3 12.6
DiffSkip 61.3 68.3 61.2 67.0 45.4 11.8
Skipped FFNs 2.8 1.7 3.8 4.3 4.0 2.2

Llama-2-7B 45.3 66.4 67.3 19.6 30.1 12.1
DiffSkip 41.1 69.5 69.9 16.8 29.2 12.5
Skipped FFNs 4.3 1.8 3.7 8.0 7.3 5.1

Llama-3-8B 67.3 70.6 74.4 67.9 52.4 12.2
DiffSkip 65.3 74.5 74.3 57.2 44.6 12.8
Skipped FFNs 5.2 2.0 4.3 9.6 8.7 5.1

Llama-2-13B 49.2 72.7 71.4 23.6 33.9 10.7
DiffSkip 50.4 75.3 71.8 26.5 32.8 11.5
Skipped FFNs 7.6 3.9 6.4 14.7 13.1 9.9

Table 2: Performance and skipping patterns of DiffSkip. For each model, the first row shows the baseline
performance, the second row shows DiffSkip’s performance, and the third row reports the average number of
skipped FFN blocks.

ping; for instance, skipping just 1.7 FFN blocks381

in Llama-3.2-3B leads to a performance drop on382

HellaSwag from 70.6 to 68.3. In contrast, larger383

models like Llama-2-13B benefit from FFN skip-384

ping. On GSM8K, skipping an average of 14.7385

FFN blocks improves performance from 23.6 to386

26.5. We hypothesize that Llama-2-13B contains387

more redundant parameters, allowing it to skip FFN388

blocks without losing critical information while si-389

multaneously filtering out noisy computations for390

better performance.391

3.4 Examples of Skipping392

In this section, we illustrate the skipping patterns393

at sequence level. Tokens are color-coded to reflect394

the number of FFN blocks utilized. A lighter color395

indicates that fewer FFN blocks were used. Below396

is the color mapping, where each number corre-397

sponds to the number of FFN blocks employed:398

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,399

16. Here, we present three examples generated by400

Llama-3-8B-Instruct with DiffSkip, using a penalty401

weight of α = 1e− 3. For optimal readability, we402

recommend viewing this section on a screen.403

Example 1 Our first example is from the GSM8K404

dataset, which is about math reasoning.405

Prompt: Marilyn’s first record sold 10 times as406

many copies as Harald’s. If they sold 88,000 copies407

combined, how many copies did Harald sell?408

Generated: Let Harald’s number be H. Then409

Marilyn’s number is 10H. 10H + H = 88,000.410

11H = 88,000. H = 8,000.411

By examining the model’s reasoning process,412

several insights can be gained. The initial step of413

defining the variable (H) to represent Harald’s num-414

ber of copies requires more computation, as this 415

involves abstracting from the problem statement 416

and introducing a new symbol. Subsequently, when 417

forming the equation (10H + H = 88,000) based 418

on the problem statement, fewer FFNs are needed 419

because they can be copied from the context with- 420

out deep computation. Finally, in computing the 421

answer (H = 8,000), we observe another increase in 422

FFNs usage, reflecting the model’s need to perform 423

a more demanding arithmetic calculation. 424

Example 2 The second example is a summariza- 425

tion sample from the XSum dataset about a flood 426

incident at a Victoria Centre store. 427

Prompt: Torrents of water brought down a sus- 428

pended ceiling and damaged stock in the Victoria 429

Centre store at about 22:40 BST on Tuesday. Man- 430

agers had hoped for a weekend reopening but it is 431

now closed until further notice. Staff have been 432

helping with the clean-up operation. Water poured 433

through from a rooftop room, leaving the top floor 434

under three inches of water and stock significantly 435

damaged. A spokeswoman said: Our teams are 436

working around the clock to get the shop open as 437

quickly as possible and we’re sorry for the incon- 438

venience this has caused to our customers. Please 439

summarize this paragraph into one sentence: 440

Generated: 1. The Victoria Centre store is 441

closed until further notice after a ceiling collapsed 442

and water poured through the top floor, damaging 443

stock. 444

Most content words in a summary require deeper 445

computation to capture key information accurately. 446

However, words like "Centre" and "store" in this 447

example utilize fewer FFN blocks, likely because 448

they are more predictable given the preceding con- 449
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Router Design MMLU Hellaswag Winogrande GSM8K BBH XSum Retain
%

Vanilla 67.3 70.6 74.4 67.9 52.4 12.2 100.0%
DiffSkip 66.3 73.2 74.3 64.8 50.2 12.3 99.00%
Attn-Input 66.3 70.0 63.8 51.2 47.7 11.4 90.5%
Attn-Output 65.6 70.8 63.4 52.7 48.8 11.7 91.6%
No Adaptor 24.4 25.8 48.4 0.0 0.9 0.0 23.2%
Linear Adaptor 66.8 72.8 62.0 33.9 45.5 11.3 85.8%
Independent 60.5 72.5 70.8 59.2 43.4 11.7 92.3%
No Perplexity Weighting 62.5 72.3 74.0 60.2 46.2 12.0 95.0%

Table 3: Ablation studies based on Llama-3-8B-Instruct. The settings for methods are described in the main text.

text, specifically the phrase "Victoria Centre store".450

Example 3 The third example is about coding.451

Prompt: Please write code in python. I want to452

reverse this list: [1,2,3,4,5]453

Generated: and also want to remove duplicates454

from the list.455

list = [1,2,3,4,5]456

list = list[::-1] # reverse the list457

list = list(set(list)) # remove duplicates from the458

list459

print(list) # [5,4,3,2,1] # output460

This example highlights several key insights. To-461

kens that can be directly copied from the context,462

such as the list elements "[1,2,3,4,5]", require min-463

imal processing. In contrast, generating the initial464

tokens in the reversed list "[5,4,3,2,1]" demands465

deeper computation, as the model must selectively466

determine them from the given numbers. Once467

these initial tokens are established, generating the468

remaining numbers becomes easier due to reduced469

uncertainty. Our approach explicitly captures this470

notable phenomenon— the computational cost re-471

quired for token generation varies depending on472

the context.473

3.5 Ablation Studies474

Router Input. We investigate different attention-475

based features as router inputs to identify the most476

effective design. While our default implementa-477

tion uses the difference between attention input478

and output, we explore two alternatives: directly479

using attention input (Attn-Input) or output (Attn-480

Output). As shown in Table 3, both alternatives un-481

derperform the difference-based approach. The per-482

formance degradation is particularly pronounced483

on tasks requiring sophisticated reasoning: Wino-484

grande (requiring the identification of nuanced se-485

mantic cues to resolve ambiguity) and GSM8K486

(requiring step-by-step mathematical reasoning).487

Specifically, while our difference-based approach488

only experiences a marginal 1% performance drop,489

using raw attention input or output leads to degrada- 490

tion of 9.5% and 8.4%, respectively. These results 491

suggest that the attention difference better captures 492

task-relevant features for routing decisions. 493

Adaptor Design. We investigate the impact of 494

adaptor architecture. Our default design uses a 495

small FFN with a reduced intermediate dimension, 496

which we compare against two variants: removing 497

the adaptor entirely and replacing it with a linear 498

transformation. As shown in Table 3, removing 499

the adaptor ("No Adaptor") results in catastrophic 500

performance degradation, retaining only 23.2% of 501

the original performance. This degradation is par- 502

ticularly evident in continuous token generation 503

tasks, where performance drops to zero. While re- 504

placing the FFN with a linear transformation ("Lin- 505

ear Adaptor") also reduces performance (85.8% 506

retention), it still maintains reasonable functional- 507

ity. Since a linear transformation cannot provide 508

non-linearity for deeper representation learning, 509

this result supports our hypothesis that the hidden 510

representations skipping the FFN might not reside 511

in the same latent space as those processed by the 512

FFN. 513

Loss Function Design. We investigate two 514

key components in our loss function design: the 515

L2 penalty on expected FFN preservation and 516

the perplexity-based token weighting strategy. 517

First, we examine the impact of replacing our 518

expectation-based L2 penalty with independent 519

L2 loss directly on gating scores g, modifying 520

Equation 6 to Lskip =
∑T

t=1wt
∑L

l=1 (glt)
2. As 521

shown in Table 3, this modification ("Independent") 522

leads to a performance drop to 92.3%, with no- 523

table degradation in knowledge-intensive tasks like 524

MMLU (60.5%) and reasoning tasks like BBH 525

(43.4%). Second, we evaluate the effectiveness 526

of our perplexity-based weighting by removing the 527

weighting factor w ("No Weighting"). This results 528

in a moderate performance decline to 95.0%, sug- 529

gesting that while token-difficulty adaptation pro- 530
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vides benefits, the expectation-based L2 penalty531

plays a more crucial role in maintaining model per-532

formance.533

4 Limitations534

While DiffSkip reduces computational FLOPs by535

dynamically skipping FFN blocks, it does not536

achieve speedup on the current GPU hardware.537

This is because, in batched decoding scenarios,538

some tokens are routed to FFN while others might539

go to the adapter within each layer. As a result,540

both modules need to be fetched and executed. The541

IO overhead of managing them outweights the com-542

putational savings, preventing throughput improve-543

ments.544

5 Related Works545

5.1 Dynamic Computation in Language546

Models547

In encoder-only models like BERT, methods such548

as PoWER-BERT (Goyal et al., 2020), LTP (Kim549

et al., 2022), and LoT (Kim et al., 2023), make550

layer-by-layer decisions on whether tokens should551

be processed or skipped. For encoder-decoder mod-552

els like T5, methods such as CoDA (Lei et al., 2023)553

and COLT5 (Ainslie et al., 2023) introduce condi-554

tional computation mechanisms for the encoder.555

They conditionally replace the original attention or556

FFN with a lightweight adaptor. However, these557

methods are primarily designed for the encoder558

portion of the model, as they rely on noncausal559

routing mechanisms. Consequently, they are not560

directly applicable to decoder-only causal language561

models.562

While significant progress has been made in563

encoder-based models, enabling dynamic depth in564

decoder-only language models remains an under-565

studied area. Mixture of Depth (MoD) (Raposo566

et al., 2024) and SkipLayer (Zeng et al., 2023) were567

the first to introduce depth routing in causal lan-568

guage models, demonstrating that a simple router569

combined with extensive pre-training can train a dy-570

namic depth model from scratch. DLO (Tan et al.,571

2024) further explored this area by using a layer-572

expanding and layer-skipping mechanism, showing573

that supervised fine-tuning can adapt LLaMA-3574

into a dynamic depth model. However, these meth-575

ods require the model to be fully tunable. In this576

work, we enable dynamic depth in a pre-trained577

large language model without changing any of its578

original parameters.579

5.2 Layer Pruning 580

Layer pruning aims to reduce computational over- 581

head by identifying and skipping redundant layers. 582

A common approach involves analyzing the simi- 583

larity between layer inputs and outputs to detect re- 584

dundancy. For instance, Men et al. (2024) proposed 585

measuring cosine similarity between the input and 586

output of transformer blocks, pruning modules with 587

high similarity based on a calibration dataset. He 588

et al. (2024b) conducted a finer-grained analysis 589

by separately evaluating the similarity between in- 590

puts and outputs of attention and FFN modules, 591

revealing distinct redundancy patterns across com- 592

ponents. To address limitations in static pruning, 593

Zhang et al. (2024) introduced an iterative pruning 594

framework that greedily removes layers with min- 595

imal impact, measured by the difference between 596

outputs of the original and pruned models. He 597

et al. (2024a) used a sequence-level router to skip 598

the Attention or FFN module. Yang et al. (2024) 599

merged adjacent layers with high cosine similarity 600

to reduce the number of layers. 601

In addition to these methods, early-exit strate- 602

gies halt further computation for tokens once they 603

meet certain confidence criteria. Schuster et al. 604

(2022) advanced this by training an early-exit clas- 605

sifier to detect local consistency in encoder-decoder 606

architectures. For decoder-only models, Varshney 607

et al. (2024) improved early-exit quality by training 608

intermediate layers to enable decoding in the mid- 609

dle, while Elhoushi et al. (2024) combined layer 610

dropout during training with speculative decoding 611

at inference to enhance robustness. 612

6 Conclusion 613

In this paper, we show that large language mod- 614

els inherently possess a capacity for dynamic- 615

depth processing without modifying their origi- 616

nal parameters. We introduced Differential Layer 617

Skipping (DiffSkip). This method leverages the 618

self-attention input-output difference as a routing 619

signal, enabling a lightweight router mechanism to 620

decide whether each token’s hidden state should 621

undergo or skip FFN transformations. Conse- 622

quently, computational depth is allocated dynami- 623

cally based on token difficulty and show interesting 624

phenomenon on various tasks. We hope these find- 625

ings encourage further research into exploiting the 626

inherent signals and dynamic-depth properties of 627

large language models to create more adaptive and 628

efficient AI systems. 629
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