
Under review as a conference paper at ICLR 2022

DEBIASING PRETRAINED TEXT ENCODERS BY PAY-
ING ATTENTION TO PAYING ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies in fair Representation Learning have observed a strong inclination
for Natural Language Processing (NLP) models to exhibit discriminatory stereo-
types across gender, religion, race and many such social constructs. In comparison
to the progress made in reducing bias from static word embeddings, fairness in
sentence-level text encoders received little consideration despite their wider appli-
cability in contemporary NLP tasks. In this paper, we propose a debiasing method
for pre-trained text encoders that both reduces social stereotypes, and inflicts next
to no semantic damage. Unlike previous studies that directly manipulate the em-
beddings, we suggest to dive deeper into the operation of these encoders, and pay
more attention to the way they pay attention to different social groups. We find
that most stereotypes are also encoded in the attention layer. Then, we work on
model debiasing by redistributing the attention scores of a text encoder such that
it forgets any preference to historically advantaged groups, and attends to all so-
cial classes with the same intensity. Our experiments confirm that we successfully
reduce bias with little damage to semantic representation.

1 INTRODUCTION

Natural Language Processing (NLP) is increasingly penetrating real-world operations such as re-
cruitment (Hansen et al., 2015), legal systems (Dale, 2019), healthcare (Velupillai et al., 2018) and
Web Search (Nalisnick et al., 2016). Part of this success is attributed to the underlying embedding
layer which encodes sophisticated semantic representations of language (Camacho-Collados & Pile-
hvar, 2018). The wide adoption of modern NLP models in critical domains has also inflicted a more
thorough scrutiny. Recent research has uncovered some propensities of NLP models to replicate
discriminatory social biases (Bolukbasi et al., 2016; Caliskan et al., 2017; May et al., 2019) which
may cause unintended and undesired model behaviors with respect to social groups. Social bias in
NLP is mainly caused by unbalanced mentions of attributes near advantaged groups in training data
(Zhao et al., 2018a). For example, in most existing text corpora, very few cooks are referred to by
male pronouns (e.g. he, him, himself) (Zhao et al., 2017). Accordingly, text encoders or language
models trained on such data may use this shortcut to inadvertently disassociate cooks from men, and
learn that cooking is a female attribute. Worse, NLP models may even amplify social biases if left
unchecked (Bommasani et al., 2021).

Methods to debias static word embeddings such as Word2vec (Mikolov et al., 2013) or GloVe (Pen-
nington et al., 2014) have been applied for gender, race and religion (Bolukbasi et al., 2016; Zhao
et al., 2018b; Kaneko & Bollegala, 2019; Ravfogel et al., 2020). However, by the time NLP prac-
titioners started casting more attention to the fairness problem of their models, they had already
switched to the more powerful sentence-level transformers in the likes of BERT (Devlin et al.,
2018), GPT3 (Brown et al., 2020) or T5 (Raffel et al., 2020) which owe their success to the novel
self-attention mechanism (Vaswani et al., 2017). This leap in accuracy in several NLP tasks does
not extend to fairness since research discovered social stereotypes in modern text encoders (May
et al., 2019; Nadeem et al., 2020; Nangia et al.). To date, debiasing them remains comparatively
under-explored.

Mitigating biases in text encoders is difficult for four reasons: (1) They are expensive to retrain,
so conventional methods based on Counterfactual Data Augmentation (CDA) to rebalance group-
attribute mentions (Zhao et al., 2018a; Webster et al., 2020) become prohibitive as they generate
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more training data, and all debiasing attempts might be limited to either finetuning or adapting
(Houlsby et al., 2019; Lauscher et al., 2021). (2) Static embeddings encode words whereas text
encoders need context1. Thus, it is not straightforward to use existing debiasing techniques for static
embeddings off-the-shelf as it is not clear how to generate context for single words. Previous work
tackled this problem by either designing bleached sentence templates (May et al., 2019; Kurita et al.,
2019) where they fill in the blanks with words of interest, or sampling sentences from large corpora
where the words are mentioned (Liang et al., 2020a; Cheng et al., 2020), thus creating context. The
former betrays the expressiveness of natural language while the latter suffers from sampling and pre-
processing bias (Liang et al., 2020a). (3) The input space of text encoders is the set of all possible
sentences, so we cannot debias every single input as it is done with static embeddings. (4) Text
encoders are larger in capacity and complexity. This suggests that they can accommodate subtler
and more sophisticated forms of stereotype, especially in their attention component, which renders
bias imperceptible to existing detection methods as they are not designed to operate on attention.

Despite these difficulties, previous works (Liang et al., 2020a; Webster et al., 2020; Liang et al.,
2020b; Cheng et al., 2020; Kaneko & Bollegala, 2021; Lauscher et al., 2021) addressed the problem
of reducing bias from modern text encoders with different techniques. However, most of them make
strong assumptions about the linearity of bias. Moreover, they operate on the embeddings produced
by text encoders, and leave their most important block - attention - largely unrectified.

In this paper we explore attention-based debiasing. This approach stems from our observation that
attention exhibits a great deal of social biases. We empirically show that this is the case, propose
a novel method to reduce stereotypes from attention blocks, and demonstrate that it is effective in
mitigating biases from sentence representations as a whole. Given an input sentence, our method
compels the text encoder of interest to redistribute its internal attention scores such that each word in
the input allocates the same attention for different social groups. Thus, it learns to forget previously
encoded preferences, and generate fair representations, free of stereotypical influence. We also keep
semantic information loss at a minimum while debiasing by distilling knowledge (Hinton et al.,
2015; Gou et al., 2021) from an unaltered teacher text encoder. In this setting, we encourage the
debiased model to copy the original attention from its teacher to minimize semantic offset. Unlike
most previous work which focus only on gender, we address five bias types in our experiments
(gender, race, religion, age and sexual orientation). We conduct likelihood- and inference-based
evaluations to measure the intensity of bias in our final debiased models. Experiments demonstrate
that the technique we propose effectively reduces bias, and outperforms existing debiasing methods.

2 RELATED WORK

In this section, we discuss related work about debiasing static word embeddings and sentence-level
text encoders. Then, we shed some light on work done on the attention mechanism in general. It
should be noted that bias at data level (Pryzant et al., 2020; Cryan et al., 2020) and in language
generation tasks (Sheng et al., 2020; Sap et al., 2020; Dhamala et al., 2021) are also active and
complementary areas of research. However, due to space limitations, they will not be discussed in
this paper.

2.1 BIAS IN STATIC WORD EMBEDDINGS

The work of Bolukbasi et al. (2016) pioneered bias research in NLP by discovering that static word
embeddings such as Word2Vec (Mikolov et al., 2013) or GloVe (Pennington et al., 2014) encode
significant amounts of binary gender bias. They proposed Hard-Debias: a simple method to re-
move biases by projecting gender-neutral word embeddings onto a gender-free direction. Manzini
et al. (2019) extended Hard-Debias to the multiclass setting where they also treat racial and reli-
gious stereotypes. In both works, the bias direction is defined by a manually pre-compiled list of
stereotyped words. In contrast, Ravfogel et al. (2020) suggest a data-driven approach to learn bias
directions with a linear classifier. Debiasing is then conducted by iteratively projecting word em-
beddings on the null space of the classifier’s matrix. On the other hand, finetuning is the debiasing
approach that attracted the widest adoption, either by using an autoencoder (Kaneko & Bollegala,
2019), attraction-repulsion mechanism (Kumar et al., 2020), or adversarial attacks (Xie et al., 2017;

1A word needs to be in a context (sentence or paragraph) in order to be correctly encoded
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Li et al., 2018; Elazar & Goldberg, 2018). Unlike these post-processing methods, Zhao et al. (2018b)
added a new fairness constraint to GloVe loss function, and retrained their fair word embeddings
from scratch.

2.2 BIAS IN TEXT ENCODERS

Research on biases in sentence representations is dominated by detection rather than correction and
mitigation. To date, there are three main approaches to detect stereotypes in text encoders: (1)
representation-based: where vector relationships between different types of inputs are measured.
For example, May et al. (2019) extended the WEAT test (Caliskan et al., 2017) into sentence vector
space (SEAT), and compared the cosine similarity between representations of two sets of targets and
two sets of attributes. All sentences in SEAT follow a predefined template. (2) likelihood-based:
These approaches examine how often text encoders prefer stereotypes over anti-stereotypes. Prefer-
ences in this case are defined in terms of higher likelihoods as produced by language models using
embeddings of the text encoders under study. Two benchmarks are widely used for measuring bias:
StereoSet (Nadeem et al., 2020) and Crows-Pairs (Nangia et al.). Both datasets are organized in
pairs or triples of minimally-distant sentences which differ only in the word(s) carrying a stereotyp-
ical connotation. (3) inference-based: These methods employ text encoders in downstream NLP
tasks (Blodgett et al., 2020) such as natural language inference (Dev et al., 2020), sentiment analysis
(Dı́az et al., 2018) or language generation (Sap et al., 2020; Sheng et al., 2020). Bias in such settings
is declared as the difference in outcome when the models are tested with the same input sentence,
differing only in social groups.

Bias mitigation approaches are mostly inspired by debiasing static embeddings. In projection-based
methods, Liang et al. (2020a) contextualize words into sentences by sampling them from exist-
ing corpora before applying Hard-Debias. Kaneko & Bollegala (2021) minimize the projection of
sentence representations on a learned bias subspace, while Qian et al. (2019); Bordia & Bowman
(2019); Liang et al. (2020b) add bias-reduction objectives to their loss functions. Another line of
research uses CDA (Webster et al., 2020) to balance gender correlations in training data, while
Lauscher et al. (2021) use adapters to reduce the large training time that CDA incurs. Finally, Cheng
et al. (2020) use contrastive learning, and add a fair filter that minimizes mutual information between
stereotypes and anti-stereotypes. In our work, rather than extending approaches from static embed-
dings, we focus on the self-attention mechanism which is characteristic of many text encoders, and
show that fair attention leads to fair representations.

2.3 ATTENTION ANALYSIS IN TEXT ENCODERS

Clark et al. (2019) analyzed BERT’s attention heads and found that some of them correspond re-
markably well to linguistic patterns of coreference and syntax without additional training. Michel
et al. (2019) observe that not all attention heads within a model are made equal. They also propose a
pruning algorithm to reduce the energy footprint of these models by eliminating the least important
heads without much attenuation to the overall performance. Given the convenient interpretabilty of
attention, it has also been used in a myriad of visualization works (Vig, 2019; Hoover et al., 2020;
Tenney et al., 2020; Bastings & Filippova, 2020) in an attempt to dissect and explain the inner func-
tioning of text encoders. Most attention studies in text encoders are designed for analysis purposes.
In contrast, we are the first to leverage the attention mechanism in order to make text encoders fairer
and less stereotyped.

3 DEBIASING METHOD

3.1 MOTIVATING EXAMPLE & INTUITION

Despite the applicability of our work on any model that is built upon self-attention, we focus in this
paper on models based on the encoder side of the transformer architecture, such as BERT (Devlin
et al., 2018), RoBERTa (Liu et al., 2019), or ALBERT (Lan et al., 2019). This owes to the decoder
side being usually used in auto-regression tasks, and less often to encode text. Transformers consist
of multiple layers, each composed of a self-attention block followed by a feed-forward block to make
embeddings. A self-attention block contains multiple heads. Each head transforms the input into
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(a) (b) (c)

Figure 1: Attention patterns in BERT suggest the existence of potential gender and racial biases

attention weights between all pairs of tokens in the input sequence (Vaswani et al., 2017), such that
each token learns to attend to its most related tokens, hence the prevalence of attention in defining
the understanding of natural language. In this work, we assume that undesired social stereotypes
are primarily encoded in the self-attention block. In order to verify this hypothesis, we show and
analyze some attention maps of BERT in Figure 12. Consider the following sentence ”The doctor
asked the nurse a question.” Aiming to analyze how every word representation3 relates to different
social groups, we add a dummy second input consisting of words representing two distinct genders
(he and she after the [SEP] token). Figure 1(a) illustrates that the token doctor pays much more
attention to he than to she4. Figure 1(b) reveals that nurse attends to she. This finding suggests that
gender stereotypes are deeply encoded in attention weights. Likewise, in Figure 1(c), the token math
is more related to asian than to white or black, conforming to the famous racial stereotype casting
asians as really good mathematicians. These examples align with our intuition that social stereotypes
are first and foremost encoded in the self-attention block of text encoders before they propagate to
their embeddings or predictions in downstream NLP tasks. Consequently, we propose Att-D, a
finetuning method for reducing undesired biases of text encoders from their attention component.

The intuition of our debiasing strategy is as follows: Given that attention weights conform with
undesired biases (e.g., doctor attending to he, and nurse to she in Figure 1), we aim to equalize the
attention scores of every word in the input sentence with respect to social groups. Following the
examples of Figure 1, Att-D redistributes the attention scores of doctor such that it attends to he and
she with the same intensity, thus eliminating any preference toward one of the groups. However,
alterations to the attention of doctor on the remaining words of the input sentence must be kept to a
minimum in order not to corrupt the semantic understanding of the original text encoder.

3.2 DEBIASING WORKFLOW

Att-D consists of three steps: First, for each input sentence s in the training corpus S, we make an
artificial second input sg consisting of words related to social groups (similar to the examples on
Figure 1). Pretrained text encoders expect either one or two inputs before they produce attentions
and embeddings. In this work, we use both s (as first input) and sg (as second input) separated by
[SEP] token. Consequently, the resulting self-attention includes both s and sg . The second step of
Att-D equalizes the attention weights of all heads in all the layers of the text encoder of interest
such that each token in s pays the same amount of attention to tokens of sg , thus eliminating pref-
erences and stereotypes. Finally, we minimize semantic loss by compelling our model to learn the
original semantics from an unaltered teacher model by copying its internal attention in a knowledge
distillation setting (Hinton et al., 2015).

We schematize the operation of Att-D in Figure 2. Gr1, Gr2 and Grn in the figure corre-
spond to the tokens of sg . Both matrices represent one attention head of the text encoder be-
fore (left) and after (right) debiasing. The matrices should be read in rows. Each row depicts
the attention weights of the corresponding token on all the other tokens of the input (s + sg)5.

2The figures are produced using bertviz tool: https://github.com/jessevig/bertviz
3According to BERT in this example
4Dark colors correspond to high attention scores, and light colors indicate low attention scores
5[CLS] token (vector representation of s) is also included for attention calibration. Details in Appendix
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(a) (b)

Figure 2: Overview of an attention head before (a)
and after (b) debiasing

The matrices are conceptually split in four
blocks: (1) attentions of s on s, (2) attentions
of s on sg , (3) attentions of sg on s, and (4)
attentions of sg on sg . Debiasing consists in
making the columns of block 2 equal. In other
words, each token in s pays the same amount
of attention to all the groups as indicated in the
right side of Figure 2. Ideally, debiasing should
also preserve the semantics of the original text
encoder. That is why block 1 of Figure 2 should
be kept unchanged. Both blocks 3 and 4 are ir-
relevant to the results, since they denote atten-
tions of our artificially inserted second input sg .
Besides, they do not participate in defining nei-
ther fairness nor representativeness of the text
encoder. So, we do not impose any restrictions on them. In the following, we describe each step of
Att-D in detail.

3.2.1 GENERATING AUGMENTED INPUTS

Table 1: Examples of group tuples per bias
binary gender age
man, woman old, young

he, she elderly, youth

The first step involves identifying bias types that we
want to mitigate from pretrained text encoders, such
as gender, race, religion. This is achieved by defin-
ing a set of tuples G such that G = {T1, T2, ..., Tk}
where each Ti describes social groups of a given bias
type, or their attributes. In the case of binary gender,
Ti = {”male”,”female”} or Ti = {”he”,”she”}
are both possible definitions (and many others are
possible for non-binary cases). Table 1 shows some
tuples that we use in Att-D. Unlike previous work (Liang et al., 2020a; Kaneko & Bollegala, 2021),
we do not aim to learn bias subspaces. Therefore, Att-D charges next to no constraint in the defini-
tion of G, contrary to existing methods which need group definitions to be formulated in a certain
way, and given in enough quantities. On the other hand, providing a single tuple per bias type is
sufficient for Att-D to function, even though more contributes to better precision.

During debiasing, we pick a tuple Ti from G randomly and construct sg , a bleached sentence formed
by words of Ti. For example, given Table 1, sg can be ”man, woman” or ”old, young”. The input
to the text encoder is both the original input sentence s and the artificial one sg . Pretrained text
encoders separate the two halves of the input with a special token [SEP] as illustrated in Figure 1,
and compute attention maps for the entire sequence (s + sg).

3.2.2 EQUALIZING ATTENTIONS ON SOCIAL GROUPS

After obtaining attention maps of the augmented input from Section 3.2.1, which is produced by the
pretrained text encoder of interest E, we make each token of s pay equal amounts of attention to the
tokens of sg which define social groups. The rationale is to eliminate any inclination forE to prefer a
social group to the detriment of others. Suppose Al,h,s,sg = Attn(s, sg; l, h) is the attention matrix
at layer l, head h of the encoder E, computed from the input s + sg . Here, we make the reasonable
assumption that sg contains at least two social groups.6 In this spirit, equalizing attention vectors of
block 2 (as defined in Figure 2) is equivalent to making them equal to a pivot vector. In our method,
we consider the attention vector of s on the first social group as the pivot (first column in block 2 of
Figure 2), and minimize the mean square error between the pivot and the attention vectors of s on
the other groups, one at a time. The equalization loss is given by Equation 1.

Lequ =
∑
s∈S

L∑
l=1

H∑
h=1

||sg||∑
i=2

||Al,h,s,sg
:σ,σ+1 −A

l,h,s,sg
:σ,σ+i ||

2
2 (1)

6Biases are usually about making one or more groups (dis)advantaged with respect to the others, hence the
existence of at least two groups per bias type
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where L is the number of layers of the text encoder, H the number of heads, ||sg|| the number of
social groups in sg and σ is the position of the special token [SEP] that marks the end of s and the
beginning of sg . As can be seen, Al,h,s,sg

:σ,σ+1 is the pivot vector containing attention scores of s on
the first social group token (whose position is directly after [SEP], i.e., σ + 1). Equation 1 forces
attention scores on subsequent social groups to be the same as on the first one, thus making them all
equal.

3.2.3 PRESERVING SEMANTIC INFORMATION

Text encoders must preserve their ability to represent natural language and keep the same perfor-
mance on downstream NLP tasks. For this reason, debiasing must ensure that useful information is
preserved as much as possible. We minimize semantic information loss in a knowledge distillation
setting (Hinton et al., 2015; Gou et al., 2021). We cast the text encoder that we want to debias as
the student model, and recruit another model to play the role of the teacher. We do not apply our
debiasing strategy on the teacher since it provides a reference to the original unaltered language
representations. We distill semantic information in the form of attention maps from the teacher
and instill it in the student. Stated differently, we compel the student to learn from the teacher and
reproduce its attention scores for every input sentence in the training corpus S. In this work, the
student and the teacher models must share the exact same architecture in order to make knowledge
distillation flow correctly from source to target, unlike other works in knowledge distillation (Gou
et al., 2021) wherein the student is much smaller and should be more compact than the teacher for
model compression purposes.

As in Section 3.2.2, let Al,h,s,sg be the attention of the student model at layer l, head h with s and
sg as input. Likewise, let Ol,h,s,sg define the same attention matrix, but for the original teacher
model. We formalize the preservation of semantic information as a regularizer where we minimize
the squared l2 distance between the student’s and the teacher’s attention scores according to the
following:

Ldistil =
∑
s∈S

L∑
l=1

H∑
h=1

||Al,h,s,sg
:σ,:σ −Ol,h,s,sg

:σ,:σ ||22 (2)

where L is the number of layers, H is the number of heads, and σ is the position of the [SEP] token.
As can be seen from Equation 2, the student learns only to replicate block 1 (as in Figure 2) of the
attention matrices. This is because block 1 contains attention scores of the original input sentence
s on itself, thus encoding an important aspect of semantics. We force the student not to reproduce
the attention distribution on social groups (block 2) from the teacher since these are fundamentally
biased, and are left to the care of our debiasing objective. We describe the overall training objective
as a linear combination of the previously defined losses, with λ as a hyperparameter to control the
weight of debiasing over semantic preservation.

Loss = Ldistil + λLequ (3)

3.3 NEGATIVE SAMPLING & LAYER SELECTION

The strict application of Att-D as discussed so far may accidentally lead to some undesired spurious
phenomena. While learning to equalize attention on social groups that constitute the second half
of the input, the text encoder might potentially bear the risk of distributing its attention uniformly
on any second half of the input, no matter what it is. This is particularly alarming when the text
encoder is subsequently employed in double-sentence tasks (Wang et al., 2018) such as semantic
textual similarity, paraphrase detection or sentence entailment.

To overcome the above obstacle, we introduce negative sampling. Instead of using words related to
social groups in order to generate the artificial second input sg , we randomly sample words (negative
examples) from the vocabulary. In this case, we do not equalize the attentions but compel the student
to copy its teacher even for blocks 2, 3 and 4. We do this in order to prevent the text encoder from
learning to assign the same attention weight to all tokens of the second input when these do not
define social groups. We control the ratio of negative examples with a hyperparameter η.
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Another concern when debiasing text encoders is that their layers do not necessarily encode the same
information. Bhardwaj et al. (2021) found that BERT layers display widely different reactions when
probed with a gender-detection classifier. This means that they do not encode gender stereotype
identically. Therefore, it is not clear which layers and/or attention heads are best for debiasing. To
investigate this issue, we consider seven settings: debiasing all layers, first 6, first 3, last 6, last 3,
and alternating layers with strides of one7 or two8. We find that working with all layers yields the
best results. So, unless otherwise specified in this paper, debiasing concerns all the layers.

4 EVALUATION

In this section, we first describe our experimental setup, then evaluate Att-D from two viewpoints:
fairness and representativeness. Unlike previous work in debiasing text encoders (Liang et al.,
2020a; Cheng et al., 2020; Kaneko & Bollegala, 2021), we do not conduct representation-based
evaluations - SEAT (May et al., 2019) and WEAT (Caliskan et al., 2017) - in this paper to measure
bias since their effectiveness for such a purpose has been questioned (Silva et al., 2021). On the other
hand, we evaluate fairness with both likelihood- and inference-based methods. Other quantitative
and qualitative evaluations can be found in the appendix9.

4.1 DEBIASING SETUP

In the experimental evaluation we focus on five different bias types which are commonly addressed
by the bias literature and debiasing approaches. To facilitate comparison, we also follow existing
literature in defining the social groups for each type of bias, although the approach presented here
is not restricted to that, and can be leveraged for both other kinds of biases and for a more inclusive
definition of the groups. In the experiments we show results of debiasing based on (binary) gender
(male, female), race (white, black, asian, hispanic), religion (muslim, christian, jewish, buddhist),
age (young, old) and sexual orientation (heterosexual, non-heterosexual). We leverage the defini-
tion words from previous work (Liang et al., 2020a) and augment them with our own tuples. The
full list can be found in the appendix. We apply our debiasing method on BERT10 (Devlin et al.,
2018), and use the News-commentary-v15 corpus11 as training data. It contains 223,153 sentences
of which we use 80% for training and 20% for development.

4.2 EVALUATIONS OF FAIRNESS

4.2.1 LIKELIHOOD-BASED EVALUATION

We use the publicly available subsets of two stereotype benchmarks: StereoSet (Nadeem et al., 2020)
and Crows-Pairs (Nangia et al.). Both provide likelihood-based diagnostics to measure how often
stereotypes are considered more likely than anti-stereotypes by the text encoder of interest12. Crows-
Pairs is organized in pairs of minimally distant sentences, i.e. sentences that differ only in one word,
usually the one describing a social group. We pick the following example from the dataset: Jews are
such greedy people (Stereotype) versus Christians are such greedy people (Anti-stereotype). Crows-
Pairs uses word likelihoods produced by the text encoder to measure how often stereotypes are
ranked higher than anti-stereotypes. An ideal unbiased text encoder should score 50% in the Crows-
Pairs challenge, meaning that it prefers neither stereotypes nor anti-stereotypes. 100% and 0% are
both undesired extreme outcomes. In contrast, StereoSet adds a third absurd sentence to capture
the language modeling capabilities of the text encoder in addition to measuring bias. The triple of
sentences in StereoSet are also minimally distant but differ in the attribute word, not in the group. For
example, in Girls tend to be more [MASK] than boys, StereoSet generates the evaluation sentences
by replacing the mask with the following attributes: soft to denote stereotype, determined for anti-
stereotyping, and fish to make an unrelated sentence. As in Crows-Pairs, StereoSet quantifies how

7Layers 2, 4, 6, 8, 10 and 12 of BERT
8Layers 4, 8 and 12 of BERT
9We provide code and data as supplementary material to this submission

10In the appendix, we also apply Att-D on ALBERT, RoBERTa, DistilBERT and SqueezeBERT
11http://www.statmt.org/wmt20/translation-task.html
12The text encoder must first be fine-tuned on a language modeling objective
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Table 2: Language modeling (lm) and Stereotype scores (ss) of different text encoders on StereoSet
Models Original BERT Sent-D Kaneko Att-D- Att-D

Overall (lm/ss) 83.70 56.04 81.39 54.71 85.58 56.04 80.92 53.37 83.34 53.04
gender (lm/ss) 82.35 62.75 76.67 53.33 83.73 58.82 73.33 51.37 78.24 53.73

race (lm/ss) 86.28 54.68 85.40 55.09 87.47 56.24 85.03 54.37 86.28 51.87
religion (lm/ss) 87.82 56.41 88.46 51.28 85.90 57.69 85.90 55.13 88.46 53.85

profession (lm/ss) 80.66 55.50 77.44 55.01 83.87 54.76 77.94 52.66 80.96 54.14

much the model prefers stereotypes over anti-stereotypes. Moreover, it also measures how often
meaningful sentences rank higher than unrelated sentences in order to assess the quality of the text
encoder in terms of representativeness. An ideal model should have a stereotype score (ss) of 50%
and a language modeling (lm) of 100%.

We compare our method against the original BERT base model to see the effect of debiasing13. Also,
for fair comparisons against previous work, we decided to include the baselines whose final debiased
models have been published in order to avoid errors of training and/or tuning hyperparameters. Thus,
we compare Att-D against Sent-D (Liang et al., 2020a) and the debiasing procedure proposed by
Kaneko & Bollegala (2021). Sent-D currently holds state-of-the-art performance in debiasing. We
also conduct a simple ablation study by training without negative examples (Att-D-). We finetune
Att-D and the baselines on language modeling to be able to conduct likelihood-based experiments.
Tables 2 and 3 report the evaluation results on StereoSet and Crows-Pairs respectively.

Table 3: Bias measurements of different text en-
coders on Crows-Pairs

Models BERT Sent-D Kaneko Att-D- Att-D
Overall 60.48 56.90 57.82 57.23 55.7
gender 58.02 51.53 57.63 53.05 57.36

race 58.14 55.23 53.68 53.68 51.15
religion 71.43 60.0 64.76 69.52 64.76

age 55.17 51.72 54.02 54.02 43.68
sexual orientation 67.86 70.24 69.05 66.67 58.33

nationality 62.89 56.6 59.12 61.01 57.86
disability 61.67 65.0 68.33 63.33 60.0

We see that the original BERT contains signif-
icant levels of biases (56.04 in StereoSet and
60.48 in Crows-Pairs). It is important to note
that Kaneko & Bollegala (2021) only focused
on gender bias, which is clear in Table 2 where
only gender stereotype has been reduced. We
observe that focusing on one bias type can
make text representations even more biased for
the other dimensions as can be seen in Kaneko
for race and religion (Table 2), and for sexual
orientation and disability (Table 3). In contrast,
Att-D always reduces the intensity of stereotyp-
ing in BERT (up to 9.53%), and yields the best
results overall14. We also notice that we manage to reduce biases linked to dimensions we did not in-
clude in our design such as profession, nationality and disability. We speculate that these bias types
are connected to those we worked on mitigating. Therefore, we conjecture that reducing multiple
biases at the same time meets better success in mitigating unforeseen stereotypes than working on
every bias type separately.

4.2.2 INFERENCE-BASED EVALUATION

This approach of measuring bias builds on the intuition of Dev et al. (2020) stating that biased
representations lead to invalid inferences, whose ratio quantifies bias. They construct a challenge
benchmark for the natural language inference task where every hypothesis should be neutral to its
premise. For example, suppose that the premise is The driver owns a van and the hypothesis is The
man owns a van. The hypothesis neither entails nor contradicts the premise. If the predictions of a
classifier deviate from neutrality, the underlying text encoder is doomed as biased. All the data points
in Dev et al. (2020) follow the same structure of the example above, and span across gender, religion
and race. Suppose that the set contains M instances, and let the predictor’s probabilities of the ith
instance for entail, contradict and neutral be ei, ci and ni. Following Dev et al. (2020), we report
three measures of inference-based bias: (1) Net Neutral (NN): NN = 1

M

∑M
i=1 ni; (2) Fraction

Neutral (FN): FN = 1
M

∑M
i=1 1ni=max(ei,ci,ni); (3) Threshold τ (T:τ ): T : τ = 1

M

∑M
i=1 1ni>τ .

13Results of BERT large, ALBERT, RoBERTa, DistilBERT and SqueezeBERT are in the appendix
14The closer the stereotype score is to 50%, the better
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Table 5: Performance of different models on GLUE tasks. The table shows accuracy scores for sst2,
rte, wnli, and mnli for both matched and mismatched instances; f1 for mrpc; spearman correlation
for stsb; and matthews correlation for cola

Models Single sentence tasks Double sentence tasks
sst2 cola stsb mrpc mnli (m) mnli (mm) rte wnli

BERT 92.78 - 56.05 - 88.97 - 92.25 - 83.54 - 82.68 - 70.04 - 45.07 -

Sent-D 91.63 -1.15 59.08 +3.03 89.58 +0.61 90.12 -2.13 84.97 +1.43 83.51 +0.83 68.95 -1.09 28.17 -16.9
Kaneko 91.97 -0.81 56.50 +0.55 88.44 -0.53 90.69 -1.56 84.48 +0.94 83.66 +0.98 59.93 -10.11 52.11 +7.04
Att-D 92.66 -0.12 55.22 -0.83 89.62 +0.65 91.22 -1.03 84.63 +1.09 84.19 +1.51 70.40 +0.36 53.52 +8.45

Table 4: Inference-based bias measurements.
Best scores are highlighted with bold char-
acter, underlined, or marked with † for gen-
der, race and religion† respectively

Model Bias type NN FN τ :0.5 τ :0.7

BERT
gender 00.59 00.16 00.15 00.12

race 75.96 76.57 76.51 74.91
religion 43.47 43.55 43.45 41.77

Sent-D
gender 00.94 00.38 00.33 00.24

race 59.61 59.28 59.20 56.22
religion 29.64 29.08 29.02 27.24

Kaneko
gender 00.57 00.14 00.12 00.08

race 84.24 84.84 84.80 83.26
religion 69.27† 69.80† 69.72† 67.66†

Att-D
gender 01.31 00.43 00.35 00.21

race 93.31 93.94 93.90 93.04
religion 68.51 69.08 68.95 66.97

In this experiment, we finetune text encoders of in-
terest with the MNLI dataset for natural language
inference (Wang et al., 2018). An ideal bias-free
model should score 1 in all three measures. We re-
port our findings in Table 4 after transforming them
into percentages. Our method outperforms the orig-
inal model and the baselines. This result shows that
Att-D not only reduces bias at surface-level as re-
flected by likelihood-inspired evaluation methods,
but also mitigates stereotypes in real world inference
settings, unlike Sent-D which produces positive re-
sults with Crows-Pairs but comes short of meeting
the same success in this experiment. In the next
section, we show that these findings are meaningful
since the entailment accuracy is not hurt after debi-
asing.

4.3 EVALUATIONS OF REPRESENTATIVENESS

We use GLUE benchmark (Wang et al., 2018) to verify whether the debiased text encoder still holds
enough semantic information to be applicable in downstream NLP tasks. In essence, GLUE assesses
the natural language understanding capabilities of NLP models. So, it constitutes a suitable stack to
evaluate the semantic preservation of Att-D. In this experiment, we finetune BERT on seven different
tasks from GLUE and show the results in Table 5. We also report the difference in accuracy between
original BERT and each of the debiasing baselines. Surprisingly, Att-D not only preserves semantic
information, but enhances it in most GLUE tasks as reflected in an increase in accuracy from BERT.

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed a finetuning approach to debiasing that trains the text encoder to distribute
its attention equally on different social groups. Experiments demonstrate that bias is successfully
reduced without harm to semantic representativeness. However, we are aware of the following limi-
tations: (1) our definitions of biases are simplified. There are more social divisions in the real world
than the five dimensions we studied. Besides, bias types can be correlated in intricate ways such
as the links between race, nationality and ethnicity. Moreover, it is not clear which or how many
groups to include. For these reasons, we follow previous work and constrain our study to simple
definitions targeting the most widely spread groups. We plan to study the effect that the choice of
definition tuples and their order impose overall. (2) We equalize the attention scores of every word
in the input. However, some words are inherently charged with a strong inclination toward one
group, e.g., beard to male or pregnant to female. Such words need not be debiased, which requires
compiling expensive lists of related words for every social group and protecting them from attention
equalization. In this work, we rely on knowledge distillation to retain as much useful semantic in-
formation as possible. (3) Current bias detection experiments have positive predictive ability, which
means that they can only detect the presence of bias, not the absence of it. Although contemporary
evaluation tools demonstrate that our method successfully reduced social biases from sentence rep-
resentations, it is possible that bias is still lurking in shapes and forms that our experimental lenses
failed to detect. We plan to address these limitations in future work.
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A APPENDIX

A.1 TRAINING HYPERPARAMETERS

We used Adam optimizer (Kingma & Ba, 2014) with a learning rate of 5e−6 for 3 epochs. We keep
the betas to their default values (0.9, 0.999) as in PyTorch implementation (Paszke et al., 2017). We
set the loss coefficient λ to 2.0 and the negative ratio η to 0.8 meaning that in 80% of the iterations,
we use negative examples whose number we set to 5 in each negative iteration. We only finetuned
the values of λ, η, the learning rate, and the number of epochs. We conducted the hyperparameter
search manually on the development set.

As for GLUE experiments, we follow the experimental setup of Devlin et al. (2018) and train each
task for 3 epochs with a learning rate of 2e−5 on their respective training data.

A.2 SOCIAL GROUPS USED IN THE EXPERIMENTS

While the approach is independent of the definition of social groups and categories (it could work for
any kind of grouping, e.g., cuisine styles or sports), in the experiment we focus on groups commonly
used in the debiasing literature: binary gender, religion, race, age and sexual orientation. This is to
facilitate comparison, but nothing in the approach prevent it from being used with broader and more
inclusive groups. This being said, we have not experimented yet with debiasing where a dimension
is divided in dozens of categories.

We list the definition tuples that we used in Table 6. We show that Att-D does not incur strict rules
for defining social groups, unlike previous work (Bolukbasi et al., 2016; Kaneko & Bollegala, 2019;
2021) that require the definition words to be organized in a predefined format (pairs of words or bag
of words for every group), and provided in relatively large quantities. We can see from Table 6 that
it is sufficient to define one tuple per bias type (e.g., race) if the tuples are hard to come by. Also, the
tuples need not be of the same size (e.g., in religion there is a missing word for buddhist group since
it is not clear which word to use in that tuple). This desired property owes to the fact that Att-D does
not learn subspaces or directions for every bias type as previous works do (Bolukbasi et al., 2016;
Kaneko & Bollegala, 2019; Kumar et al., 2020; Kaneko & Bollegala, 2021). In contrast, Att-D
uses the tuples in order to equalize the attentions of the input sentence, and make the words therein
attend to the groups with the same intensity. These example categories used in experiments are
neither complete nor exhaustive, and in some experiments also include terms possibly considered
inappropriate but that appear in the corpus and we may still want to debias from (such as using
”straight” to define heterosexual).

A.3 CHOICE OF LAYERS

Transformer-based text encoders consist of many layers. It is not clear which layers to choose for
debiasing since bias information is spread out across all of them. In this experiment, we try different
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Table 6: Full list of definition tuples for bias types and social groups used in this work
gender religion

male female muslim christian jewish buddhist

man woman muslim christian jewish buddhist
boy girl muslims christians jews buddhists

father mother islam christianity judaism buddhism
brother sister mosque church synagogue temple

grandfather grandmother quran bible torah
son daughter imam priest rabbi monk

gentleman lady mohammad jesus moses buddha
he she
his her

himself herself

race age sexual orientation

white black asian hispanic old young heterosexual non-
heterosexual

white black asian hispanic old young straight gay
elderly youth straight lesbian
adult child heterosexual homosexual
senior junior heterosexual bisexual
adult teenager

Table 7: Language modeling (lm) and Stereotype scores (ss) of different layer combinations on
StereoSet. Underlined depicts the best language modeling score, while bold shows the best stereo-
type score

Models first 3 first 6 last 3 last 6 1-stride 2-stride all
Overall (lm/ss) 83.17 54.28 78.80 54.04 82.51 54.13 81.92 54.33 82.70 54.42 82.68 54.04 83.34 53.04
gender (lm/ss) 78.04 55.29 71.96 55.69 78.43 56.08 77.65 55.69 76.47 55.29 78.43 54.51 78.24 53.73

race (lm/ss) 87.11 54.05 83.16 54.16 85.71 54.05 85.40 54.57 85.76 54.26 86.38 52.91 86.28 51.87
religion (lm/ss) 87.82 51.28 87.82 57.69 85.90 52.56 88.46 57.69 88.46 53.85 86.54 60.26 88.46 53.85

profession (lm/ss) 79.67 54.51 74.91 53.03 79.67 53.77 78.49 53.28 80.47 54.39 79.23 54.64 80.96 54.14

debiasing settings in which we select different layer combinations of BERT to work on: all layers,
first 6, first 3, last 6, last 3, and alternating layers with strides of 1 (layers 2, 4, 6, 8, 10 and 12)
or 2 (layers 4, 8 and 12). We apply the debiasing method proposed in this paper, and report both
language modeling and stereotype scores of StereoSet benchmark in Table 7.

The results show that it is safest to equalize attention heads of all layers of the text encoder under
study, since it produces the best scores both in terms of language modeling and stereotype. Our
findings go in tandem with those of Liang et al. (2020b); Kaneko & Bollegala (2021); Bhardwaj
et al. (2021) who found that reducing bias from all layers usually is the best option.

A.4 EFFECT OF NEGATIVE EXAMPLES ON REPRESENTATIVENESS

We remind that the introduction of negative examples to training serves in forcing the text encoder
not to rely on a dangerous shortcut which is distributing its attention uniformly on all the tokens
constituting the second half of the input, no matter what the input is. This is particularly important
in double-sentence tasks where the text encoder is given two input sentences. In addition to Tables 2
and 3 which highlighted the effect of negative sampling on the final stereotype scores, the primary
goal of using negative examples remains the preservation of the text encoder’s representativeness.
In Table 8, we report the performance of Att-D and Att-D- with and without negative examples
respectively on GLUE tasks. Unsurprisingly, the lack of negative examples does not damage the
performance of single-sentence tasks since these ignore the second half of the input altogether.
However, in double-sentence tasks where both halves are used for prediction, Table 8 shows that
negative sampling plays a pivotal role in preserving the semantics of text encoders, and bypassing
the side effects inflicted by attention equalization.
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Table 8: Effect of negative examples on GLUE tasks. The table shows accuracy scores for sst2, rte,
wnli, and mnli for both matched and mismatched instances; f1 for mrpc; spearman correlation for
stsb; and matthews correlation for cola

Models
Single sentence tasks Double sentence tasks
sst2 cola stsb mrpc mnli (m/mm) rte wnli

BERT 92.78 56.05 88.97 92.25 83.54 / 82.68 70.04 45.07
Att-D 92.66 55.22 89.62 91.22 84.63 / 84.19 70.40 53.52
Att-D- 92.32 56.25 89.12 80.44 84.59 / 83.96 58.12 39.44

A.5 VISUALIZING DEBIASING RESULTS

In this experiment, we aim to visualize the effects of debiasing on attention weights. We only
focus on binary gender bias for two reasons: First, it is easier to visualize binary variables on
a 2D plane than multiclass variables (such as race, religion...). Second, gender is the most well
studied bias type (Bolukbasi et al., 2016; Caliskan et al., 2017; May et al., 2019), so linguistic
resources and vocabularies for gender exist and are well documented. We use the vocabulary words
compiled by Kaneko & Bollegala (2019) and categorized into three non-overlapping subsets: (1)
Male-definition ΩM whose corresponding words are exclusively male-gendered such as father,
king or uncle. (2) Female-definition ΩF which is a set of inherently female words (mother, queen,
aunt...). (3) Gender-stereotype ΩS which is constituted of words that are not gendered by definition,
but that carry a strong gender stereotype such as doctor being attributed to male or nurse to female.

For every word w ∈ ΩM ∪ΩF ∪ΩS , we extract sentences from the News-commentary-v15 corpus
where w is mentioned. We denote this set as Sw. Then, for every sentence s ∈ Sw, we append the
dummy input ”man, woman” as explained in Sections ?? and 3.2.1. The augmented input s′ is then
fed to the text encoder of interest (BERT base in this experiment), and we collect the attention scores
ofw on the second-half tokens man and woman. Finally, for every wordw ∈ ΩM∪ΩF∪ΩS , we take
the mean of its attention scores in Sw. By the end of this procedure, we have for every word w its
attention score on the words man (awm) and woman (awf ) as computed on the News-commentary-v15
corpus which includes overall 223,153 sentences. We take the difference awm − awf which indicates
the preference of the text encoder to consider w as male (positive difference) or female (negative
difference). The absence of gender bias is reflected in difference scores near zero.

We plot the results in Figure 3 where the x-axis represents the differences awm − awf , and the y-axis
random values to separate the words vertically. Stereotype words (green dots) should have values
near 0, which is not the case in Figure 3(b). This means that BERT has a strong preference for one
of the genders, and is thus heavily biased. In contrast, our method brings the attention of stereotype
words near 0, meaning that they prefer neither male nor female connotations. Moreover, the spread
of stereotype words in Figure 3(d) is narrower than male- or female-oriented words, which is desired
since these are inherently gendered and must pick a side. This result strengthens the claim that Att-
D preserves semantic information, and is less severe in reducing bias from gendered words as it
is on gender-neutral words. The difference in spread is less apparent in the original BERT model.
We also note that debiasing the embeddings of BERT rather than the attention mechanism as in
Kaneko & Bollegala (2021) (Figure 3(c)) is not enough since bias information is still lurking (and
perhaps made worse for some words) in the attention component. Thus, we conclude that working
on attention directly constitutes our best option for debiasing to date.

A.6 EFFECT OF ATTENTION-BASED DEBIASING ON OTHER TRANSFORMER-BASED TEXT
ENCODERS

We evaluate five widely used sentence-level text encoders: BERT (Devlin et al., 2018), ALBERT
(Lan et al., 2019), RoBERTa (Liu et al., 2019), DistilBERT (SANH et al.) and SqueezeBERT (Ian-
dola et al., 2020). For each model, we evaluate both its base and large variants (except for DistlBERT
and SqueezeBERT since these are not available in HuggingFace’s transformers library15), original
and debiased; which gives a total of sixteen evaluated models. We use Crows-Pairs dataset (Nan-

15https://huggingface.co/transformers/index.html
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(a) (b)

(c) (d)

Figure 3: Scatter plots of attention scores on male - female direction. (a) Original BERT, (b) BERT
debiased by Sent-D (c) BERT debiased by Kaneko & Bollegala (2021), (d) BERT debiased by Att-D
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Table 9: Bias reduction in BERT base and large measured on Crows-Pairs dataset. Each cell is
organized as follows: o→ d +/-diff where o is the stereotype score of the original model, d is that of
the debiased model using attention-based debiasing, and diff is the difference in stereotype score.
Negative values correspond to reduction in bias (desired) where positive values mean addition of
bias (undesired).

Models BERT base BERT large
Overall 60.48→ 55.70 -04.78 59.68→ 56.96 -02.72

race 58.14→ 51.15 -06.99 60.08→ 53.49 -06.59
gender 58.02→ 57.36 -00.66 55.34→ 53.05 -02.29

socioeconomic 59.88→ 51.16 -08.72 56.40→ 57.56 +01.16
nationality 62.89→ 57.86 -05.03 52.20→ 57.23 +05.03

religion 71.43→ 64.76 -06.67 68.57→ 66.67 -01.90
age 55.17→ 43.68 +01.15 55.17→ 54.02 -01.15

sexual orientation 67.86→ 58.33 -09.53 65.48→ 67.86 +02.41
physical appearance 63.49→ 61.90 -01.89 69.84→ 65.08 -04.76

disability 61.67→ 60.00 -01.67 76.67→ 65.00 -11.67

gia et al.) to quantify the intensity of undesired stereotypes encoded therein. As a reminder, ideal
stereotype scores according to Crows-Pairs benchmark should be close to 50, i.e. models preferring
neither stereotypes nor anti-stereotypes. Tables 9, 10, 11 and 12 show the bias results for BERT,
ALBERT, RoBERTa and DistillBERT/SqueezeBERT respectively.

All five models exhibit substantial levels of bias, and in each of the bias types with differing in-
tensities (religion, sexual orientation and disability being the bias categories with the most severe
stereotyping). Also, we find that the large variants are more biased than their base counterparts
mainly because large models, with their larger capacity and greater number of parameters, can cap-
ture more intricate and more sophisticated aspects of training data, exposing them to learn more bias.
This finding corresponds well to results of previous work (Nangia et al.; Nadeem et al., 2020). The
tables also show that Att-D is effective in mitigating bias from BERT, ALBERT, RoBERTa, Distil-
BERT and SqueezeBERT, and produces a reduction of up to 25%. We note that Att-D succeeds in
debiasing all models, with varying effectiveness across bias types. We also note that Att-D meets the
best success with ALBERT as reductions are greater on this particular text encoder. We believe this
is because ALBERT is composed of a single transformer layer (Lan et al., 2019) with substantially
less parameters than BERT or RoBERTa; which makes debiasing easier since there is no interference
between different attention layers. Finally, we see from the tables that Att-D sometimes contributes
to adding a bit of bias. We observe that this phenomenon is rare, and happens especially with bias
types we did not include in our design16. We assume that not explicitly compelling the text encoder
to equalize attention heads corresponding to these overlooked bias types gave it green light to adjust
these attentions in a way to facilitate solving the optimization problem; even if it entails adding bias.
We plan to include all bias types present in Crows-Pairs dataset to our debiasing design as a future
work.

A.7 APPLICATION-ORIENTED BIAS EVALUATION

Recent studies show that intrinsic metrics of bias do not necessarily correlate with bias measures on
concrete real-world applications (Goldfarb-Tarrant et al., 2020). In the body of this paper, we already
conducted intrinsic and extrinsic bias evaluations. In this experiment, we validate the efficacy of our
debiasing method on a concrete real-world hate speech detection application where an input snippet
of text is classified as either offensive (toxic, harmful, disrespectful...) or not. We use hate speech
detection because it is well studied in the literature (Burnap & Williams, 2016; Ribeiro et al., 2018;
Zhang et al., 2018), and high-quality datasets which are tagged with social groups already exist
(Borkan et al., 2019; Mathew et al., 2021).

16In the current version of this work, we remind that we only consider five bias types: gender, race, religion,
age and sexual orientation

18



Under review as a conference paper at ICLR 2022

Table 10: Bias reduction in ALBERT base and large measured on Crows-Pairs dataset. Each cell is
organized as follows: o→ d +/-diff where o is the stereotype score of the original model, d is that of
the debiased model using attention-based debiasing, and diff is the difference in stereotype score.
Negative values correspond to reduction in bias (desired) where positive values mean addition of
bias (undesired).

Models ALBERT base ALBERT large
Overall 56.76→ 51.99 -04.77 60.48→ 53.58 -06.90

race 51.36→ 48.84 -00.20 59.11→ 50.97 -08.14
gender 54.20→ 53.44 -00.76 56.11→ 48.47 -04.58

socioeconomic 60.47→ 61.05 +00.58 54.07→ 50.00 -01.16
nationality 51.57→ 57.86 +06.29 62.26→ 60.38 -04.07

religion 59.05→ 60.00 +00.95 76.19→ 61.90 -14.29
age 65.52→ 42.53 -08.05 54.02→ 54.02 -00.00

sexual orientation 75.00→ 38.10 -13.10 71.43→ 63.10 -08.33
physical appearance 46.03→ 41.27 +04.76 58.73→ 57.14 -01.59

disability 86.67→ 61.67 -25.00 73.33→ 58.33 -15.00

Table 11: Bias reduction in RoBERTa base and large measured on Crows-Pairs dataset. Each cell is
organized as follows: o→ d +/-diff where o is the stereotype score of the original model, d is that of
the debiased model using attention-based debiasing, and diff is the difference in stereotype score.
Negative values correspond to reduction in bias (desired) where positive values mean addition of
bias (undesired).

Models RoBERTa base RoBERTa large
Overall 53.98→ 51.39 -02.59 61.27→ 56.83 -04.44

race 47.09→ 50.39 -02.52 61.43→ 53.49 -07.94
gender 54.96→ 45.80 -00.76 51.91→ 51.91 -00.00

socioeconomic 56.40→ 55.81 -00.59 66.28→ 59.88 -06.40
nationality 45.28→ 43.40 +01.88 56.60→ 55.35 -01.25

religion 56.19→ 60.00 +03.81 59.05→ 62.86 +03.81
age 64.37→ 56.32 -08.05 71.26→ 62.07 -09.19

sexual orientation 69.05→ 48.81 -17.86 71.43→ 59.52 -11.91
physical appearance 66.67→ 60.32 -06.35 68.25→ 66.67 -01.58

disability 71.67→ 65.00 -06.67 66.67→ 70.00 +03.33

Table 12: Bias reduction in DistilBERT and SqueezeBERT measured on Crows-Pairs dataset. Each
cell is organized as follows: o→ d +/-diff where o is the stereotype score of the original model, d is
that of the debiased model using attention-based debiasing, and diff is the difference in stereotype
score. Negative values correspond to reduction in bias (desired) where positive values mean addition
of bias (undesired).

Models DistilBERT SqueezeBERT
Overall 56.83→ 51.26 -05.57 57.43→ 54.71 -02.72

race 53.29→ 47.87 -01.16 55.04→ 56.01 +00.97
gender 54.58→ 46.56 -01.14 52.67→ 48.47 -01.14

socioeconomic 55.81→ 58.14 +02.33 57.56→ 51.16 -06.40
nationality 54.09→ 50.94 -03.15 53.46→ 61.01 +07.55

religion 70.48→ 57.14 -13.34 74.29→ 60.95 -13.34
age 59.77→ 48.28 -08.05 55.17→ 48.28 -03.45

sexual orientation 70.24→ 55.95 -14.29 70.24→ 57.14 -13.10
physical appearance 55.56→ 63.49 +07.93 52.38→ 52.38 -00.00

disability 61.67→ 56.67 -05.00 70.00→ 61.67 -08.33
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Admittedly, common social biases have also been shown to exist in hate speech detection models,
for example in associating toxicity to frequently attacked groups (such as ”muslim” or ”gay”) even
if the text itself is not toxic (Dixon et al., 2018; Park et al., 2018). In this experiment, we adopt
the bias definition of Borkan et al. (2019) which casts bias as a skewing in the hate speech detector
scores based solely on the social groups mentioned in the text. In other words, we consider a model
to exhibit unintended social stereotypes if the model’s performance varies across groups. We use
the bias measures proposed by Borkan et al. (2019) which are based on the Area Under the Receiver
Operating Characteristic Curve (ROC-AUC, or AUC) metric. AUC measures the probability that a
randomly chosen negative example (not offensive) receives a lower toxicity score than a randomly
chosen positive example (offensive), meaning that a perfect model should always have an AUC score
of 1.0. Stated differently, all negative examples have lower toxicity scores than positive examples.
While AUC is used to measured the general performance of classifiers, Borkan et al. (2019) propose
three extensions of AUC to measure bias. We summarize them in the following:

Subgroup (Sub) AUC: where AUC is computed only on the group under consideration and not on
all the examples of the test benchmark, i.e. only positive and negative examples of the target group
are considered. This metric represents the model’s performance on a given group. A higher value
means that the model is good at distinguishing between toxic and non-toxic texts specific to the
group.

Background Positive Subgroup Negative (BPSN) AUC: where AUC is calculated on the negative
examples of the target group, and the positive examples of the background (all other groups except
the group under consideration). This metric computes whether the model discriminates against the
target group with respect to the others. This value is reduced when non-toxic examples of the group
have higher toxicity scores than actually toxic examples of the background.

Background Negative Subgroup Positive (BNSP) AUC: where AUC is calculated on the positive
examples of the target group, and the negative examples of the background. This metric computes
whether the model favors the target group with respect to the others. This value is reduced when
toxic examples of the group have lower toxicity scores than non-toxic examples of the background.

In this experiment, we finetune the text encoder under study on hate speech detection task using the
training set of HateXplain dataset (Mathew et al., 2021). We also use the test portion of HateXplain
for the evaluation, which contains posts from Twitter17 and Gab18 annotated with their ground-truth
toxicity scores and the social groups and communities they target. Fundamentally, the three metrics
described above give bias scores per group. In order to combine the per group scores in one overall
measure, we apply the Generalized Mean of Bias (GMB) introduced by the Google Conversation
AI Team as part of their Kaggle competition19, and later used by Mathew et al. (2021) in their own
evaluations. The formula of GMB is as the following:

GMB(b) = (
1

|b|

|b|∑
g=1

bpg)
1/p (4)

where b is an array of AUC scores per group, and bg is the AUC score of group g. We follow
Mathew et al. (2021) and set p to -5. We compute the GMB of all three metrics: Subgroup, BPSN
and BNSP. As for Subgroup, we also add the standard deviation as it gives valuable information
about how much the performance of the hate speech detection model varies across groups. We
report our results in Table 13, in addition to classic performance measures.

We observe that Att-D provides competitive results across the four bias metrics, and largely outper-
forms the baselines. Especially with GMB-BNSP, where bias scores of the original model are very
low (i.e. it is throttled by social biases), we observe the best improvements overall, and by a large
margin compared to existing debiasing methods. Also, the variance in model performance is lowest
with Att-D, which confirms that the corresponding hate speech detection model has less stereotypes
about different social groups. Finally, the general performance (Accuracy, F1 score and AUC) of
the hate speech detection model after debiasing is not hurt.

17https://twitter.com
18https://gab.com
19https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/overview/evaluation
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Table 13: AUC-based bias measures on hate speech detection task

Models
Performance Bias

Acc↑ F1↑ AUC↑ STD-Sub↓ GMB-Sub↑ GMB-BPSN↑ GMB-BNSP↑
BERT 0.783 0.823 0.870 0.119 0.698 0.800 0.379

Sent-D 0.791 0.825 0.870 0.121 0.689 0.725 0.583
Kaneko 0.797 0.833 0.872 0.112 0.705 0.789 0.512
Att-D 0.789 0.829 0.866 0.085 0.808 0.793 0.726

A.8 WORD-LEVEL VS SENTENCE-LEVEL DEBIASING

As previously explained in the paper, Att-D calibrates the attention weighs of all tokens of the
input sentence on group-related words. Since we used BERT-based models in our experiments,
the first token in the input is the special [CLS] token, which is considered by the NLP community
as a vector representation for the entire input sentence. In the current version of Att-D, we also
calibrate the attention weighs of the special [CLS] token on groups, in addition to calibrating the
other tokens of the sentence. One can see this notion as a combined word-level and sentence-level
debiasing. In this experiment, we motivate this design choice by comparing it to word-level and
sentence-level debiasing separately. For word-level, we exclude the [CLS] token from the attention
equalization process, whereas in sentence-level we only calibrate the attention of [CLS]. We use all
the bias evaluations run so far to understand the difference in performance. Tables 14, 15, 16, 17
and 18 report the results of StereoSet, Crows-Pairs, inference, hate speech and GLUE experiments
respectively. We denote word-level debiasing by No [CLS], and sentence-level debiasing by Only
[CLS] in the tables. The combination of both is referred to as Att-D, and is the variant that we
promote in this paper. We observe that while the three settings are good at reducing bias from
text encoders, Att-D is superior than word-level and sentence-level debiasing since it capitalizes on
the benefits of both. It enjoys the fine granularity of reducing bias from every word, while it also
mitigates biases that manifest at sentence-level.

A.9 STATIC VS RANDOM ORDERING OF GROUP-RELATED WORDS

In the preprocessing step of our method (as explained in Section 3.2.1), we use a preset ordering
of group-related words of a given bias type to form the second input. For example, if we have
the groups Muslim, Christian, Jew and Buddhist defining the religion bias type, Att-D constructs
the second input using the same preset ordering of groups across all samples of the training data.
Continuing the example above, Att-D appends the following artificial sentence ”muslim, christian,
jew, buddhist”. In this experiment, we change the ordering of groups in a random way. Tables 14, 15,
16, 17 and 18 also report the bias scores of Att-D (static ordering) and Att-D with random ordering.

Although the semantic performance of Att-D with random ordering is better, we notice that it suffers
from a stronger presence of bias than in its static counterpart. In Table 17, Att-D with random
ordering has an AUC score of 0 in one of the groups, which made the GMB extremely small. We
suspect that the relatively poor fairness of random ordering owes to the fact that the model might be
confused by different orderings throughout the iterations. A more serious analysis of the impact of
group order on the overall performance (fairness and semantics) of Att-D motivates the direction of
future work.
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Table 14: Language modeling (lm) and Stereotype scores (ss) on StereoSet of different variants of
Att-D

Models Att-D No [CLS] Only [CLS] Random Order
Overall (lm/ss) 83.34 53.04 80.37 53.71 81.70 55.51 82.91 54.75

gender (lm/ss) 78.24 53.73 76.86 52.94 75.88 54.51 79.02 55.69
race (lm/ss) 86.28 51.87 84.10 53.01 85.24 55.09 86.75 54.57

religion (lm/ss) 88.46 53.85 84.62 60.26 85.26 56.41 87.18 56.41
profession (lm/ss) 80.96 54.14 76.63 54.14 78.99 56.24 79.17 54.51

Table 15: Bias measurements of different variants of Att-D on Crows-Pairs
Models Att-D No [CLS] Only [CLS] Random Order
Overall 55.7 56.1 55.5 58.36

gender 57.36 50.76 50.0 53.82
race 51.15 54.84 53.1 57.75

religion 64.76 69.52 65.71 67.62
age 43.68 56.32 44.83 54.02

sexual orientation 58.33 71.43 63.1 64.29
nationality 57.86 53.46 65.41 62.28
disability 60.0 61.67 58.33 65.0

Table 16: Inference-based bias measurements on different variants of Att-D. Best scores are high-
lighted with bold character, underlined, or marked with † for gender, race and religion† respec-
tively

Model Bias type NN FN τ :0.5 τ :0.7

Att-D
gender 01.31 00.43 00.35 00.21

race 93.31 93.94 93.90 93.04
religion 68.51† 69.08† 68.95† 66.97†

No [CLS]
gender 00.85 00.36 00.30 00.20

race 76.14 76.24 76.19 74.26
religion 40.80 40.04 39.98 37.78

Only [CLS]
gender 02.35 01.60 01.38 00.90

race 81.63 81.52 81.50 80.37
religion 44.40 44.01 43.95 42.76

Random Order
gender 01.54 00.51 00.39 00.23

race 54.71 54.92 54.89 52.49
religion 26.94 26.67 26.59 24.58

Table 17: AUC-based bias measures on hate speech detection task on different variants of Att-D

Models
Performance Bias

Acc↑ F1↑ AUC↑ STD-Sub↓ GMB-Sub↑ GMB-BPSN↑ GMB-BNSP↑
Att-D 0.789 0.829 0.866 0.085 0.808 0.793 0.726

No [CLS] 0.791 0.830 0.871 0.114 0.710 0.797 0.530
Only [CLS] 0.765 0.805 0.838 0.142 0.660 0.766 0.636

Random Order 0.784 0.822 0.861 / / 0.764 /
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Table 18: GLUE performance of different variants of Att-D. The table shows accuracy scores for
sst2, rte, wnli, and mnli for both matched and mismatched instances; f1 for mrpc; spearman cor-
relation for stsb; and matthews correlation for cola

Models
Single sentence tasks Double sentence tasks
sst2 cola stsb mrpc mnli (m/mm) rte wnli

Att-D 92.66 55.22 89.62 91.22 84.63 / 84.19 70.40 53.52

No [CLS] 91.51 40.85 88.94 91.62 84.49 / 84.02 68.95 40.85
Only [CLS] 92.43 55.23 89.43 90.04 84.42 / 84.67 71.84 23.94

Random Order 93.23 59.07 88.85 91.94 83.75 / 84.86 71.84 30.99
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