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Abstract

Existing Large Language Models (LLMs) en-
force uniform computation across all tokens.
We analyze the correlation between the input-
output difference of self-attention block and
Feed-Forward Network (FFN) within the same
transformer layer, and find that these two differ-
ential vectors are highly correlated. Thus, we
propose to dynamically skip the FFN blocks
based on the self-attention difference and in-
troduce Diffential Layer Skipping (DiffSkip)
to show that LLMs are inherently dynamic-
depth models, capable of adjusting computa-
tional depth when generating different tokens.
DiffSkip employs a lightweight router module
to dynamically skip a set of FFN blocks in
LLMs and only requires efficient fine-tuning
while keeping the whole LLM frozen. Ex-
perimental results demonstrate that DiffSkip
effectively enables dynamic FFN skipping in
decoder-only language models, even in contin-
uous token generation tasks where many layer-
skipping methods struggle.

1 Introduction

Large language models (LLMs) (Ouyang et al.,
2022; Dubey et al., 2024; Liu et al., 2024) have
demonstrated remarkable capabilities across di-
verse tasks (Zhu et al., 2023; Basyal and Sanghvi,
2023; Jiang et al., 2024). These models operate
through a next-token-prediction mechanism, en-
abling them to tackle complex problems via step-
by-step reasoning. However, regardless of the pre-
diction complexity, tokens are processed through
the same number of transformer layers. To enable
dynamic computation, prior works (Raposo et al.,
2024; Zeng et al., 2023) introduce a router that
makes a binary decision at each layer, determining
whether to skip the layer or not. In their imple-
mentation, the router is jointly trained with the
transformer from scratch. Although this approach
allows the transformer to learn representations that
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Figure 1: Cosine similarity between Self-attention Input-
Output Differences (A ayn, = Attn(z) — x) and FFN
Input-Output Differences (Appy = FEFN(h) — h)
across different layers in Llama-3-8B-Instruct. The
input-output differences of the self-attention and FFN
exhibit a high correlation across most layers, except for
the first and last few layers.

provide valuable signals for routing, it comes with
significant training overhead. This motivates us to
explore whether effective routing signals can be
obtained from a pre-trained model.

In this paper, we demonstrate that pre-trained
large language models already possess the rout-
ing signals for dynamic computation. Our key
insight is that the self-attention input-output dif-
ference, A gy, = Attn(z) — x, is correlated with
the feed-forward network (FFN) input-output dif-
ference, Appy = FFN(h) — h. Here, x and h
represent the inputs to the self-attention block and
the FFN block, respectively. In our experiments,
we observe strong correlations between A g4, and
Appn across various datasets (Figure 1), includ-
ing single-token generation tasks like ARC (Clark
et al., 2018) and HellaSwag (Zellers et al., 2019),
as well as multi-token generation tasks such as
GSMBSK (Cobbe et al., 2021) and BBH (Suzgun
et al., 2023). This correlation implies that A 44,
can be used to predict the transformation that the



Prompt: There are twice as many boys
as girls at Dr. Wertz’s school. If there are 60
girls and 5 students to every teacher, how
many teachers are there?

Generated: Let’s answer. 60 girls means

60 * 2 = 120 boys. 120 boys + girls =
180 students. 5 students to every teacher
means 180/ 5 = 36 teachers. answer

O —

Figure 2: Visualization of token-wise FFN block skip-
ping with DiffSkip. The color gradient from light blue
to dark blue indicates the number of FFN blocks utilized
during token generation, ranging from O to 16.

FFN would apply, thereby enabling us to deter-
mine whether the subsequent FFN transformation
is necessary.

Based on this insight, we propose Differential
Layer Skipping (DiffSkip), a method that uses the
self-attention input-output difference A 44, as a
routing signal for dynamic FFN skipping. Specif-
ically, DiffSkip employs two key components in
each layer: (1) a router that takes A 444, as input to
determine whether individual tokens skip or pass
through the FFN, and (2) an adaptor that aligns the
latent spaces of tokens that skip the FFN with those
that undergo FFN computation. Importantly, the
router and the adaptor are the only components that
are tunable, while the rest of the transformer pa-
rameters remain frozen. By stacking multiple such
layers, DiffSkip enables tokens to dynamically skip
FFN blocks during inference, effectively creating
paths of varying depths through the network for
each token based on its computational need.

To optimize routing efficiency, we introduce a
skipping loss that works in conjunction with the
original next-token prediction loss. This loss func-
tion is designed to encourage FFN skipping by
penalizing the number of FEN blocks utilized. We
implement this as an L2 loss on the expected num-
ber of blocks preserved per token, which enables
routers across different layers to jointly optimize
for the skipping objective. In practice, we find
that our expectation-based approach leads to im-
proved performance compared to designs that ap-
ply penalties to routers independently (Tan et al.,
2024; He et al., 2024a). Furthermore, to adapt
the skipping strategy to the difficulty of the genera-
tion task, we incorporate token-wise weighting into
the loss. High-perplexity tokens, indicating harder
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Figure 3: Pipeline for the routing mechanism. The
router generates a gating score g based on the self-
attention difference A 444,,. If g > 7, the token represen-
tation z is routed to the FFN; if g < 7, it is processed
by the lightweight adaptor.

predictions, receive smaller penalties for preserv-
ing FFNs, while low-perplexity tokens, associated
with simpler predictions, are encouraged to skip
more. Although we adopt next-token perplexity as
a lightweight proxy for prediction difficulty in this
work, future research could explore more advanced
strategies.

Experimental results demonstrate that DiffSkip
effectively enables dynamic FFN skipping in
decoder-only language models, even in continuous
token generation tasks where many pruning meth-
ods struggle. For example, when applying DiffSkip
to Llama-3-8B with 8 FFN blocks skipped, it main-
tains 91.3% of the original performance. To bet-
ter understand how DiffSkip dynamically allocates
computational depth to different tokens, we visu-
alize the layer usage of each token in Figure 2.
DiffSkip processes answer tokens that require com-
putation through more blocks, such as "180" in
"= 180 students" and the first "36" in "= 36 teach-
ers". Interestingly, although the final answer "36"
is numerically identical to the first "36" in "= 36
teachers", it is assigned fewer blocks since it is
simply a copy of the previous result and does not
require deep processing. More examples will be
discussed in Section 3.4.

2 Methods

DiffSkip is a plug-in method that applies to a pre-
trained decoder-only language model. It adds a
router and an adaptor to enable dynamic FFN skip-
ping. The router takes the self-attention input-
output difference A 44+, as input and produces the
gating scores G = [g1, g2, ..., g7|, where T is the
number of tokens. Based on the gating scores



G and a pre-defined threshold 7, tokens are par-
titioned into two groups: those routed to the FFN
(Figure 3 left) and those routed to the lightweight
adaptor (Figure 3 right). In the following subsec-
tions, we describe the implementation details and
the design of our loss function.

2.1 Router Design

In this section, we present our implementation of
the routing mechanism. Figure 3 illustrates the
routing pipeline in a transformer block. The key
insights guiding our design are:

Attention Block Difference: The attention op-
eration acts as a preparatory step for the FFN, with
its input-output differences highly correlated to the
transformations performed by the FFN (Figure 1).
This correlation allows the router to infer the extent
of FFN processing needed for each token, enabling
informed decisions on whether to skip or engage
the FFN.

Latent Space Alignment: Hidden representa-
tions that skip the FFN might not be in the same
latent space as those processed by the FFN. To
address this, we use an adaptor to align the latent
spaces of the skipped ones with those that undergo
FFN processing.

Let X = [21,29,...,27] € RT>*? denote the
input hidden states, where T represents the number
of tokens and d represents the number of hidden
dimensions. We compute the attention output and
subtract it from the input X to obtain the difference

A Attn:
KT >

Vw, — X, )
vd ’
where Q) = XW,, K = XW;,, V = XW,. The
router then uses the difference to predict the gating
scores GG:

A pppn = softmax(

G == [917 g2, 7gT] = U(Router(AAttn))7 (2)

where o denotes the sigmoid function to restrict
the scores g; between 0 and 1. The router is im-
plemented as a bottlenecked MLP with a router
head:

Router(z) = Whead - (Wyp - tanh(Wyownz)), (3)

where Wyown € Rr*d, W € R4*dr  and
Wheada € RY? are the down-projection, up-
projection, and router head matrices, respectively,
with d, as the bottleneck dimension.

The gating scores G determine how the input
hidden states H = [h1, ho, ..., hr] of FEN block
are processed. Hidden states h; with g; > 7 are
routed to the FFN, while those with g; < 7 skip the
FFN. For hidden states routed to the FFN (Figure 3
left), they are processed by the standard transformer
block modules and then multiplied by their gating
scores g; to enable gradient backpropagation to the
router. For hidden states that skip the FFN (Figure 3
right), they are processed by a lightweight adaptor
and multiplied by 1 — g;. The entire process can be
formalized as:

, _ J gi - FEN(Norm(h;)) + hy, ifg; >71
"l (1= gi) - ANorm(hy)) + hy, ifgi <7
“)

where 2, is the output hidden state for token 1,
Norm denotes layer normalization, FFN is the feed-
forward network, and A(-) is the lightweight adap-
tor. We implement the Adaptor as a tiny FFN with
greatly reduced intermediate dimension.

2.2 Skipping Loss

To balance computational efficiency and gener-
ation quality, we introduce a skipping loss that
works jointly with the next-token prediction loss.
Specifically, we minimize the L2 loss on the ex-
pected number of preserved FFN blocks, encour-
aging routers across different layers to jointly op-
timize their skipping decisions. The gating scores
G = [g11, gi2, - - - » gir] for each layer [ can be seen
as the probability of preserving the FFN block. The
expected number of preserved blocks for each to-
ken is computed as:

E(G) =

L L L
> 1Y g ZQZT] NG
=1 =1

=1

where E(G) is a vector of length 7', with each
element representing the expected number of pre-
served blocks for the corresponding token. The
skipping loss is then defined as the weighted L2
loss of this expectation:

T L 2
ﬁskip = Zwt (Z glt) ) (6)
t=1 =1

where W = [wi,wy, ..., wr| are token-specific
weights. Each weight w; is computed as the re-
ciprocal of the next-token prediction perplexity:



wy = 1/Perplexity(y;|y<;). This ensures that to-
kens with lower perplexity encourage more skip-
ping, while tokens with higher perplexity preserve
computational depth. We note that perplexity-
based weighting is a minimalistic design choice,
and future work could explore more advanced met-
rics for measuring prediction difficulty or com-
putation budget allocation. The final loss is the
weighted sum of the skipping loss and the original
language modeling loss:

L=ax* »Cskip + Lim- (N

3 Experiments

3.1 Implementation Details

Hyperparameters. For the router, we implement a
bottlenecked MLP according to Equation 2, where
we set the bottleneck dimensions d,. to d/16, with
d being the model’s hidden dimension. The projec-
tion layer employs a tiny FFN with an intermediate
dimension of dy fy, /16, where d #fn rEpresents the
original FFN intermediate dimension. Our gating
function is implemented using SparseMixer (Liu
et al., 2023). Based on empirical findings of prior
work (Men et al., 2024; Sun et al., 2024) that early
transformer layers exhibit limited sparsity and are
less amenable to skipping, we deploy routers only
in the latter half of the transformer layers. The loss
function balancing coefficient o in Equation 6 was
empirically set to 1e — 3 during training on Llama-
3-8B (Dubey et al., 2024). This value achieved
an average skipping rate of approximately 8 FFN
blocks for generation.

Training Protocol. We optimize our model
using AdamW with the following configuration:
learning rate = le — 4, 81 = 0.9, B2 = 0.999,
€ = le — 8, and weight decay = 0.01. The train-
ing process spans 3 epochs on the tulu-v2 (Ivison
et al., 2023) dataset which consists of 326k dia-
logues, incorporating a warmup ratio of 0.03 and
utilizing a global batch size of 64. The complete
training procedure for a DiffSkip based on Llama-
3-8B model requires approximately 7 hours on 8
NVIDIA A100 GPUs.

3.2 Main Results

In this section, we present the main results of our
experiments. Using Llama-3-8B-Instruct (Dubey
et al., 2024) as the base model for FFN skipping,
we compare the proposed DiffSkip with other skip-
ping methods. Let k represent the number of layers

skipped by these methods. For the 32-layer Llama-
3-8B-Instruct, we evaluate the methods with & = 4
and k = 8.

Benchmarks. We evaluate our method
on diverse benchmarks.  For understanding
tasks (single token generation), we use 5-shot
MMLU (Hendrycks et al., 2021), which consists
of multiple-choice questions across STEM and hu-
manities; 5-shot HellaSwag (Zellers et al., 2019),
which evaluates commonsense inference through
sentence completion; and 5-shot Winogrande (Sak-
aguchi et al., 2020), which tests commonsense
reasoning via Winograd Schema challenges. For
sequence generation tasks (multiple tokens), we
evaluate on 5-shot GSM8K (Cobbe et al., 2021)
for multi-step mathematical word problems, zero-
shot BBH (Suzgun et al., 2023) for diverse rea-
soning tasks ranging from logical deduction to al-
gorithmic thinking, and zero-shot XSum (Narayan
et al., 2018) for concise news article summarization.
All evaluations are conducted using Im-evaluation-
harness (Gao et al., 2024) codebase, with accuracy
(acc) for MMLU and Winogrande, normalized ac-
curacy (acc norm) for HellaSwag, exact match for
GSMS8K and BBH, and ROUGE for XSum. All the
datasets are used in accordance with their respec-
tive licenses.

Baselines. We tested several layer-skipping
methods on LLaMa-3-8B-Instruct as baselines for
comparison. For comparison, we set these methods
to skip only the Feed-Forward Network (FFN) part
of the transformer block:

* EarlyExit (Elhoushi et al., 2024): This method
skips the last k& consecutive layers during de-
coding and corrects the generation results us-
ing speculative decoding (Leviathan et al.,
2023). For comparison, we skip only the Feed-
Forward Network (FFN) part of the trans-
former block and avoid using speculative de-
coding for correction.

* ShortGPT (Men et al., 2024): This approach
uses cosine similarity between the input and
output of a layer to assess its importance, prun-
ing the k least important layers. In our experi-
ments, we measured the cosine similarity for
the FFN blocks and pruned the k least impor-
tant FFN blocks.

* LaCo (Yang et al., 2024): This method em-
ploys a Reserving-Differences-while-Seeking-
Common (RDSC) Layer Merge strategy to



Methods Single-Token Generation Multi-Token Generation | Retain
MMLU Hellaswag Winogrande | GSMS8K BBH XSum %
Vanilla | 673 70.6 74.4 67.9 52.4 122 | 100.0%
Skip k = 4 FFN Blocks
EarlyExit 66.1 65.7 68.0 2.1 8.7 34 55.0%
ShortGPT 65.8 61.3 68.9 0.0 8.8 1.0 50.0%
LaCo 67.2 69.7 64.9 58.4 429 11.6 91.5%
MindSkip 65.7 65.2 68.9 2.4 55 3.1 53.7%
DiffSkip(Ours) 66.3 73.2 74.3 64.8 50.2 12.3 99.0%
Skip k£ = 8 FFN Blocks
EarlyExit 66.5 524 64.5 0.0 29 2.8 48.0%
ShortGPT 65.6 522 66.5 0.0 2.8 0.3 44.8%
LaCo 65.7 63.0 60.4 6.6 227 8.6 65.3%
MindSkip 64.8 54.2 67.0 0.4 4.6 1.8 47.9%
DiffSkip(Ours) 62.4 68.7 74.2 57.8 44.6 10.7 91.3%

Table 1: Performance comparison based on Llama-3-8B-Instruct, which consists of 32 layers. Retain % represents
the percentage of average retained benchmark performance compared with the original LLM.

reduce the total number of layers. For our im-
plementation, we applied the merge operation
to reduce k£ FFN blocks.

* MindSkip (He et al., 2024a): This method
uses sequence-level routing, where a router de-
cides whether the entire sequence should skip
or preserve a layer. We trained it to skip FFN
blocks on the same tulu-v2 (Ivison et al., 2023)
dataset and adjusted the skipping penalty to
ensure that the expected number of skipped
FFN blocks per generated token is approxi-
mately k.

For our method, we aim to control the expected
number of skipped FFN blocks to be k. To ensure
a consistent number of skipped blocks, we trained
multiple models with different weights o and eval-
uated their performance. For each task, we report
the results corresponding to the model configura-
tion that achieves the target number k of skipped
FFN blocks. We will later show the performance
of DiffSkip with a fixed penalty weight o across
these tasks.

As shown in Table 1, while all the methods
perform comparably on single-token generation
tasks (e.g., MMLU, HellaSwag, and Winogrande),
the baseline approaches suffer a significant perfor-
mance drop on multi-token generation tasks such
as GSMSK, BBH, and XSum. In contrast, DiffSkip
delivers more consistent performance across both
task types. When skipping 4 FFN blocks, our
method preserved 100.7% of the original perfor-
mance on single-token generation tasks and 97.4%
on multi-token generation tasks. When skipping 8

FFN blocks, our method preserved 96.6% of the
original performance on single-token generation
tasks and 86.0% on multi-token generation tasks.
The results suggest that single-token generation
benchmarks might be more robust to FFN skipping
compared to multi-token generation tasks.

3.3 Skipping Pattern Analysis

In this section, we analyze the skipping behav-
ior of DiffSkip across different tasks and model
sizes. We conduct experiments using Llama-3.2-
3B-Instruct (Dubey et al., 2024), Llama-2-7B-
Instruct, Llama-3-8B-Instruct, and Llama-2-13B-
Instruct, training each model with a fixed penalty
weight of @« = le — 3 on Tulu-v2 (Ivison et al.,
2023) for 3 epochs. The total number of layers in
these models is 28, 32, 32, and 40, respectively. We
apply the routing mechanism only to the latter half
of the layers in each model. Table 2 summarizes the
results. For simplicity, we omit the "Instruct” suffix
in the table. Each group of three rows corresponds
to a different base model.

DiffSkip performs consistently across different
tasks for LLMs trained with a fixed penalty weight.
On average, continuous generation tasks (GSM8K,
BBH, XSum) skip more FFNs compared to under-
standing tasks (MMLU, HellaSwag, Winogrande),
resulting in larger performance loss.

We find that the skipping patterns vary signif-
icantly with model size. Larger models, such as
Llama-2-13B, skip more FFN blocks on average
(9.1 FFN blocks) compared to smaller models like
Llama-3.2-3B (3.1 FFN blocks). Smaller mod-
els demonstrate higher sensitivity to FFN skip-



Model MMLU Hellaswag Winogrande GSM8K BBH XSum
Llama-3.2-3B 61.7 70.6 65.7 71.9 473 12.6
DiftSkip 61.3 68.3 61.2 67.0 454 11.8
Skipped FFNs 2.8 1.7 3.8 43 4.0 22
Llama-2-7B 453 66.4 67.3 19.6 30.1 12.1
DiffSkip 41.1 69.5 69.9 16.8 29.2 12.5
Skipped FFNs 43 1.8 3.7 8.0 7.3 5.1
Llama-3-8B 67.3 70.6 74.4 67.9 524 12.2
DiffSkip 65.3 74.5 74.3 57.2 44.6 12.8
Skipped FFNs 5.2 2.0 4.3 9.6 8.7 5.1
Llama-2-13B 49.2 72.7 71.4 23.6 339 10.7
DiffSkip 50.4 75.3 71.8 26.5 32.8 11.5
Skipped FFNs 7.6 3.9 6.4 14.7 13.1 9.9

Table 2: Performance and skipping patterns of DiffSkip. For each model, the first row shows the baseline
performance, the second row shows DiffSkip’s performance, and the third row reports the average number of

skipped FFN blocks.

ping; for instance, skipping just 1.7 FEN blocks
in Llama-3.2-3B leads to a performance drop on
HellaSwag from 70.6 to 68.3. In contrast, larger
models like Llama-2-13B benefit from FFN skip-
ping. On GSMBSK, skipping an average of 14.7
FFN blocks improves performance from 23.6 to
26.5. We hypothesize that Llama-2-13B contains
more redundant parameters, allowing it to skip FFN
blocks without losing critical information while si-
multaneously filtering out noisy computations for
better performance.

3.4 Examples of SKkipping

In this section, we illustrate the skipping patterns
at sequence level. Tokens are color-coded to reflect
the number of FFN blocks utilized. A lighter color
indicates that fewer FFN blocks were used. Below
is the color mapping, where each number corre-
sponds to the number of FFN blocks employed:
, 1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15,
16. Here, we present three examples generated by
Llama-3-8B-Instruct with DiffSkip, using a penalty
weight of @ = le — 3. For optimal readability, we
recommend viewing this section on a screen.

Example 1 Our first example is from the GSM8K
dataset, which is about math reasoning.

Prompt: Marilyn’s first record sold 10 times as
many copies as Harald’s. If they sold 88,000 copies
combined, how many copies did Harald sell?

Generated: Let Harald’s number be H. Then
Marilyn’s number is 10H. 10H + H = 88,000.
11H = 88,000. H= 8,000.

By examining the model’s reasoning process,
several insights can be gained. The initial step of
defining the variable (H) to represent Harald’s num-

ber of copies requires more computation, as this
involves abstracting from the problem statement
and introducing a new symbol. Subsequently, when
forming the equation (10H + H = 88,000) based
on the problem statement, fewer FFNs are needed
because they can be copied from the context with-
out deep computation. Finally, in computing the
answer (H = 8,000), we observe another increase in
FFNs usage, reflecting the model’s need to perform
a more demanding arithmetic calculation.

Example 2 The second example is a summariza-
tion sample from the XSum dataset about a flood
incident at a Victoria Centre store.

Prompt: Torrents of water brought down a sus-
pended ceiling and damaged stock in the Victoria
Centre store at about 22:40 BST on Tuesday. Man-
agers had hoped for a weekend reopening but it is
now closed until further notice. Staff have been
helping with the clean-up operation. Water poured
through from a rooftop room, leaving the top floor
under three inches of water and stock significantly
damaged. A spokeswoman said: Our teams are
working around the clock to get the shop open as
quickly as possible and we’re sorry for the incon-
venience this has caused to our customers. Please
summarize this paragraph into one sentence:

Generated: 1. The Victoria store is
closed until further notice after a ceiling collapsed
and water poured through the top floor, damaging
stock.

Most content words in a summary require deeper
computation to capture key information accurately.
However, words like "Centre" and "store" in this
example utilize fewer FFN blocks, likely because
they are more predictable given the preceding con-



Retain

Router Design MMLU Hellaswag Winogrande GSMS8K BBH XSum %

Vanilla 67.3 70.6 74.4 67.9 52.4 12.2 100.0%
DiffSkip 66.3 73.2 74.3 64.8 50.2 123 99.00%
Attn-Input 66.3 70.0 63.8 51.2 47.7 11.4 90.5%
Attn-Output 65.6 70.8 63.4 52.7 48.8 11.7 91.6%
No Adaptor 24.4 25.8 48.4 0.0 0.9 0.0 23.2%
Linear Adaptor 66.8 72.8 62.0 339 455 11.3 85.8%
Independent 60.5 72.5 70.8 59.2 43.4 11.7 92.3%
No Perplexity Weighting 62.5 72.3 74.0 60.2 46.2 12.0 95.0%

Table 3: Ablation studies based on Llama-3-8B-Instruct. The settings for methods are described in the main text.

text, specifically the phrase "Victoria Centre store".

Example 3 The third example is about coding.

Prompt: Please write code in python. I want to
reverse this list: [1,2,3,4,5]

Generated: and also want to remove duplicates
from the list.

list=[1.2.345]

list = list[::-1] # reverse the list

list = list(set(list)) # remove duplicates from the
list

print(list) # [5,4,3,2,1] # output

This example highlights several key insights. To-
kens that can be directly copied from the context,
such as the list elements "[1,2,3,4,5]", require min-
imal processing. In contrast, generating the initial
tokens in the reversed list "[5,4,3,2,1]" demands
deeper computation, as the model must selectively
determine them from the given numbers. Once
these initial tokens are established, generating the
remaining numbers becomes easier due to reduced
uncertainty. Our approach explicitly captures this
notable phenomenon— the computational cost re-
quired for token generation varies depending on
the context.

3.5 Ablation Studies

Router Input. We investigate different attention-
based features as router inputs to identify the most
effective design. While our default implementa-
tion uses the difference between attention input
and output, we explore two alternatives: directly
using attention input (Attn-Input) or output (Attn-
Output). As shown in Table 3, both alternatives un-
derperform the difference-based approach. The per-
formance degradation is particularly pronounced
on tasks requiring sophisticated reasoning: Wino-
grande (requiring the identification of nuanced se-
mantic cues to resolve ambiguity) and GSM8K
(requiring step-by-step mathematical reasoning).
Specifically, while our difference-based approach
only experiences a marginal 1% performance drop,

using raw attention input or output leads to degrada-
tion of 9.5% and 8.4%, respectively. These results
suggest that the attention difference better captures
task-relevant features for routing decisions.

Adaptor Design. We investigate the impact of
adaptor architecture. Our default design uses a
small FEN with a reduced intermediate dimension,
which we compare against two variants: removing
the adaptor entirely and replacing it with a linear
transformation. As shown in Table 3, removing
the adaptor ("No Adaptor") results in catastrophic
performance degradation, retaining only 23.2% of
the original performance. This degradation is par-
ticularly evident in continuous token generation
tasks, where performance drops to zero. While re-
placing the FFN with a linear transformation ("Lin-
ear Adaptor") also reduces performance (85.8%
retention), it still maintains reasonable functional-
ity. Since a linear transformation cannot provide
non-linearity for deeper representation learning,
this result supports our hypothesis that the hidden
representations skipping the FFN might not reside
in the same latent space as those processed by the
FEN.

Loss Function Design. We investigate two
key components in our loss function design: the
L2 penalty on expected FFN preservation and
the perplexity-based token weighting strategy.
First, we examine the impact of replacing our
expectation-based L2 penalty with independent
L2 loss directly on gating scores g, modifying
Equation 6 t0 Loy = Yoy we Sory (gi)?. As
shown in Table 3, this modification ("Independent")
leads to a performance drop to 92.3%, with no-
table degradation in knowledge-intensive tasks like
MMLU (60.5%) and reasoning tasks like BBH
(43.4%). Second, we evaluate the effectiveness
of our perplexity-based weighting by removing the
weighting factor w ("No Weighting"). This results
in a moderate performance decline to 95.0%, sug-
gesting that while token-difficulty adaptation pro-



vides benefits, the expectation-based L2 penalty
plays a more crucial role in maintaining model per-
formance.

4 Limitations

While DiffSkip reduces computational FLOPs by
dynamically skipping FFN blocks, it does not
achieve speedup on the current GPU hardware.
This is because, in batched decoding scenarios,
some tokens are routed to FFN while others might
go to the adapter within each layer. As a result,
both modules need to be fetched and executed. The
10 overhead of managing them outweights the com-
putational savings, preventing throughput improve-
ments.

5 Related Works

5.1 Dynamic Computation in Language
Models

In encoder-only models like BERT, methods such
as POWER-BERT (Goyal et al., 2020), LTP (Kim
et al., 2022), and LoT (Kim et al., 2023), make
layer-by-layer decisions on whether tokens should
be processed or skipped. For encoder-decoder mod-
els like TS5, methods such as CoDA (Lei et al., 2023)
and COLTS5 (Ainslie et al., 2023) introduce condi-
tional computation mechanisms for the encoder.
They conditionally replace the original attention or
FFN with a lightweight adaptor. However, these
methods are primarily designed for the encoder
portion of the model, as they rely on noncausal
routing mechanisms. Consequently, they are not
directly applicable to decoder-only causal language
models.

While significant progress has been made in
encoder-based models, enabling dynamic depth in
decoder-only language models remains an under-
studied area. Mixture of Depth (MoD) (Raposo
etal., 2024) and SkipLayer (Zeng et al., 2023) were
the first to introduce depth routing in causal lan-
guage models, demonstrating that a simple router
combined with extensive pre-training can train a dy-
namic depth model from scratch. DLO (Tan et al.,
2024) further explored this area by using a layer-
expanding and layer-skipping mechanism, showing
that supervised fine-tuning can adapt LLaMA-3
into a dynamic depth model. However, these meth-
ods require the model to be fully tunable. In this
work, we enable dynamic depth in a pre-trained
large language model without changing any of its
original parameters.

5.2 Layer Pruning

Layer pruning aims to reduce computational over-
head by identifying and skipping redundant layers.
A common approach involves analyzing the simi-
larity between layer inputs and outputs to detect re-
dundancy. For instance, Men et al. (2024) proposed
measuring cosine similarity between the input and
output of transformer blocks, pruning modules with
high similarity based on a calibration dataset. He
et al. (2024b) conducted a finer-grained analysis
by separately evaluating the similarity between in-
puts and outputs of attention and FFN modules,
revealing distinct redundancy patterns across com-
ponents. To address limitations in static pruning,
Zhang et al. (2024) introduced an iterative pruning
framework that greedily removes layers with min-
imal impact, measured by the difference between
outputs of the original and pruned models. He
et al. (2024a) used a sequence-level router to skip
the Attention or FFN module. Yang et al. (2024)
merged adjacent layers with high cosine similarity
to reduce the number of layers.

In addition to these methods, early-exit strate-
gies halt further computation for tokens once they
meet certain confidence criteria. Schuster et al.
(2022) advanced this by training an early-exit clas-
sifier to detect local consistency in encoder-decoder
architectures. For decoder-only models, Varshney
et al. (2024) improved early-exit quality by training
intermediate layers to enable decoding in the mid-
dle, while Elhoushi et al. (2024) combined layer
dropout during training with speculative decoding
at inference to enhance robustness.

6 Conclusion

In this paper, we show that large language mod-
els inherently possess a capacity for dynamic-
depth processing without modifying their origi-
nal parameters. We introduced Differential Layer
Skipping (DiffSkip). This method leverages the
self-attention input-output difference as a routing
signal, enabling a lightweight router mechanism to
decide whether each token’s hidden state should
undergo or skip FFN transformations. Conse-
quently, computational depth is allocated dynami-
cally based on token difficulty and show interesting
phenomenon on various tasks. We hope these find-
ings encourage further research into exploiting the
inherent signals and dynamic-depth properties of
large language models to create more adaptive and
efficient Al systems.
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