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ABSTRACT

The Universum class, often known as the other class or the miscellaneous class,
is defined as a collection of samples that do not belong to any class of interest. It
is a typical class that exists in many classification-based tasks in natural language
processing (NLP), such as relation extraction, named entity recognition, sentiment
analysis, etc. During data labeling, a significant number of samples are annotated
as Universum because there are always some samples that exist in the dataset
but do not belong to preset target classes and are not of interest in the task. The
Universum class exhibits very different properties, namely heterogeneity and lack
of representativeness in training data; however, existing methods often treat
the Universum class equally with the classes of interest. Although the Universum
class only contains uninterested samples, improper treatment will result in the
misclassification of samples of interest. In this work, we propose a closed boundary
learning method that treats the Universum class and classes of interest differently.
We apply closed decision boundaries to classes of interest and designate the area
outside all closed boundaries in the feature space as the space of the Universum
class. Specifically, we formulate the closed boundaries as arbitrary shapes, propose
a strategy to estimate the probability of the Universum class according to its unique
property rather than the within-class sample distribution, and propose a boundary
learning loss to learn decision boundaries based on the balance of misclassified
samples inside and outside the boundary. By conforming to the natural properties
of the Universum class, our method improves both accuracy and robustness of
classification models. We evaluate our method on 6 state-of-the-art works in 3
different tasks, and the F1 score/accuracy of all 6 works is improved. Experimental
results also indicate that our method has significantly enhanced the robustness
of the model, with the largest absolute F1 score improvement of over 8% on the
robustness evaluation dataset. Our code will be released on GitHub.

1 INTRODUCTION

In classification-based tasks of NLP, quite often we encounter a class named as other class, miscel-
laneous class, neutral class or outside (O) class. Such a class is a collection of samples that do not
belong to any class of interest, such as samples of no relation class in relation extraction task. We
adopt the terminology in (Weston et al., 2006) to designate all such classes as the Universum class
(U). Universum class exits in various classification-based problems in NLP, such as relation extraction
(RE) (Zhang et al., 2017), named entity recognition (NER) (Tjong Kim Sang & De Meulder, 2003),
sentiment analysis (SA) (Tjong Kim Sang & De Meulder, 2003), and natural language inference
(NLI) (Bowman et al., 2015). To distinguish the Universum class and the rest of the classes, we call
the classes of interest as target classes (T). The set of all classes (A) in training and testing data can
be expressed as A = U ∪ T

• Universum class: A collection of samples that do not belong to any class of interest.
• Target class: A class of interest in the task, i.e., one of the classes other than the Universum

class.

The sample compositions of the Universum class and target classes are usually very different. Figure
1(a) provides some samples of a target class (entity-destination) and the Universum class (other) in
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relation extraction. From the examples, we can observe that the entity-destination samples adhere to
an intrinsic pattern: an entity goes somewhere. However, the three examples of the other relation
type are vastly dissimilar and do not exhibit any common intrinsic pattern. In fact, the Universum
samples are labeled according to an extrinsic pattern: they do not belong to any of the predefined
target classes.

We further highlight the differences between the Universum class and target classes in two properties.
(1) Heterogeneity: The universum class is composed of heterogeneous samples, which may form
multiple clusters in the feature space of the test set, as illustrated by the green samples in Figure
1(b). This is because the Universum class, as the class name “other” implies, contains all potential
implicit classes that are not explicitly defined in the task. For example, in the other samples given in
Figure 1(a), implicit classes may include the entity-parallel relationship, the entity-fill relationship,
and the entity-narrative relationship. Although such heterogeneous samples are easily mapped into
a compact cluster for the training set, it is problematic for the test set. Since the natural predictive
rule of the Universum class is an extrinsic pattern that does not belong to any target classes, the
model is more likely to fit the noise in the Universum class by memorizing various peculiarities of
intrinsic heterogeneous samples rather than finding the general predictive rule. Considering the data
distribution of the test set differs from the training set, only memorizing various peculiarities can
easily lead to overfitting and result in an accuracy drop. Moreover, the lack of robustness is another
consequence of inability to find the extrinsic predictive rule for the Universum class.
(2) Lack of Representativeness in Training Data: The Universum class is the complementary set
of predefined target classes in the task. Therefore, it contains all possible implicit classes, i.e., classes
not explicitly defined in the task but may appear in the real world. In this case, Universum samples in
the training data are unable to sufficiently represent all possible patterns of the genuine distribution
of the Universum class. As depicted in Figure 1(b), gray samples represent Universum samples in the
test set that are not represented by the training data. Classifiers with open boundaries are prone to
misclassifying unseen samples in the test set that is not represented by the training data.

Despite the substantial difference between the target classes and the Universum class, this issue has
long been neglected by the NLP research community. The majority of works (Zhu & Li, 2022; Ye
et al., 2022; Wan et al., 2022; Pouran Ben Veyseh et al., 2022; Tian et al., 2021; Fu et al., 2021; Li
et al., 2021b) treat the Universum class and target classes equally. Typically, a linear layer and a
softmax function are applied at the end of the model to generate open decision boundaries, which we
believe are inappropriate for tasks containing the Universum class.

How to take into account the different properties of the Universum class and target classes in classifier
design? In this work, we propose a closed boundary learning method for classification-based tasks
with the Universum class. Traditional methods often adopt open boundary classifiers since the
problem is under the closed-world assumption. However, the open decision boundaries can easily
misclassify Universum samples, as illustrated in Figure 1(c). Therefore, we propose to use closed
boundary classifiers as shown in Figure 1(d). We constrain the space of target classes to be closed
spaces and designate the area outside all closed boundaries in the feature space as the space of the
Universum class. This treatment perfectly fits the nature of the Universum class: a sample is marked
as the Universum if it does not belong to any target class during labeling. The aforementioned two
properties are also well addressed in this way.

The main contributions of this work are summarized as follows:

• We bring attention to an important issue that is frequently neglected in classification-based
NLP tasks like NER, RE, SA, and NLI: the Universum class, such as the other class, exhibits
very different properties from target classes and should be treated differently.

• Methodologically, we generate closed boundaries with arbitrary shape, which include the
commonly used spherical-shaped boundary as a special case. In addition, we leverage the
information of both target classes and the Universum class to learn the decision boundary.
We propose a boundary learning loss to generate the boundary based on the balance of
misclassified Universum samples and the target class samples. In contrast to the intuitive
two-step pipeline method, where Universum identification and multi-class classification may
lead to error propagation, we develop a strategy to estimate the probability of the Universum
class without relying on its intrinsic sample distribution and learn the classification of the
Universum class and target classes jointly.
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(a)

(b) (c) (d)

Figure 1: Illustration of distinction between the Universum class. (a) Samples selected from the
SemEval 2010 Task 8 dataset on relation extraction. (b) The distribution of target classes (class 1, 2,
3) and the Universum class (class 4). In particular, the gray samples represent Universum samples in
the test set that are not represented by the training data. (c) The open decision boundaries obtained by
traditional classifiers. (d) The arbitrary closed boundaries obtained by our proposed method.

• We apply our closed boundary learning framework to 6 state-of-the-art (SOTA) works in
3 different tasks with Universum class. In all 6 experiments, the accuracy or F1-score
is improved over the original work. Experimental results further show that the enhanced
accuracy is attributed to the improvement of both the Universe class and the target class.

• By conforming to the natural properties of the Universum class, our method provides a more
reasonable way of learning and enhance the robustnessof the model as well. Experimental
results indicate that the model’s robustness has been significantly enhanced by our method,
with a largest absolute F1 score improvement over 8% on the robustness evaluation dataset.

2 RELATED WORKS

2.1 CLASSIFICATION TASKS WITH THE UNIVERSUM CLASS

The Universum class widely exists in classification based tasks in NLP, such as relation extraction
(Zhang et al., 2017), named entity recognition (Tjong Kim Sang & De Meulder, 2003), and sentiment
analysis (Jiang et al., 2019), as summarized in Table 1. It should be noted that the span-based methods
(Zhu & Li, 2022; Li et al., 2021a) enumerate all possible spans and classify the entity from the
whole set of spans, which introduces an extra other class. Despite the heterogeneity and lack of
representativeness of the Universum class, current works (Zhu & Li, 2022; Wan et al., 2022; Fu
et al., 2021; Tian et al., 2021; Chen et al., 2021; Li et al., 2021b; 2020; Yu et al., 2020) solve the
classification problems containing the Universum class as normal multi-class classification problems
and treat the Universum class and target classes equally.

2.2 CLOSED BOUNDARY LEARNING METHODS

Closed boundaries are often adopted in research fields of out-of-distribution (OOD) detection (Gomes
et al., 2022; Ren et al., 2021; Chen et al., 2020), open set recognition (Zhang et al., 2021; Liu et al.,
2020), anomaly detection (Zong et al., 2018), and outlier detection (Sharan et al., 2018; Sugiyama &
Borgwardt, 2013). We adopt the terminology of generalized OOD detection (Yang et al., 2021b) to
encompass these problems and analyze the differences.
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2.2.1 DIFFERENCE IN PROBLEM SETTING

The problem we raised in this paper lies in the intersection of open-world and closed-world
assumptions. Classification tasks can be categorized into problems based on closed-world assumption
and open-world assumption (Yang et al., 2021b). The classification problem with the Universum
class shares similarities and differences with both assumptions. The tasks highlighted in this paper
are treated under the closed-world assumption. Nevertheless, the Universum samples in these tasks
are analogous to OOD samples in open-world assumption. On the other hand, the problem we raised
differs significantly from open-world problems. This is because the OOD samples are not available
in the training data in generalized OOD detection problems, whereas a considerable number of
Universum samples are included in the training data in our problem setting. The information of
existing Universum samples is important to generate accurate decision boundaries in our problem.

2.2.2 DIFFERENCE IN METHODOLOGY

By definition, the OOD detection problem assumes that the training data do not contain any OOD
samples. However, a branch of the OOD studies, known as outlier exposure (Katz-Samuels et al.,
2022; Ming et al., 2022; Yang et al., 2021a; Thulasidasan et al., 2021; Mohseni et al., 2020; Hendrycks
et al., 2018), introduces auxiliary outlier data during training. The introduced auxiliary data makes
it close to the format of our raised classification problems with the Universum class. However,
outlier exposure methods are not suitable for our problem. The outlier exposure method mostly
adopts a two-step approach that consists of multi-class classification and OOD identification. The
OOD identification step distinguishes OOD and ID samples based on a score obtained by cross
entropy (Yang et al., 2021a; Thulasidasan et al., 2021; Mohseni et al., 2020; Hendrycks et al., 2018),
and energy function (Katz-Samuels et al., 2022; Ming et al., 2022). However, both cross entropy
and energy function are monotonically varying. As a result, the decision boundary derived from
a threshold score of the monotonically varying function is an open boundary, which leaves the
heterogeneity and representativeness issues we pointed out in this paper still unresolved. In addition,
the two-step approach will also suffer from error propagation.

From a methodological point of view, our work is also different from the works in generalized OOD
using closed boundaries. In generalized OOD studies, the closed boundaries are formulated by the
classic density-based method (Pidhorskyi et al., 2018; Hu et al., 2018), one-class classification method
(Reiss et al., 2021; Ruff et al., 2018), or distance-based method (Gomes et al., 2022; Sun et al., 2022;
Zhang et al., 2021; Zaeemzadeh et al., 2021; Shu et al., 2020). The distance-based methods are limited
to spherical boundary shapes but our method can generate arbitrary shape boundaries. The one-class
classification method formulates only one closed boundary between positive and negative samples
while our work generates closed boundaries for every target class. Finally, only positive samples
are used to learn decision boundaries in density-based method, while both target class samples and
Universum samples are used in our work.

Table 1: The tasks and datasets that the Universum class exists.

Task Dataset Label Name Proportion
Relation Extraction SemEval 2010 Task 8 (Hendrickx et al., 2019) Other 17.4%
Relation Extraction TARCED (Zhang et al., 2017) No relation 79.5%

Named Entity Recognition CoNLL-2003 (Tjong Kim Sang & De Meulder, 2003) Miscellaneous 14.6%
Named Entity Recognition (span

based method) CoNLL-2003 (Tjong Kim Sang & De Meulder, 2003) Other >90%

Aspect Category Sentiment Analysis MAMS (Jiang et al., 2019) Neutral 43.4%

3 METHOD

Problem Definition: The goal of our proposed method is to learn closed decision boundaries for
target classes and jointly classify the Universum samples and target samples. In order to make
our proposed method compatible with most existing classification methods, the starting point of
our method is the representations of the final layer of classification models, which is a linear layer
that maps data from high-dimensional feature space to a lower-dimension space. We denote the
sample representations of the final linear layer as H = {h0,h1, . . . ,hN−1} ∈ RN×l , where N is
the number of samples, and l is the output dimension of the linear layer.
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3.1 DEFINING THE UNIVERSUM CLASS

Universum class exists in many tasks and datasets as we summarized in Table 1. Notably, the
Universum class has various names such as other and miscellaneous, etc. In sentiment analysis,
the neutral class can be considered as the Universum class because the word neutral is defined as
“having no strongly marked or positive characteristics or features”, which means the neutral class is
a collection of all samples without strong emotions. Similarly, the no relation class in the relation
extraction task can be considered as the Universum class.

3.2 PRETRAINING

Our method estimates the probability distribution of target classes based on their sample distributions.
In order to avoid estimation based on randomly initialized weight and speed up the learning process,
we employ N-pair loss (Sohn, 2016) for pretraining, making sample representations be of small
intra-class distance and large inter-class distance. Notably, in accordance with the nature of the
Universum class, we make a change that does not require the model to reduce the intra-class distance
of Universum samples during the pretraining.

3.3 GENERATING CLOSED BOUNDARY OF ARBITRARY SHAPE FOR TARGET CLASSES

(a) (b)

Figure 2: Illustration of generating arbitrary shape bound-
aries.

Existing closed boundary classification
methods mainly use spherical shape
boundaries (Zhang et al., 2021; Liu et al.,
2020); however, we argue that the spher-
ical shape may not be the optimal solu-
tion because data samples are unlikely to
perfectly fit into a sphere, and a spher-
ical shape boundary may produce mis-
classifications. We adopt the Gaussian
mixture model (GMM) and the threshold
value to generate boundaries with arbi-
trary shapes.

3.3.1 GAUSSIAN MIXTURE MODEL

We apply GMM with m components to estimate the class conditional probability distribution for
each target class Ci, and further derive the joint probability estimation for each class.

p(hk | Ci) =

m∑
i=1

πiN (hk;µi,Σi) (1)

p(hk, Ci) = p(hk | Ci)p(Ci) (2)

where hk denotes the input feature vector of the kth sample, µi and Σi are the estimated mean vector
and covariance matrix of the ith Gaussian components, respectively. πij is the non-negative mixture
weight under the constraint that

∑m
j=1 πij = 1. µi, Σi, and πij are all learnable parameters in the

model.
It should be noted that the accuracy of GMM estimation is positively related to the number of samples
used (Psutka & Psutka, 2019), which should be at least equal to the dimension of the data. Therefore,
our method is not suitable for zero-shot or few-shot settings. Nevertheless, given that the dimension
l in our method is very small and the initialized GMM parameters will be fine-tuned by the neural
network, constraints on sample size can be easily overcome on the most classification tasks.
According to Bayes Theorem, the posterior probability p(Ci | hk) =

p(hk|Ci)p(Ci)
p(hk)

. Since we are

interested in argmaxCi

p(hk|Ci)p(Ci)
p(hk)

, the decision can be made based on joint probability p(hk, Ci).

3.3.2 ARBITRARY SHAPE BOUNDARY

Geometrical View: Inspired by the DENCLUE algorithm in generating arbitrary shape clusters
(Hinneburg & Keim, 1998), we introduce a threshold value ξi for each target class. A closed boundary
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of arbitrary shape is formulated by points satisfying p(h, Ci) = ξi. Figure 2 is an illustration of
formulating an arbitrary shape boundary in a three-dimensional space. A sample is assigned to class
Ci if it is located inside the closed boundary. If the number of components of the GMM is set to one,
then the shape of the boundary becomes spherical, with its center and covariance matrix specified by
µ0 and Σ0, respectively. In this sense, the commonly used spherical shape boundary (Zhang et al.,
2021; Liu et al., 2020) is a special case of our method.
Notably, the threshold values Ξ = ξ1, ξ2, · · · , ξn−1 are a learnable parameters, which eliminates
the laborious process of hyperparameter tunning. Specifically, it is learned based on the balance of
misclassified samples inside and outside the boundary through our proposed boundary learning loss,
which is introduced later.

Probabilistic View: The above geometrical process can be described as:{
hk ∈ Ci if p(hk, Ci) > ξi
hk /∈ Ci if p(hk, Ci) ≤ ξi

(3)

3.4 EXTRINSIC RULE-BASED PROBABILITY ESTIMATION FOR THE UNIVERSUM CLASS

Our method learns the Universum class and target classes jointly to prevent error propagation by
intuitively classifying target classes and the Universum class in two steps. However, unlike target
classes that estimated by intrinsic sample distribution, estimating the probability distribution of the
Universum class must be based on an extrinsic rule that does not belong to any target classes. We
propose an extrinsic rule-based probability estimation method to address this issue.

3.4.1 MOTIVATION AND THE ESTIMATION

We classify the samples of Universum class and target classes based on the following rules in this
work:

• Rule 1: A sample is assigned to the Universum class if it is not located inside any of the
closed boundaries of target classes.

• Rule 2: A sample is assigned to the target class with the highest p(hk, Ci) if it is located
inside at least one closed boundary.

An intuitive way to incorporate the above rules is a two-step method consists of Universum class
detection and target classes classification. However, such a pipeline method has the issue of error
propagation. Another way is to use the distance relationship between the sample point and centers
of target classes. However, the distance, e.g., Mahalanobis distance, is only a simple special case
obtained from Section 3.4. In addition, the distance-based method is incompatible with cross-entropy
loss, which has the benefit of being directly related to accuracy. Finally, general probability estimation
methods, such as the GMM model, exploit intrinsic sample distributions, which fail to overcome the
special properties of the Universum class and do not conform to Rule 1. Therefore, a strategy need
to be devised to convert Rule 1 into a probability expression, while simultaneously facilitates the
learning of the neural network.
For compliance with Rule 1, the estimated probability of the Universum class must satisfy the
following two conditions: for Universum class samples: ∀i : p(hk, U) > p(hk, Ci) and for target
class samples: ∃i : p(hk, U) < p(hk, Ci). We can leverage the relationship between ξi and p(hk, Ci)
defined in Equation 3 to construct the estimation of p(hk, U) that satisfies the above two conditions.
In addition, to enhance the learning of neural networks, the gradient obtained from an Universum
sample should move this sample away from its closest target class boundary. Therefore, we also
involve max(p(hk, Ci)), the probability of the closest target class of a Universum sample, to guide the
Universum sample move away from target class boundaries. We propose to estimate the probability
distribution of the Universum class as follows:

p(hk, U) = λ
ξ2u

p(hk, Cu)
+ (1− λ)

ξ2v
p(hk, Cv)

(4)

λ =

{
1, p(hk, Cu) > ξu
0, p(hk, Cu) ≤ ξu

,

{
u = argmaxi

p(hk,Ci)
ξi

v = argmaxi p(hk, Ci)
(5)

ξi is the threshold value of target class i, and u, v ∈ {1, 2, . . . , n− 1}.
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3.4.2 ANALYSIS OF THE PROPOSED ESTIMATION

For estimated probability of the Universum class in Equation 4, two cases are possible.
Case 1: p(hk, Cu) > ξu, i.e., sample hk is located inside at least one closed boundary.
In this case, we have

p(hk, U) = ξu
ξu

p(hk, Cu)
< ξu < p(hk, Cu)

Since p(hk, U) < p(hk, Cu), the model will select the target class i with the highest p(hk, Ci),
which fits perfectly with Rule 2.
Case 2: p(hk, Cu) ≤ ξu, i.e., the sample hk distribute outside every closed boundary.
Combining the condition of case 2 and Equation 5, we have

∀i ∈ {1, 2, . . . , n− 1} :
p(hk, Ci)

ξi
≤ p(hk, Cu)

ξu
≤ 1

i.e.,∀i ∈ {1, 2, . . . , n− 1} : p(hk, Ci) ≤ ξi (6)

Combining Equation 5 and Equation 6, we can derive that:

∀i ∈ {1, 2, . . . , n− 1} : p(hk, U) = ξv
ξv

p(hk, Cv)
≥ ξv ≥ p(hk, Cv) ≥ p(hk, Ci) (7)

In case 2, from Equation 6 and Equation 3, we can learn that sample hk is located outside all closed
boundaries of target classes. In this case, the probability of Universum class p(hk, U) obtains the
largest value, as shown in Equation 7. Therefore, Rule 1 is perfectly expressed by the proposed
probability estimation of the Universum class.

3.5 BOUNDARY LEARNING LOSS

To facilitate the learning of the closed decision boundaries, we propose a boundary learning loss
below. The decision boundary should be adjusted to the balance of misclassified samples inside and
outside the boundary. For example, if samples of class j distribute inside the boundary of class i, then
the boundary should contract to exclude such samples and vice versa.

Lbl =
1

M

n−1∑
i=1

∑
k∈O

wk log
ξi

p(hk, Ci)
+
∑
l∈I

wl log
p(hl, Ci)

ξi


M is the total number of misclassified samples for all boundaries, n is the number of classes, O
and I denote the set of training samples misclassified outside and inside the decision boundary i,
respectively. The weights in the loss function are wk = p(hk,Ci)

p(hk,Ci)+ξi
, wl =

ξi
p(hl,Ci)+ξi

, and they
are detached and cut off the gradient. Weights wk and wl have smaller values for samples located
far from the boundary, enabling the boundary to be adjusted primarily on the basis of easily and
semi-hard negatives instead of hard negatives.
During training, we sum the cross-entropy loss and boundary learning loss for optimization. The
boundary learning loss forces misclassified samples to be distributed in the correct region, which
works well with cross-entropy loss. Moreover, the boundary learning loss is defined as the sum of
each boundary’s the false positive (FP) samples and false negative (FN) samples. For instance, if
there are considerably more FN samples than FP samples, the loss caused by FN samples will be
larger, causing the boundary to adjust to eliminate more FN samples and balance the number of FN
and FP samples. Hence, the boundary learning loss can further improve the F1 score.

4 EXPERIMENTS

4.1 DATASETS AND BASELINES

Our proposed method is evaluated on six different SOTA models on three classic datasets in
NLP, including SemEval 2010 Task 8 (Hendrickx et al., 2019), MAMS (Jiang et al., 2019), and
CoNLL-2003 (Tjong Kim Sang & De Meulder, 2003). The proportion of Universum samples in the
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Table 2: The overall performance of applying closed boundary learning on baseline models.

Task Method F1/accuracy p-value

NER

SpanNER (Fu et al., 2021) 92.09±0.16
< 0.001SpanNER (Fu et al., 2021) + OECC 91.22± 0.12

SpanNER (Fu et al., 2021) + COOLU 93.50±0.13
BS (Zhu & Li, 2022) 92.53±0.02

< 0.01BS (Zhu & Li, 2022) + OECC 91.88± 0.15
BS (Zhu & Li, 2022) + COOLU 93.17±0.13

RE

A-GCN (Tian et al., 2021) 88.67±0.18
< 0.01A-GCN (Tian et al., 2021) + OECC 88.00± 0.09

A-GCN (Tian et al., 2021) + COOLU 89.33±0.20
TaMM (Chen et al., 2021) 88.76±0.23

< 0.01TaMM (Chen et al., 2021) + OECC 88.17± 0.18
TaMM (Chen et al., 2021) + COOLU 89.47±0.21

ACSA

AC-MIMLLN (Li et al., 2020) 76.13±0.29%
< 0.01AC-MIMLLN (Li et al., 2020) + OECC 74.02± 0.68%

AC-MIMLLNN (Li et al., 2020) + COOLU 77.35±0.42%
SCAPT (Li et al., 2021b) 84.13±0.19%

< 0.01SCAPT (Li et al., 2021b) + OECC 83.36± 0.27%
SCAPT (Li et al., 2021b) + COOLU 85.06±0.23%

three datasets are 17.4% (highest in 19 classes), 90%, and 43.4%. respectively. It is noteworthy that
the ratio of Universum class in the NER task is not calculated from the miscellaneous samples in the
dataset but from the other samples which are introduced by the span-based method (Zhu & Li, 2022;
Fu et al., 2021).
We evaluate the effectiveness of our proposed ClOsed bOundary Learning for classiciation with the
Universum class (COOLU) on 6 SOTA works, including SpanNER (Fu et al., 2021), BS (Zhu &
Li, 2022), A-GCN (Tian et al., 2021), TaMM (Chen et al., 2021), AC-MIMLLN (Li et al., 2020),
and SCAPT (Li et al., 2021b). Moreover, OECC (Papadopoulos et al., 2021), a recent outlier
exposure method for OOD, is also applied to these works for comparison with our method. The
implementation details are in the Appendix.

4.2 OVERALL EXPERIMENTAL RESULTS

Table 2 shows the overall results for all 6 models. Models with our proposed closed boundary
learning outperform the original models with open classifiers on NLP tasks containing the Universum
class. The overall accuracy or F1 score is improved on all six models we evaluated, with the largest
improvement from 92.09 to 93.50 in F1 score. In addition, statistical tests between the accuracy/F1
score of the baseline models and our method. indicate that the improvement brought about by our
COOLU method is statistically significant.
Our proposed COOLU method also perform better than OECC (Papadopoulos et al., 2021). To our
knowledge, there has been no work special designed for Classifying with the Universum class. OECC
as an outlier exposure method, although its problem setting is the closest to ours, is still not suitable.
The decrease in accuracy caused by applying OECC is due to: (1) error propagation resulting from
outlier detection and multi-class classification in two steps and (2) instability of manually setting
thresholds.

4.3 A CLOSER LOOK AT THE MICROF1, PRECISION AND RECALL

The improvement of overall performance is not only attributed to the improvement of the Universum
class, but also to the improvement of all classes as a whole. We show the micro F1 score of each
class by applying closed boundary learning on SpanNER in Table 3. The micro F1 score of other
class, which is introduced by the span-based method, is not listed in the table because the overall
F1 score of the task depends on the F1 score of the four entity types below. The micro F1 score is
improved in all classes, with the absolute improvement of 2.43, 0.29, 1.31, and 4.02, respectively.
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Table 3: The micro F1 score of SpanNER (Fu et al., 2021) with and without closed boundary learning.

Method ORG PER LOC MISC
P R F1 P R F1 P R F1 P R F1

SpanNER 89.92 89.81 89.87 97.74 96.47 97.11 93.05 93.88 93.46 78.99 82.83 80.87
SpanNER + COOLU 94.29 90.30 92.30 98.54 96.29 97.40 96.17 93.41 94.77 88.02 81.97 84.89

Table 4: Comparison of model’s robustness with and without closed boundary learning.

CrossCategory OOV SpellingError AppendIrr
SpanNER 77.06 75.14 76.09 87.34

SpanNER + COOLU 81.39 83.15 81.12 89.89

InsertClause SwapEnt SpellingError AppendIrr
A-GCN 77.84 86.8 77.36 86.59

A-GCN + COOLU 80.17 88.69 78.71 88.22

In addition, our proposed closed boundary learning significantly improves the precision score of all
classes, with the largest absolute gain being 9.03. We also observe a slight drop in recall as a result
of replacing open decision boundaries with closed ones. But the increase in precision considerably
outweighs the decrease in recall. The relatively poor performance of the baseline method in precision
score further proves our argument that the Universum class is easily misclassified if its special
properties are neglected. The improvement in precision score indicates that the proposed closed
decision boundaries of target classes can effectively avoid misclassification of the Universum class
into target classes. Simultaneously, as fewer Universum samples are misclassified, more Universum
samples are correctly identified.

4.4 MODEL ROBUSTNESS EVALUATION

What’s the relationship between accuracy and robustness? Some studies theoretically identify a
trade-off between robustness and accuracy (Tsipras et al., 2019; Zhang et al., 2019; Raghunathan et al.,
2020), another finding shows no inherent trade-off (Yang et al., 2020). Regardless, it is challenging
to improve both accuracy and robustness of the model, which is achieved by our proposed method.

We evaluate the robustness of the model based on TextFlint (Wang et al., 2021), a robustness evaluation
toolkit for NLP tasks. Specifically, TextFlint generate perturbations of the test data by universal
transformations and task-specific transformations, and the robustness of the model is evaluated using
the transformed test dataset. The terms “CrossCategory”, “OOV”, “SpellingError”, etc. in Table 4 are
different ways of transforming the test data. Detail information of these transformation methods are
illustrated in Appendix B.3. It can be observed from the Table 4 that the robustness of SpanNER (Fu
et al., 2021) improved significantly by applying our proposed COOLU method, with the improvement
of absolute F1 score of 4.44, 8.01, 5.03, and 2.55, respectively. In addition, although the improvement
of the F1 score in A-GCN (Tian et al., 2021) is less than 1, the robustness of the model is considerably
improved. The absolute F1 score on robustness evaluation datasets are improved at 2.33, 1.89,
1.35, and 1.63, respectively. The improvement in robustness validates our argument that our method
conform to the natural properties of the Universum class and successfully teach the model the extrinsic
predictive rule rather than overfitting to various peculiarities of heterogeneous Universum samples.

5 CONCLUSION

In this work, we highlight an overlooked issue in classification-based NLP tasks that the Universum
class is treated equally with target classes despite their significant differences. We propose a closed
boundary learning method COOLU as a solution , which conforms the natural properties of the
Universum class. Specifically, we generate closed boundaries with arbitrary shapes, develop an
extrinsic rule-based strategy to estimate the probability of the Universum class, and propose a
boundary learning loss to adjust decision boundaries based on the balance of misclassified samples
inside and outside the boundary. Experimental results demonstrate that our proposed COOLU method
improves the accuracy of all SOTA baseline models and simultaneously enhances model’s robustness.
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A COMPACTNESS OF THE UNIVERSUM CLASS OF THE TEST SET

We evaluate the compactness of the Universum class and target classes on the test data and depict the
result in Figure 3. The representation of test samples after learning with open boundary classifiers
by SpanNER (Fu et al., 2021) is used for evaluation. We evaluate the compactness based on the
root-mean-square standard deviation (RMSSD) (Sharma, 1996), and the mean square distance (MSD)
(Xie & Beni, 1991), which are commonly used in clustering studies to evaluate compactness of a
cluster. The smaller the RMSSD or MSD, the better the compactness. It is illustrated in Figure 3 that
the compactness of the “OTHER” class is significantly worse than target classes. Notably, the class
with the second-worse compactness is the “MISC” class, i.e., the “miscellaneous” class, which is
also a type of the Universum class.
The compactness evaluation results reflect our view that although the heterogeneous samples are
easily mapped into a compact cluster for the training data, it is problematic for the test data. Since
the natural predictive rule of the Universum class is an extrinsic pattern that not belong to any target
classes, the model is more likely to fit the noise in the Universum class by memorizing various
peculiarities of intrinsic heterogeneous samples rather than finding the general predictive rule. In
this case, it is hard for the model to map all test samples of the Universum class into the compact
space learned from training. The Universum samples that deviate from the original compact space
are easily misclassified. On the other hand, target classes do not encounter this problem because the
general predictive rule for target classes is intrinsic.
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Table 5: The pretrained models chosen for each baseline model and the corresponding F1
score/accuracy reported in the original paper.

Method Pretrained Model Reported F1/accuracy
SpanNER (Fu et al., 2021) BERT-base 92.28

BS (Zhu & Li, 2022) RoBERTa 93.65
A-GCN (Tian et al., 2021) BERT-base 89.16
TaMM (Chen et al., 2021) BERT-base 89.18

AC-MIMLLN (Li et al., 2020) Glove 76.42
SCAPT (Li et al., 2021b) BERT-base 85.24

(a) (b)

Figure 3: The compactness evaluation of the Universum class and target classes of the test data of
NER task.

B IMPLEMENTATION DETAILS

B.1 BASELINE MODELS

We reproduce the baseline models based on the officially released source code, and apply closed
boundary learning on the source code. All reported results are the average of three runs. It should
be noted that some results of baseline models are slightly different from those given in the original
papers due to the variations in random seeds and package versions when reproducing baseline models
from their officially released codes. Nevertheless, baseline models and models with closed boundary
learning are fairly compared in our work under the same random seed and deep learning environment.
In the six baseline models we selected, different results based on multiple language models are often
reported in one work. We choose one of the pretrained models used in each work and reproduce the
baseline models. The pretrained language model we used in each baseline and their reported results
are summarized in Table 5.

B.2 TRAINING PROCESS

During pretraining process, all parameters of the original model θ are learned. We employ GMM
estimation on training data after pretraining and obtain the initial value of µi, Σi, and πij , where
i ∈ {1, 2, · · · , n − 1}, j ∈ {1, 2, · · · ,m}. n is the number of classes, and m is the number of
GMM components. We typically select m = 4 in our experiments. The threshold values ξi is
initialized around the a quantile of p(hk, Ci) values (k ∈ {0, 1, · · · , Ni − 1}), where a is the
accuracy or F1 score of the original model. With our extrinsic rule-based probability estimation
for the Universum class, we obtain [p(hk, C1), p(hk, C2), · · · , p(hk, Cn−1), p(hk, U)]. Then, the
original model parameters θ, GMM parameters µi, Σi, πij and threshold values ξi are learned by
cross-entropy loss and our proposed boundary learning loss.
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Table 6: The comparison of our method and the method optimizing F1 score.

Task Method F1

NER
SpanNER (Fu et al., 2021) 92.09
SpanNER (Fu et al., 2021) + MLE 92.43
SpanNER (Fu et al., 2021) + COOLU 93.50

RE
A-GCN (Tian et al., 2021) 88.67
A-GCN (Tian et al., 2021) + MLE 88.61
A-GCN (Tian et al., 2021) + COOLU 89.33

ACSA
AC-MIMLLN (Li et al., 2020) 76.13%
AC-MIMLLN (Li et al., 2020) + MLE -
AC-MIMLLNN (Li et al., 2020) + COOLU 77.35%

B.3 ROBUSTNESS EVALUATION

We evaluate the robustness of the model based on TextFlint (Wang et al., 2021), a robustness evaluation
toolkit for NLP tasks. There are two kinds of transformations provided by TextFlint to generate
the robust evaluation dataset, namely universal transformation and task-specific transformation. We
adopt two universal transformations and two task-specific transformations to the test set of NER
and RE task and generate four robustness evaluation datasets for each task. The terms of different
transformations are explained below.

• “SpellingError”: Universal transformation. Brings slight errors to words in the test samples.

• “AppendIrr”: Universal transformation. Add irrelevant information to test samples.

• “CrossCategory”: Task-specific transformation for NER. Replace the entity spans with
substitutions from a different category.

• “OOV”: Task-specific transformation for NER. Replace the entity spans with substitutions
out of vocabulary.

• “InsertClause”: Task-specific transformation for RE. Change sample sentences by appending
adjuncts from the aspect of dependency parsing.

• “SwapEnt”: Task-specific transformation for RE. Swap the named entities in a sentence into
entities of the same type.

Specifically, the models are trained and validated on the original training set and validation set, but
the test set is transormed into the robustness evaluation dataset by the transformations proposed by
TextFlint. Then, modelw are tested on the transformed test set.

C COMPARISON WITH THE METHOD OPTIMIZING F-MEASURES

We also compare our method with the F1 score optimization method. Specifically, we adopt the
MLE method (Ye et al., 2012) on baseline models and make comparison with our proposed COOLU
method. The result is summarized in Table 6. Although method optimizing F1 score is unrelated to
the Universum class, it is another way to boost model’s performance. Our model also out performs
the MLE method in both NER and RE tasks. In addition, the MLE method is cannot be employ
on sentiment analysis task, which is evaluated by accuracy. It is another limitation of the F1 score
optimization method compared to our work.

D ABLATION STUDY ON N-PAIR LOSS PRETRAINING

In our method, N-pair loss is adopted for pretraining to learn initial representations and to speed up
the training process To demonstrate the effectiveness of our closed boundary learning method and
to rule out the possibility that the improvement of our model is due to the N-pair loss pretraining
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Table 7: The effect of pretraining on SpanNER (Fu et al., 2021) and SCAPT (Li et al., 2021b).

Method F1/accuracy
SpanNER 92.09
SpanNER + N-pair pretraining 92.05
SpanNER + COOLU (N-pair pretraining) 93.50
SCAPT 84.13%
SCAPT + N-pair pretraining 84.16%
SCAPT + COOLU (N-pair pretraining) 85.06%

Figure 4: Illustration of generating arbitrary shape boundaries.

process, we add an additional pretraining step to baseline models of SpanNER (Fu et al., 2021) and
SCAPT (Li et al., 2021b). Table 7 indicates that the pretraining process alone cannot improve the
accuracy of the original baseline models. The improvement brought about by our proposed closed
boundary learning is not a result of the pretraining step but the result of the entire system.

E THE IMPACT OF THE FINAL LAYER DIMENSION

The last layer’s dimensionality can affect the performance of the model. Recalling the classic Hughes
phenomenon (Hughes, 1968) that the model accuracy is monotonically increasing first and then
monotonically decreasing with the dimension of data, the dimension of the final layer may be chosen
to boost model performance.
We investigate the effect of last layer dimension on the accuracy of the model on the SpanNER (Fu
et al., 2021) with closed boundary learning and present the result in Figure 4. The F1 score of the test
set grows with increasing of dimensions and reaches a maximum value of 93.88 when the dimension
is seven, and then decreases with the dimension. The trend fits well with the Hughes phenomenon
Hughes (1968). Our method is quite robust with the dimension and the overall result of SpanNER +
COOLU reported in Table 2 is set as ten rather than the optimal value.
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