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Abstract

Large Language Models (LLMs) have shown strong potential for recommendation
by framing item prediction as a token-by-token language generation task. However,
existing methods treat all item tokens equally, simply pursuing likelihood maxi-
mization during both optimization and decoding. This overlooks crucial token-level
differences in decisiveness—many tokens contribute little to item discrimination
yet can dominate optimization or decoding. To quantify token decisiveness, we
propose a novel perspective that models item generation as a decision process,
measuring token decisiveness by the Information Gain (IG) each token provides in
reducing uncertainty about the generated item. Our empirical analysis reveals that
most tokens have low IG but often correspond to high logits, disproportionately
influencing training loss and decoding, which may impair model performance.
Building on these insights, we introduce an Information Gain-based Decisiveness-
aware Token handling (IGD) strategy that integrates token decisiveness into both
tuning and decoding. Specifically, IGD downweights low-IG tokens during tuning
and rebalances decoding to emphasize tokens with high IG. In this way, IGD moves
beyond pure likelihood maximization, effectively prioritizing high-decisiveness
tokens. Extensive experiments on four benchmark datasets with two LLM bbones
demonstrate that IGD consistently improves recommendation accuracy, achieving
significant gains on widely used ranking metrics compared to strong baselines. Our
codes are available at https://github.com/ZJLin2001/IGD.

1 Introduction

Recommendation systems [[1} [2, 3] play a crucial role in helping users discover relevant and personal-
ized content. With recent advances in Large Language Models (LLMs) [4}, 15} 6], there is growing
interest in leveraging LLMs’ strong language understanding and reasoning capabilities [7} 18, 9]
for recommendation tasks [10, [11} [12} [13} [14} [15], giving rise to a new paradigm known as
LLM4Rec [16} 17, [18]]. In this paradigm, recommendation is typically formulated as a natural
language problem: user history and task context are encoded into a prompt, based on which the LLM
is tuned to generate the top-K recommended items via autoregressive token decoding [[19]]. This
approach has demonstrated strong performance in capturing user intent and generating personalized
outputs [20} 21} 22]].

Despite its promise, we argue that the existing token handling strategy in LLM4Rec does not fully
align with the item generation process in recommendation. The current approach is primarily
likelihood-driven, treating each item token equally and simply focusing on: 1) optimizing token
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likelihood during fine-tuning for data fitting [23| 24} 21]], and 2) maximizing token likelihood during
inference for generation [19, 20]. However, not all tokens are equally important. Some tokens
are more decisive in defining the item, while others serve grammatical or filler functions with low
decisiveness. Low-decisiveness tokens do not reduce uncertainty in item generation, making their
focus less meaningful. Moreover, low-decisiveness tokens may have high logits—such as "ghost
tokens" defined in [19], which have generation probabilities close to 1 for a given prefix. These
tokens can dominate likelihood-maximizing decoding, introducing bias toward items with more such
tokens [19]]. To improve both tuning and decoding, it is crucial to quantify and incorporate token
decisiveness, rather than relying solely on likelihood optimization.

To measure token decisiveness, we introduce a novel perspective that frames token-by-token item
generation in LLM4Rec as a decision process. In this framework, the uncertainty of the recommen-
dation outcome at each generation step is quantified by the entropy [25]] of the item distribution
conditioned on the tokens generated so far. The decisiveness of a token is defined as the reduction in
this uncertainty when selecting the token, i.e., its Information Gain (IG) [[26]. Based on this definition,
we observe that: 1) in the studied real-world datasets, over 50% of item tokens exhibit zero IG; and 2)
under the existing token strategy, LLM4Rec models may be misled by these zero-IG tokens. Specifi-
cally, as shown in Figure 5] models tend to over-optimize zero-IG tokens while under-emphasizing
non-zero-IG tokens during tuning. Furthermore, as shown in Figure 4| low IG tokens, especially
zero-1G tokens, often correspond to high logits, which can bias the likelihood-maximizing decoding
process toward items containing more such tokens.

To incorporate token decisiveness into tuning and decoding, we propose an Information Gain-based
Decisiveness-aware Token Handing (IGD) strategy that goes beyond simply optimizing/maximizing
token likelihood. During tuning, IGD downweights zero-IG tokens to prioritize informative (non-
zero-1G) tokens that aid in item discrimination, enabling more effective learning. At decoding, IGD
increases the influence of high IG tokens along the autoregressive path by adjusting focus toward
their logits, rather than blindly following the likelihood-maximizing principle, thereby reducing bias
toward items dominated by high-logit but low-decisiveness tokens. In this way, IGD reshapes token
importance by incorporating token decisiveness, leading to improved recommendation accuracy. We
evaluate IGD on four benchmark datasets using two LLM backbones. Results demonstrate that IGD
consistently enhances recommendation performance, with average gains of 18.89% in HR@10 and
20.15% in NDCG@10 over strong baselines.

The main contributions are: (1) We emphasize the importance of quantifying and incorporating token
decisiveness in both tuning and decoding, and propose framing the item generation process as a
decision process, defining token decisiveness based on information gain. (2) We introduce IGD,
a simple yet effective token handling strategy that leverages token-level information gain to guide
both tuning and decoding, going beyond mere likelihood optimization/maximization to prioritize
high-decisiveness tokens, thereby enhancing recommendation performance. (3) We conduct extensive
experiments on four benchmark datasets using two LLM backbones. The results show that IGD
consistently improves recommendation performance, achieving significant gains in HR@10 and
NDCG@10 over strong baselines.

2 Preliminary
This section introduces the typical tuning and decoding approaches in LLM4Rec.

2.1 Tuning

To enable next-item prediction using LLMs, supervised fine-tuning (SFT) is usually applied to teach
LLMs to map items to token sequences. Given an input prompt x transformed from user history and
task description, and a list of target item tokens y = (y1,. .., Ym ), the model is trained to minimize
the token-level cross-entropy loss:

E:
t

g(f9(x7y<t);yt)7 (1)
1

m

where fp denotes the LLM with parameters 6, and ¢ is the cross-entropy between the predicted token
distribution and the ground-truth token y; at position ¢.
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Figure 1: Illustration of LLM4Rec autoregressive token generation as a sequential decision process.
As tokens are generated, the entropy of the remaining sequence gradually decreases. The information
gain (IG) quantifies this reduction, e.g., IG(M; S) measures the IG of token "Mario" given prefix
"Super". Tokens shared across many items (e.g., "The") exhibit lower decisiveness with lower IG,
while more decisive tokens (e.g., "Super") lead to larger IG. Tokens with IG=0—such as "of", "Zelda",
"Sword", and "Man"—are referred to as zero-IG tokens.

2.2 Decoding

Autoregressive Decoding. At inference time, the model generates item sequences autoregressively.
The conditional probability of a full sequence y given x is factorized as:

m

p(yle) = [ p(wlz, y<i) )

t=1

This formulation enables step-by-step generation but highly relies on local token-level probabilities.

Beam Search Decoding. During inference, existing methods commonly use beam search to generate
multiple item candidates simultaneously. At each decoding step ¢, the model expands each partial
sequence y<;—1 by considering the top-ranked token candidates, and updates the cumulative score
using:

S(y<t) = S(y<i—1) +logp(ye|z, y<i), (3)

where S(y<;) denotes the log-probability of the sequence prefix y<;, and p(y:|x, y<¢) is the condi-
tional probability of the token in step ¢.

In standard natural language generation tasks, a length penalty is often introduced to avoid overly
long outputs. However, recent work [19] reveals that applying such penalties in recommendation
scenarios tends to favor longer item sequences, introducing bias into the final selection. Therefore,
we follow [[19] and set the length penalty to zero, keeping the score computation purely based on
accumulated log-probabilities as shown above.



3 Token Decisiveness Modeling

3.1 Token Decisiveness Measurement

We model the token generation process in LLM4Rec as a sequential decision-making procedure,
where each autoregressive decoding step progressively refines the target item from the full item space.
Let Z denote the full item collection, and Z¥<t C 7 represent the set of candidate items consistent
with the generated token prefix y<; at step ¢. Following information theory [27]], we quantify the
uncertainty of the recommendation at step ¢ using Shannon entropy [25] over the candidate item
distribution:

H(y<)=— Y pe(Z)logpe(Ty), @
I,e1¥st

where p,.(Z;) denotes the empirical prior probability of item Z; estimated from the training data. The
entropy is computed over the candidate set ZY<t compatible with the current token prefix.

At each step, a new token y; reduces the candidate space. We measure the decisiveness of y; using its
Information Gain (IG) —the reduction in uncertainty it induces:

IG(ys;y<t) = H(y<i—1) — H(y<:) )

This formulation quantifies how much y; contributes to identifying the target item, where a higher IG
indicates greater decisiveness.

3.2 Statistical Analysis on Token Decisiveness

Table 1: Dataset Statistics and zero-IG Token Proportion
Dataset | Items Train  Valid Test | Tokens zero-IG Tokens (%)

CDs 14,239 148,685 18,586 18,587 805,786 450,960 (55.96%)
Games | 11,037 201,613 25,202 25,203 | 2,128,430 1,292,171 (60.71%)
Toys 11,252 112,755 14,095 14,096 | 1,530,370 1,098,070 (71.75%)
Books 41,722 682,998 85,376 85,376 | 7,183,839 5,241,997 (72.97%)

We conduct a statistical analysis of the proposed IG metrics on four public datasets, summarized in
Table [1] First, each item title is tokenized into a sequence of tokens using the Qwen2.5 tokenizer
[28]. Then, we construct a token prefix tree and compute, for each prefix, its corresponding entropy
as well as the IG for each token. All statistics are computed exclusively on the training set. From
Table [T} we observe that zero-IG tokens—tokens that yield no reduction in entropy are predominant,
constituting 55.96% to 72.97% of all tokens across datasets.

3.3 Token-level Biases

To investigate how LLMs interact with token decisiveness, we analyze tuning dynamics and decoding
paths using the D3 [[19] method with the Qwen2.5-1.5B model [28]. In model tuning, we respectively
monitor the tuning loss for zero-IG tokens and non-zero-1G tokens across the training set; In model
decoding, we gather both ground-truth items and top-10 predicted items from the test set, compute
the average entropy of the prefix at each decoding step, and compare the average entropies between
predicted and ground-truth prefixes.

We observe the following biases:
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Figure 4: Relationship between IG values and logits of tokens in decoding. For each dataset, the left
subfigure shows that zero-IG tokens are associated with extremely high logits (close to 0). The right
subfigure illustrates a negative correlation between IG values and logit magnitudes for non-zero-IG
tokens.
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Figure 2: Loss comparison between zero-IG and  Figure 3: Entropy difference in decoding: model
non-zero-I1G tokens in model tuning (epoch 1) prediction vs. ground-truth

Tuning Bias: During model tuning, models tend to over-optimize zero-IG tokens while under-
emphasizing non-zero-IG tokens. As shown in Figure 2] the model rapidly minimizes the loss on
zero-1G tokens, while the loss on non-zero-1G tokens remains relatively high. This imbalance leads
to a biased learned distribution, causing the LLM to favor less decisive tokens. Therefore, a more
effective training approach that emphasizes decisive tokens is necessary.

Decoding Bias: As shown in Figure[d] LLMs tend to assign higher logits to low IG tokens, particularly
those with zero IG. Since beam search selects top-k candidates solely based on token-level logit
scores, these low IG tokens are favored during decoding. As a result, the generated item prefixes
exhibit higher average entropy than the ground-truth prefixes ( Figure[3]), indicating a shift toward
less informative predictions. This reveals a decoding bias, where the model systematically prefers
less decisive tokens due to the likelihood-based decoding objective.

4 Information Gain-based Decisiveness-aware Token Handing (IGD)

To mitigate the token-level bias during both tuning and decoding phases, we propose a two-stage
method, Information Gain-based Decisiveness-aware Token Handling (IGD). Specifically, we lever-
age IG to quantify token decisiveness and adjust training dynamics and inference process accordingly.

IGD-Tuning. To mitigate learning bias towards non-decisive tokens, we introduce a token-level
reweighting scheme into the loss function when tuning LLMs. The revised objective is:

[yl
1
Liap = ¢ D we Ufolw,y<t) v2), (6)
t=1



where w; is a weight assigned to token y;, 2 is the sum of w; across all predicted tokens. w; is
defined as:

if I ; =
wy = /87 1 G(yt7y<t) 0 (7)
1, ifIG(ys;y<t) >0
Here, 8 € [0, 1] is a hyperparameter that controls the penalty on non-decisive tokens, thereby reducing
the learning focus on tokens with zero IG. Setting 8 = 1 recovers the standard cross-entropy loss.

IGD-Decoding. To address decoding bias that favors generic or homogeneous tokens, we modify
the standard beam search scoring function to promote decisive tokens. The revised score at step ¢ is
computed as:

S(y<t) = S(y<i—1) +waq - log p(ye|x, y<t), (®)

with the reweighting factor wy computed as:

wy = 1—a-f}(yt) )

Here, IG(y;) denotes the max-min normalized IG of token y; within the current beam step, scaled
to [0, 1] across all candidates. If all candidates have zero-IG, their normalized values are set to zero.
The hyperparameter @ € [0, 1] controls the strength of decisiveness calibration. When v = 1, the
method falls back to standard beam search scoring.

S Experiments

In this section, we aim to address the following research questions (RQs): RQ1: Does IGD improve
the recommendation accuracy of LLM4Rec? RQ2: How does each stage of IGD contribute to
performance improvements? RQ3: How does IGD influence the tuning and decoding to enhance
performance? RQ4: Is IGD effective across LLMs of different scales and tokenization schemes?

5.1 Experimental Setup

Datasets. We evaluate IGD on four publicly available Amazon review datasets [29]: CDs, Games,
Toys, and Books, covering data from May 1996 to October 2018. Dataset statistics are summarized in
Table[T} Following the preprocessing procedure in the D3 paper [19], we truncate the data based on
timestamps and filter out infrequent users and items, ensuring that each user and each item has at
least 5 interactions.

Compared Methods. For standard recommendation settings, we compare our method
against: (1) two representative sequential recommendation models—GRU4Rec[30], SAS-
Rec[31] and LRURec[32]]; and (2) two state-of-the-art (SOTA) LLM-based recommendation ap-
proaches—BIGRec[20] and D3[19]. Our IGD strategy can be integrated into both BIGRec and D3
for fair comparison. To further evaluate the effectiveness of IGD as a token handling strategy, we
compare it with two token handing baselines that can also be seamlessly integrated into LLM4Rec
frameworks: 1) Position Normalization (Pos), which assigns higher weight to earlier item tokens to
mitigate position bias; and 2) Causal Fine-tuning (CFT) [33]], which builds upon Pos by introducing
an additional causal loss term to enhance the modeling of causal effects at the token level. See
Appendix [A] for detailed descriptions of all baselines. By default, we implement all LLM-based
methods using Qwen2.5-1.5B [28]]. More implementation details, including hyperparameter tuning
settings, can be found in Appendix [B

Evaluation Metrics. To evaluate the model’s top-K recommendation performance, we adopt two
widely-used metrics: Hit Ratio (HR @K) and Normalized Discounted Cumulative Gain (NDCG @K)
[34]. Both metrics are computed under the all-ranking protocol [35], where the model ranks all
candidate items for each user. In our experiments, we report results for K = 5 and K = 10.



Table 2: Recommendation performance of the compared methods evaluated on four benchmark
datasets. H@K and N@K denote HR@K and NDCG @K, respectively. Improvement indicates the
relative performance gain of IGD over the corresponding LLM4Rec backbone without any token
reweighting. The best results are bold.

| CDs | Games
‘ N@5 N@10 H@5 H@10 ‘ N@5 N@10 H@5 H@10

Methods

GRU4Rec 0.0248 0.0288  0.0342  0.0467 | 0.0169  0.0221 0.0261 0.0423
SASRec 0.0477 0.0535 0.0647 0.0824 | 0.0237 0.0290  0.0338 0.0502
LRURec 0.0540  0.0586  0.0680  0.0824 | 0.0298 0.0363 0.0421 0.0621
BIGRec 0.0502  0.0553 0.0623 0.0782 | 0.0317 0.0381 0.0430  0.0631
+Pos 0.0511 0.0566  0.0632  0.0802 | 0.0319 0.0396  0.0423 0.0665
+CFT 0.0509  0.0566  0.0631 0.0810 | 0.0349  0.0414  0.0482  0.0686
+IGD 0.0540  0.0593  0.0669  0.0833 | 0.0423  0.0507  0.0576  0.0833
Improvement | +7.78%  +7.82% +9.33% +9.04% | +33.4% +33.1% +34.0% +32.0%
D3 0.0716  0.0767  0.0882  0.1040 | 0.0415 0.0477  0.0581 0.0773
+Pos 0.0729  0.0779  0.0902  0.1053 0.0429  0.0489  0.0581 0.0767
+CFT 0.0736  0.0786  0.0917 0.1069 | 0.0437 0.0499  0.0613 0.0806
+IGD 0.0748  0.0801 0.0929  0.1092 | 0.0518  0.0598  0.0705  0.0946
Improvement | +4.47%  +4.43% +533% +5.00% | +25.6% +29.2% +26.7% +22.7%

Toys | Books
N@5 N@10 H@5 H@10

Methods ‘
\ N@5 N@10 H@5 H@10

GRU4Rec 0.0200 0.0238 0.0275 0.0392 | 0.0060 0.0078 0.0094 0.0149
SASRec 0.0356 0.0398 0.0473 0.0745 0.0097 0.0123 0.0146 0.0226
LRURec 0.0358 0.0404  0.0463 0.0608 0.0257 0.0277 0.0319 0.0383
BIGRec 0.0553 0.0623 0.0736 0.0951 0.0190 0.0211 0.0245 0.0309
+Pos 0.0561 0.0631 0.0741 0.0958 0.0197 0.0218 0.0255 0.0319
+CFT 0.0561 0.0630  0.0746 0.0961 0.0195 0.0218 0.0250 0.0321
+IGD 0.0577 0.0656  0.0771 0.1014 | 0.0267 0.0294  0.0334 0.0419
Improvement | +4.34% +5.30% +4.76% +6.62% | +41.3% +40.0% +36.9% +36.0%
D3 0.0634 0.0698 0.0833 0.1029 0.0212 0.0228 0.0266 0.0315
+Pos 0.0644 0.0702  0.0850 0.1029 0.0221 0.0237 0.0275 0.0324
+CFT 0.0640 0.0704  0.0840 0.1036 | 0.0219 0.0236  0.0275 0.0327
+IGD 0.0658 0.0726  0.0868 0.1082 | 0.0291 0.0313  0.0356 0.0424
Improvement | +3.79% +4.01% +4.20% +5.15% | +37.3% +37.3% +33.8% +34.6%

5.2 Main Results (RQ1)

In this section, we evaluate whether the proposed IGD method improves overall recommendation
performance. Table [2] summarizes the performance of all compared methods. For token handling
strategies (IGD, CFT, and Pos), we implement each on top of both BIGRec and D3 for comparison.
For traditional baselines such as GRU4Rec and SASRec, we adopt the reported results from the D3
paper [19] to ensure consistency. For LRURec, we utilize the official PyTorch implementation [32]
and evaluate it using our dataset split. Our key observations are as follows:

* IGD achieves notable improvements on both LLM4Rec methods (BIGRec and D3). Specifically, it
yields an average improvement of 20.9% in HR@10 and 21.5% in NDCG @10 on BIGRec, and
18.9% in HR@10 and 20.1% in NDCG@10 on D3.

* Compared with other token-handling methods (Pos and CFT), IGD consistently delivers better
performance across all evaluation metrics on both the LLM4Rec backbone, showing its effectiveness
and generalizability. The superiority of the proposed IGD method can be attributed to its specific
consideration of token decisiveness.

* LLM4Rec methods (BIGRec, D3) clearly outperform traditional recommendation models
(GRU4Rec, SASRec). Although LRURec outperforms them on the CDs and Books datasets,
BIGRec and D3 regain the lead when combined with token reweighting techniques, highlighting
the advantages of leveraging LLMs in recommendation tasks.



Table 3: Ablation results of IGD on D3. Here, “w/0" wy, “w/o w;", and “w/o Both" denote the
removal of decoding reweighting, tuning reweighting, and both components, respectively.

Methods | CDs Games
‘ N@5 N@10 H@5 H@10 N@5 N@10 H@5 H@10
IGD 0.0748 0.0801 0.0929 0.1092 | 0.0518 0.0598 0.0705 0.0946

|
|
w/o wq 0.0751 0.0800 0.0926 0.1077 | 0.0514 0.0594 0.0695 0.0942
w/o wy 0.0718 0.0768 0.0887 0.1041 | 0.0414 0.0484 0.0575 0.0790
w/o Both | 0.0716 0.0767 0.0882 0.1040 | 0.0415 0.0477 0.0581 0.0773
|
|

Methods | Toys Books
‘ N@5 N@10 H@5 H@10 | N@5 N@10 H@5 H@10
IGD 0.0658 0.0726 0.0868 0.1082 | 0.0291 0.0313 0.0356 0.0424

w/o wq 0.0653 0.0719 0.0861 0.1063
w/o wy 0.0640 0.0711 0.0843  0.1060
w/o Both | 0.0634 0.0698 0.0833 0.1029

0.0290 0.0312 0.0355 0.0422
0.0212 0.0229 0.0268 0.0318
0.0212 0.0228 0.0266 0.0315

5.3 Ablation Study (RQ2)

In this section, we analyze the individual contributions of the two stages of IGD reweighting—Tuning
and Decoding—to the overall improvement in recommendation accuracy. The results of the ablation
study are presented in Table[3] We observe the following: (1) Both the tuning-stage and the decoding-
stage reweighting contribute positively to performance gains; (2) The tuning stage brings a more
substantial improvement than the decoding stage. Notably, even when using only the tuning-stage
reweighting (w/o wy), IGD still outperforms the CFT and Pos baselines.

5.4 In-depth Analysis of IGD’s Effect (RQ3)

In this subsection, we investigate how IGD influ-

ences the underlying mechanisms of tuning and CDs

decoding, and how these effects contribute to the s Zero-IG Token Average Loss  Non-zero-IG Token Average Loss
improvement of recommendation performance. A= wio w; - with wy 71 2= wjo w, - with w,
We follow a similar experimental strategy as de- | — ow, 6] — Jrow.

scribed in Section [3.3|to compare tuning loss

and prefix entropy. ]

1

— A=0.049|

1. IGD-Tuning: As shown in Fig. 3] after incor-

porating the weight term wy, the training loss of 0 250 500 750 1,000 0 250 500 750 1,000
zero-IG tokens decreases more slowly, whereas Training Steps Training Steps

the loss for non-zero-IG tokens decreases more Games
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2. IGD-Decoding: As illustrated in Figure [0
the entropy gap between the predicted and
ground truth prefixes is reduced under IGD- 04 i : : | ] :
Decoding, indicating a more decisive and better- 0 ng;’nmggigﬁ,s 1200 ° ng?ningls'igis 100
aligned decoding process. Note that increasing

«a (see Equation (9)) to mitigate decoding bias  Figure 5: Loss comparison on CDs and Games
does not always improve recommendation accu- datasets: IGD-Tuning effect on zero-IG and non-
racy, suggesting a trade-off between maximizing  zero-IG tokens (epoch 1). The results on the other
the likelihood of the token sequence and prior- two datasets are in Appendix |g

itizing high-decisiveness tokens.

1 A=0.033

5.5 Generalizability (RQ4)

To demonstrate the generalizability of our proposed IGD method, we evaluate it under different
tokenization strategies and model scales. Specifically, we conduct experiments using the LLaMA3-8B
model [36], with the prefix tree constructed using the LLaMA3 tokenizer [36]. To enable efficient



Table 4: Performance comparison of D3+IGD vs. original D3 on LLaMA3-8B backbone on CDs and
Games. The results on the other two datasets are in Appendix E}

Methods | CDs | Games

‘ N@5 N@10 H@5 H@10 ‘ N@5 N@10 H@5 H@10
D3 0.0742 0.0790 0.0917 0.1062 | 0.0456  0.0528 0.0611 0.0832
+IGD 0.0791 0.0850 0.0994 0.1179 | 0.0645 0.0734 0.0863 0.1137

Improvement | +6.60% +7.59% +840% +11.0% | 41.5% +39.0% +41.2% +36.7%

fine-tuning, we employ 4-bit QLoRA [37]] for both training and inference, with the rank parameter r
set to 32, the scaling factor « set to 64, and the dropout rate set to 0.05. As shown in Table[d IGD
yields consistent improvements across all four datasets when applied to D3, with an average gain of
26.8% in HR@ 10 and 26.4% in NDCG@ 10. In addition to the Amazon dataset, we also evaluate
IGD on the Steam dataset (see Appendix [E]), where it demonstrates consistent improvements. These
results confirm the generalizability of our IGD approach across different model architectures and
datasets.

6 Related Work

LLM-based Recommendation: Based on how
LLMs are utilized, existing LLM4Rec meth-
ods can be broadly categorized into two groups:
(1) using LLMs to augment traditional recom-
mendation models [38, 139, 40], and (2) em-
ploying LLMs directly as recommendation sys-
tems [20, |19, 41]. Our work aligns with the
second category. Early approaches in this
direction typically followed a discriminative 12 3 4 5 6 1 2 3 4 5 6
paradigm [24]], which has since shifted toward Step Step !

a generative paradigm [20]. Building on this, gioyre 6: Entropy difference: prediction vs.
recent studies .have explored enhaqcmg collab- ground truth after IGD-decoding. “Start” indicates
orative modeling [42} 43, 44], optimizing tok-  51ima] o selected based on HR@ 10. The results

enization .schemes [22], and improving infer- 1 the other two datasets are in Appendix@
ence efficiency [45]], etc. However, few works

have investigated recommendations at the token
level. Our work specifically focuses on this.
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Token-level Biases in LLM4Rec: Autoregressive LLMs generate items token-by-token, misaligning
with item-level recommendation objectives [46} (19,147, 148]]. Multi-token items suffer from token-level
biases: high-probability ghost tokens dominate decoding without aiding discrimination, inflating
scores for longer items [[19]; and common tokens share across many items (e.g., “The’) dilute the
impact of rare and informative tokens, reducing diversity [46} [19].

Token-level Bias Mitigation Strategies: To reduce amplification bias caused by ghost tokens, D3
removes length normalization in decoding [[19], but ghost tokens still skew beam search. Position
normalization reweights tokens by position, assuming early tokens are more uncertain [33]], yet ghost
tokens appear throughout sequences and are not confined to later positions. To prevent common token
domination, some methods leverage traditional model guidance [47,[19]], but this limits flexibility
and scalability. Different from them, we propose a token-handling strategy by considering token
decisiveness, which helps debiasing.

Token Prefix Trie for LLM4Rec: Recent works leverage token prefix trie for LLM-based rec-
ommendation, each employing the trie in a different way to guide token generation and learning.
MSL [48]] uses the trie as a constraint: a masked softmax prunes infeasible next tokens, reducing
negative optimization signals and focusing training on valid continuations. Flower [47] uses the
trie for process-guided supervision: rewards are stored at nodes and propagated along paths during
tuning, encouraging trajectories that obtain higher rewards. Ours uses the trie for decisiveness-aware
weighting: each node stores an IG score estimated from data, and these scores are applied to debias
both tuning and decoding, highlighting discriminative tokens while down-weighting ambiguous ones.



7 Conclusion & Limitation

In this work, we introduced a decision-process perspective for token-by-token generation in LLM4Rec,
quantifying token decisiveness using IG. We identified tuning and decoding biases where current
models misallocate focus between decisive and non-decisive tokens. Our proposed IGD method
addressed these issues through token reweighting during both training and inference. Experiments
across four datasets, two LLM4Rec backbones, and two LLM architectures demonstrated IGD’s
effectiveness, achieving significant improvements in recommendation accuracy.

Our current experiments focus exclusively on IG-based token scoring. However, the IG values of
tokens are highly skewed (see Figure d), which makes it challenging to design practical reweighting
methods (as discussed in Appendix[G)). Future work may explore alternative decision metrics, such as
Gini impurity, Gain Ratio, or Chi-squared statistics [49, |50} 51]], which may provide complementary
perspectives on token decisiveness.

In addition, our present analysis is restricted to text tokens. Extending decisiveness modeling to
semantic ID tokens [34} 152} 53] and multimodal tokens [54, 55 156] is a promising direction for future
research.
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Justification: The statement is supported by the experimental results and clearly explained
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made in the paper.
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* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Answer: [Yes]

Justification: See section [3] Our paper rigorously formulates token decisiveness using
information theory, clearly stating all underlying assumptions.
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» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Section [5} we provide detailed descriptions of the experimental setup,
datasets, model configurations. All hyperparameters and evaluation metrics are clearly
reported.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: A link to the GitHub repository containing all code and data, along with
detailed instructions for reproducing the experiments, is provided at the end of the abstract.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please see Section[3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

As discussed in Section [/| our method yields a substantial improvement (about 20%)
compared to baselines, which strongly supports the significance of the results. Due to the
high computational cost of running multiple randomized trials, we report results based on a
fixed random seed without error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Basic information on the computational setup is included in the README of
the code repository. We plan to further elaborate on the compute details in the camera-ready
version.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research complies with the NeurIPS Code of Ethics. It does not involve
human subjects, sensitive personal data, or potential dual-use concerns.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See[T} the paper highlights the potential positive societal impact of advanced
recommendation systems in helping internet user find relevant and personalized information.
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11.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any new data or models with high risk for misuse.
We use only existing, publicly available datasets and models, and follow their original usage
guidelines and licenses.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite the code and datasets used in our experiments, including [19]]
and [29], and ensure their usage complies with the respective licenses and terms of use.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release any new datasets, models, or code assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing experiments or research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve research with human subjects or crowdsourcing
experiments, and thus no IRB approval was required.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: Our method LLMs as a core component for recommendation system.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A The Details of Compared Methods

To highlight the modeling strength of LLM4Rec models and provide context for our token-level
enhancement method IGD, we first compare them with traditional sequential recommenders.

Traditional Recommendation Methods:

* GRU4Rec [30]: A widely-used sequential recommendation method that employs Gated Recurrent
Units (GRU) to capture sequential patterns and model user preferences.

* SASRec [31]]: A representative sequential recommendation method that utilizes a self-attention
mechanism for preference modeling, offering powerful representation capabilities for sequential
data.

* LRURec [32]: A linear recurrent unit-based sequential recommender that enables fast, incremental
inference with reduced model size and parallelizable training, achieving strong accuracy and
efficiency compared to attention-based baselines.

LLM4Rec Methods:

* BIGRec [20]: A representative LLM4Rec system that fine-tunes large language models to generate
the next item based on the user’s historical behavior. We adopt the constrained beam search
decoding paradigm as described in D3 paper [19].

* D3 [19]]: A state-of-the-art LLM4Rec approach that fine-tunes the model similarly to BIGRec
but mitigates amplification bias by removing length normalization during beam search decoding.
In addition, it incorporates an ensemble design with traditional models, which we omit for a fair
comparison.

Compared Token Reweighting Methods To evaluate the effectiveness of IGD as a token reweight-
ing strategy, we compare it against other token-level methods that can be seamlessly integrated into
LLM4Rec frameworks. These methods include:

* Position Normalization (Pos) [33]]: This method reweights tokens during SFT based on their
position in the sequence, assigning higher weight to earlier tokens compared to later tokens.

» Causal Fine-tuning (CFT) [33]]: Building upon the Pos method, CFT introduces an additional
context-aware loss term. This loss captures the difference between contextual and non-contextual
token predictions (representing causal effects [57]), encouraging the model to emphasize tokens
that are more tightly correlated with the input context.

B Implementation Details of Compared Method

For traditional baselines, we directly adopt the settings from the D3 paper [19], as our experimen-
tal setup is fully aligned with theirs. For LLM-based methods, we use Qwen2.5-1.5B [28] as the
backbone. The batch size is set to 64, the optimizer is AdamW, the learning rate is 1 x 1074,
and the dropout rate is 0.05. Model selection is based on validation loss, with an early stop-
ping strategy that uses a maximum of 3 epochs and a patience of 1 epoch. All other settings
follow the D3 paper. For our proposed IGD method, the tuning hyperparameter [ is selected from
the set {0.08,0.1,0.2,0.3,0.4,0.5,0.6, 1.0}, and the decoding hyperparameter « is selected from
{0.0,0.1,0.2,0.3,0.4}. We first search for the optimal /3 based on validation performance, followed
by a search for the best a.

C Loss on All Datasets

This section presents a comparison of the training loss for zero-IG and non-zero-IG tokens before
and after applying our IGD-tuning across all datasets. The results are summarized in Figure
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Figure 7: Loss comparison: IGD-Tuning effect on zero-1G and non-zero-IG tokens (epoch 1).

D Entropy difference on All Datasets

This section presents a comparison of entropy differentials across all datasets following the application
of IGD-decoding. As the value of « increases, the decoding bias decreases. The results summarized

in Figure[§]
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Figure 8: Entropy difference: prediction vs. ground truth after IGD-decoding. “Start” indicates
optimal « selected based on HR@ 10 on all datasets.

E All Results for Generalizability Study

This section presents all the results for the Generalizability study. The results are summarized in

Table[3] and Table

More dataset.

To further assess generalizability, we additionally evaluated the best-performing

baseline (D3) and its IGD-enhanced variant on Steam dataset (~982K interactions). Results in

Table [6] show that IGD continues to provide consistent gains over the baseline.

F Item Diversity under IGD-Decoding

We evaluate IGD-D’s effect on item diversity with o € {0.0,0.1,0.2,0.3,0.4}.

First Word Repetition Rate (FWR)—Ilower is better—is the proportion of the most frequent first
token among the top-10 recommended items. Item Score Entropy (ISE)—higher is better—is
computed from the decoding probabilities induced by final item scores using the standard > —plog p

aggregation.

As Table[7]is shown, increasing « consistently decreases FWR and increases ISE across all datasets.
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Table 5: Performance comparison of D3+IGD vs. original D3 on LLaMA3-8B backbone across
different recommendation datasets

Methods | CDs | Games

‘ N@5 N@10 H@5 H@10 ‘ N@5 N@10 H@5 H@10
D3 0.0742 0.0790 0.0917 0.1062 0.0456 0.0528 0.0611 0.0832
+IGD 0.0791 0.0850 0.0994 0.1179 0.0645 0.0734 0.0863 0.1137
Improvement | +6.60%  +7.59% +8.40% +11.0% 41.5% +39.0% +41.2% +36.7%
Methods | Toys | Books

‘ N@5 N@10 H@5 H@10 ‘ N@5 N@10 H@5 H@10
D3 0.0739 0.0797 0.0916 0.1096 0.0198 0.0214 0.0249 0.0299
+IGD 0.0885 0.0932 0.1102 0.1311 0.0282 0.0304 0.0352 0.0418
Improvement | +19.8% +16.9% +20.3% +19.6% | +42.4% +42.1% +41.4% +39.8%

Table 6: Results on the Steam dataset (~982K interactions) under the same evaluation protocol as the
main study.

Method HR@10 NDCG@10

D3 0.1126 0.0782
+IGD  0.1184 (+5.15%)  0.0810 (+3.58%)

Mechanism Analysis: Non-decisive tokens tend to receive high logits and dominate beam expansion,
reducing diversity. IGD-D increases the logits of decisive tokens (via «), yielding lower FWR and
higher ISE.

G Why IGD-Tuning Adopts a Binary Weighting Scheme

Our binary-based weighting scheme is motivated by the observed behavior of IG in our setting and is
not arbitrary. Two empirical observations guide the design:

(1) Distinct zero-IG token group. Tokens with zero IG form a dominant cluster (about 55% of all
tokens) and exhibit disproportionately high logits with very low training loss. Treating this group as a
separate class and applying a uniform down-weighting factor § effectively mitigates their outsized
influence.

(2) Non-linear IG distribution among non-zero tokens. The IG distribution for non-zero tokens is
highly skewed and roughly exponential rather than linear. This makes it difficult to craft a smooth,
well-calibrated continuous weighting function over IG. We experimented with a simple linear and

monotonic alternative:
1G

. IGIIIELX

As shown in Table[8] this linear function does not outperform the binary scheme.

wy = B+ (1-7)

Due to the dominance of zero-IG tokens and the non-linear nature of non-zero IG values, a binary
separation with a calibrated 3 provides stronger and more stable improvements than a linear mapping,
across all evaluated datasets.

H Effective Hyperparameter Ranges

Our method introduces two parameters: a decoding weight « and a training-time weight 5. Since
« is easy to tune, we only analyze 8’s sensitivity while fixing a=0.0. Unless otherwise noted, the
search grid for /3 is {0.08,0.1,0.2,0.3,0.4,0.5,0.6}; after selecting 3, « is tuned over {0.1, 0.2}.

Optimal 5. CDs: =0.2 (HR@10=0.1077). Games: 5=0.2 (HR@10=0.0942). Toys: 5=0.5
(HR@10=0.1063). Books: 5=0.1 (HR@10=0.0422).

23



Table 7: Diversity vs. « across datasets. FWR| and ISE?.

CDs Toys Games Books
o | FWR] ISEt | FWR] ISEt | FWR] ISEt | FWR] ISEt

0.0 | 0364 2.65 | 0588 267 | 0340 295 | 0382 275
0.1 | 0332 270 | 0577 273 | 0328 298 | 0339 281
0.2 | 0304 276 | 0564 2.80 | 0321 3.01 | 0306 2.87
03| 0282 284 | 0557 288 | 0307 3.04 | 0278 293
04 | 0265 292 | 0551 295 | 029 3.08 | 0259 299

Table 8: Comparison of linear vs. binary IGD-T weighting across datasets. Best 5 (Linear): 0.4, 0.9,
0.8, 0.4 for CDs, Games, Toys, Books. Best 8 (Binary): 0.2, 0.2, 0.5, 0.1 for CDs, Games, Toys,
Books.

Dataset | Metric | Baseline (D3) IGD-T (Linear) IGD-T (Binary, ours)

CDs HR@10 0.1040 0.1072 0.1077
NDCG@10 0.0767 0.0793 0.0800
Games HR@10 0.0773 0.0800 0.0942
NDCG@10 0.0477 0.0492 0.0594
Toys HR@10 0.1029 0.1034 0.1063
NDCG@10 0.0698 0.0692 0.0719
Books HR@10 0.0315 0.0339 0.0422
NDCG@10 0.0228 0.0245 0.0312

Effective ranges (HR@10 and NDCG @10 > baseline). CDs: [0.1, 0.6]; Games: [0.1,0.4] U {0.6};
Toys: [0.2,0.6]; Books: [0.1,0.6].

Observation. Each dataset exhibits a broad interval where performance exceeds the baseline, making
[ easy to integrate into existing methods. However, to obtain the optimal 3, one still needs to search
over a reasonable range.
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