
Optimal Algorithms for Learning Partitions with
Faulty Oracles

Adela Frances DePavia
University of Chicago

adepavia@uchicago.edu

Olga Medrano Martín del Campo
University of Chicago

omedranomdelc@uchicago.edu

Erasmo Tani
University of Chicago
etani@uchicago.edu

Abstract

We consider a clustering problem where a learner seeks to partition a finite set by
querying a faulty oracle. This models applications where learners crowdsource
information from non-expert human workers or conduct noisy experiments to
determine group structure. The learner aims to exactly recover a partition by
submitting queries of the form “are u and v in the same group?” for any pair
of elements u and v in the set. Moreover, because the learner only has access
to faulty sources of information, they require an error-tolerant algorithm for this
task: i.e. they must fully recover the correct partition, even if up to ℓ answers are
incorrect, for some error-tolerance parameter ℓ. We study the question: for any
given error-tolerance ℓ, what is the minimum number of queries needed to learn a
finite set partition of n elements into k groups? We design algorithms for this task
and prove that they achieve optimal query complexity. To analyze our algorithms,
we first highlight a connection between this task and correlation clustering. We
then use this connection to build a Rényi-Ulam style analytical framework for
this problem, which yields matching lower bounds. Our analysis also reveals an
inherent asymmetry between the query complexity necessary to be robust against
false negative errors as opposed to false positive errors.

1 Introduction

Learning cluster structure from data is a fundamental task in machine learning. While the statistical
setting is typically concerned with using batch data to approximately recover cluster structure with
high probability, some applications allow for the learner to make explicit queries, and some require
exact recovery guarantees.

We highlight two key settings. In several scientific domains, particularly bioinformatics, researchers
conduct physical experiments to learn whether two objects are part of the same class [9, 11, 20, 35].
Another major application is learning cluster structure by collecting information from human workers
via crowdsourcing services [15, 30, 37]. While some traditional methods focus on querying workers
for class labels, alternative approaches use simpler same-cluster queries. For example, Vinayak and
Hassibi [37] point out that, given images of birds, it may be easier for non-experts to correctly answer
the question “Do these two birds belong to the same species?” as opposed to “What species does
this bird belong to?” In both of these application domains, the learner typically seeks to minimize
the number of queries made, as queries require carrying out potentially expensive measurements or
time-consuming experiments.

We consider a very general setting and develop algorithms that make no assumptions about the
specific type of data involved, but rather rely solely on the same-cluster queries to infer structure.
In particular, we model this task by assuming that the algorithm only interfaces with the data via a
same-cluster oracle. In this setting, the learner obtains information about a hidden partition C of a
finite set V by repeatedly choosing two elements u, v ∈ V and asking questions of the form “Are u

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

and v part of the same cluster?”, i.e. given C and V , a same-cluster oracle is an oracle αC that takes
as input u and v in V , and returns 1 if u and v belong to the same cluster in C, and −1 otherwise. The
power and limitations of same-cluster oracles have been studied in a variety of settings, including the
clustering problem described above [8, 26, 33, 34].

However, previous work on this model makes the arguably unrealistic assumption that all queries
return the correct answer. In the motivating applications, queries are often at risk of failure that results
from relying on non-expert workers or suffering from experimental noise. The learner’s goal is to
recover the partition in spite of these errors. Such errors are also often not persistent: in the presence
of noise, repeating an experiment multiple times may yield different answers, and querying different
human workers may result in conflicting responses. Nonetheless, practitioners may need to achieve
exact recovery of the underlying partition. However, existing theory either focuses on the error-free
regime [26, 33], assumes that errors are persistent [16, 32], or focuses on probabilistic guarantees
rather than exact recovery [15].

To address this literature gap, we study algorithms for partition learning via same-cluster oracles that
are robust to non-persistent errors. A typical way to incorporate uncertainty and noise is to assume
that errors occur independently at random with some small probability on every query. However, it is
not possible to guarantee exact recovery of the underlying clusters in this model. Instead, we focus
on a model in which the learner sets an error-tolerance parameter ℓ, and they require guaranteed full
recovery of the hidden partition as long as the error incurred is within this tolerance. In particular, we
say a same-cluster oracle αC is ℓ-faulty if it may return an incorrect answer up to ℓ times. We do not
assume that errors are persistent: if a single pair of elements is queried repeatedly, an ℓ-faulty oracle
may return inconsistent responses. We define the ℓ-bounded error partition learning (ℓ-PL) problem,
as the problem of exactly recovering a hidden partition via access to an ℓ-faulty same-cluster oracle.

We design algorithms for the ℓ-PL problem and related variants, and analyze their query complexity.
We introduce a two-player game based on correlation clustering, and we show that the minimax
value of this game is closely linked to the query complexity of the ℓ-PL problem. We then use this
game as a framework to give tight lower bounds for the query complexity of this task, proving the
proposed algorithms are optimal.

We find that the ℓ-PL problem occupies a unique position at the intersection of different research
streams. In fact, the study of this problem complements work on clustering with same-cluster query
advice, and the techniques used for its analysis draw from the theory of graph learning with oracle
queries and the study of Rényi-Ulam liar games1. We are hopeful that the impact of these connections
will go beyond the results presented in this paper.

1.1 Background and related results

Clustering with same-cluster oracles In the error-free regime, Liu and Mukherjee [26] studied the
query complexity of recovering partitions of a finite set in different oracle models. They prove tight
lower bounds on the query complexity of learning partitions with error-free same-cluster oracles,
and point out that an algorithm proposed by Reyzin and Srivastava [33] exactly achieves this query
complexity.

In many motivating applications of this model queries may return the wrong answer, such as when
labels result from non-expert human input or noisy scientific experiments. Vinayak and Hassibi
[37] consider multiple query models for collecting information from human workers, pointing out
that same-cluster queries can accomplish similar end goals as label queries while potentially being
easier questions for non-experts to answer correctly. They also provide an algorithm that works
for the setting in which triangle queries–which ask the worker to provide all pairwise relationships
between three data points–are made. Mazumdar and Saha [30] initiate the formal study of clustering
with same-cluster oracles in the presence of persistent i.i.d. errors. They point out that under these
assumptions, learning a partition has a strong relationship to recovering community structure in the
stochastic block model (SBM). This work inspired a productive line of research on the i.i.d. noise
model, which also leverages connections to the SBM to study related problems. In fact, this problem
has been studied in the setting when k = 2 [22], when the underlying clusters are nearly-balanced
[32], and in the semi-random noise model, in which errors occur with some i.i.d. probability, but when
they do occur the (erroneous) answer may be chosen adversarially [16]. Models for non-persistent

1We provide the reader with relevant background from these areas in Section 1.1 and Appendix A.

2

error have also been considered. Chen et al. [15] study same-cluster queries in the presence of
i.i.d. error, allowing for repeated querying of pairs. They give an efficient algorithm with recovery
guarantees that does not require a-priori knowledge of the probability of query failure. Similar results
were also subsequently established in a recent paper by Gupta et al. [23]. Our work complements this
line of research by considering a setting in which exact recovery is possible in spite of errors and
providing a full characterization of the query complexity of the problem in this setting.

Rényi-Ulam games In his autobiography, Stanisław Ulam, introduced the following two-player
game [36]. One player (the responder) thinks of a number in x ∈ [N] for some N ∈ N, and the other
player (the questioner), given N , tries to guess x by asking only yes/no questions. The main twist to
this setup is that the responder is allowed to lie up to ℓ times. The term “Rényi-Ulam games” has
since been used to identify a wide range of problems involving asking questions to an oracle who is
allowed some limited amount of lying (see e.g. [31]). The question of finding the worst-case query
complexity of the ℓ-PL problem can be naturally formulated as a Rényi-Ulam game, in which the
learning algorithm takes the role of the questioner, and the oracle plays the part of the responder.

Correlation clustering Bansal et al. [10] introduced correlation clustering. In this problem, one
is given a signed graph G = (V,E, σ), where σ : E → {±1} is a function representing one’s prior
belief about which pairs of vertices belong to the same cluster. The goal of the problem is to return a
partition of the vertices of G into clusters that minimizes the amount of disagreement with the edge
signs given by σ. The problem is known to be NP-Hard. Many variations of problem have been
proposed, including versions with weighted edges [2, 17], a version where the number of clusters
is constrained to some fixed k [19], and an agreement maximization setting. Different assumptions
have also been studied, such as instance stability and noisy partial information [27–29].

1.2 Discussion of the Model

In the previous sections, we introduce a problem in which a learner has to exactly recover a hidden
partition by making same-cluster queries that could be subject to up to ℓ errors. Other plausible
models for learning partitions with errors could be considered. In this section, we discuss some of the
key design features of the model and provide justification and examples.

In general, even in the regime in which k the number of clusters is known to the learner, it is not
possible to recover the partition exactly unless one is able to resolve all but at most 2 of the pairwise
same-cluster relationship between the elements. This follows from a result of Reyzin and Srivastava
(this is a key idea leveraged in the proof of Proposition 3 in [33]). In particular, simple extensions of
these core arguments imply that in the setting in which the answers to the queries are persistent, it is
impossible to solve the problem even for small constant values of of ℓ [18, 33]. Furthermore, this
implies that even in the non-persistent error-model, one cannot solve the problem for a value of ℓ
that grows linearly with n. Below, we give two general motivating examples, in the technology and
scientific domains respectively, illustrating the role of ℓ in partition learning tasks.

Example 1: Robustness to Misinformation Consider a setting where a user is trying to cluster
a dataset by crowdsourcing information in the form of same-cluster questions. However, the user
suspects that an ill-intentioned competitor organization is attempting to corrupt the learning process
by entering a number of bad actors in the crowd to strategically mislabel queries. If the user selects a
new person every time they submit a query, then the number of adversarial answers they encounter is
finite and does not grow with the number of queries submitted. In this scenario, ℓ plays the role of a
security parameter, and the algorithm is guaranteed to be robust to up to ℓ-many poisoned responses.
The user can set ℓ based on, e.g., their prior belief about the resources of the competitor organization.
Our results can be interpreted as quantifying the cost (in queries / crowd size) of implementing a
fixed security parameter ℓ.

Example 2: Trustworthy Science Consider a setting in which a scientist is attempting to group
items into classes by running experiments that reveal whether two items are in the same class, such
as the example of clustering compatible molecules described in Gupta et al. [23]. The scientist has
limited resources (e.g. limited materials or time) and can only conduct a finite number of experiments.
Our results allow the scientist to derive the maximum number of errors to which their learning
procedure can be tolerant, given their fixed query budget. They can use this maximum value as

3

QUERY COMPLEXITY
k-KNOWN k-UNKNOWN

WEIGHTED ℓ-PL
(THM. 1, 3, AND 5)

Θ
(
RSk(n, k) +

(n− k)ℓyes + k2ℓno
) O

(
RSu(n, k) +

(n− k)max{ℓyes, ℓno}+ k2ℓno
)

ℓ-PL
(COR. 2 AND 4, THM. 5) Θ

(
RSk(n, k) + (n− k)ℓ+ k2ℓ

)
Θ
(
RSu(n, k) + (n− k)ℓ+ k2ℓ

)

ℓ-PLFN

(THM. 1, 3, AND 19) Θ
(
RSk(n, k) + k2ℓ

)
Θ
(
RSu(n, k) + (n− k)ℓ+ k2ℓ

)

ℓ-PLFP

(THM. 1, 3, AND 21) Θ
(
RSk(n, k) + (n− k)ℓ

)
Θ(RSu(n, k) + (n− k)ℓ)

ERROR-FREE
(RESULTS FROM [26, 33]) RSk(n, k) RSu(n, k)

Table 1: The query complexity of the different variants of the ℓ-PL problem, for both the k-known
ad the k-unknown setting. We obtain matching upper and lower bounds for all the variants with the
exception of the weighted ℓ-PL problem in k-unknown setting, for which the upper bound does not
match the lower bound (given for the k-unknown case) exactly. The results are given in terms of the
complexity RSk(n, k) and RSu(n, k) (defined in Equations 1 and 2) of solving the problem without
errors.

the setting for ℓ, and then use our algorithms to guide their choice of experiments. Our analysis
would then allow them to measure the significance of their findings by quantifying the number of
experiments that would need to have failed for the finding to be incorrect.

2 Technical preliminaries

Basic definitions Given a positive integer n we denote with [n] the set {1, ..., n}. Given any finite
set V we denote with

(
V
2

)
the set {{i, j} ⊆ V | i ̸= j}. A graph G = (V,E) is a pair containing a

finite vertex set V and a subset E ⊆
(
V
2

)
. Given a finite set V a k-partition of V is a collection of k

pairwise disjoint non-empty subsets C = {C1, ..., Ck} of V such that
⋃k

a=1 Ca = V . We will denote
by n the cardinality |V | of V and we may assume without loss of generality that V = [n]. Given
two elements u and v of V , we write u ∼C v (resp. u ̸∼C v) for the statement ∃C ∈ C, {u, v} ⊆ C
(resp.∄ C ∈ C, {u, v} ⊆ C). We denote by [u]C the equivalence class of u with respect to C, i.e. [u]C
is the unique C ∈ C containing u. Given two partitions C1 and C2 we say C2 is a refinement of C1 if
for every C ∈ C2 there is a C ′ ∈ C1 such that C ⊆ C ′.

3 A hierarchy of problems

In the introduction we consider learning a partition C of a finite set V by asking questions of the
form “Are u and v part of the same cluster in C?”, where up to ℓ of the answers may be incorrect. We
refer to this as the ℓ-PL problem. We characterize the hardness of the ℓ-PL problem by considering a
family of related tasks. In particular, we introduce a hierarchy of problems with different degrees of
difficulty (see Figure 1) and establish matching upper lower bounds in nearly all of these tasks. We
summarize our results in Table 1.

At the bottom of the hierarchy, we have the problem first studied by Reyzin and Srivastava [33] of
learning partitions with same-cluster queries, where the answer to every query is guaranteed to be

4

correct. They give an algorithm that can learn the underlying partition with:

RSk(n, k)
def
= n(k − 1)−

(
k

2

)
(1)

many queries when the number k of clusters is known to learner and:

RSu(n, k)
def
= nk −

(
k + 1

2

)
(2)

when k is unknown to the learner. Recently, Liu and Mukherjee [26] showed that no algorithm can
guarantee full recovery of the underlying partition in fewer that RSk(n, k) (resp. RSu(n, k)) queries
when k is known (resp. unknown) to the learner, showing that the algorithms of Reyzin and Srivastava
are optimal down to the exact constants. Since this is the “easiest” version of the problem we will be
considering, the lower bounds of Liu and Mukherjee immediately imply the same lower bounds for
all the other problems in the family.

We then consider two variants of this problem, each only admitting one-sided error. In the first variant,
which we refer to as the ℓ-bounded error partition learning with false positives (ℓ-PLFP) problem,
the oracle might return the answer +1 even when two elements are not part of the same cluster. We
refer to this kind of fault as a false positive answer. Here, we restrict the oracle to return at most ℓ
many false positive answers, for some fixed positive integer ℓ, and to always return −1 when the two
elements being queried are not part of the same cluster.

In the second variant, which we refer to as the ℓ-PLFN problem, the oracle behaves the opposite
way, and it may return −1 even if the two elements being queried are part of the same cluster in the
hidden partition (a false negative answer), but it cannot return a false positive answer. Similarly to
the previous variant, we restrict the number of false negative answers to be at most some fixed ℓ. We
give precise definitions of the ℓ-PLFP and ℓ-PLFN problems below.

The ℓ-PL problem is then a generalization of all of the three variants described above (false positives,
false negatives and no error), and hence, it inherits hardness results from all three of these problems.
Instead of directly designing an algorithm for the ℓ-PL problem, we consider a yet more general
version of the problem, and use results from that generalized version to obtain algorithms for all of
the other problems in the class. This final variant is a more fine-grained problem, which allows false
positive answers and false negative answers to incur different penalties. In particular we consider a
weighted version of ℓ-PL, which is formalized in the following definition:
Definition 1 ((ℓyes, ℓno)-Faulty Oracle and Weighted ℓ-PL Problem). Let V be a finite set, and
C be a partition of V . A (ℓyes, ℓno)-faulty oracle for C is an algorithm αC which, given as input a
pair of elements uv, returns a value r =∈ {±1} so that for any sequence of queries {utvt}t∈[T] the
sequence of responses {rt = αC(utvt)}t∈[T] satisfies:

|{t : ut ̸∼C vt ∧ rt = +1}|
ℓyes

+
|{t : ut ∼C vt ∧ rt = −1}|

ℓno
≤ 1.

Note that we assume the oracle can maintain an internal state, so its answers may depend on the
query history. The weighted ℓ-PL problem asks one to recover an unknown k-partition of V given
access to an (ℓyes, ℓno)-faulty oracle for C.

Observe that by setting ℓyes < 1 (resp. ℓno < 1) one would require the oracle to not return any
false positive (resp. false negative) answer. As a convention, we will write ℓyes = 0 or ℓno = 0 to
indicate any setting that ensures the oracle may not return any false positive or false negative answers
respectively. We note that, up to rescaling ℓyes and ℓno by a factor of 2, this problem is equivalent to a
version of the problem in which the oracle has separate constraints for the number of false positive
answers and false negative answers, a simple fact which we prove in Appendix B.

Given this definition, the (unweighted) ℓ-PL can be cast as a homogeneous version of the above, one
in which ℓyes = ℓno, as follows:
Definition 2 (ℓ-Faulty Oracle and ℓ-PL Problem). An ℓ-faulty oracle is an (ℓ, ℓ)-faulty oracle. The
ℓ-PL problem is the problem of learning a partition with access to an ℓ-faulty oracle.

The ℓ-PLFP and ℓ-PLFN problems discussed above can now be formally described as special instances
of the weighted ℓ-PL problem.

5

WEIGHTED
ℓ− PL ℓ− PL

ℓ-PLFP

ℓ-PLFN

Learning
Partitions

(No errors)

Algorithms
Lower bounds

Figure 1: The lattice of problems considered in this paper. Algorithmic results propagate from left to
right while lower bound results propagate right to left.

Definition 3 (ℓ-PLFP Problem and ℓ-PLFN Problem). The ℓ-PLFP problem is the problem of learning a
partition with access to an (ℓ, 0)-faulty oracle. Intuitively, this corresponds to the problem of learning
partitions subject to at most ℓ false-positive responses and no false negatives. The ℓ-PLFN problem is
the problem of learning a partition with access to an (0, ℓ)-faulty oracle. This corresponds to learning
partitions subject to at most ℓ false-negatives responses and no false positives.

In the rest of the paper, we will always assume that the set V , its cardinality n, and the parameters
(ℓyes, ℓno) are known to the learner. We will consider both the k-known setting, in which the number
k of clusters is known to learner, and the k-unknown setting, in which it is not. It is easy to see that
the query complexity of every problem in the k-unknown setting is no smaller than that of the same
problem in the k-known setting, since any learning algorithm could simply ignore the value of k.
We design separate algorithms for the k-known and the k-unknown setting, while the lower bounds,
which we only prove for the k-known setting, apply directly to the k-unknown setting.

In the next section we describe a number of algorithmic results to solve variants of the ℓ-PL problem.
In particular, Theorem 1 describes the performance of an algorithm for the weighted ℓ-PL problem in
the k-known setting. We briefly comment that it is actually not necessary for the number of false
negatives ℓno to be bounded or known in advance in order to run this algorithm and achieve optimal
query complexity. Rather the value of ℓno that appears in the query complexity analysis will be the
true number of false-negative responses that occur during the execution of the algorithm. In particular,
this implies that in the version of the problem in which no false positives can occur, one does not need
to set any upper bound on the error at all. In contrast in the k-unknown setting, in order to achieve
the bound described in Theorem 3 our proposed algorithm does require a user-chosen value for ℓno.
Here, a simple argument shows that it is impossible to guarantee one has found the correct answer
unless they can upper bound both ℓyes and ℓno.

4 Algorithmic results

Our first result is an algorithm for the weighted ℓ-PL problem in the k-known setting.
Theorem 1. There exists an algorithm for the weighted ℓ-PL problem which recovers the full partition
C in the k-known setting with query complexity bounded by

O(RSk(n, k) + (n− k)ℓyes + k2ℓno).

We observe an asymmetry in the dependence on ℓyes and ℓno respectively, indicating that false-
negative and false-positive errors cause the algorithm to incur different costs. In Section 5 we prove
lower bounds showing that this is not a mere artifact of the algorithm or its analysis, but rather a
fundamental aspect of the problem.

We describe the algorithm and prove Theorem 1 in Section 6. Throughout the paper, when considering
the k-known setting, we shall assume that k ̸∈ {1, n}, for otherwise the problem is trivially solved
without the need to query the oracle. Because the weighted ℓ-PL problem generalizes the ℓ-PL
problem, this yields an algorithm for the ℓ-PL problem as well:

6

Corollary 2. There exists an algorithm for the ℓ-PL problem which learns the correct partition in the
k-known setting with query complexity bounded by

O(RSk(n, k) + (n− k)ℓ+ k2ℓ).

As our final algorithmic result, in Section D we show that the algorithm can be adapted to obtain
optimal asymptotic performance for the ℓ-PL problem in the k-unknown setting.

Theorem 3. There exists an algorithm for the weighted ℓ-PL problem which recovers the full partition
C in the k-unknown setting with query complexity bounded by

O
(
RSu(n, k) + (n− k)max{ℓyes, ℓno}+ k2ℓno

)
.

An immediate corollary bounds the query complexity of the ℓ-PL problem in the k-unknown setting.

Corollary 4. There exists an algorithm for the ℓ-PL problem which learns the correct partition in the
k-unknown setting with query complexity bounded by

O
(
RSu(n, k) + ℓ(n− k) + k2ℓ

)
.

In the following section we show that all the bounds discussed in this section are asymptotically
optimal. While the results are stated only asymptotically, we note that the upper bounds we obtain
are only a small constant factor away from the lower bounds, and we give the exact upper bounds in
Section D, where we prove Theorem 3.

5 Lower bound techniques: correlation clustering and the chip-liar game

Underlying our lower bound analysis is a connection between partition learning problems, Rényi-
Ulam and Chip-Liar games, and correlation clustering. The Rényi-Ulam game, as defined in the
background is equivalent to the following Chip-Liar game (see e.g. Chapter 15, in the book of Alon
and Spencer [5]). In the game, N chips, numbered 1 to N are placed on a game board that has ℓ+ 1
positions, labeled 0, . . . , ℓ. At the start of the game, all of the chips begin at position 0 on the board.
The game takes place in rounds. On each round the questioner player Q selects a subset S of the
chips, and the responder player R decides on one of the following moves: they can either increase the
position of every chip in S by 1, or increase the position of every chip in S by 1. If a chip at position ℓ
is in a group whose position is advanced, the chip is said to have fallen off the board. After this point
such chips will no longer advance. The rules of the game constrain R’s responses; R must ensure
that on every round, at least one chip remains on the board at position i ≤ ℓ. The game terminates
when there is a unique chip remaining on the board.

Note that one can think of the ℓ-PL problem as a constrained version of this Chip-Liar game. In
the k-known setting2, the chips are equivalent to k-partitions of the finite set V , so that the number
N of chips is the Stirling Number of the second kind N =

{
n
k

}
. Moreover, unlike the general

Chip-Liar game, in our setup the questioner may only select specific subsets S: for any pair of
elements u, v ∈ V , the questioner can select S to be the set of all partitions in which u and v are part
of the same cluster. When the questioner submits a query ("Are u and v in the same group?"), all
chips whose partitions are inconsistent with the response advance by one position on the board.

This allows one to adopt the following perspective. One may think of the queries {utvt}t∈[T] made
by the questioner together with the signs given by the responses to the queries as making up an
instance of the correlation clustering problem. The position of a chip on the board will then be equal
the cost of the corresponding partition as a solution of the correlation clustering instance constructed.
In Appendix E.1 and Appendix E.2, we formalize this intuition by defining Rényi-Ulam Correlation
Clustering (RUCC) games, which are the key tools we use to lower bound query complexity.

Leveraging the above techniques, we lower bound the query complexity of the ℓ-PLFN and ℓ-PLFP

problems. Combining these lower bounds with results in the error-free regime yield the following
lower bounds on the ℓ-PL problem.

2Note that an analogous game can be defined for the k-unknown setting, where chips are equivalent to any
partition of V and N is the Bell number Bn.

7

Theorem 5. Every algorithm for the ℓ-PL problem requires at least:

Ω(max{RS(n, k), ℓ(n− k), ℓk2})

queries both in the k-known and in the k-unknown setting. Moreover every algorithm for the weighted
ℓ-PL problem requires at least:

Ω(max{RS(n, k), ℓyes(n− k), ℓnok
2})

queries both in the k-known and in the k-unknown setting. Here RS(n, k) represents RSk(n, k) in
the k-known setting, and RSu(n, k) in the k-unknown setting.

This theorem is a corollary of Theorems 19 and 21, which we prove in Appendix F.1 and Appendix F.2.

Intuitively, the difference in complexity we observe between the case of false negative errors and
the case of false positive errors is due to the following. On one hand, certifying the existence of
k-clusters using positive answers requires building a spanning forest, which has (n− k) edges. On
the other hand, accomplishing the same task using negative answers requires constructing a clique on
k vertices which requires O(k2) edges. This intuition is made precise in Section E in the proofs of
Theorem 19 and 21 respectively.

6 Algorithm for weighted ℓ-PL with k-known

In this section we give an algorithm that solves the weighted ℓ-PL problem in the k-known setting
with asymptotically optimal query complexity. We later adapt this algorithm to the k-unknown setting
in Appendix D.

We begin by briefly providing intuition for the algorithm. The algorithm maintains C′ a refinement of
the correct hidden partition C. At the start of the algorithm C′ is the set of all singleton elements in
V . The algorithm repeatedly makes sequences of queries that guarantee progress towards either (a)
learning C, in the form of establishing that a pair of vertices u and v must be part of the same cluster,
or (b) certifying that an error has occurred in the oracle’s responses.

In particular, the algorithm repeatedly attempts to construct (k + 1)-cliques of −1 responses. If at
any point the oracle responses form such a clique, then a false-negative response must have occurred,
as vertices in V belong to at most k distinct clusters (note that k is assumed to be known to the
algorithm). In this case, the algorithm has certified a false-negative response. On the other hand, the
only way that this process may be interrupted is if the algorithm receives a (+1) response to some
query uv. However, if such a positive response is received, repeatedly querying the pair uv will either
quickly determine that u and v must be part of the same cluster or it will reveal that an error has
occurred. In the first case, the algorithm makes progress towards learning C, and in the second case it
has certified the occurrence of an error.

We provide the pseudocode for the algorithm and describe in prose the main functions of each
subroutine. The algorithm is comprised of subroutines Learn, Get_New, Insert and Compare:

Learn This is the core component of the algorithm. It maintains a partition C′ for V . Throughout
the algorithm, C′ is guaranteed to be a refinement of the true hidden partition C. C′ is initialized
as the set of singletons for every element in V . The algorithm then repeatedly tries to construct a
clique of negative answers, supported on some set S ⊆ V until |S| = k + 1. It does so by inserting
new vertices v into S by calling the subroutine Insert. Insert may then either make progress
towards constructing the clique (by increasing the size of S) or towards learning the hidden partition
by decreasing the size of C′ (merging two clusters together).

Get_New Given S ⊆ V and C′ a partition of V , Get_New returns an element v ∈ V \S representing
a cluster in C′ that’s not yet represented in S, i.e. v ̸∈ [u]C′ for any u ∈ S.

Insert Given an element v and a subset S ⊆ V , Insert compares v against every element in S by
passing u and v to the function Compare. Compare returns result∈ {±1}. If Compare returns a
negative result for each u ∈ S, then Insert adds v to the subset S. On the other hand, if Compare
returns a positive result for v and some element u ∈ S, then Insert updates the partition C′ to reflect
that u and v must be in the same cluster. The latter is done by merging [u]C′ with [v]C′ .

8

Compare Given two vertices u and v, Compare repeatedly submits query uv to the oracle. Compare
maintains count to record information about the number of positive and negative responses received
for this query. If at any point Compare has received strictly more negative responses than positive
responses, it returns result= −1.

Algorithm 1: Learn(V, α, k, ℓyes)
Input: A finite set V , an (ℓyes, ℓno)-faulty oracle αC , a target number of clusters k, and error

parameters ℓyes.
Output: A partition C′ of V .

1 S ← {}, C′ ← {{v} | v ∈ V }
2 while |C′| > k do
3 v ←Get_New(S, C′)
4 C′, S ← Insert(V, α, S, C′, ℓyes)
5 if |S| = k + 1 then
6 S ← {}
7 end
8 end
9 return C′

Algorithm 2: Get_New(S, C′)
Input: A partition C′ of some finite set V , and a subset S ⊂ V such that |S| ≤ |C′|
Output: An element v ∈ V representing a set in C′ which is currently not represented by any

element of S.
1 for v ∈ V do
2 if [v]C′ ∩ S = ∅ then
3 return v
4 end
5 end
6 return ⊥

Algorithm 3: Insert(v, α, C′, S, ℓyes)
Input: A finite set V ,a same-cluster oracle α for V , a partial clique S, a candidate partition C′ of

V , and error parameter ℓyes.
Output: A new candidate cluster C′, partial clique S.

1 for u ∈ S do
2 // Returns either result = −1 or +1
3 result← Compare(u, v, α, ℓyes)
4 // If +1: it is guaranteed that u and v are part of the same cluster and C′ is edited to reflect this
5 if result = +1 then
6 new_set← [v]C′ ∪ [u]C′

7 C′ ← (C′ \ {[v]′C , [u]C′}) ∪ new_set
8 return C′, S
9 end

10 end
11 // If S is empty or if result = −1 for every u ∈ S then a new item is inserted into S
12 S ← S ∪ {v}
13 return C′, S

We briefly remark that for the k-unknown setting, Algorithm 9 proposed in the appendix, works in an
analogous fashion. The key difference between the two settings is that rather than building cliques of
size k + 1, Algorithm 9 builds the largest clique possible. We then give a charging argument that
shows that this strategy does not lead to a significantly higher query complexity. The algorithm and
analysis are presented in Section D.

9

Algorithm 4: Compare(u, v, α, ℓyes)
Input: A pair of vertices u and v from some finite set V , a same-cluster oracle α for V , and error

parameter ℓyes.
Output: result ∈ {±1}.

1 // Initialize count to track “how many more times have we observed r = +1 compared to
r = −1”

2 count← 0
3 while count ≥ 0 do
4 r ← α(u, v)
5 if r = −1 and count> 0 then
6 count←count−1
7 else if r = −1 and count= 0 then
8 /* If the number of −1 responses exceeds the number of +1 responses seen so far, we

return −1*/
9 return −1

10 else
11 count←count+1
12 end
13 // If count/ℓyes > 1 then we have verified that u ∼C∗ v so return result = +1
14 if count/ℓyes > 1 then
15 return 1
16 end
17 end

7 Conclusions, Limitations, and Future Directions

In this paper we initiated the study of learning partitions from same-cluster queries subject to bounded
adversarial errors. We completely characterize the query complexity of the core problem as well
as some of its relevant variants. To do so, we introduce a novel Rényi-Ulam style game based on
correlation clustering.

The aim of this paper is to resolve the query complexity of exact recovery with a fixed error tolerance.
In particular, the results in this paper do not apply to any setting in which the error may exceed the
tolerance ℓ, e.g. when errors occur probabilistically and independently on every query. This limitation
is analogous to those encountered when considering the Hamming (worst-case, bounded) model of
error in the theory of error-correcting codes (see e.g. [24]). Thus, like the theory for bounded-error
codes, results in this paper should be assumed to hold verbatim in stochastic error settings.

The results in this paper open up several avenues for future research. First, while we settle the
complexity of all the variants of the problem in the k-known setting, the exact complexity of
weighted ℓ-PL problem in the setting of k-unknown remains to be determined. Specifically, the
lower bounds of Ω(k2ℓno) and Ω((n − k)ℓyes) that we prove for k-known directly extend to the
k-unknown setting. However, the analysis of Algorithm 9 can be used to establish upper bounds
with terms O(k2ℓno + (n− k)max{ℓyes, ℓno}). The question of whether the upper bounds can be
tightened to O(k2ℓno + (n− k)ℓyes), or whether the corresponding lower bound can be strengthened
to e.g. Ω((n− k)max{ℓyes, ℓno}) in the k-unknown setting, remains open. Another interesting open
question is whether there exist algorithms that can achieve exact recovery in the setting of k-known
when the number of false-positives, ℓyes, is not known to the algorithm a priori. In this work we
established that such algorithms exist without knowing ℓno in advance, but it is unclear whether ℓyes
has analogous properties.

We focus on same-cluster queries due to their popularity and simplicity, but there are other practical
query models that may interest the community. One such example includes the triangle queries
introduced by Vinayak and Hassibi [37] in which a worker is asked to input all pairwise same-cluster
responses for three data points at a time. It would be interesting to explore whether the analysis
techniques introduced in this work can determine the query complexity of learning partitions under
other query models.

10

Acknowledgements. The authors wish to thank Daniel Di Benedetto for providing helpful advice
early on in the project; Yibo Jiang for suggesting related work; Mark Olson, Angela Wang, and
Nathan Waniorek for useful discussions. AD is supported by NSF DGE 2140001.

References
[1] H. Abasi and B. Nader. On learning graphs with edge-detecting queries. In Algorithmic

Learning Theory, pages 3–30. PMLR, 2019.

[2] N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information: ranking and
clustering. Journal of the ACM (JACM), 55(5):1–27, 2008.

[3] N. Ailon, A. Bhattacharya, and R. Jaiswal. Approximate correlation clustering using same-
cluster queries. In LATIN 2018: Theoretical Informatics: 13th Latin American Symposium,
Buenos Aires, Argentina, April 16-19, 2018, Proceedings, pages 14–27. Springer, 2018.

[4] N. Alon and V. Asodi. Learning a hidden subgraph. SIAM Journal on Discrete Mathematics, 18
(4):697–712, 2005.

[5] N. Alon and J. H. Spencer. The probabilistic method. John Wiley & Sons, 2016.

[6] N. Alon, R. Beigel, S. Kasif, S. Rudich, and B. Sudakov. Learning a hidden matching. SIAM
Journal on Computing, 33(2):487–501, 2004.

[7] D. Angluin and J. Chen. Learning a hidden graph using o (logn) queries per edge. Journal of
Computer and System Sciences, 74(4):546–556, 2008.

[8] H. Ashtiani, S. Kushagra, and S. Ben-David. Clustering with same-cluster queries. Advances in
neural information processing systems, 29, 2016.

[9] D. Balding, W. Bruno, D. Torney, and E. Knill. A comparative survey of non-adaptive pooling
designs. In Genetic mapping and DNA sequencing, pages 133–154. Springer, 1996.

[10] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. In The 43rd Annual IEEE Symposium
on Foundations of Computer Science, 2002. Proceedings., pages 238–247. IEEE, 2002.

[11] M. Bouvel, V. Grebinski, and G. Kucherov. Combinatorial search on graphs motivated by
bioinformatics applications: A brief survey. In Graph-Theoretic Concepts in Computer Science:
31st International Workshop, WG 2005, Metz, France, June 23-25, 2005, Revised Selected
Papers 31, pages 16–27. Springer, 2005.

[12] M. Bressan, N. Cesa-Bianchi, S. Lattanzi, and A. Paudice. Exact recovery of mangled clusters
with same-cluster queries. Advances in Neural Information Processing Systems, 33:9324–9334,
2020.

[13] M. Bressan, N. Cesa-Bianchi, S. Lattanzi, and A. Paudice. On margin-based cluster recovery
with oracle queries. Advances in Neural Information Processing Systems, 34:25231–25243,
2021.

[14] H. Chang, H.-L. Fu, and C.-H. Shih. Learning a hidden graph. Optimization Letters, 8:
2341–2348, 2014.

[15] Y. Chen, R. K. Vinayak, and B. Hassibi. Crowdsourced clustering via active querying: Practical
algorithm with theoretical guarantees. In Proceedings of the AAAI Conference on Human
Computation and Crowdsourcing, volume 11, pages 27–37, 2023.

[16] A. Del Pia, M. Ma, and C. Tzamos. Clustering with queries under semi-random noise. In
Conference on Learning Theory, pages 5278–5313. PMLR, 2022.

[17] E. D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica. Correlation clustering in general
weighted graphs. Theoretical Computer Science, 361(2-3):172–187, 2006.

[18] A. F. DePavia, O. M. M. del Campo, and E. Tani. Error-tolerant exact query learning of finite
set partitions with same-cluster oracle. arXiv preprint arXiv:2305.13402, 2023.

11

[19] I. Giotis and V. Guruswami. Correlation clustering with a fixed number of clusters. Theory OF
Computing, 2:249–266, 2006.

[20] V. Grebinski and G. Kucherov. Reconstructing a hamiltonian cycle by querying the graph:
Application to dna physical mapping. Discrete Applied Mathematics, 88(1-3):147–165, 1998.

[21] V. Grebinski and G. Kucherov. Optimal reconstruction of graphs under the additive model.
Algorithmica, 28:104–124, 2000.

[22] K. Green Larsen, M. Mitzenmacher, and C. Tsourakakis. Clustering with a faulty oracle. In
Proceedings of The Web Conference 2020, pages 2831–2834, 2020.

[23] S. Gupta, P. W. Staar, and C. de Sainte Marie. Clustering items from adaptively collected
inconsistent feedback. In International Conference on Artificial Intelligence and Statistics,
pages 604–612. PMLR, 2024.

[24] V. Guruswami, A. Atri Rudra, and M. Sudan. Essential coding theory, Oct 2023. URL
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/.

[25] Z. Kadelburg, D. Dukic, M. Lukic, and I. Matic. Inequalities of karamata, schur and muirhead,
and some applications. The Teaching of Mathematics, 8(1):31–45, 2005.

[26] X. Liu and S. Mukherjee. Tight query complexity bounds for learning graph partitions. In
Conference on Learning Theory, pages 167–181. PMLR, 2022.

[27] K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Bilu–linial stable instances of max cut
and minimum multiway cut. In Proceedings of the twenty-fifth annual ACM-SIAM symposium
on Discrete algorithms, pages 890–906. SIAM, 2014.

[28] K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Correlation clustering with noisy
partial information. In Conference on Learning Theory, pages 1321–1342. PMLR, 2015.

[29] C. Mathieu and W. Schudy. Correlation clustering with noisy input. In Proceedings of the
twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages 712–728. SIAM,
2010.

[30] A. Mazumdar and B. Saha. Clustering with noisy queries. Advances in Neural Information
Processing Systems, 30, 2017.

[31] A. Pelc. Searching games with errors—fifty years of coping with liars. Theoretical Computer
Science, 270(1-2):71–109, 2002.

[32] P. Peng and J. Zhang. Towards a query-optimal and time-efficient algorithm for clustering with
a faulty oracle. In Conference on Learning Theory, pages 3662–3680. PMLR, 2021.

[33] L. Reyzin and N. Srivastava. Learning and verifying graphs using queries with a focus on edge
counting. International Conference on Algorithmic Learning Theory, page 285–297, 2007.

[34] B. Saha and S. Subramanian. Correlation clustering with same-cluster queries bounded by
optimal cost. arXiv preprint arXiv:1908.04976, 2019.

[35] A. Sorokin, A. Lapidus, V. Capuano, N. Galleron, P. Pujic, and S. D. Ehrlich. A new approach
using multiplex long accurate pcr and yeast artificial chromosomes for bacterial chromosome
mapping and sequencing. Genome research, 6(5):448–453, 1996.

[36] S. M. Ulam. Adventures of a Mathematician. Univ of California Press, 1991.

[37] R. K. Vinayak and B. Hassibi. Crowdsourced clustering: Querying edges vs triangles. Advances
in Neural Information Processing Systems, 29, 2016.

[38] F. Xia, K. Sun, S. Yu, A. Aziz, L. Wan, S. Pan, and H. Liu. Graph learning: A survey. IEEE
Transactions on Artificial Intelligence, 2(2):109–127, apr 2021. doi: 10.1109/tai.2021.3076021.
URL https://doi.org/10.1109%2Ftai.2021.3076021.

12

https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/
https://doi.org/10.1109%2Ftai.2021.3076021

A Additional relevant background

Comparison of random and adversarial error Most of the prior work on clustering with faulty
same-cluster queries focuses on the random-error model. Different models of random error have
been considered. The most similar works to this paper are the papers of Gupta et al. [23] and Chen
et al. [15]. These papers consider non-persistent random error. In this setting, the best known upper
bounds on the query complexity of partition learning are

Õ

(
nk

f(p)

)
where p is the probability of error and f is some function that tends to 0 as p→ 1/2 [15, 23]. It is
difficult to compare the scaling of query complexity under random error as a function of probability
of error versus the scaling of query complexity under adversarial error as a function of parameter ℓ.
However one interesting qualitative distinction is that in this work the tight upper and lower bounds
on query complexity under adversarial error never pay for a term as large as n · k · ℓ. Instead in the
setting of adversarial error, query complexity bounds scale with (n+ k2) · ℓ.

Comparison of persistent and non-persistent error Prior literature has also studied the persistent
random error version of this problem. The seminal work of Mazumdar and Saha [30] inspired a series
of followup works in this setting [16, 22]. For this problem, upper and lower bounds which match up
to log factors are known: Mazumdar and Saha [30] establish a lower bound stating that any algorithm
achieving probability of recovery at least 3/4 must make at least

Ω

(
nk

(1− 2p)2

)
queries. They further give a (time-inefficient) algorithm which recovers the maximum-likelihood
clustering estimate with high probability when p < 1/2, using

O

(
nk log(n)

(1− 2p)2

)
queries [30]. In particular, while a piori the persistent-error versions of the problem can be no easier
than the non-persistent-error ones, we are not aware of any result that shows a gap in query complexity
between these two different settings.

We note that a model imposing persistent adversarial error does not allow for any non-trivial algorith-
mic results.

Active learning of graphs with oracles The field of graph learning focuses on learning graph
structure with oracle access to the graph in question.3 Numerous settings have been considered in
the literature, including instances where the target graphs are matchings [6], stars or cliques [4],
or Hamiltonian cycles [35]. Further research examines Las Vegas algorithms [1] and the role that
adaptivity plays in the query complexity of these problems [14, 21]. In a related paper, Reyzin
and Srivastava [33] give an algorithm that learns the partitions of a graph with n vertices using
O(nk) shortest path queries, as well as an algorithm that learns such partitions using O(n log n) edge
counting queries. Angluin and Chen [7] give an algorithm that can learn a graph with n vertices using
O(log n) edge detection queries per edge. Following this line of inquiry, Liu and Mukherjee [26]
find that the exact worst-case number of queries needed to learn a partition of [n] into k clusters in
the same-cluster query model is exactly n(k − 1) −

(
k
2

)
if k is known by the learner a priori, and

nk −
(
k+1
2

)
otherwise.

Geometric clustering with oracle advice Ashtiani et al. [8] introduce the problem of clustering
data when the learner can make limited same-cluster queries, and they show that this leads to a
polynomial-time algorithm for k-means clustering under certain geometric assumptions. In recent

3In this paper, we invoke the phrase “graph learning” in reference to problems which seek to exactly recover
graph structure by actively making queries to some graph oracle, as opposed to the wide field of problems
pertaining to learning graphs from data, which often focus on approximate or probabilistic results (i.e. such
topics as surveyed by [38]).

13

years, the model of Ashtiani et al. has inspired a variety of other related works which aim to understand
the benefits of accessing a same-cluster oracle (e.g. [12, 13, 16]). Ailon et al. [3] show that making a
small number of queries to a same-cluster oracle allows one to improve exponentially the dependency
on the approximation parameter ε and on the number k of clusters for polynomial time approximation
schemes for some versions of correlation clustering. Saha and Subramanian [34] also consider the
problem of using same-cluster queries to aid the solution of a correlation clustering instance, and
they give algorithms with performance guarantees that are functions of the optimal value of the input
instance.

B Equivalence between weighted problem and doubly constrained one

In this section, we argue that, up to changing the parameters by a factor of at most 2, the weighted
ℓ-PL problem is equivalent to one in which the oracle may return up to ℓyes many false positive
answers and ℓno many false negative ones. We refer to this problem as the asymmetric ℓ-PL problem.
Definition 4 (Asymmetric ℓ-PL Problem). Given a finite set V , and a partition C of V , an (ℓyes, ℓno)-
asymmetric oracle for C is an algorithm αC which, given as input a pair of elements uv, returns
a value r =∈ {±1} so that for any sequence of queries {(ut, vt)}t∈[T] the sequence of responses
{rt = αC(utvt)}t∈[T] satisfies::

|{t | rt = 1 ∧ ut ̸∼C vt}| ≤ ℓyes and |{t | rt = −1 ∧ ut ∼C vt}| ≤ ℓno.

The asymmetric ℓ-PL problem is the problem of recovering C by making queries to an (ℓyes, ℓno)-
asymmetric oracle.

It is easy to see that any (ℓyes, ℓno)-faulty oracle is also an (ℓyes, ℓno)-asymmetric oracle and hence
the query complexity of the asymmetric ℓ-PL problem is no larger than that of the weighted ℓ-PL
problem for the same choice of parameters. Conversely, we have the following:
Proposition 6. For any algorithm which solves the weighted ℓ-PL problem by making at most
q(n, k, ℓyes, ℓno) queries, there exists an algorithm which solves the asymmetric ℓ-PL problem by
making at most q(n, k, 2ℓyes, 2ℓno) queries.

Proof. This simply follows from the fact that any (ℓyes, ℓno)-asymmetric oracle is also an
(ℓyes/2, ℓno/2)-faulty oracle.

C Deferred proofs from Section 6

Query Accounting For the sake of analysis, we will assume that the algorithm maintains a global
history of all the queries made to the oracle and the responses received. We will also let the algorithm
assign labels to query-response pairs. This is done in order to charge the queries made to some
measure of progress towards either learning the partitions or certifying that errors have occurred. The
lines of pseudocode assigning labels to the query history, written in blue, are not necessary for the
algorithm to work correctly but rather are included only to facilitate the analysis.
Lemma 7. Throughout the execution of Algorithm 5, C′ is always a refinement of the true partition.

Proof of Lemma 7. C′ is essentially a global variable. We begin by noting that C′ is trivially a
refinement of the correct partition at the beginning of the algorithm. The only point in the algorithm
at which C′ is modified is on Lines 7 and 8 of Insert. In that step, the algorithm modifies C′ by
merging the cluster containing v with the cluster containing u. This lines are executed only if the
value of the variable result, output by Compare, is +1. This happens only if count/ℓyes > 1 on
Line 16 of Compare, in which case the latest call to Compare has obtained more than ℓyes many uv
queries returning +1.

We now argue that if that happens, u and v must have been part of the same cluster in the ground-truth
partition C. If u and v were not part of the same of the same cluster in C, we derive a contradiction,
as this would imply:

FP ≥ count > ℓyes

and hence FP /ℓyes > 1. Hence, if C′ was a refinement of C before merging the clusters containing u
and v, then it is still a refinement of C after merging the two clusters. This invariant is then maintained
throughout the algorithm, and the lemma holds.

14

Algorithm 5: Learn(V, α, k, ℓyes)
Input: A finite set V , an (ℓyes, ℓno)-faulty oracle αC , a target number of clusters k, and error

parameters ℓyes.
Output: A partition C′ of V .

1 S ← {}, C′ ← {{v} | v ∈ V }
2 while |C′| > k do
3 v ←Get_New(S, C′)
4 C′, S ← Insert(V, α, S, C′, ℓyes, ℓno)
5 if |S| = k + 1 then
6 S ← {}
7 end
8 end
9 return C′

Algorithm 6: Get_New(S, C′)
Input: A partition C′ of some finite set V , and a subset S ⊂ V such that |S| ≤ |C′|
Output: An element v ∈ V representing a set in C′ which is currently not represented by any

element of S.
1 for v ∈ V do
2 if [v]C′ ∩ S = ∅ then
3 return v
4 end
5 end
6 return ⊥

Algorithm 7: Insert(v, α, C′, S, ℓyes)
Input: A finite set V ,a same-cluster oracle α for V , a partial clique S, a candidate partition C′ of

V , and error parameters ℓyes.
Output: A new candidate cluster C′, partial clique S.

1 for u ∈ S do
2 // Returns either result = −1 or +1
3 result← Compare(u, v, α, ℓyes, ℓno)
4 // If +1: it is guaranteed that u and v are part of the same cluster and C′ is edited to reflect this
5 if result = +1 then
6 Re-label all ‘clique’ queries made during this execution of Insert (and all calls to

Compare therein) as ‘merge-’
7 new_set← [v]C′ ∪ [u]C′

8 C′ ← (C′ \ {[v]′C , [u]C′}) ∪ new_set
9 return C′, S

10 end
11 end
12 // If S is empty or if result = −1 for every u ∈ S then a new item is inserted into S
13 S ← S ∪ {v}
14 return C′, S

15

Algorithm 8: Compare(u, v, α, ℓyes)
Input: A pair of vertices u and v from some finite set V , a same-cluster oracle α for V , and error

parameters ℓyes.
Output: result ∈ {±1}.

1 // Initialize count to track “how many more times have we observed r = +1 compared to
r = −1”

2 count← 0
3 while count ≥ 0 do
4 r ← α(u, v)
5 if r = −1 and count> 0 then
6 count←count−1
7 else if r = −1 and count= 0 then
8 /* If the number of −1 responses exceeds the number of +1 responses seen so far, we

return −1*/
9 Label the last query as ‘clique’

10 Label all other queries created on this execution of Compare as ‘spurious’
11 return −1
12 else
13 count←count+1
14 end
15 // If count/ℓyes > 1 then we have verified that u ∼C∗ v so return result = +1
16 if count/ℓyes > 1 then
17 Label the last count-many queries which received positive responses as ‘merge+’
18 Label all other queries made during this execution of Compare as ‘spurious’
19 return 1
20 end
21 end

Lemma 8. At the end of the algorithm, the history of queries contains at most (ℓyes + 1)(n − k)
queries labelled ‘merge+’and at most k(n− k) queries labelled ‘merge-’.

Proof of Lemma 8. Consider a point in the algorithm in which Compare returns +1. When that
happens, the if block starting on Line 5 of Insert is executed; we refer to this as a merge event.

We begin by arguing that at most n− k merge events can occur during an execution of Algorithm 5.
At the start of the algorithm |C′| = n. At each merge event two clusters in C′ are merged and
the cardinality of C′ decreases by 1. Since C′ is always a refinement of the hidden k-partition C
(by Lemma 7), this implies that at most n− k merge events can occur during the execution of the
algorithm.

Both ‘merge-’ and ‘merge+’ queries are only created in correspondence with a merge event. We now
show that on any merge event, at most k ‘merge-’ queries and at most ℓyes + 1 ‘merge+’ queries are
created. By the above argument these results imply the statement of the lemma.

We now show that at most k ‘merge-’ queries are created during each merge event. ‘merge-’ queries
are created when some ‘clique’ queries are re-labelled as ‘merge-’. Specifically, all the ‘clique’
queries created during every execution of Compare within the current execution of Insert are
relabelled as ‘merge-’. On any execution of Insert, at most one ‘clique’ query is created for
every element in the current set S. During any iteration of the for loop at Insert Line 1, the set S
is of size at most k, implying that at most k ‘clique’ queries are created during one execution of
Insert. As a result at most k ‘merge-’ queries are created at every merge event.

Similarly, ‘merge+’ queries are only created in correspondence with a merge event. Specifically,
merge events occur when Compare returns result= +1. When this happens, ‘merge+’ queries are
created at Compare Line 17. When Line 17 is executed, the number of queries labelled ‘merge+’ is
equal to the current value of count, which is at most at most ℓyes + 1. Therefore, at most ℓyes + 1
‘merge+’queries are created in correspondence with each merge event, concluding the proof.

16

Lemma 9. At the end of the algorithm, the history of queries contains at most 2max{ℓyes, ℓno}
queries labelled ‘spurious’.

Proof of Lemma 9. Each query uv labelled ‘spurious’ can be paired uniquely with another query
uv labelled spurious which returned the opposite answer. Hence, the number of erroneous answers
returned by the oracle is at least the number of spurious queries divided by two. This number is
upper bounded by max{ℓyes, ℓno} and the result follows.

Lemma 10. At the end of the algorithm, the history of queries contains at most (ℓno + 1)
(
k+1
2

)
queries labelled ‘clique’.

Proof of Lemma 10. The algorithm only labels queries as ‘clique’ in Line 9 of Compare. Thus
every ‘clique’ query is made between two elements u and v such that both u and v were inserted
into some construction of a clique, supported on the set S.

If S reaches cardinality k + 1, the if block on Line 5 of Insert is executed. We refer to this
occurrence as a clique event. When a clique event occurs, queries have made up new a clique of −1
responses of size k + 1. In order for all of these responses to have been correct, the ground-truth
partition would need to have been size at least k+ 1, hence every time a clique event happens, a false
negative error must have occurred. Since every clique event can be charged to a false negative error,
at most ℓno clique events can occur.

We will charge every ‘clique’ query made before a clique event to the first clique event following the
query’s creation. These queries represent a distinct edge uv of a clique built on S which eventually
reaches size k + 1, and hence exactly

(
k+1
2

)
many of these ‘clique’ queries will occur per clique

event. Finally, all ‘clique’ queries occurring after the last clique event make up the edges of a clique
supported on the set S, which never reaches size k + 1, and hence there are less than

(
k+1
2

)
such

queries.

The result then follows.

Lemma 11. If Algorithm 5 makes a finite number of queries, then it must terminate.

Proof of Lemma 11. We show that if Algorithm 5 makes a finite number of queries, then Line 4 of
Algorithm 5 is executed a finite number of times. This implies termination of Algorithm 5.

When Line 4 of Algorithm 5 executes, Algorithm 5 calls Algorithm 7, Insert. If S is nonempty
on the execution of Line 4, then Insert calls Compare on some pair of elements. On every call
to Compare, Line 4 of Compare executes at least once, and hence the algorithm makes at least one
query. If S is empty on the execution of Line 4, then Insert increases the size of S by 1. This
implies that on the next execution of Line 4, S will be nonempty. Thus in order for Algorithm 5 to
execute Line 4 infinitely many times, the algorithm must make infinitely many queries, yielding the
result.

We now analyze the number of queries made by the algorithm. We begin by noting that when the
algorithm terminates, every query made will hold exactly one of the following labels: ‘merge-’,
‘merge+’, ‘clique’, ‘spurious’. The analysis proceeds by showing how labels of each category
contribute to either (a) correctly identifying the true partition, or (b) correctly certifying the occurrence
of errors.

Equipped with these lemmata, we now prove Theorem 1.

Proof of Theorem 1. Let |‘merge-′|, |‘merge+′|, |‘spurious′|, |‘clique′| be the number of
‘merge-’, ‘merge+’, ‘spurious’ and ‘clique’ queries made by the algorithm respectively. By
Lemmata 8, 9, and 10, the algorithm makes at most

|‘merge-′|+|‘merge+′|+ |‘spurious′|+ |‘clique′|

≤ nk − k2 + (ℓyes + 1)(n− k) + 2max{ℓyes, ℓno}+ (ℓno + 1)

(
k + 1

2

)
= O

(
RSk(n, k) + (n− k)ℓyes + k2ℓno

)
17

many queries. By Lemma 11 this implies that the algorithm must terminate.

When the algorithm terminates, the condition in the while loop of Learn is not met, and hence
|C′| ≤ k. But since, by Lemma 7 C′ is a refinement of C, it must hold that upon termination |C′| = k
and hence C′ = C. The algorithm then returns the correct hidden partition C.

D The algorithm for k-unknown

In this section we describe an algorithm for the weighted ℓ-PL problem in the k-unknown setting,
and further prove that it achieves optimal asymptotic performance for the unweighted version of the
problem. A complete description of the algorithm is given in the pseudocode below. Note that the
algorithm makes use of subroutines defined in Section D. The main challenge in adapting Algorithm 5
in Section 6 is that the algorithm crucially relies on knowing the value of k to build a lower bound to
the number of observed errors, by counting the number of (k + 1)-cliques of −1 answers observed.

To overcome this problem, the new algorithm will instead simply aim to build the largest possible
clique of −1 answers. We show that, remarkably, when false positive and false negative errors are
equivalent (ℓyes = ℓno = ℓ), this suffices to match the optimal guarantees of Algorithm 5, up to small
constant factors.

Algorithm 9: Learn_k_unknown(V, α, ℓyes, ℓno)
Input: A finite set V , a same-cluster oracle α, error parameters ℓyes and ℓno.
Output: A partition C′ of V .

1 C′ ← {{v} | v ∈ V }, idx← 1
2 Sidx ← {}
3 while idx ≤ ℓno + 1 do
4 v ←Get_New(S, C′)
5 if v ==⊥ then
6 idx+ = 1
7 Sidx ← {}
8 end
9 else

10 C′, Sidx ← Insert(V, α, Sidx, C′, ℓyes)
11 end
12 end
13 return C′

The intuition behind the success of Algorithm 9 is that, for the algorithm to construct large cliques
(significantly larger than the cardinality k of the hidden partition), the oracle must return many
incorrect answers. We formalize this intuition in Lemma 12.

Consider the execution of Algorithm 9. The algorithm will repeatedly construct cliques of −1 queries
supported on vertex sets Si, adding elements to Si until all elements of V belong to an equivalence
class [u]C′ for some u ∈ Si. Once this condition is met, the algorithm increments i and initializes
Si+1 as the empty set. The following lemma shows that the maximum size of any such set Si

constructed by the algorithm is bounded as a function of the true unknown partition size k and the
error parameter ℓno.

Consider the set Si constructed by Algorithm 9 while idx = i. We will denote by ni the maximum
cardinality attained by this set Si. For convention we will also set n0 = n. Moreover, we let ℓi denote
the number of false negative responses returned while idx = i.

Lemma 12. For any i ≥ 1, we have:

ni ≤ k +
√
2kℓi. (3)

Proof. Note that, if the hidden partition has cardinality k, and the algorithm obtains a clique of −1
responses on ni vertices, then the number of false negative errors contained in the clique responses is
at least the minimum number of within-cluster edges of any k-partition of the complete graph Kni

.

18

I.e. a lower bound to the number of false negative errors that must have occurred is given by:

ℓi ≥ min

k∑

j=1

(
cj
2

)∣∣∣∣c1, ..., ck ∈ N,
k∑

j=1

cj = ni

≥ min

k∑

j=1

cj(cj − 1)

2

∣∣∣∣c1, ..., ck ∈ R>0,

k∑
j=1

cj = ni

 .

Note that the function f(x) = x(x−1)
2 is convex, and hence by Karamata’s Inequality (Theorem 1

from [25]) the right-hand side above is lower bounded by:

ℓi ≥
k∑

j=1

ni

k

(
ni

k − 1
)

2
=

1

2
ni

(ni

k
− 1

)
.

Re-arranging, we find that n2
i − kni ≤ 2ℓik. Completing the square we obtain:(

ni −
1

2
k

)2

≤ 2ℓik +
1

4
k2

giving:

ni −
1

2
k ≤

√
2ℓik +

1

4
k2 ≤

√
2ℓik +

1

2
k,

and hence:
ni ≤

√
2ℓik + k,

as needed.

Crucially, we note that as with Algorithm 5, the partition C′ maintained by Algorithm 9 is always a
refinement of the ground-truth.
Lemma 13. Throughout the execution of Algorithm 9, C′ is always a refinement of the true partition.

The proof of this lemma is identical to the proof of Lemma 7.
Lemma 14. Algorithm 9 terminates.

Proof. We show that Lines 6 and 10 in Algorithm 9 execute finitely many times. This implies
termination of the algorithm.

Every time Line 6 executes, the value of idx is incremented by 1. Once the value of idx exceeds
ℓno + 1, the while loop in Algorithm 9 exits, and thus Line 6 can only execute finitely many times.

To show that Line 10 executes finitely many times, we show that every time Line 10 executes, either C′
decreases in cardinality or Sidx increases in cardinality. This follows from considering Algorithm 7,
Insert. On each call to Insert, either result = +1 for some u ∈ S, in which case the cardinality
of C′ is reduced in Line 8, or result = −1 for every u ∈ S. In the latter case, the size of S is
increased in Line 13.

By Lemma 13, C′ is always a refinement of C and thus its cardinality cannot decrease more than
(n− k) times. Similarly, for each value idx = i, |Si| ≤ n so Si can increase in size finitely many
times for each value of idx ∈ [1, ℓno + 1]. This implies that Line 10 can only execute finitely many
times, completing the proof.

Lemma 15. When Algorithm 9 terminates C′ is equal to the ground-truth partition C.

Proof. By Lemma 13 C′ is always a refinement of C. Therefore to show that the partition C′ returned
is equal to C, it remains to show that the cardinality of C′ upon termination is the true unknown value
k.

Assume for the sake of contradiction that this does not hold. Once initialized, the only place where C′
is modified during the execution of Algorithm 9 is in Lines 7 and 8 of Insert. There, the algorithm

19

modifies C′ by merging two previously disjoint equivalence classes. This reduces the number of
disjoint equivalence classes in C′, and so in particular the cardinality of C′ montonically decreases
during the execution of Algorithm 9. Thus if upon termination the cardinality of C′ is strictly greater
than k, then this was true at all points during the algorithm’s execution.

Recall that ni is defined to be the maximum cardinality attained by set Si. In particular, Si attains
maximum size when Line 6 of Algorithm 9 is executed. When this happens, Si contains exactly one
representative from every cluster in C′ at the time of execution. If the size of C′ is strictly greater than
k at all points during the execution of Algorithm 9 then ni > k ∀i ∈ [0, ℓno + 1].

In particular for every value i ∈ [1, ℓno + 1], for every distinct u, v ∈ Si Algorithm 9 receives at least
one response −1 for query (u, v). This response is consistent with the scenario in which u and v
belong to disjoint sets in the ground truth partition C. If ni > |C| then at least one of these responses
must have been a false negative error. As this holds for every value i ∈ [1, ℓno + 1], this implies least
ℓno + 1 false negative responses occur during the execution of Algorithm 9. In particular this violates
the assumption that α is an (ℓyes, ℓno)-faulty oracle, and we thus conclude that the size of C′ cannot
be greater than k upon termination, implying that the partition returned by the algorithm satisfies
C′ = C.

As with the analysis of Algorithm 5, bounding the query complexity of Algorithm 9 reduces to
bounding the number of queries with labels ‘merge-’, ‘merge+’, ‘clique’, ‘spurious’ upon
termination of the algorithm.

Lemma 16. When Algorithm 9 terminates the history of queries contains at most
(
1 +
√
2
)
(ℓno +

1)k2 queries labelled ‘clique’.

Proof. All queries labeled ‘clique’ upon termination must have been created during the construction
of some set Si while idx= i. Given ni the maximum cardinality attained by set Si, the number of
‘clique’ queries present upon termination that were constructed while idx= i is exactly(

ni

2

)
=

1

2
(n2

i − ni) ≤ k2 + 2k
√

2kℓi + 2kℓi − ni

where the upperbound follows from Lemma 12 and ℓi denotes the number of false negative responses
returned by the oracle while idx= i. Summing the total number of such queries over all iterates
idx= 1, . . . , ℓno + 1, we obtain:

ℓno+1∑
i=1

(
ni

2

)
≤ 1

2

ℓno+1∑
i=1

k2 + 2k
√
2kℓi + 2kℓi − ni

=
1

2
(ℓno + 1)k2 +

√
2

ℓno+1∑
i=1

k
√

kℓi + k

ℓno+1∑
i=1

ℓi −
1

2

ℓno+1∑
i=1

ni

≤ 1

2
(ℓno + 1)k2 +

√
2k

ℓno+1∑
i=1

ℓi + k

2
+ k

ℓno+1∑
i=1

ℓi −
1

2

ℓno+1∑
i=1

ni

=
1

2
(ℓno + 1)k2 +

kℓno√
2

+
(ℓno + 1)k2√

2
+ kℓno −

1

2
k(ℓno + 1).

The last line follows by observing that by definition of ℓi,
∑ℓ+1

i=1 ℓi ≤ ℓno.

We can simplify the above expression using the fact that for integer k it holds that k ≤ k2, to obtain
the bound:
1

2
(ℓno + 1)k2 +

kℓno√
2

+
(ℓno + 1)k2√

2
+ kℓ− 1

2
k(ℓno + 1) =

(
1

2
+

1√
2

)(
(ℓno + 1)k2 + kℓno

)
≤

(
1 +
√
2
)
(ℓno + 1)k2.

Lemma 17. Upon termination of Algorithm 9, the history of queries contains at most
2max{ℓyes, ℓno} queries labelled ‘spurious’.

20

The proof follows analogously to that of Lemma 9.
Lemma 18. Upon termination of Algorithm 9, the history of queries contains at most (ℓyes+1)(n−k)
queries labelled ‘merge+’, and at most

(n− k)max
{
(1 +

√
2)k, k + ℓno

√
2
}

queries labelled ‘merge-’.

Proof. Similarly to the analysis of Algorithm 5, we analyze the numbers of ‘merge+’ and ‘merge-’
queries, by considering merge events. A merge event is defined as the execution of Line 5 in Insert.

Recall that ni is define to be the maximum cardinality attained by set Si. In particular, Si attains
maximum size when Line 6 of Algorithm 9 is executed. When this happens, Si contains exactly
one representative from every cluster in C′ at the time of execution. Thus ni − ni+1 is equal to the
number of clusters merged while idx = (i+ 1), i.e. the number of merge events that occurred while
idx = (i + 1). Moreover the size of C′ upon termination of Algorithm 9 is equal to nℓno+1, and
hence by Lemma 15 nℓno+1 = k. This implies

ℓno∑
i=0

ni − ni+1 = n0 − nℓno+1 = n− k.

As with the proof of Lemma 8, we note that each ‘merge+’ query can be charged to a unique merge
event in such a way that exactly ℓyes + 1 ‘merge+’ queries are charged to each merge event. As a
result, the number |‘merge+′| of ‘merge+’ queries satisfies:

|‘merge+′| =
ℓno∑
i=0

(ℓyes + 1)(ni − ni+1) = (ℓ+ 1)(n− k)

Similarly, ‘merge-’ queries are only created in correspondence with a merge event. Specifically,
‘merge-’ are created when ‘clique’ queries are re-labelled as ‘merge-’. When idx = (i+ 1) on
any single execution of Insert, at most one ‘clique’ query is created for every element in the
current set S(i+1). Hence at most ni+1 ‘merge-’ queries correspond to each merge event that occurs
while idx = (i + 1). Summing over all values attained by idx, this implies the total number of
queries labeled ‘merge-’ is bounded by

|‘merge-′| ≤
ℓno∑
i=0

ni+1(ni − ni+1)

≤
ℓno∑
i=0

(k +
√
2kℓi+1)(ni − ni+1)

= k

ℓno∑
i=0

(ni − ni+1) +
√
2k

ℓno∑
i=0

(ni − ni+1)
√
ℓi+1,

where the second inequality follows from the bound in Lemma 12. Invoking the fact that
∑ℓno

i=0 ni −
ni+1 = n− k, we can bound the above and obtain:

|‘merge-′| ≤ k · (n− k) +
√
2k ·max

i

√
ℓi+1 ·

ℓno∑
i=0

(ni − ni+1)

≤
(
k +

√
2kℓno

)
(n− k)

≤ (n− k) ·max
{
(1 +

√
2)k, k + ℓno

√
2
}

yielding the result.

Equipped with the above lemmata, we proceed to prove Theorem 3.

21

Proof of Theorem 3. By Lemmata 14 and 15, Algorithm 9 terminates and returns the correct hidden
partition. It thus remains to bound the number of queries made during execution.

Let |‘merge-′|, |‘merge+′|, |‘spurious′|, |‘clique′| be the number of ‘merge-’, ‘merge+’,
‘spurious’ and ‘clique’ queries made by the algorithm respectively. By Lemmata 16, 17, and 18,
the algorithm makes at most

|‘merge-′|+|‘merge+′|+ |‘spurious′|+ |‘clique′|

≤ (n− k)max
{
(1 +

√
2)k, k + ℓno

√
2
}
+ (ℓyes + 1)(n− k)

+ 2max{ℓyes, ℓno}+ (1 +
√
2)(ℓno + 1)k2

= O
(
RSu(n, k) + (n− k)max{ℓyes, ℓno}+ k2ℓno

)
many queries.

E Lower bound results

E.1 Lower bounds for the easy problem: ℓ-false negatives

We prove the following lower bound on the query complexity of the ℓ-PLFN problem.

Theorem 19. Every algorithm for the ℓ-PLFN problem which guarantees full recovery of the correct
partitions requires RSk(n, k) + Ω(k2ℓ) queries in the worst case.

Because the ℓ-PLFN problem is no harder than the ℓ-PL problem, this immediately implies the same
lower bound on the query complexity of the ℓ-PL problem.

To establish this result, we introduce and analyze a game between a Quetionner and a Responder,
representing the algorithm and the oracle respectively.

Definition of the RUCCFN game. We define the following game, which we call the RUCCFN game.
The game is played by two players, the questioner (Q) and the responder (R) and it is parametrized
by a finite set V of cardinality n, a positive integer k ∈ {2, ..., n− 1}, and a non-negative integer ℓ.
The goal of the questioner is to infer a k-partition of V given input from the responder. At the start of
the game, we are given a complete undirected graph G0 on vertex set V . G0 = (V,E,w+

0 , w
−
0) has

two associated edge weight functions w+
0 : E → R and w−

0 : E → R, both of which are set to zero
at the beginning of the game.

At each iteration t, the questioner Q submits a query uv for distinct u and v in V . The responder R
then issues a response rt ∈ {±1}. If rt = +1, then w+ is updated by setting w+

t (uv) = w+
t−1(uv)+1.

Otherwise, if rt = −1, then w− is updated by setting w−
t (uv) = w−

t−1(uv) + 1. We then set
Gt = (V,E,w+

t , w
−
t).

For any partition C of V , we define the cost:

costFNGt
(C) def

=
∑
uv∈E
u∼Cv

w−
t (uv) + I

 ∑
uv∈E
u̸∼Cv

w+
t (uv) = 0

 ,

where I is the convex indicator function. Intuitively, the value of costFNGt
(C) is the number of incorrect

negative (−1) answers that the responder would have to have given if C was the correct partition, or
infinity if the responder would have had to given any incorrect positive (+1) answer.

We require that the responder must, at each iteration t, reply in a way that guarantees that there exists
some k-partition C of V such that:

costFNGt
(C) ≤ ℓ.

The game terminates when costFNGt
(C) is strictly more than ℓ for all but one k-partition C of V ,

indicating that the responder is left with a single feasible partition and hence they have learned the
ground truth. If the game terminates at iteration T , then the payoff to the responder player is T , and
the payoff to the questioner is −T .

22

Given a questioner strategy Q and a responder strategy R, we let GameFN(Q,R) be the number of
iterations the game lasts when questioner Q plays against responder R, as a function of the parameters
n, k and ℓ. The query complexity of the ℓ-PLFN problem is the value:

min
Q∈Q

max
R∈R

GameFN(Q,R),

where Q is the set of all possible questioner strategies and R is the set of all possible responder
strategies. A simple argument then shows:
Lemma 20. Let f be a non-negative real valued function. If there exists a responder strategy R∗

such that:
∀n, k, ℓ ∈ N0 : min

Q∈Q
GameFN(Q,R∗) ≥ f(n, k, ℓ),

then the query complexity of the ℓ-PLFN problem is at least f(n, k, ℓ).

Proof. This follows from:

min
Q∈Q

max
R∈R

GameFN(Q,R) ≥ min
Q∈Q

GameFN(Q,R∗) ≥ f(n, k, ℓ).

In Theorem 23 in Appendix F.1 we show that there exists a responder strategy R∗ satisfying

min
Q∈Q

GameFN(Q,R∗) ≥ (ℓ+ 1)

((
k + 1

2

)
− 1

)
= Ω(ℓk2)

queries. Lemma 20 and Theorem 23, together with the lower bound of Liu and Mukherjee for the
problem without errors [26] immediately imply Theorem 19.

E.2 Lower bounds for the easy problem: ℓ-false positives

We prove the following lower bound on the query complexity of the ℓ-PLFP problem:
Theorem 21. Every algorithm for the ℓ-PLFP problem which guarantees exact recovery of the correct
partition requires RSk(n, k) + Ω(ℓ(n− k)) queries in the worst case.

As in Section E.1, this result immediately implies the same lowerbound for the ℓ-PL problem. In
order to analyze the query complexity of learning partitions with ℓ false positives, we consider a very
similar game to that defined above in Appendix E.1.

Definition of the RUCCFP game. The RUCCFP game is defined with the same setup as the
RUCCFN game. The questioner Q, responder R, finite set V , and gameplay graph Gt =
(V,E,w+

t , w
−
t) are all defined as in Appendix E.1. The core distinction between the RUCCFP

game and the RUCCFN game is the notion of cost employed. For the RUCCFP game, for any partition
C of V we define the cost

costFPGt
(C) def

=
∑
uv∈E
u̸∼Cv

w+
t (uv) + I

 ∑
uv∈E
u∼Cv

w−
t (uv)

 .

Intuitively, the value of costFP(C) is either the number of incorrect positive answers (+1) that the
responder would have to have given if C were the correct partition, or the value is infinity if the
responder would have given any incorrect negative (−1) answer.

The rules of the game require that at each iteration t, the responder must reply in such a way that
guarantees the existence of some k-partition C∗ of V such that

costFPGt
(C∗) ≤ ℓ.

The game terminates when there exists a unique k-partition C∗ such that costFPGt
(C∗) ≤ ℓ.

The query complexity of the ℓ-PLFP problem can be characterized as

min
Q∈Q

max
R∈R

GameFP(Q,R),

23

where GameFP(Q,R) indicates the number of iterations in the RUCCFP game when questioner
strategy Q plays against responder R. As in Appendix E.1, this characterization allows us to lower
bound the query complexity of the problem by analyzing the RUCCFP game:
Lemma 22. Let f be a non-negative real valued function. If there exists a responder strategy R∗

such that
∀n, k, ℓ ∈ N0 : min

Q∈Q
GameFP(Q,R∗) ≥ f(n, k, ℓ)

then the query complexity of learning partitions with ℓ false positives is at least f(n, k, ℓ).

The proof is entirely analogous to that of Lemma 20.

In Theorem 25 from Appendix F.2 we show that there exists a responder strategy R∗ which satisfies:

min
Q∈Q

GameFP(Q,R∗) ≥ (ℓ+ 1)(n− k + 1))

2
= Ω(ℓ(n− k)).

This, together with Lemma 22 immediately implies Theorem 21.

F One-sided error lower bounds strategies

F.1 A responder strategy for the RUCCFN game

In this section we show that there exists a responder strategy for the RUCCFN game that guarantees
the game lasts at least Ω(ℓk2) iterations. We consider a responder strategy which we call the
(k + 1)-groups responder strategy, denoted R(k+1). In this strategy, the responder fixes an arbitrary
(k + 1)-partition of V , denoted C∗ = {C∗

i }
k+1
i=1 . We define R(k+1) as the responder strategy in

which the responder replies consistently with C∗ whenever the rules of the RUCCFN game allow, i.e.
whenever this does not cause the cost of every k-partition to exceed ℓ. We lower bound the number
of iterations needed for any questioner strategy to terminate the RUCCFN game when playing against
R(k+1):

Theorem 23. The (k + 1)-groups responder strategy R(k+1) satisfies

min
Q∈Q

GameFN(Q,R(k+1)) ≥ (ℓ+ 1)

((
k + 1

2

)
− 1

)
= Ω(ℓk2)

queries.

Proof. For i, j ∈ [k + 1], consider the k-partitions Cij obtained by starting with C∗ and merging C∗
i

and C∗
j i.e.:

Cij = {C∗
a}a∈[k+1]\{i,j} ∪ {C∗

i ∪ C∗
j }.

We show that the questioner cannot increase the cost of more than one of these partitions Cij on any
single iteration (a claim which we prove afterwards):

Claim 24. Suppose that costFNGt
(Cij) ≤ ℓ. Then on iteration t+ 1 the cost of Cij increases only if the

questionner submits a query uv for u ∈ C∗
i and v ∈ C∗

j .

We now prove Theorem 23 using Claim 24. Consider the potential function:

ϕ(t) :=
∑

i,j∈[k+1]
i ̸=j

min{costFNGt
(Cij), ℓ+ 1}. (4)

Note that, ϕ(0) = 0 and, by Claim 24, at every step t of the game we have:

ϕ(t+1) ≤ ϕ(t) + 1. (5)

Suppose that the game terminates at iteration T . Then by the rule of the RUCCFN game, for all but
one k-partitions C, it must be the case that costFNGT

(C) > ℓ. In particular, all but at most one of the
partitions Cij must have cost at least ℓ+ 1, implying:

ϕ(T) ≥ (ℓ+ 1)

((
k + 1

2

)
− 1

)
, (6)

24

Figure 2: The partition C∗ used in the (k − 1) responder strategy.

and hence:

T ≥ (ℓ+ 1)

((
k + 1

2

)
− 1

)
= Ω(ℓk2),

as needed.

We conclude this section by proving Claim 24.

Proof of Claim 24. Consider Gt such that costFNGt
(Cij) ≤ ℓ and such that the RUCCFN Game has

not yet terminated. Assume the query submitted by the questioner is not of the form uv for any
u ∈ C∗

i , v ∈ C∗
j . For any such uv, by the definition of Cij the pair u, v is in the same cluster with

respect to partition Cij if and only if the pair is in the same cluster with respect to partition C∗. Thus
if the responder is able to return an answer consistent with C∗, this response will also be consistent
with Cij , and as a result costFNGt

(Cij) = costFNGt+1
(Cij).

It remains to show that the responder is able to reply consistently with C∗ on such a query. By
assumption costFNGt

(Cij) ≤ ℓ, and as shown above responding consistently to the query uv in a
manner consistent with C∗ will ensure costFNGt

(Cij) = costFNGt+1
(Cij) ≤ ℓ. Thus if the responder

replies to query uv consistently with C∗, there will still exist a k-partition–namely, Cij–such that
costFNGt+1

(Cij) ≤ ℓ. Thus the rules of the RUCCFN game allow the responder to reply to query uv
consistently with C∗, and by definition of strategy R(k+1) the responder will do so. Thus the cost of
Cij at iteration (t+ 1) does not increase when the questioner plays such a pair uv.

F.2 A responder strategy for the RUCCFP

In this section, we show that there exists a responder strategy for the RUCCFP game that guarantees
that the game lasts at least Ω(ℓ(n − k)) iterations. In particular, we consider a responder strategy
which we call the (k − 1)-groups responder strategy, denoted R(k−1). This strategy fixes k − 2
arbitrary elements v∗1 , ..., v

∗
k−2 and then fixes the following (k − 1)-partition:

C∗ := {V \ {v∗1 , ..., v∗k−2}, {v∗1}, ..., {v∗k−2}}.

(See Figure Figure 2). Note that when k = 2, the set of {v∗i } is just empty and the partition C∗
consists of a single set equal to V . We define the (k − 1)-groups strategy, as the responder strategy
in which the responder replies consistently with C∗ whenever the rules of the RUCCFP game allow
them to.

25

Theorem 25. The (k − 1)-groups responder strategy R(k−1) satisfies:

min
Q∈Q

GameFP(Q,R(k−1)) ≥
(ℓ+ 1)(n− k + 1))

2
= Ω(ℓ(n− k)).

Proof. We will prove the theorem by considering a subset of the partitions which are hard for
the questioner to differentiate among when playing against this responder strategy. Let S∗ :=
V \ {v∗1 , ..., v∗k−2}, and for any v ∈ S∗ let Cv be the partition:

Cv := {{v}, S∗ \ {v}, {v∗1}, ..., {v∗k−2}}.

By definition of the RUCCFP game, at the end of the final iteration T , we must have costFPGT
(Cv) > ℓ

for all but one of the partitions {Cv}v∈S∗ . In particular, consider the potential function:

ϕ(t) def
=

∑
v∈S∗

min{costFPGt
(Cv), ℓ+ 1}.

Then, if the game ends at iteration T , we must have:

ϕ(T) ≥ (ℓ+ 1)(|S∗| − 1) = (ℓ+ 1)(n− k + 1). (7)

On the other hand, we have:
ϕ(0) = 0. (8)

We show that this potential ϕ(t) changes by a small amount on any given iteration of the RUCCFP

game:

Claim 26. If ϕ(t) < (n− k + 1)(ℓ+ 1), then ϕ(t+1) ≤ ϕ(t) + 2.

An immediate consequence of Claim 26 and Equations (7) and (8) is that the number of iterations
required for the game to terminate is at least T ≥ (n− k + 1)(ℓ+ 1)/2, yielding the statement of
Theorem 25.

We conclude by proving Claim 26.

Proof of Claim 26. Let uv be the query submitted by the questioner on iteration t+ 1. We will split
the proof of the theorem into cases.

Case 1 Suppose {u, v} ̸⊆ S∗. Then, if the responder answers in a way that’s consistent with C∗,
their answer will also be consistent with Cw for every w ∈ S∗. By consequence of the
assumption that ϕ(t) < (n− k + 1)(ℓ+ 1), a simple counting argument implies that there
exists an element wt ∈ S∗ such that:

costFPGt
(Cwt

) ≤ ℓ.

Since wt as defined above satisfies costFPGt
(Cwt

) ≤ ℓ, this implies that the responder can
answer in a way consistent with C∗ without violating the rules of the game. By the definition
of the strategy, the responder then will answer in a way consistent with C∗ (and with all
partitions Cw) and hence, for all w ∈ S∗: costFPGt+1

(Cw) = costFPGt
(Cw), giving ϕ(t+1) =

ϕ(t).

Case 2.a Suppose that {u, v} ⊆ S∗, and that the responder replies in a way that’s consistent with
C∗. In this scenario, for any w ∈ S∗ \ {u, v} we have costFPGt+1

(Cw) = costFPGt
(Cw), while

costFPGt+1
(Cu) ≤ costFPGt

(Cu) + 1 and costFPGt+1
(Cv) ≤ costFPGt

(Cv) + 1. This immediately
implies ϕ(t+1) ≤ ϕ(t) + 2.

Case 2.b Suppose that {u, v} ⊆ S∗, and that the responder replies in a way that is not consistent
with C∗, i.e. the responder replies to the query uv with −1. Then by the definition of the
responder strategy, it must be the case that answering +1 to the query would violate the
rules of the game, i.e. it would cause every k-partition C of V to have costFPGt+1

(C) ≥ ℓ+ 1.
But, for every w ∈ S∗ \ {u, v}, the cost of the partition Cw does not increase if the response

26

to the query {u, v} is +1. Hence, it must be the case that costFPGt
(Cw) ≥ ℓ+ 1 for all such

w. Hence, for any w ∈ S∗ \ {u, v}:

min{ℓ+ 1, costFPGt+1
(Cw)} = ℓ+ 1 = min{ℓ+ 1, costFPGt

(Cw)}. (9)

On the other hand, since the responder is replying to the query uv with −1, their answer is
simultaneously consistent with both Cu and Cv . We then have:

costFPGt+1
(Cu) = costFPGt

(Cu) and costFPGt+1
(Cv) = costFPGt

(Cv). (10)

In particular, Equations (9) and (10) directly imply ϕ(t+1) = ϕ(t).

This concludes the proof of Claim 26 (and in turn the proof of Theorem 25).

27

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The authors ensured that the content of the abstract accurately reflects that of
the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A brief discussion of limitations of the results appears in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

28

Justification: We include thorough proofs of all our theoretical results in the supplementary
material. Additionally, the full set of assumptions required for the theorems to hold are
clearly stated both in the introduction and in Section 4 where the results are formally stated.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not contain experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

29

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not contain any experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have carefully reviewed the ethics guidelines, and ensured that the
papers complies with them fully.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The work carried out in this paper is of entirely foundational nature and has no
direct path to any negative applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

31

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

32

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer:[NA]
Justification: While crowdsourcing of information is a motivating application for the theory
developed in this paper, this work does not include any crowdsourcing experiments nor any
research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer:[NA]
Justification: While crowdsourcing of information is a motivating application for the theory
developed in this paper, this work does not include any crowdsourcing experiments nor any
research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

33

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

34

	Introduction
	Background and related results
	Discussion of the Model

	Technical preliminaries
	A hierarchy of problems
	Algorithmic results
	Lower bound techniques: correlation clustering and the chip-liar game
	Algorithm for weighted -PL with k-known
	Conclusions, Limitations, and Future Directions
	Additional relevant background
	Equivalence between weighted problem and doubly constrained one
	Deferred proofs from Section 6
	The algorithm for k-unknown
	Lower bound results
	Lower bounds for the easy problem: -false negatives
	Lower bounds for the easy problem: -false positives

	One-sided error lower bounds strategies
	A responder strategy for the RUCCFN game
	A responder strategy for the RUCCFP

