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Abstract

Existing early and late fusion frameworks in multimodal learning are confronted
with the fundamental challenge of modality imbalance, wherein disparities in rep-
resentational capacities induce inter-modal competition during training. Current
research methodologies primarily rely on modality-level contribution assessments
to measure gaps in representational capabilities and enhance poorly learned modali-
ties, overlooking the dynamic variations of modality contributions across individual
samples. To address this, we propose a Causal-aware Modality valuation approach
for Balanced multimodal learning (CMoB). We define a benefit function based on
Shannon’s theory of informational uncertainty to evaluate the changes in the impor-
tance of samples across different stages of multimodal training. Inspired by human
cognitive science, we propose a causal-aware modality contribution quantification
method from a causal perspective to capture fine-grained changes in modality con-
tribution degrees within samples. In the iterative training of multimodal learning,
we develop targeted modal enhancement strategies that dynamically select and opti-
mize modalities based on real-time evaluation of their contribution variations across
training samples. Our method enhances the discriminative ability of key modalities
and the learning capacity of weak modalities while achieving fine-grained balance
in multimodal learning. Extensive experiments on benchmark multimodal datasets
and multimodal frameworks demonstrate the superiority of our CMoB approach
for balanced multimodal learning.

1 Introduction

Humans construct multi-dimensional perception through multiple sensory modalities like vision,
touch, hearing, and smell, processing information hierarchically to understand the real world [1, 2, 3].
This biological cognitive mechanism has inspired the development of multimodal learning paradigms
in the field of machine learning. These paradigms involve constructing collaborative learning
frameworks across heterogeneous modal representation spaces (e.g., text, images, audio, and video)
to simulate the cognitive process of human cross-modal information fusion [4]. From a cognitive
neuroscience perspective [5, 6, 7], this paradigm aligns with the neural mechanisms of the human
brain’s multisensory integration, where different sensory cortices enable collaborative learning across
heterogeneous modalities through synaptic plasticity.

In recent years, although extensive research on multimodal learning has made significant progress,
some studies have found that most existing multimodal models encounter the challenge of modality
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collapse during joint training. This is because deep neural networks tend to prioritize modalities
that are easy to learn while neglecting other modalities, thus failing to effectively integrate heteroge-
neous cross-modal information [8, 9, 10]. This issue prevents the model from fully leveraging the
complementary information across all modalities. Consequently, this information loss results in the
performance of unimodal in joint multimodal training falling far short of their intrinsic performance
ceilings. Researchers define this phenomenon as multimodal imbalance learning [11, 12, 13, 14, 15].
The primary cause of this phenomenon stems from the greedy nature of deep neural networks: these
networks tend to rely on high-quality modality that is highly relevant to the target task, thereby
inhibiting the optimization of other modalities. In the joint training process of multimodal learning,
this greediness makes the modality dominant in the joint training, inhibiting the learning of other
modalities and generating a situation of modal competition. Researchers define this phenomenon as
multimodal imbalance learning [16, 17].

Figure 1: A TED talk with audio, video, and text modalities.

Recent research has focused on mitigating inter-modal discrepancies and enhance modality-specific
data utilization during training to address the above challenge for improved multimodal model efficacy.
Several methods have been proposed to identify and improve the training of poorly learned modalities
by controlling gradient variations, modality contribution and incorporating loss functions [15, 18, 19,
20]. Gradient-based methods for assessing modality contribution typically rely on the assumption
that larger gradients indicate higher modal importance. However, gradient values are susceptible to
fluctuations from model parameters and training data, leading to unstable evaluations. Even though
all modalities of a sample express the same concept (i.e., share identical label information), the
amount of information related to the target object or target event varies across different modalities,
which leads to differences in the data quality of individual modalities. These methods are only limited
to modality-level analysis and fail to capture contribution differences at the sample level. In many
real-world datasets, not all samples of image modal data, video modal data are more informative
than text modal data. Take a TED talk video as an example (as shown in Figure 1): for video
comprehension, the speech stream (audio information) and subtitle stream (text information) of a
TED talk convey consistent core information. Viewers typically adopt intuitive, information-rich
audio information as their primary source, parsing the speaker’s speech stream to understand the
meaning of the conveyed content. But when the target language suddenly exceeds the receiver’s
comprehension scope ((e.g., during a non-native language talk), the subtitle text replaces the auditory
channel and becomes the core cognitive pathway for understanding the expression. Assessing the
contribution degree of modalities at the modal level fails to reflect the true nature of the data. And
although current encoders are effective in extracting multimodal features, the lack of interpretability
[21, 22, 23] of the depth model makes it difficult to observe the role of each modality in the final
prediction and to adjust unimodal training accordingly.

Inspired by the multimodal cognitive mechanisms of the human nervous system, we address the
above problem by analyzing the learning process of the human brain’s integrated processing of
heterogeneous multimodal data [5, 7, 24, 25, 26]. We illustrate this concretely using a TED talk video
example, as shown in Figure 1(d). When the speaker utters "no eye deer"—a homophonic phrase
identical in pronunciation to "no idea"—viewers relying solely on the audio stream may struggle to
grasp the intended meaning. In such cases, the cognitive system leverages instantaneous information
entropy [27] to dynamically integrate subtitle data for assisted comprehension. During this process,
the original cognitive system first extracts discriminative causal features [28] from audio data and
based on experience to obtain the information entropy value of this modality. It then dynamically
selects text modality data to assist in comprehension, thereby continuously refining the cognitive
system’s understanding of these modalities. We analyze this process and find that it has two core
characteristics: (1) modality contribution valuation based on causality. By acquiring discriminative
feature information and then evaluating modality contribution according to its information entropy,
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rather than simple signal quality comparison; (2) granular adjustment of the sample level. Even if
a modality is overall reliable in the temporal dimension, the cognitive system will still implement
cross-modality switching when an information bottleneck occurs in a single sample, and re-optimize
its cognition of the modality. Inspired by this cognitive mechanism, in this paper we revisit the
process of multimodal learning at the sample level from the perspective of causal learning. Causal
learning aims to explore the essential causal relationship between things and reveal the real generation
mechanism inside the data. We evaluate the degree of modality contribution by measuring the causal
effect between samples, distinguishing the role of each modality in the final prediction and identifying
low contributing modal samples. During the model training process, we enhance and optimize the low
contributing modal samples to selectively improve the learning direction of the multimodal model
to alleviate the modality imbalance problem and improve the performance and interpretability of
multimodal learning.

We propose a causal-aware modality valuation method to evaluate the sample-level modality con-
tribution in multimodal training. We design an optimization strategy for modality selection at the
sample-level according to the contribution degree of each modality in order to mitigate the modality
imbalance problem. In our experiments, we validate the effectiveness of our method by comparison
and ablation experiments on publicly available data. In summary, our main contributions are as
follows: (1) We evaluate the importance of sample in multimodal learning by means of a benefit
function designed by information uncertainty theory. (2) We propose methods to quantify the degree
of contribution of each modality from a causal perspective and represent the contribution of modalities
in terms at the sample-level. (3) We propose a modality balancing approach from a data perspective
to improve the performance of multimodal learning by optimizing the selection of weak modalities
from the sample level in terms of modality contribution. (4) We validate the effectiveness and benefits
of our approach by conducting extensive experiments on three publicly available datasets for different
modalities compared to existing work.

2 Related work

2.1 Imbalance multimodal learning

The development of multimodal learning has been a great success, but many recent studies have found
that the unimodal capabilities are not fully exploited in multimodal learning [1, 29, 30, 31]. Due to
the imbalance in modality contributions during training, some unimodal capabilities are inhibited
by the dominant modality and are unable to exert their upper limits [2, 8, 10, 17, 11, 15]. In some
special cases, the performance of multimodal algorithms can even be lower than the performance
of unimodal algorithms. Some researchers mitigate modality imbalance by analyzing the causes of
modality imbalance and by modifying the process of forward propagation of model inference. For
example, OPM algorithm [14]adopts a dynamic feature discarding approach for modality during
multimodal training. OGM [17]achieves balanced multimodal learning by suppressing the dominant
modality through an adaptive gradient adjustment strategy. PMR [12] accelerates the learning of
weak modalities through category prototyping. GBlending [32]and MMpareto [16]reduce gradient
conflicts during training by introducing unimodal assisted learning to control the direction of gradient
update. Based on the above analysis, although these methods alleviate the modality imbalance to a
certain extent, their approaches measure the degree of modality contribution through the modality-
level and lack interpretability. Many scholars seek to investigate this issue from a sample-level
perspective. SMLS [33] employs KL divergence to align the factual contribution distribution with
the utopia contribution distribution. PDF [34]aims to reduce reliance on low-quality modalities via
Relative Calibration (RC). The shapley value-based method [8], which enhances weak modalities by
calculating combinations of all possible subsets. In this paper, we propose an interpretable method
to quantify the degree of contribution of each modality in multimodal training. We characterize the
degree of modality contribution in terms at the sample-level to mitigate the modality imbalance issue.

2.2 Causal learning

Causal learning aims to discover causal relationships from data and utilize these relationships to
make interventions, predictions and decisions [35]. Causal learning focuses on identifying causal
relationships, which is different from traditional machine learning that only discovers correlations
between variables. Causality strictly distinguishes between "cause" and "effect" variables, and
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plays an irreplaceable role in revealing the mechanism of occurrence and guiding intervention
behavior [36, 37, 38]. Causal inference has contributed to the development of artificial intelligence
[26, 39, 40, 41] due to its ability to eliminate the harmful bias of confounders and to discover causal
relationships among multiple variables. Causal effect are a central goal of causal inference, aiming
to quantify the impact of interventions on outcomes by comparing the outcomes of treatment and
control groups. Specifically, causal effect reveal causal relationships between variables by analyzing
differences between potential outcomes across treatment conditions [28]. The central question is
to answer: for a given individual or group, how do outcomes change when a certain intervention is
applied compared to not applying that intervention? In this paper, we revisit the challenge of modality
imbalance in multimodal joint training from a causal learning perspective.

3 Methodology

This section presents our method. First, we formulate the multimodal learning problem and its
representation paradigm. Then, we propose an information-theoretic uncertainty measure for sample
significance valuation and develop a causal-aware algorithm to quantify modalities contribution at
the sample level. Finally, we propose a modality rebalancing approach from a data perspective to
improve multimodal learning by optimizing the selection of weak modalities from the sample-level
modality contribution.

3.1 Preliminary

With any loss of generality, We formalize the general formalism for expressing multimodal learning.
Given a dataset D = {(xm

i , ymi ) | i ∈ {1, · · · , N ′}, m ∈ {1, · · · ,M}}is a finite and nonempty set
for all modalities with N ′ data samples and M modalities. Each sample x has M modality, and y
is the label of x can refer to a class, an answering, etc. xi = {x1

i , x
2
i , · · · , xM

i }, yi ∈ {1, 2, . . . ,K}
denotes the corresponding class label from K classes. For ease of expression, we give examples with
two modalities where v and a refer to the video and audio modalities, respectively. It is worth noting
that our method is not limited to two modalities and can be extended to more modalities.

For multimodal joint training methods, we use the mainstream M modality-specific encoder to extract
features from the original space. We use h(·) to define the feature extraction of the multimodal model.
For any sample, the feature extraction process can be formalized as:

zmi = h(θm, xm
i ),

where z denotes the d-dimension feature vector zmi ∈ Rd, θm denote the parameters of modality-
specific encoder Θm(θm, ·).
We obtain a joint representation of modality-specific features by fusing them through a fusion function
f(·). Then, we use F̂ (·) to denotes the output function of the multimodal model, which maps vectors
into RK , This procedure can be formally formulated as:

Z = f(z1i , z
2
i , · · · , zMi ), Z ∈ RD, F̂ (W, θ, x, b) = W · Z + b,

where D denotes the dimension of the joint feature representation, W ∈ RK×Ddenotes the weight of
the last layer of the forward propagation process, K denotes the number of categories in the task, and
b is the bias term, b ∈ Rk.

Finally, the cross-entropy loss is used for validation and the joint objective loss for multimodal
learning can be formalized as:

Lcross-entropy =
1

N ′

N ′∑
i=1

yi · log(softmax(F̂ )).

When updating the gradient for model backpropagation, Wm and the parameters of modality-specific
encoder Θm are updated as:

Wm
t+1 = Wm

t −η
1

N ′

N ′∑
i=1

∂Lcross-entropy

∂F̂ (xi)
·Θm

i , θmt+1 = θmt −η
1

N ′

N ′∑
i=1

∂Lcross-entropy

∂F̂ (xi)
· ∂(W

m
t ·Θm

i )

∂θmt
,
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∂Lcross-entropy

∂F̂ (xi)
=

e
∑N′

m=1 Wm·Θm
i +bŷi∑K

k=1 e
∑N′

m=1 Wm·Θm
i +bk

− 1ŷi=yi ,

where η is the learning rate, ŷi as the classification result of xi. The phenomenon of modality
imbalance can be formalized as: when one modality prediction has better outcome, its contribution
Wm ·Θm

i dominates the logits output F̂ (xi, ·). This reduces the magnitude of ∂Lcross-entropy

∂F̂ (xi)
, as the loss

Lcross-entropy already becomes smaller. The model is also optimized in the direction of smaller loss.
Consequently, gradients for updating weaker modalities are suppressed, leading to under-optimized
representations for them.

3.2 Sample benefit valuation

In multimodal learning, the multimodal model utilizes the different modalities of all samples for
learning and inference, thereby enhancing the understanding of the data. For existing tasks of
multimodal learning, all modalities are assumed to be predictive of the model [30]. The benefit
function we designed is also based on this assumption. We mainly address the modality imbalance
phenomenon of early fusion and late fusion in multimodal learning. We take the number of input
modalities M as the value of the benefit function in multimodal joint learning when the prediction of
the final network learning is matched with the ground truth.

In multimodal learning, the importance of samples changes as the model is trained iteratively. Due to
the heterogeneity of modalities, the modality data itself also contains noise, inter-modal redundant
information. In the initial stage of training, this may prevent the model from learning the high-level
semantic relationship information of different modalities. In real scenarios, the data quality of
different modalities of a sample is usually unstable, not all samples will have higher video modality
than text modality [8]. In reality, multimodal models rely on different modalities for different samples,
rather than depending on the same modality for all samples. Moreover, for different tasks in the same
dataset, the amount of information related to different target tasks in the same sample is different, so
it is difficult to accurately define the “quality” of modality in each sample.

According to Shannon’s theory of information uncertainty [42], “the essence of information is to
eliminate uncertainty” brings us new thinking. In other words, adding more modalities to a sample is
accompanied by enhancing more information, which will bring less uncertainty to the multimodal
model. We can approximate this relationship as follow:

Proposition 1. Given a sample has M modalities denoted as x(M) = {x1, x2, · · · , xM}, assume
that there any two subsets x(B), x(C) of x(M), and x(B) ⊆ x(C) ⊆ x(M), then for any multimodal
classifier F̂ (·), it should be guaranteed that

Conf(F̂ (x(B))) < Conf(F̂ (x(C))) ≤ Conf(F̂ (x(M))).

Current encoders and classifiers have achieved significant advancements. For any reliable multimodal
classifier, when new modalities are added, the prediction confidence of multimodal joint learning
should increase and exhibit a positive correlation with the addition of modalities.

We defined a benefit function to evaluate the importance of the samples in the multimodal model
learning process as follow:

B(M) =

{
|M |, if F̂ = yi, Conf(F̂ (x(C))) ≤ Conf((F̂ (x(M)), and C ≤ M,

0, otherwise.
(1)

When the multimodal model’s prediction is correct and the confidence after adding new modalities is
higher than that before their addition, in this case the benefit of this sample is defined as the number
of input modalities.

3.3 Causal-aware quantification method

In this subsection, we propose a causal-aware modality contribution quantification method from
a causal perspective to capture fine-grained changes in modality contribution within samples. We
dynamically evaluate the contribution degrees of different modalities in samples by calculating the
changes in causal effects due to intervention modalities.
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In the previous subsection, we evaluated the benefit value of the sample to the target task and measured
the importance of the sample through the benefit function. Cognitive science research has revealed
a unique mechanism in multimodal information processing in which the human modality choice
behavior has a significant causal inference property [5]. This characteristic suggests that humans do
not simply integrate all available information when faced with complex multimodal environments,
but selectively focus on and utilize modality-specific information based on judgments of causality
and causal strength.

Intervention is used as a straightforward and effective method to assess the existence of direct causal
relationships between events [28, 35, 39]. Inspired by the concept of intervention in causality, we
assess the effect of one event (cause) leading to the occurrence of another event (outcome) by means
of intervention, and quantify the degree of contribution of modality in the sample. For multimodal
deep neural networks, we observe the causal relationship between the variable ti of the input set T
and its corresponding output H(T ) through an intervention denoted as do(ti = x), as shown in Eq.2

ϕH [ti] = V(H(T ))− V(H(T |do(ti = x))) = V(H(T ))− V(H(T ′)). (2)

Here, H(T ) denotes control group, H(T ′) denotes the treatment group. The difference between
these two refers to the effect of the intervention. ϕH [ti] can be regarded as the ITE(Individual
Treatment Effect) of ti through the function H(·). V(·) can be any function that valuates the effect of
an outcome. T ′ denotes the intervened outcome.

For each sample which contains M heterogeneous modalities, S(xi) = {x1
i , x

2
i , · · · , x

j
i , · · ·xM

i }
denotes the set of modalities of the samples. We want to measure the ITE of modality j in sample i.
The modality of the treatment variable is denoted as xj

i , the control group is S(xi), and the treatment
group is S(xi)\xj

i then its individual causal effect can be expressed as follows:

ITE(xj
i ) = ϕH [xj

i ] = V(H(T ))− V(H(T ′))

= V(H(S(xi)))− V(H(S(xi)\xj
i ))

= B(F̂ (S(xi)))−B(F̂ (S(xi)\xj
i ))

= B(F̂ (S(xi)))−B(F̂ (S(xi)|do(ti = xj
i ))),

(3)

where B(.) is the benefit function presented in the previous subsection. F̂ (.) denotes is the output
function of the multimodal model. When quantifying the contribution of the modality j in the sample
i, we must not only calculate the effect of the intervention modality j on the output but also consider
its own impact on the output. Thus, its contribution can be expressed as follows:

Φ(xj
i ) = ITE(xj

i ) + V(H(xj
i ))

= B(F̂ (S(xi)))−B(F̂ (S(xi)|do(ti = xj
i ))) +B(F̂ (xj

i )).
(4)

Additionally, as specified in Eq.1, when the multimodal model makes an incorrect prediction, the
control group is B(F̂ (S(xi)))=0. The minimum of treatment group B(F̂ (S(xi)|do(ti = xj

i ))) is
0, and B(F̂ (xj

i )) ≤1. Then we have Φ(xj
i ) ≤ 1, at which point we consider this treatment is not

positive and the modality j in sample i is weak modality. We conducted further discussions on ITE,
at Appendix A.6.

3.4 Dynamic modality optimization strategy

After quantifying the modality contribution at the sample level, we obtain the contribution of different
modalities for each sample, and then distinguish the weaker modalities. We propose Algorithm 1,
which implements a dynamic enhancement strategy to optimize weaker modalities during training
iterations. To alleviate modality imbalance problem, we design a specific optimization function
Eq.5 to selectively enhance the samples of weak modalities. The enhancement of weak modalities
inevitably induces augmented modality-specific data within samples, thereby increasing the likelihood
of model overfitting during training. We employ adaptive masking to mitigate model overfitting. We
mask localized features of specific modalities, thereby compelling the model to leverage cross-modal
contextual dependencies to achieve optimization objectives. This method strengthens inter-modal
semantic coherence while preventing over-reliance on partial characteristics of individual modalities.
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Algorithm 1 : CModB Algorithm
Input: Dataset D = {(xm

i , y′i)|i ∈ {1, . . . , N ′},m ∈ {1, . . . ,M}}(train / val / test), device, method.
Output: Learned parameters θ of multimodal model.
INIT: Optimized dataset Dop, number of modalities M , initial parameters θ0, maximum iterations
E, learning rate η, freeze_train epoch F .

1: for e = 1 to E do
2: if e < F then
3: Update model parameters θ with dataset D;
4: else
5: Update Dop := D;
6: for each sample (xm

i , y′i) in D do
7: Encoder feature extraction h(·);
8: Feature fusion f(·);
9: calculate the each unimodal ITE using Eq.3;

10: calculate the each unimodal contribution Φ(xj
i ) using using Eq.4;

11: Obtain optimize status using Eq.5;
12: Update dataset D by the optimize status to obtain an optimized dataset Dop;
13: end for
14: Update model parameters θ with dataset Dop.
15: end if
16: end for

By applying masking, we can simulate real-world scenarios where data may exhibit incompleteness or
partial information loss. We employ Time Masking for audio modality and Spatial Masking for video
modality. This approach enhances training data diversity while mitigating the model’s sensitivity to
localized noise. So that the multimodal model learns to deal with incomplete data during training,
and then has better adaptability and robustness when facing various complex situations in the real
world.

Re(xi) =


fRe(1− Φ(xj

i ))·Mask(Φ(xj
i )) Φ(xj

i ) ≤ 1,

0 Φ(xj
i ) > 1, e <= E/2,

α·Mask(1− Φ(xj
i )) Φ(xj

i ) > 1, e > E/2.

(5)

Here, fRe(.) is a monotonically increasing function and Mask(·) is a mask function, e is the number
of iterations, E is the maximum iterations of the multimodal model, α is a hyperparameter. We mainly
focus on optimizing the weaker modalities with low contribution. We maintain the original D inputs
for the other modalities during the first half of multimodal training, while applying masking to these
during the latter phase. We employ time masking for audio modality and spatial masking for video
modality We achieve directional and targeted modality rebalancing by the above method.

4 Experiments

4.1 Experimental setup

Datasets: We select five public datasets,including CREMA-D[43], Kinetic Sounds[44], UCF-101[45],
CMU-MOSEI[46], and NVGesture[47] datasets to validate our proposed method. The description of
the complete dataset is provided in Appendix A.1.

Implementation Details: Details of the implementation are given in the Appendix A.2.

Baselines: We compare a range of baseline methods. These contain traditional MML approaches and
fusion methods for balanced multimodal learning, namely, feature concatenation (Concat), prediction
summation (Sum), prediction weighting (Weight) [48], MMCosine [49], AGM [50], OGM [17],
GBlending [32], PMR [12], MMCooperation [8], Relearning [51], MLA [10], MMPareto [16].

4.2 Comparison with imbalanced MML baselines

We conducted comparative experiments on multiple datasets with various modalities and compared
with SOTA methods. The main results for all datasets are presented in Table 1, where “CMoB” denotes
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our proposed approach. In Table 1, Unimodal-1 denotes training models using only the audio modality
for datasets like CREMA-D, Kinetics Sounds, and CMU-MOSEI. For UCF-101 and NVGesture,
this configuration corresponds to the RGB modality. Unimodal-2 infers training exclusively on the
video modality for CREMA-D, Kinetics Sounds, and CMU-MOSEI. For UCF-101 and NVGesture,
it corresponds to the optical flow modality. Unimodal-3 applies to CMU-MOSEI, where models are
trained using the text modality, and to NVGesture, where the depth modality is utilized. It is worth
noting that Concat refers to the baseline method commonly used in multimodal learning for mitigating
modality imbalance problem, which employs concatenation fusion with a single multimodal cross-
entropy loss function. Based on the results, the following key observations can be drawn: (1) Our
proposed CMoB approach demonstrates strong generalization ability by showing excellent consistent
performance across diverse heterogeneous multimodal datasets. Compared with PMR and OGM,
which are rebalancing methods only applicable to two modalities, our method can handle datasets
with more modalities and achieve the best results. (2) Each of the modality rebalancing frameworks
significantly outperform the baseline Concat method relying on direct feature concatenation, with
consistent performance improvements observed across evaluation metrics. This empirical evidence
substantiates the objective existence of multimodal imbalance challenges, necessitating dynamic
modality-specific parameter adjustment during multimodal joint training. (3) In the CMU-MOSEI
dataset, there is a clear phenomenon that the best unimodal performance (Unimodal-3) surpasses
its multimodal learning counterpart and outperforms many well-performing rebalancing methods
on other datasets. In CREMA-D and CMU-MOSEI dataset, conventional fusion methods without
modality balancing exhibit only minimal performance gains when compared to the performance
of the important unimodal (the dominant modality in multimodal training such as Unimodal-1 in
CREMA-D, Unimodal-3 in CMU-MOSEI). We will discuss and visualize this in the next subsections.

Table 1: Comparison with state-of-the-art (SOTA) multimodal learning algorithms. Bold and underlined results
denote the best and second-best performances, respectively.

Method CREMA-D KineticsSounds UCF-101 CMU-MOSEI NVGesture

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Unimodal-1 61.17 60.63 55.06 54.96 78.60 77.49 71.09 41.7 78.22 78.33
Unimodal-2 49.56 47.81 45.31 43.76 59.90 58.19 71.03 41.68 78.63 78.65
Unimodal-3 - - - - - - 80.58 74.57 81.54 81.83

Concat 65.5 65.07 65.63 65.28 81.8 81.21 78.99 69.40 81.33 81.47
Sum 63.44 63.12 64.97 64.72 80.21 79.42 79.10 71.15 82.99 83.05
Weight 66.53 66.41 65.33 64.89 82.65 82.19 79.94 72.31 82.42 82.57
MMCosine 67.19 67.34 67.49 67.09 82.97 82.47 80.38 73.67 81.52 81.55
AGM 71.59 72.11 66.62 65.88 81.7 80.89 79.86 71.89 82.78 82.82
OGM 67.76 68.02 67.04 66.95 82.07 81.3 - - - -
GBlending 71.59 71.72 68.82 66.43 85.01 84.5 79.64 73.29 82.33 82.91
PMR 67.19 67.20 67.11 66.87 81.93 81.48 - - - -
MMCooperation 75.85 76.68 68.01 68.03 85.25 84.69 79.84 72.99 82.85 83.02
Relearning 71.02 71.46 65.92 65.48 82.87 82.15 78.75 70.02 82.87 82.94
ARL 74.19 74.63 68.40 68.75 85.12 84.41 - - - -
MLA 79.43 79.90 69.05 68.75 85.38 84.84 78.65 70.02 83.73 83.87
MMPareto 76.87 77.35 74.55 74.21 85.3 84.89 81.18 74.64 83.82 84.24

CMoB 79.75 79.98 72.03 71.74 86.82 86.21 81.24 74.97 84.06 84.18
±0.27% ±0.38% ±0.22% ±0.32% ±0.27% ±0.34% ±0.19% ±0.26% ±0.14% ±0.21%

4.3 Comparison in scarcely informative modality case

In existing modal rebalancing methods, the mainstream view is to regard modalities with poor
prediction performance as weak modalities and conduct additional training during the unimodal
balancing. In practical applications, certain modalities may contain extremely limited label-relevant
information and instead contain more noise. If the multimodal model is forced to learn information
from these modalities under such circumstances, it will memorize more noise, thereby leading to
negative outcomes. To simulate this scenario, we follow this paper [51] and choose to carry out
experiments on the CREMA-D dataset. The video modality in the CREMA-D dataset consists
of standardized emotional performances in a controlled laboratory environment, with its features
primarily focusing on facial details of the human face. Compared to its audio modality, it inherently
contains less label-relevant information. We modified its audio modal by adding extra white Gaussian
noise. The experimental results are visualized as shown in Figure 2 and Appendix A.4.

From the visualization results, we can observe that when the available information in the dataset is
very limited, the performance of existing methods all declines. As shown in Figure 2 the Concat
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method, the obvious cluster overlap in the video modality of the concat method indicates that it may
be difficult to distinguish all categories in the high-dimensional space, and the categories in the audio
modality are relatively dispersed. Through a direct comparison with the concat method, it can be
visually observed that the modality rebalancing method improves the model’s discriminability to a
certain extent. This further validates the necessity of modality imbalance learning. In the second
row of Figure 2 and Figure 5, the comparison of the video modality shows that under such extreme
conditions, all methods have drawbacks. Their data points fail to form distinct separated clusters in
the low-dimensional space. Our method shows relatively better performance in the video modality.
In the audio modality, our method shows that the data points of the same category are more compact,
while those of different categories are more separated. This indicates that our method makes it
easier to distinguish these emotional categories. This proves that our method can also exhibit good
robustness in such extreme scenarios.

Figure 2: Each Unimodal representation visualization by t-SNE on the processed CREMA-D dataset.
The six categories are indicated in different colors.

4.4 Ablation study

To comprehensively assess the effectiveness of our proposed method, we conduct experiments to
study the influence of main components. Here, CQM represents our proposed a causal-aware modality
contribution quantification method, and RE denotes the dynamic modality optimization strategy. We
conduct an ablation study on CREMA-D and KineticsSounds datasets. The results are shown in
Table 2. The implementation of the dynamic modality optimization method (RE) is predicated on the
causal-aware modality contribution quantification method (CQM). Consequently, RE is inapplicable
in the absence of CQM. From Table 2, we can see that both CQM and RE can boost performance in
multimodal learning. Moreover, by integrating CQM with RE, the performance gap between audio
modality and video modality is greatly reduced. Ablation studies clearly demonstrate the critical
contribution of our proposed modules to overall method performance enhancement.

4.5 Further analysis

Analysis of Modality Gap: As mentioned in the paper [52], the existence of a geometric phe-
nomenon in multimodal models: Modality Gap. It can denote regions in the shared space where the
embeddings of different modalities are significantly separated, and a larger modality gap indicates
better performance. We make further comparisons by validating the modality gap between our method
and the better performing methods (which outperforms CMoB method with some data). The results
are shown in Figure 3. In the concat method, the data points of the audio modality are over-clustered,
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Table 2: Results of ablation study on CREMA-D and KineticsSounds datasets

Dataset Module ACC
CQM RE

CREMA-D
× × 65.50√

× 76.42√ √
79.75

KineticsSounds
× × 65.63√

× 70.96√ √
72.03

while those of the video modality are over-dispersed, and a smaller modality gap. This indicates
that the audio modality is primarily leveraged for discrimination in the Concat method. As shown in
Figure 3(b) and Figure 3(c) , compared with MLA and MMPareto, our method has a larger modality
gap, with more compactly clustered modality representations and fewer outliers, demonstrating its
ability to learn more discriminative features and further validating its stability.

Figure 3: Visualizations of the modality gap on CREMA-D dataset.

Visualization: We employ Grad-CAM [53] to visualize the key regions focused by various rebal-
ancing methods(Concat, MMPareto, MLA) during training on the CREMA-D dataset. Visualization
results and analysis are provided in the Appendix A.3.

5 Conclusion

In this paper, we first analyze the limitations in existing modality rebalancing methods that neglect
the dynamic variations of modality contributions at the sample level during training. Inspired by the
remarkable causal inference power of the human modality choice behavior in cognitive science, we
propose a causal-aware modality validation approach for balanced multimodal learning. We employ
intervention methods to evaluate the causal effect, quantifying changes in modality contributions at
the sample level during multimodal learning. The fine-grained evaluation approach enables targeted
optimizations across modalities at the sample level, effectively mitigating the issue of multimodal
imbalance. Comparative experimental results in multiple datasets validate the effectiveness of the
proposed algorithm.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We propose a causal-aware modality validation approach for balanced mul-
timodal learning that captures the fine-grained changes in modality contribution degrees
within samples.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: We discuss the limitation of proposed method, CMoB, at Sec. 4.3

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions and proofs are clearly stated in Sec. 3 of our manuscript

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental settings are detailed in Sec.4.1 and Appendix A.2. All
experiments can be easily reproduced with our code.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We make our code publicly available at https://github.com/
perpetual1859/CMoB , including data and detail documentation.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental settings and hyperparameter selection details are in Appendix
A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See the results with standard deviation in Table 1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss the experiments compute resources at AppendixA.2. All experi-
ments were run on 2 NVIDIA DGX A100.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, this paper conform the the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper is a foundational research and has no direct negative social impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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Justification: No such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All data and methods are explicitly mentioned.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: This paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methodology and experiments presented in this paper do not involve
the use of large language models (LLMs) as an important, original, or non-standard compo-
nent. No LLMs were employed for data processing, model design, training. The research
was conducted independently of any generative or foundation model technologies; hence,
an LLM declaration is not applicable.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Supplementary Materials and Experimental Details

A.1 Dataset

CREMA-D is an emotion recognition dataset with two modalities, audio and video. The dataset
includes 7,442 clips annotated in six emotions. Kinetic Sounds is an action recognition dataset with
two modalities, audio and video. This dataset contains 19k 10-second video clips categorized into 31
human action classes, which are selected from the Kinetics dataset. UCF-101 is an action recognition
dataset with two modalities, RGB and optical fow. This dataset contains 10l categories of human
actions with 9,537 samples in the training set and 3,783 samples in the test set. CMU-MOSEI is a
sentiment analysis dataset with three modalities, audio, video, and text. This dataset includes more
than 1,000 online speakers segmented into 23,453 utterances and is annotated with utterance-level
sentiment labels. NVGesture is a gesture recognition dataset designed for human-computer interaction
research and consists of three modalities, RGB, Depth, and optical flow. This dataset with 1,050
samples in the training set and 482 samples in the test set.

A.2 The implementation details

In our experiments, we use the raw data for experiments. Following [17, 12, 51], the architecture
and initialization setup followed an unbalanced multimodal learning study for a fair comparison.
For the CREMA-D and the Kinetic Sounds dataset, ResNet-18 is employed as the backbone for
processing both audio and video data and trained from scratch. For the CMU-MOSEI dataset, we
employ transformer-based networks as the backbone architecture, training the model from scratch.
Encoders used for UCF-101 are ImageNet pre-trained. In term of video and optical flow modalities,
we first select 10 frames from each clip and then uniformly sample three frames as input. We adjusted
the input channels of ResNet18 from three to one to fit our data format. For audio modal data, we
convert to a 257×299 spectrograms for CREMA-D and a 257×1004 spectrograms for KineticsSounds.
For text-image datasets, our framework employs ResNet-50 as the image encoder and BERT for text
processing, where images are resized to 224×224 resolution and text sequences are truncated to a
maximum length of 128 characters. During training, we use the SGD optimizer with momentum (0.9)
and set the learning rate at 1× 10−3 . All models are trained on 2 NVIDIA DGX A100.

A.3 Visualization

We employ Grad-CAM [53] to visualize the key regions focused on by various rebalancing meth-
ods(Concat, MMPareto, MLA) during inference on the CREMA-D dataset. By computing gradients
of target class scores with respect to the last convolutional feature map and generating pixel-level im-
portance weights, Grad-CAM can precisely localize visual regions that significantly contribute to the
decision-making process in the target task (emotion recognition). This visualization method not only
helped us to verify the effective use of weak modality features by different models, but also provided
an intuitive basis for us to analyze the allocation of visual attention in multimodal interactions. The
visualization results are presented in Figure 4, where the first, second, third, fourth and last columns
denote the results of the tenth, thirtieth, fiftieth and eightieth last epoch, respectively. This image
is a keyframe extracted from the video modality of the category “NEU” in the CREMA-D dataset.
Based on the heat map of the video modality, the following key observations can be drawn: (1) In the
emotion recognition task, audio modality has richer information than the video modality, especially
in the CREMA-D dataset. So we found that the video modality provides limited information at the
early stage of training and relies mainly on the audio modality to dominate the feature extraction. At
the 50th epoch of training, the video modality of the Concat method starts to focus on the feature
extraction of facial expressions. However, the method is optimized by a uniform joint loss function, at
this point, the dominant modality (audio modality) leads to a modality imbalance problem that causes
the subsequent optimization of the video model to be directionally biased. (2) At different stages of
model training, compared to other modal rebalancing methods our method focuses on the features of
a person’s face that are most relevant to the emotion recognition task, verifying the effectiveness and
stability of our method in weak modality learning.
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Figure 4: Visualizations of various rebalancing methods on CREMA-D dataset.

A.4 Comparison in scarcely informative modality case

Figure 5: Each Unimodal representation visualization by t-SNE on the processed CREMA-D dataset.
The six categories are indicated in different colors.

A.5 Further discussion on ITE

A further question we need to consider is: in multimodal learning, does our evaluation of the
individual treatment effect (ITE) possess globality?

"Globality" generally refers to the property that an effect or conclusion holds universally among
different individuals, groups, or environments, emphasizing its generalizability and cross-scenario
applicability [54, 55]. Take classification tasks as an example: our goal is to train a robust multimodal
deep neural network that constructs a generalizable decision boundary, accurately mapping input
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data into predefined classes. During training, all multimodal data also operate within the unified
deep neural network. After multiple iterations, the resulting discriminative model can classify
heterogeneous data from diverse modalities, and it has applicability in different modality in various
samples. Therefore, we calculate that the individual causal effect of input modalities and output
results processed by the multimodal deep network possesses globality.

A.6 Comparison with MML baselines on large-scale datasets

We conduct an experimental on the relatively large-scale dataset VGGSound. The VGGSound
datasets consist of both audio and video modalities. The VGGSound dataset, which contains 310
classes and a wide range of audio events in everyday life, is a relatively large dataset. It includes
168,618 videos for training and validation, and 13,954 videos for testing. The experimental results
show the superiority of our method. The results of the comparative experiment are shown in Table 3

Table 3: Comparison with different methods on VGGSound dataset.

Method MAP ACC

AGM 51.98% 47.11%
MLA 54.73% 51.65%
ReconBoost 53.87% 50.97%
MMPareto 54.74% 51.25%
Ours 54.98% 51.74%

To further validate the effectiveness of our method under scenarios with more modalities, we follow
this paper and conduct further experiments on the Caltech101-20 dataset [8]. We compare our
method with the Concat method and the Shapley value method. The experimental results confirm the
effectiveness of our method, even when using five modalities (views), as shown in Table 4.

Table 4: Accuracy of our methods on Caltech101-20 dataset.

Num of modalities Concat Shapley Ours

2 82.91 83.47 83.71
3 87.71 87.99 88.22
4 93.64 94.07 94.35
5 94.63 94.73 94.86
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