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Abstract

Robotic systems are increasingly expected to operate in human-centered, unstruc-
tured environments where safety, adaptability, and generalization are essential.
Vision-Language-Action (VLA) models have been proposed as a language guided
generalized control framework for real robots. However, their deployment has
been limited to conventional serial link manipulators. Coupled by their rigidity
and unpredictability of learning based control, the ability to safely interact with
the environment is missing yet critical. In this work, we present the deployment
of a VLA model on a soft continuum manipulator to demonstrate autonomous
safe human-robot interaction. We present a structured finetuning and deployment
pipeline evaluating two state-of-the-art VLA models (OpenVLA-OFT and π0)
across representative manipulation tasks, and show while out-of-the-box policies
fail due to embodiment mismatch, through targeted finetuning the soft robot per-
forms equally to the rigid counterpart. Our findings highlight the necessity of
finetuning for bridging embodiment gaps, and demonstrate that coupling VLA
models with soft robots enables safe and flexible embodied AI in human-shared
environments.

1 Introduction

To deploy robots in human-centric, real-world settings, they must interpret human instructions,
perceive dynamic environments, and execute robust actions. Vision-Language-Action (VLA) models
unify perception, language understanding, and control within a single multimodal policy[23], offering
a promising approach to these challenges. Encompassing CLIPort[29], SayCan[1], RT-2[6] and
OpenVLA[20], VLA models have progressively improved generalization across tasks and settings.
Yet, nearly all existing models and deployment focuses on rigid robotic arms, where predictable
kinematics simplify control but limit safety and adaptability in human-centered environments.



Soft robots incorporate compliant or soft structures into their bodies, such that they deform in
response to interactions with the environment. This makes them well suited for operating around
humans as they provide intrinsic safety to the environment, are resilient to collisions, and can be
robustness to environmentally uncertainty[27, 32]. Soft continuum manipulators, in particular, bring
these benefits to manipulation[14, 9]. Currently soft arms rely on controllers that account for their
underlying non-linear properties and redundancy within the structures. Deploying VLA models on
such platforms remains unexplored: existing datasets and benchmarks overwhelmingly rely on rigid,
serial-linked robots[11], leaving open questions about embodiment transfer.

This gap poses two key challenges. First, reliance on rigid embodiments restricts VLA applicability to
domains where compliance is crucial. Second, the nonlinear, underactuated dynamics of soft robots
raise doubts about whether policies trained on rigid arms can generalize effectively. Addressing this
challenge is critical to deploying VLAs models on soft robot arms, combining their physical safety
with the human-relevant capabilities of VLAs.

In this work, we take a step toward bridging this gap. We propose and implement a finetuning pipeline
for deploying VLA models on a custom soft continuum robot, evaluating both OpenVLA-OFT[19]
and π0[5]. Our study systematically benchmarks embodiment transfer across rigid and soft robots
and compares the relative strengths of two state-of-the-art VLA models. Concretely, our contributions
are:

1. We introduce the first open-source dataset of soft robot demonstrations, enabling repro-
ducible research on compliant embodiments.

2. We benchmark OpenVLA-OFT on both rigid (UR5) and soft robots, showing that
finetuning closes the rigid-to-soft domain gap and yields comparable task success rates.

3. We compare OpenVLA-OFT and π0 on the soft robot: while π0 demonstrates stronger
generalization on rigid embodiments, OpenVLA-OFT achieves superior performance on the
compliant platform after finetuning.

2 Related Work

Vision-Language-Action (VLA) models unify perception, language, and control for robotic agents.
Early approaches such as CLIPort [29] and SayCan [1] demonstrated the potential of pretrained
vision-language models, while large-scale efforts like RT-1 [7] and RT-2 [6] improved task coverage
on rigid manipulators. More recent methods focus on temporal reasoning and efficiency, including
π0 [5] with flow-based policies and OpenVLA-OFT [19] with parallel decoding and continuous
outputs.

VLA models have also shown transfer between different rigid embodiments [11], suggesting a de-
gree of generality. However, rigid robots share similar inverse kinematics and appearance, making
transfer comparatively easier. In contrast, soft continuum manipulators exhibit nonlinear, under-
actuated dynamics and different morphology, a setting that remains unaddressed in prior VLA
benchmarks[21][15]. Our work provides the first systematic evaluation of VLA models on a soft
robotic arm. For more details about recent VLA methods, and state-of-the-art soft continuum robots’
control, refer to Appendix A.

3 Methodology

To investigate the deployment of VLA models on soft robotic systems, we adopt a structured pipeline
spanning task design, data collection, preprocessing, model adaptation, and evaluation. We begin by
defining three representative manipulation tasks tailored to the soft robot’s capabilities. Next, we set
up a data-capturing environment to record multimodal demonstrations, which are then converted into
standardized formats. Using these processed datasets, we finetune both models under comparable
conditions. Finally, we perform inference and evaluate policy performance on the designed tasks,
assessing both success rate and qualitative behavior.
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3.1 Robot platforms

As a benchmark, the UR5 robot was used to perform manipulation tasks. A parallel gripper was
mounted with a monocular camera mounted above for autonomy (see Fig.1D right).

For the soft counterpart (Fig.1D left), a custom designed continuum robot arm: Embuddy, is used
shown in Fig.1A. Embuddy consists of three modular sections, comprised of a standard revolute joint
followed by a soft continuum segment (see Fig.1B). The continuum segments (shown in detail in
Fig.1C) are tendon driven, and bend in one plane (constrained by an incompressible centerline). The
continuum structure is fabricated through 3D printed Thermoplastic Polyurethane (TPU). Two key
features of Embuddy allows for inherently safe interactions. Firstly, the underactuated sections mean
regardless of the motor positions the sections are always deformable to external forces. Secondly the
arm is lightweight (total 5kg), limiting its inertial forces.

Figure 1: Continuum soft robot used for the experimental study. A: The full view of the continuum
robot - Embuddy. B: Actuation and structural schematic of Embuddy, indicating tendons, joints, and
motors. C: Detailed view of a single section. D: Demonstration setup for the soft and rigid robot.

Although Embuddy follows a similar scale to a standard serial-link manipulator, with a height of 1m,
its workspace is limited to the bending angle of each soft section, whereby the first section can bend
80° and the second and the third up to 50° each. In our experiments, we use the same camera setup
and gripper for both the UR5 and Embuddy, ensuring a fair comparison across embodiments.

3.2 Designed tasks

We selected two pick-and-place tasks and one close human-interactive task for the experiments. For
simplicity, we denote them as task 1, 2 and 3.

• Task 1: "Put the orange in the plate" –> Simple pick-and-place
• Task 2: "Put the X in the plate"(X can be orange or milk) –> Pick-and-place with choices
• Task 3: "Feed the person with marshmallow" –> Close human-interactive

3.3 Experimental setup

Following the practices in OpenVLA-OFT[19] and π0[5], we have both 3rd-person and wrist view
cameras for capturing the scene. In each task, objects are randomly placed in the workspace. For
more details on how the setup is done for each task, refer to Appendix B.

3.4 Data capturing and processing

To capture the dataset, we use a joystick to tele-operate the robots. To teleoperate and control the
robot in cartesian space, a Piecewise Constant Curvature (PCC) model is used[28] for the inverse
kinematics. By approximating every section as a constant curvature, the tendon lengths can be related
to a modeled shape, which is used to determine the end-effector pose.

In each episode of each demonstration, the captured observation consists of 3rd-person image, wrist
image, proprioceptive state(end-effector pose) and language instruction(the task). As shown in
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Appendix B, the captured images are cropped and scaled. Following the practice of OpenVLA-
OFT[19], we filter out the episodes when the robot has almost zero motion(for example when gripper
is grabbing or releasing). Finally, we convert and pad the representations of state and action to desired
ways and dimensions according to the configuration of the models. RLDS[26] format is used for
OpenVLA-OFT and LeRobot[8] format is used for π0[5]. We open source such datasets. For more
details about how we do data capturing and processing for each models and tasks, refer to App. C.

3.5 Model finetuning and inference

For OpenVLA-OFT[19], due to the large number of parameters of the LLM backbone Llama 2
7B[33], the best practice that balances the accuracy and computational cost is to do full finetuing with
the low-rank adaptation technique(LoRA)[18]. As for π0, since the backbone VLM PaliGemma[4]
has smaller number of parameters(3B), we conduct full finetuning. For more details, refer to App. D.

During inference, we use the same GPU that is used for finetuning for model prediction. On the local
PC that is connected with the robot, we capture observations consisting of 3rd-person view image,
wrist view image, proprio state and language instruction in real time. We send such observations
to the remote, where the model predicts an action chunk based on the observation and sends the
chunk back to local. The local executes the actions and captures observations again. We do this
communication non-stop, until the task is done or it reaches maximum steps.

4 Results

In this section, we evaluate the performance and behavior of VLA models, more specifically
OpenVLA-OFT[19] and π0[5] on Embuddy with our designed tasks. Following the most com-
mon evaluation method, we estimate the model prediction accuracy by success rate in 10 trials. Our
first experiment evaluates the performance of vanilla OpenVLA-OFT and π0 on Embuddy, with
particular interest in π0, which is known for its stronger generalization capability. All out-of-the-box
models without finetuning fail in our setting. As expected, the primary cause lies in the discrepancy
between soft-robot and rigid-robot dynamics, specifically the mapping from end-effector pose to
internal configurations. Due to the maximum bending angle constraints of each section, Embuddy
consistently gets stuck mid-execution when the model generates motions suitable for rigid manipula-
tors but incompatible with Embuddy’s kinematics. This result highlights the significant domain gap
between rigid and soft robots, underscoring the necessity of finetuning for effective policy transfer.
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Figure 2: Inference success rate comparisons between OpenVLA-OFT and π0 on UR5 and Soft
Robot embodiments.

As shown in Figure 2 left, applying finetuned OpenVLA-OFT[19] on UR5 and Embuddy achieve
exact same success rate on task 1 and 2. This demonstrates that our finetuning strategy successfully
bridges the rigid-to-soft domain gap, enabling the models to achieve comparable performance on
both soft and rigid robots. Not only OpenVLA-OFT works on soft robot after finetuning, so does π0.
As shown in figure 2 right, π0 achieves high success rate, though slightly lower than OpenVLA-OFT
on soft robot in task 1 and 3. It’s notable that while π0 has better generalization in rigid embodiments,
OpenVLA-OFT outperforms π0 when transferring to a completely new platform with totally different
dynamics after proper finetuning. As shown in Table 1, even with a big connection delay, soft robot
can still achieve at least 25 Hz in the control loop with OpenVLA-OFT and π0. Appendix E shows
visualizations and more details of our experiments during inference.
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5 Conclusion

This paper presents the first systematic deployment of Vision-Language-Action models on a soft
continuum robot, directly addressing the embodiment gap between compliant and rigid manipula-
tors. Our experiments reveal that out-of-the-box VLA policies fail due to kinematic and dynamic
mismatches. However, we demonstrate that a targeted finetuning pipeline using a small, custom
dataset successfully bridges this gap. The adapted policies, particularly OpenVLA-OFT, achieve
high success rates on the soft robot, comparable to a rigid UR5 baseline. This work confirms that
the advanced reasoning of VLA models can be effectively combined with the intrinsic safety of
soft robotics. This work shows a promising direction for developing safe, adaptable, and intelligent
embodied agents for human-centered environments. Future research will expand this investigation to
a wider range of tasks and compliant platforms.
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A Related Work

In this section we introduce more about the two state-of-the-art methods π0[5] and OpenVLA-
OFT[19] we apply in our work.

A.1 π0

π0 [5] is a Vision-Language-Action (VLA) flow model built on top of a pretrained vision-language
model (VLM) backbone PaliGemma[4]. It supports cross-embodiment learning by training on data
from multiple robotic platforms with varying kinematics and action spaces. Key architectural and
training aspects include:

• Flow-matching action expert: Rather than discretizing actions, π0 uses conditional flow
matching to predict continuous action chunks. During training, noisy action sequences are
generated, and the model learns to predict the "denoising" flow that maps noise back to true
actions.

• Cross-embodiment generality: π0 is pretrained on diverse datasets comprising seven
distinct robot configurations (e.g., single-arm, dual-arm, mobile manipulators) and over 68
manipulation tasks. This enables zero-shot control across different rigid platforms.

• Action chunking for temporally extended tasks: At inference, the model outputs se-
quences of actions via flow trajectories, allowing temporally coherent planning and execution
of complex, extended tasks.

• Pretraining and fine-tuning recipe: π0 adopts a two-stage training paradigm: broad
pretraining on large-scale diverse robot data followed by task-specific fine-tuning, analogous
to modern language-model training practices.

Together, these design choices enable π0 to perform complex robotic manipulation tasks—such
as laundry folding, object assembly, and mobile manipulation—via both direct prompting and
fine-tuning, achieving strong generalization across embodiments and task domains.

A.2 OpenVLA-OFT

OpenVLA-OFT [19] is a recent state-of-the-art Vision-Language-Action model designed to improve
both performance and inference efficiency over prior VLA systems. It builds upon the OpenVLA
framework [20], using a ViT-based visual encoder and Llama 2 7B[33] as the language backbone, but
introduces several key innovations:

• Parallel decoding with action chunking: Instead of autoregressive token-by-token predic-
tion, OpenVLA-OFT maps multimodal inputs directly to a sequence of actions in a single
forward pass. By conditioning on empty action embeddings of length K with bidirectional
attention, the model predicts K consecutive actions simultaneously, enabling fast execution
without intermediate replanning.

• Continuous action outputs: Unlike the discrete tokenized actions in OpenVLA, OpenVLA-
OFT directly regresses continuous control vectors. An MLP action head replaces the output
embedding layer, trained via an L1 objective to match ground-truth trajectories. This design
improves precision and avoids discretization artifacts.

• Flexible multimodal inputs: Beyond single-view images, the model supports multi-camera
observations and low-dimensional robot states. These embeddings are projected into the
shared language space and concatenated for decoding, enabling richer context awareness.

• Language-conditioned modulation: To strengthen grounding, OpenVLA-OFT applies
FiLM [25] layers that inject task-language embeddings into visual features at each trans-
former block, improving instruction following in visually ambiguous settings.

These modifications allow OpenVLA-OFT to outperform prior policies such as π0[5] and diffusion-
based RDT-1B[22] on benchmarks including LIBERO [21] and ALOHA [15], while maintaining
competitive inference speed.
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A.3 Soft robot control

A more conventional approach towards the control of soft continuum robots have been explored in
the past[2, 16]. A key challenge lies in modeling and perception of soft robots due to their nature of
large deformation[3]. While methods such as finite element analysis can describe its deformation, for
real-time control, simplified mathematical models such as piecewise constant curvature (PCC)[12] or
affine curvature models[31] have been developed. Through combination with proprioceptive sensing
method(through tendon lengths[17], strain sensing[13], inertial measurement units[30], vision[10]),
such models can be updated in real time to estimate and control its cartesian position.

B Experimental setup

Here we provide extra details about our experimental setup. Figure 3 shows the setup for UR5 baseline
experiments. And figure 4 shows the setup for soft robot experiments. Note that the workplace of two
setups have same area(1200 cm3), but different shapes, due to the special workspace of Embuddy. For
both robots, we use the same 1 DoF gripper. And the initial end-effector pose is fixed and predefined
for all tasks.

B.1 Details for each tasks

Task 1: "Put the orange in the plate" There are four common food objects(orange, milk, yogurt
and baguette) that are randomly placed in the workspace. The plate is placed apart, roughly at the
same place in each demonstration.

Task 2: "Put the X in the plate"(X can be orange or milk) Same as Task 1.

Task 3: "Feed the person with marshmallow" A plate of marshmallows is placed randomly in the
workspace. The person in the scene stays roughly at the same position in each demonstration.

C Dataset capturing and processing

To achieve real-time flexible 6 DoF controlling of both robots(UR5 and soft robot), we use a
3dconnexion space mouse as the joystick controller. The open/close of the gripper is controlled by the
buttons on the joystick. Since we choose a relatively small gain for transformation and rotation, our
capture frequency is also relatively low(5Hz). For all tasks, number of episodes in each demonstration
is in the range of 50 to 200.

As shown in figure 3 and 4, we crop and down-sample the images to the resolution of 256 * 256. We
further flip the wrist view image to make it more intuitive.

We represent the proprioceptive state (pose) as an 8-dimensional vector

s =
[
x, y, z, r, p, y, pad, g

]
,

where (x, y, z) denotes Cartesian position, (r, p, y) denotes orientation in roll–pitch–yaw, pad is a
padding dimension, and g ∈ {0, 1} denotes the gripper state (open/closed).

The corresponding action is defined as the delta between adjacent poses, represented as a 7-
dimensional vector

a =
[
∆x, ∆y, ∆z, ∆r, ∆p, ∆y, g

]
,

where the first six dimensions specify Cartesian and orientation increments, and g ∈ {0, 1} indicates
the gripper command.

Note that roll-pitch-yaw lies within the range of [−π, π]. When computing the delta, directly
subtracting two values near the boundaries can lead to incorrect large values. For example, the
difference between −π + ϵ and π − ϵ (with small ϵ) should be close to −2ϵ, but a naive subtraction
yields nearly 2π. Therefore, the delta is handled by

∆ = ((∆ + π) mod 2π)− π (1)

Here’s the number of demonstrations captured for each task:
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(a) 3rd-person view (b) Wrist view

(c) 3rd-person view after cropping and scaling (d) Wrist view after cropping, scaling, and flipping

Figure 3: Setup and processed image views for UR5 experiments(baseline). Top row: original views,
with resolution 640x480; Bottom row: processed views, with resolution 256x256.

• Task 1: 50

• Task 2: 100 (50 for orange; 50 for milk)

• Task 3: 20

The open source soft robot dataset can be found on HuggingFace HCSuMoss/soft_orange and
HCSuMoss/soft_feed .

D Finetuning details

Figure 5 shows the training loss curves of task 1 and 3 with OpenVLA-OFT and π0.

D.1 OpenVLA-OFT[19] finetuning

According to the studies in OpenVLA[20] paper, applying LoRA[18] with a rank of 32 is the best
way to finetune on the OpenVLA-7b model, in terms of both prediction accuracy, and computational
cost. To do the finetuning with such practice, we require a GPU with 80 GB(or more) memory. We
utilize an A100 card on Virtual Machines of Microsoft Azure[24] cluster for UR5’s experiments and
an H100 card on a remote HPC cluster for soft robot’s experiments.
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(a) 3rd-person view (b) Wrist view

(c) 3rd-person view after cropping and scaling (d) Wrist view after cropping, scaling, and flipping

Figure 4: Setup and processed image views for soft robot experiments. Top row: original views, with
resolution 640x480; Bottom row: processed views, with resolution 256x256.

By default data augmentation is applied on the input images, which includes augmentation with
random cropping, adjustment on brightness, contrast, saturation, and hue. All the parameters are
applied with default settings in the original work.

For hyper-parameters, we mostly follow the default setting of the model. We include proprio
state(pose) and two image views(3rd-person and wrist) in the input, and train continuous action
head with L1 regression objective with LoRA(rank=32). The model was trained with the following
hyperparameter settings:

• Action Chunk: 8
• Batch size: 8 with one device
• Learning rate: 5× 10−4

• Warm-up steps: No warm-up
• Learning rate decay: After 120,000 steps, the learning rate decayed by a factor of 10.
• Gradient accumulation: Gradients were accumulated for 1 step, effectively applying

updates at every step.
• Maximum training steps: The training process was run for a total of 200,000 steps.
• GPU memory allocated 63 GB
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For task 2 "Put the X in the plate”, we enable the FiLM module to enhance language understanding,
so that the model is capable to handle the task for both orange and milk. Due to this modification and
larger dataset size, we increase the maximum training steps to 240k and adjust the learning rate decay
to happen at step 180k for task 2.

And for task 3, due to a smaller amount of demonstrations included in the dataset, we reduce the
maximum training steps to 150k and adjust the learning rate decay to at step 100k.

When the training loss is stabilised around 0.01, the training is done. For updating 150k steps on a
single A100 card, it takes around 56 hours.

D.2 π0[5] finetuning

Since the backbone of π0 is much smaller than OpenVLA-OFT[19], to make fair comparison, we
use the full finetuning recipe for our experiments. We utilize the same H100 card on a remote HPC
cluster as the experiments of OpenVLA-OFT’s experiments on soft robot.

Once again, we follow the default setting and hyper-parameters of the model. To make the action
chunk size same as previous experiments, we modify the action chunk size to be 8.

• Action Chunk: 8

• Batch size: 32 with one device

• Learning rate: 2.5× 10−5

• Warm-up steps: 1000

• Learning rate decay: Cosine decay from warm-up to maximun training step. The final LR
at the end of decay is 2.5× 10−6

• Gradient accumulation: Gradients were accumulated for 1 step, effectively applying
updates at every step.

• Maximum training steps: The training process was run for a total of 30,000 steps.

• Number of workers: 2

• GPU memory allocated 91 GB (XLA_PYTHON_CLIENT_MEM_FRACTION=0.9 –>
this enables JAX to use up to 90% of the GPU memory)

For both task 1 and 3, we run the same amount of steps. It takes around 11 hours on an H100 to
update 30k steps.

Figure 5: The training losses for task 1 and 3 on soft robot with OpenVLA-OFT and π0

E Inference

Figure 6 and 7 and show visualizations of our UR5 experiments and soft robot experiments on
different tasks.
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E.1 Inference perturbation

Apart from the experiments we show in the paper, we also study about other conditions that may
happen during inference in practice.

E.1.1 With human showing in the scene

For both experiments on UR5 and soft robot, we involve human moving freely in the scene during
inference. It turns out that it has no influence on the model’s performance and the model has its
focus on the workspace. What’s more, human can also be involved in the training set, and this is
verified by both UR5 and soft robot experiments. The movement and appearance of human has
zero influence in the scene as long as the workspace is not covered or interrupted. These results
confirm the strong robustness of VLA models to human presence, ensuring reliable performance in
human-shared environments.

E.1.2 With unseen objects

When there are some objects that are not shown in the training set, the model might be confused by
chance. In our experiments, the model is confused once in 10 trials.

E.1.3 When object is placed outside of workspace

When the tasked object is placed outside of workspace, the model fails all the time, even if the object
is only placed slightly(10cm) away from the region. From this test, we find that the workspace
occurred in the training set is a deterministic factor, which defines the region of where the inference
may succeed.

E.2 Verification of Language Instruction

We evaluate whether the models correctly ground their actions in the provided language instructions.

Task 2 (Pick-and-Place with Choices): In the “Put X in the plate” task, OpenVLA-OFT[19]
achieves a 70% success rate. The inclusion of the FiLM[25] module directs the model’s attention to
the object specified in the instruction, rather than selecting objects arbitrarily, indicating effective
language-conditioned object selection.

Task 3 (Human-Interactive Feeding): In a controlled modification, we place an orange in the
plate instead of marshmallows. The models(OpenVLA-OFT and π0[5]) appropriately refrain from
executing the pick-and-place action, terminating the task mid-execution rather than incorrectly
interacting with the available object. This confirms that the models’ actions are semantically guided
by the instruction rather than by visual salience alone.

These results collectively demonstrate that OpenVLA-OFT and π0 reliably interprets and adheres to
task-specific language instructions, supporting its robustness in language-conditioned manipulation
tasks.

E.3 Robustness of Embuddy against manual movement

As one of the main advantages of soft robot in close human-interactive task is that it’s bendable and
easily stoppable by person. We also study the behavior of Embuddy in the VLA control loop when
a person manually stops it or pushes it away. As shown in Figure 8, when Embuddy is manually
pushed away during OpenVLA-OFT’s inference stage, it can recover its original pose, continue to
follow the correct trajectory and finish the task successfully without influence. In our experiments
with task 3, the whole process of one trial lasts around 2 to 3 minutes. We manually stop or push
away Embuddy twice, each lasts for around 5 seconds. Under such perturbation, we observe no
performance degradation.
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3rd-
person

Wrist

(a) Inference for task 1 "put the orange in the plate" on UR5

3rd-
person

Wrist

(b) Inference for task 2 "put the X in the plate" on UR5(when X is milk)

Figure 6: Visualization of the UR5 performing task 1 and 2 during inference. Each row shows
3rd-person or wrist camera views, and columns show different time steps.

Table 1: Table for inference average off-board frequency(network communication latency included).
Note that within soft robot experiments, the communication latency is the same. But their latency is
higher than the one in UR5 experiments. All the inference uses action chunk of size 8.

Platform Model Device Frequency (Hz)

UR5 OpenVLA-OFT A100(Azure VM) 32.3
Embuddy OpenVLA-OFT H100(Remote cluster) 25.1
Embuddy π0 H100(Remote cluster) 38.0
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(a) Inference for task 1 "put the orange in the plate" on soft robot

3rd-
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Wrist

(b) Inference for task 3 "feed the person with marshmallow" on soft robot

Figure 7: Visualization of Embuddy performing task 1 and 3 during inference. Each row shows
3rd-person or wrist camera views, and columns show different time steps.

3rd-
person

Wrist

Figure 8: Visualization of Embuddy performing task 3 during inference with human interaction. As
shown in the third moment, the robot’s pose is manually changed by human force in the middle of
inference. However, Embuddy is capable to recover it’s pose and trajectory, and still complete the
task successfully.
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