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ABSTRACT

Large Language Models (LLMs) increasingly rely on external tools to perform
complex, realistic tasks, yet their ability to utilize the rapidly expanding Model
Contextual Protocol (MCP) ecosystem remains limited. Existing MCP research
covers few servers, depends on costly manual curation, and lacks training support,
hindering progress toward real-world deployment. To overcome these limitations,
we introduce MCP-Flow, an automated web-agent-driven pipeline for large-scale
server discovery, data synthesis, and model training. MCP-Flow collects and filters
data from 1166 servers and 11536 tools, producing 68733 high-quality instruction-
function call pairs and 6439 trajectories, far exceeding prior work in scale and
diversity. Extensive experiments demonstrate MCP-Flow’s effectiveness in driving
superior MCP tool selection, function-call generation, and enhanced agentic task
performance. MCP-Flow (available at [ URL].) thus provides a scalable foundation
for advancing LLM agents’ proficiency in real-world MCP environments.

1 INTRODUCTION

The development of tool-using agents has rapidly accelerated in recent years, driven by the need for
Large Language Models (LLMs) to perform complex, realistic tasks beyond pure language generation
(Shenl 2024} [Yan et al.l 2025). A key milestone in this area is the Model Contextual Protocol (MCP),
a framework designed to enhance models’ interactions with diverse external tools in a unified manner
(Anthropic| 2024a)). Unlike traditional APIs with fixed interfaces and limited flexibility, MCP offers a
dynamic, context-aware environment, allowing LLM agents to adapt to heterogeneous servers and
continuously evolving functionalities (Yin et al., |2025; Mo et al.l 2025).

The integration of MCP presents both extensive opportunities and pressing challenges for tool-using
agents, spurring a surge of research and benchmarks designed to evaluate model proficiency in
MCP utilization. Empirical evidence (Luo et al., [2025b; Liu et al.| 2025)) shows that even state-of-
the-art (SOTA) LLM agents struggle to fully exploit MCP tools, underscoring the need for more
comprehensive frameworks and concerted efforts to improve their mastery of real-world MCP
environments. The obstacle lies in the gap between the complexity, diversity and rapid proliferation
of real-world MCP servers, and the limited ability of current LLMs to utilize them.

Addressing this gap requires not only improved evaluation but also training resources that expose
models to realistic MCP scenarios. However, no large-scale, high-quality datasets are currently
available to fulfill this critical requirement, and existing MCP studies have yet to undertaken the
essential step towards data construction. As summarized in Table[I] they exhibit several notable
limitations: (1) most of them rely on only a small number of servers (< 20) and tools, resulting
in limited coverage, diversity and scalability; (2) they predominantly depend on labor-intensive
human data collection, which cannot keep pace with the rapid growth of open-source initiatives and
the continual emergence of new MCP servers; and (3) no existing MCP frameworks offer training
support, thereby failing to translate benchmark results into tangible improvements of LLMs.

To resolve the dataset absence, in this paper, we aim to introduce an approach for automatically
constructing high-quality datasets from a large number of MCP servers, thereby facilitating the
more effective utilization of real-world and continuously scaling MCP tools by LLM agents. That
said, building such an automated training framework is non-trivial, as several challenges remain:
(1) Each MCP server maintains its own repository and documentation. How to perform automated
data acquisition on a large scale while supporting dynamic updates? (2) With thousands of server
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configurations, how to ensure the unified generation of high-quality and diverse datasets? (3) How
can the resulting datasets be effectively leveraged to strengthen MCP capability for both closed-ended
and open-ended models, and even support complex agentic tasks?

To tackle these challenges, we propose MCP-Flow, a comprehensive pipeline, data and model suite
that automatically constructs datasets from real-world, diverse and continuously scaling MCP servers,
thereby facilitating more effective utilization of MCP tools by LLM agents. MCP-Flow comprises two
key components: server discovery and data synthesis. Specifically, we first introduces a novel web-
agent—based automatic collection pipeline. Building on the contributions of MCP marketplaces which
aggregate a wealth of servers, our approach leverages web agents to automate server discovery and
acquisition. This implementation simplifies adaptation to new platforms and require only incremental
updates, thus accommodating the continuous emergence of real-world servers.

Second, we propose a scalable data synthesis pipeline, which comprises two main stages: data
generation and data filtration. We adopt a few-shot generation approach grounded in tool information,
therefore yield both instructions and corresponding ground-truth tool labels. To ensure instruction
specificity and diversity, we incorporate slot-fill revision and WizardLM evolution, which populate
each required parameter slot with valid values and rewrite instructions to increase difficulty and
promote reasoning (Xu et al.,|2023)), respectively. After rigorous filtering based on multiple criteria,
we obtain a dataset encompassing 1,166 servers and 11,536 tools, exceeding the scale of all previous
work combined, with 356 servers producing valid responses and trajectories. In total, the resulting
dataset contains 68733 instruction-function call pairs and 6,439 trajectories suitable for training.

Three versatile approaches demonstrate how MCP-Flow datasets empower LLM agents to maximize
their engagement with MCP tools: (1) training LLMs (particularly small-size models) to significantly
advance their real-world MCP tool-use capabilities; (2) establishing a retrieval database that can
augment closed-source models in MCP tool usage; and (3) serving as a playground for evaluating
MCP servers and tools themselves, rather than focusing solely on model performance.

We conduct extensive experiments on data from six MCP marketplaces, comparing MCP-Flow with
10+ strong LLMs and latest baselines. The models are evaluated on three test splits covering both
seen and unseen scenarios, and further assessed on the standard agentic benchmark GAIA (Mialon
et al.| 2023). The results demonstrate that: (1) Contemporary SOTA models still exhibit suboptimal
performance on real-world MCP tool utilization, and their effectiveness further deteriorates as the
number of candidate tools increases. (2) Our trained MCP-Flow models consistently outperform
SOTA models in both MCP tool selection and function call formatting, despite substantially smaller
size. (3) By retrieving examples from MCP-Flow, closed-ended models such as GPT-40 (OpenAl,
2024) can further enhance their performance in MCP tool utilization. (4) By replacing initial tool
invocation, MCP-Flow can even improve agent performance on multi-turn, complex tasks while
simultaneously reducing inference costs. (5) Collected MCP servers exhibit diverse characteristics
and varying quality for identical tasks; MCP-Flow lays the groundwork for future research to
systematically compare MCP servers and tools. In summary, our contributions are as follows:

1. We propose MCP-Flow, a web-agent-driven automated pipeline capable of constructing datasets
that accommodate real-world, diverse, and continuously scaling MCP servers.

2. We release a large-scale, high-quality dataset that supports LLM training, evaluation and retrieval
augmentation, thereby enhancing both closed-ended and open-ended models on MCP utilization.

3. We offer a compact, fine-tuned LLM series; the extensive experiments verify the value of MCP-
Flow in both MCP tool selection and formatting, and the facilitation of agentic tasks.

2 RELATED WORK

2.1 TRADITIONAL API-BASED DATASETS AND BENCHMARKS

The integration of LLMs with external tools has emerged as a critical research direction for extending
model capabilities beyond their inherent knowledge. The data for tool learning are collected either
through automated synthetic data generation or relying on real-world APIs. Synthetic data generation
approaches including APIGen (Liu et al.| 2024b)) and ToolACE (Liu et al., 2024a) address data
scarcity through automated frameworks. However, they suffer from fundamental concerns regard-
ing real-world applicability, as artificially constructed interactions may not capture authentic tool
usage complexity and error patterns encountered in production environments. ToolLLM (Qin et al.,
2023) significantly expanded scope by incorporating real-world REST APIs from RapidAPI Hub,
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Table 1: Comparison of representative datasets and benchmarks for LLM tool usage. Compared
to contemporary MCP studies, MCP-Flow covers a substantially larger number of MCP servers,
provides an automated pipeline for newly uploaded servers, and supports model training.

Dataset/Benchmark Tool Type Data Scale (N)#

Chronological order Real-World Scalable Training Support Source Server Tool/API Sample
Traditional API-Based
ToolBench (Qin et al.|[2023} v X v 1 - 3451 12.6k
7-Bench (Yao et al.|2024) v X X 2 — < 30 -
APIGen(xALM) (Liu et al.|[2024b} X v v 1 - 3673 -
ToolACE (Liu et al.|2024a) X v v 1 - - 11.3k
Modern MCP-Specialized
MCPBench (Luo et al.|2025a) v X X 1 10 10 -
MCP-Zero (Fei et al.|2025) v X X 1 308 2797 0
LiveMCPBench (Mo et al.|[2025) v X X 1 70 527 95
MCPToolBench++ (Fan et al.|2025) v X X 3 12 87 1509
MCP-Universe (Luo et al.]2025b) v X X 1 11 133 231
MCP-Flow (Ours) v v v 7 1166 11536 68733

introducing sophisticated planning algorithms through depth-first search-based approaches. Despite
notable progress in API-based datasets, current studies still face critical limitations, as REST APIs
are often unstable and lack standardized protocols. With the flourishing of MCP, research efforts
increasingly focus on unified and reliable MCP tools rather than traditional APIs, aiming to bridge
the gap between existing datasets and practical MCP scenarios.

2.2 MCP-SPECIALIZED DATASETS AND BENCHMARKS

With its increasing maturity and widespread adoption, MCP now offers extensive opportunities for
model training, evaluation, and real-world deployment (Hasan et al.|[2025). While the proliferation
and success of MCP have stimulated considerable research interest, current approaches still encounter
three key limitations: (1) Most studies still rely on manually curated collections of MCP servers
and tools. For instance, MCPToolBench++ (Fan et al., |2025)) reports 4,000 servers but experiments
on only 12. Similarly, MCP-Zero (Fei et al.l|2025) pioneered MCP tool discovery with 308 servers
drawn from the official MCP website, but it operates exclusively on a simple position-based retrieval
task, without user queries or instruction-following contexts from any of these servers. (2) Current
server collection and data construction depend heavily on human efforts (Luo et al.,2025a;|Mo et al.,
2025) or human-curated crawling code (Lin et al., [2025). No automated pipeline yet exists to keep
pace with the rapidly evolving number of MCP servers released in the community. (3) Despite the
revelation of performance limitations in even SOTA models, current benchmarks (Liu et al., [2025}
Luo et al.,[2025b)) function solely as evaluation platforms, failing to address the critical challenge of
training data scarcity that fundamentally constrains the effectiveness of LLMs in MCP environments.

This gap is particularly concerning given the critical importance of realistic training datasets for
developing tool-augmented systems capable of utilizing thousands of available MCP tools. The
absence of systematic data collection pipelines and large-scale MCP-specific datasets poses a major
barrier to fully realizing the potential of the unified MCP ecosystem. In contrast to previous works,
we propose an agent-based pipeline which automates the process of collecting newly updated servers
and building a high-quality dataset featuring real-world, diverse, and scaling MCP servers.

3 MCP-FLow

In this section, we introduce MCP-Flow’s automated data construction pipeline, which begins
with web-agent—based server and tool collection (Section [3.1)), followed by scalable data synthesis
comprising two stages: data generation (Section[3.2) and data filtration (Section[3.3). We also provide
statistical analyses of sample counts in Table 2} data distributions and diversity in Figure 3} and a
representative example illustrating all components of the constructed dataset in Figure ]

3.1 AUTOMATED MCP SERVER & TOOL COLLECTION

In the first stage, we collect a large set of MCP servers from diverse sources and endpoints. The scale
of our collection surpasses the combined size of all existing MCP-related studies. After deduplication,
we then collect tool information through local deployment.
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Figure 1: Pipeline overview. MCP-Flow initiates with automated server discovery from various
marketplaces, and proceeds through scalable data synthesis (diverse generation + rigorous filtering).

Web-Agent Automated Server Crawling. To accommodate the rapid growth of MCP servers,
we propose an automated collection pipeline primarily driven by web agents. Specifically, we
employ Playwright, an MCP-compatible web agent, to systematically navigate widely used MCP
marketplaces and websites. This implementation ensures timely adaptation to modifications and
newly added servers. The process is illustrated in Figure [2] with efficiency analysis in Section [B.5]

Within a human-defined workflow, the agent autonomously navigates y
to the target server’s dedicated page and retrieves its configuration file | 4 '(a
(in JSON format) via page snapshots. Our pipeline supports various 1 Nevigaton

platforms, Smithery, Glama, MCP . so, MCPHub, PipeDream, and
PulseMCP (DeepNLP). In principle, this web agent—based approach is
applicable to any well-structured website with minimal human modifi-
cation. Unlike traditional web crawlers, which typically require detailed
parsing logic tailored to each website’s HTML structure, our approach
operates with high-level instructions, avoiding low-level code dependen-
cies. This design not only offers cross-platform generalization but also 2. Click each
simplifies adaptation to future marketplaces and improves operational T
flexibility. Importantly, after our large-scale crawling and pre-processing,
researchers only need to execute the pipeline incrementally for newly
released servers, rather than restarting the entire process. This design
significantly minimizes both time and computational costs.

Server Deduplication. Some popular servers may appear on multiple
websites. For example, context7/ is included on all supported endpoints.
It is therefore necessary to perform deduplication, even when the servers
are listed under different names, interfaces and configurations. After an
in-depth examination of inter-server differences, we conclude that the
most reliable criterion for distinguishing servers is not their names or
providers, but rather the tool descriptions. If two servers share an identical
list of tool descriptions, we treat them as the same entity.

4. Snapshot the MCP Configuration
Local Deployment and Tool Collection. Using the collected config-
urations, we deploy servers locally via our MCP client. For standard
input/output (stdio)-based servers, deployment is handled through npm
and uvx, while servers using Server-Sent Events (SSE) are connected via
their URLs. The client implementation builds upon the popular repository
dolphin-mcpl For each successfully deployed server, we extract its
tool information, including tool name, description, and parameters (input schema). Certain servers
require API keys or access to specific software. Due to their sensitivity, these servers cannot be
automatically deployed and are therefore excluded. Nevertheless, we highlight the investigation of
such personalized servers as an interesting direction for future work, as discussed in Appendix [A]

Figure 2: Process of web-
agent automated server
crawling with more de-
tails in Appendix [D}

3.2 INSTRUCTION GENERATION AND TRAJECTORY COLLECTION

In the second stage, we generate diverse instructions with ground-truth function calls, and collect tool
responses to form the trajectories. Details are provided in Appendix [D] with prompts in Appendix [E.T]
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Figure 3: Dataset statistics. (a) MCP-Flow encompasses a large-scale collection of MCP servers
and tools from six distinct marketplaces. (b) T-SNE visualization of instruction embeddings (1,000
random samples per marketplace) shows the dataset diversity. (c) Each MCP server is classified into
one of ten categories, with the distributions reflecting the heterogeneity across marketplaces.

Few-Shot Generation. To construct datasets with inherent ground-truth labels, we initiate generation
from the tool perspective. Our focus is on diversity; therefore, for each tool, the model generates five
distinct instructions based on human-curated examples, all of which require the use of the target tool.

Slot-Fill Revision. Next, to enhance instruction detail and ensure that all tool-required input
parameters are specified, we employ a slot filling process. Each parameter required by the tool
is treated as a slot. If a slot is not provided in the original query, a valid value is automatically
generated. The query is then revised to include these new parameters for fluency. After slot filling,
some instructions may still contain placeholders. We then apply specialized regular-expression rules
(§D:3) to detect such strings and replace them with pre-collected candidates from our local system.

WizardLM Evolution. To further improve instruction complexity and diversity, we adopt the
evolution method proposed in Xu et al.[(2023). The process randomly selects an evolution direction
for each query, such as concretization or reasoning. We set the evolution depth to 2 to balance
generation cost and output quality. After evolution, we obtain a large scale tool-specified instruction
sets with high diversity and complexity. The instructions are then filtered as described in Section [3.3]

Function Call Generation. Given the ground-truth tool, its input schema, and the corresponding
instruction, we prompt GPT-40 to generate the formalized function call. This generation is straight-
forward for strong models such as GPT-4o, as it involves no interference factors. With additional
filtration in Section [3.3] the correctness of the generated function calls can be substantially ensured.

Tool Response Collection. Based on the function calls, we collect tool responses by communicating
with the MCP server via the local client. The assistant model then summarizes these outcomes and
generates the final response. By integrating all components, we obtain the complete trajectory.

3.3 RIGOROUS DATA FILTRATION

Embedding Similarity Filtration. We filter instructions using a combination of rule-based and
LLM-based measurements. In particular, some original instructions are overly similar to the tool
descriptions, which is undesirable since such queries make tool selection trivial. To address this, we
compute the instruction—description embedding similarity. We empirically set a threshold of 0.8 and
discard instructions that exceed this value. Embedding details are provided in Section [B.2}

Tool Invocation Filtration. We further ensure the reliability of ground-truth tool labels by instructing
GPT-40 and DeepSeek-V3 to select the correct tool from the labeled tool and two randomly sampled
candidates. Instructions for which both models fail to identify the expected tool under this simplified
setting are discarded. Negligible instruction removals confirming the tool annotation reliability.

Quality Score Filtration. To evaluate the quality of instructions and function calls, we employ
DeepSeek-V3, a SOTA reasoning model different from GPT-40 we use for generation. As previously
indicated by LiveMCPBench, DeepSeek-V3 (DeepSeek-Al, [2024) achieves strong agreement with
human annotators, thus serving as a good judge model. We discard instructions and function calls that
receive a quality score below a threshold of 6/10. Evaluation prompts are provided in Appendix
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Figure 4: Data example using the M CPollinations Multimodal Server from Smithery. The first
column is collected as described in Section[3.1] and the remaining data as described in Section [3.2]
The server returns a URL linking to the image shown above. Note that all 1,166 servers have
corresponding tool information and generated function calls, but not all yield valid tool responses.

Trajectory Filtration. Trajectories are more vulnerable to inconsistencies, as they require valid
responses from external tool providers. In practice, many servers demand specific setups (e.g., API
keys, personal workspaces, or software dependencies), while others may be temporarily unavailable
even though their metadata remain valid. We filter out trajectories with invalid tool responses collected
under such conditions, also using DeepSeek-V3 as a judge.

4 EXPERIMENTS

In this section, we evaluate the fine-tuned models from the MCP-Flow suite in terms of tool selection
and formatting capabilities (Section [#.2). We further assess the effectiveness of MCP-Flow in
enhancing non-trainable models for both function-call generation (Section4.3) and complex agentic
tasks (Section [4.4). Ablation studies are presented in Section [.5] Supplementary experiments,
including server evaluation, are attached in Appendix

4.1

Models and Baselines. To demonstrate the utility of our datasets, we compare various SOTA models
and the latest MCP datasets. The model suite includes close-ended models including GPT-40, Claude-
4-Sonnet, open-ended reasoning models like Qwen3-8B (Team), 2025), Llama3.1-8B (Meta, [2024),
tool-specialized models like ToolACE-8B (Liu et al.| 2024a). We also compare between datasets by
finetuning models on our datasets and others like MCPToolBench++ (Fan et al.| 2025).

BASIC SETUPS

Data Splits. To ensure a fair comparison and avoid data contamination under both seen and unseen
scenarios, we divide our full dataset into four data splits. For each marketplace, we first randomly
split the servers with a 12:1 ratio, assigning the held-out portion as the unseen-server subset. Within
the remaining (seen) servers, we further split all tools belonging to these servers at an 11:1 ratio,
assigning the held-out portion as the unseen-tool subset. The remaining samples are then divided into
a training set and a seen-test subset with a 10:1 ratio. The training split and the three test splits are in
a 10:1:1:1 ratio in expectation. In total, this process yields 6 marketplaces x 4 splits = 24 subsets.

Training Configuration. We employ LoRA finetuning (Hu et al.,|2022)) based on the implementation
of LLaMA-Factory (Zheng et al., 2024). In most experiments we set the training tool size to 10
and randomly sample candidate tools from the seen tool pool to form the training set for each
instruction-function call pair. If not otherwise mentioned, we test models after training for one epoch
to prevent over-fitting. Key parameters and environment details are provided in Appendix [C.1]

Metrics. Following prior works, we report both rule-based metrics and LL.LM-as-a-judge metrics.
Specifically, to evaluate models’ tool use capability to generate function calls, we compute tool
accuracy (denoted as Tool) (Fei et al.| 2025 |Yuan et al., [2024)), which measures the model’s tool-
selection capability; as well as parameter accuracy (denoted as Param) (Han et al.||2025)); and abstract
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Table 3: Comparison of MCP tool selection and formatting capabilities across various models using
10 tools. MCP-Flow models achieve the best performance notably notably small model sizes, while
SOTA LLMs (e.g., Claude-4-Sonnet) exhibit suboptimal performance even under this simple setting.

Seen Test Unseen Tool Unseen Server
Category Backbone Model Tool Param AST | Tool Param AST | Tool Param AST
Large Models (> 10B) through Azure API
GPT-40 88.6 682 588|850 714 620|814 556 508
Closed-Ended GPT-4.1 77.6 614 522 |71.8 628 548|708 514 454
Claude-4-Sonnet 85.8 68.6 56.6|83.0 744 636|726 560 484
Gemini-2.5-Pro 542 428 36.8 554 50.6 424 (49.6 38.0 322
Open-Ended DeepSeek-V3 842 672 588|820 70.8 598 |77.6 556 488
P Kimi-K2 85.6 68.0 550|824 730 602|744 530 474
Small Models (< 10B) through Local Deployment
Qwen3-0.6B 592 446 354|626 46.6 340592 456 382
General Model Qwen3-4B 796 662 578|818 754 654|748 552 46.8
with Reasoning Qwen3-8B 83.6 69.6 59.6|860 764 656|764 572 482
Llama3.1-8B 75.8 550 324|740 53.6 338|748 558 332
Tool-Specialized Grog-8B-Tool-Use | 39.4 22.8 20.6 | 45.6 262 23.6|426 228 158
p ToolACE-8B 894 498 456|834 490 444|884 518 46.0
Qwen3-0.6B 764 57.0 474802 572 47.0(70.0 464 358
MCPToolBench++ 003 4B 914 772 622|916 760 63.0|804 572 47.6
MCP-Flow Qwen3-0.6B 96.8 87.2 754982 86.8 752 (984 70.6 58.0
(Ours) Qwen3-4B 99.2 918 81.2 986 914 782 (984 722 59.8
U Llama3.1-8B 986 91.0 81.6 (990 912 77.6(994 77.0 65.2
Table 4: Comparison of MCP utilization with a compa- o 228 850 s1a @
rably larger tool set (i.e., 100 tools) than Table 3] We e 582 sz, B2
report averaged performance over three test splits. g, ﬂig’% ﬂ“-s ’m se
> H — 2.8
[ Izm|
MOdel ‘ TOOl Param AST -‘E Tool Param WM AST w/o w MCP-Flow
GPT-40 72.3 66.9 53.8 e [ ss8 830
Claude-4-Sonnet 683 633 516 o | Hess e
Qwen3-4B 61.7 598  49.0 N R =
Llama3.1-8B 39.8 377 235 ° ﬂﬂ 2
45
groﬁAgc%TS(]);l_Use 62099 51149 315 39 Seen Test Unseen Tool Unseen Server
00 i ’ ’ ’ Figure 5: Comparing API model perfor-
MCP-Flow (Qwen-0.6B) | 64.7 63.4 51.6 . . -
MCP-Flow (Qwen-4B) 817 82.1 67.0 mance with and without retrieval aug-

mented samples from MCP-Flow.

syntax tree (AST) (Patil et al., [2025)), which strictly measures the generated function call format. In
addition, we employ GPT-4o as the judge model to compute task success rate (SR) for experiments in
Section 4.4} We also report efficiency metrics which quantify the average number of steps the agents
incur to complete the requested tasks. Evaluation details are provided in Appendix

4.2 TRAINING SMALL LLMS FOR MCP TooL UTILIZATION

Tool Selection and Formatting. The first use of the MCP-Flow dataset is to train small models to
master tool selection and formatting capabilities on real-world MCP servers. The task is, given a user
query or instruction and a list of candidate MCP tools, for the model to directly generate a function
call that both follows the MCP protocol and properly handles the user’s request. We fine-tuned three
backbone models of different sizes (i.e. Qwen3-0.6B, Qwen3-4B, and Llama3.1-8B) to accommodate
different performance-efficiency trade-offs. Models are fine-tuned on all the training subsets.

Undesired Performance of SOTA LLMs. As shown in Table[3]and Table[d current SOTA LLMs
including Claude-4-Sonnet (Anthropicl |[2024b)) and GPT-40 (OpenAll 2024) still have less than 60%
AST accuracy on real-world MCP tools. When the candidate tool size are extremely large, i.e. 100,
the results are worse, with Grog-8B-Tool-Use only achieve 3% accuracy.
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Table 5: Evaluation results on GAIA. Weighted Step (WS) is computed using the token prices of the
tested model and Qwen3-4B as weights. Using MCP-Flow to generate initial function call yields
consistent improvements across models with varying capabilities and helps reduce overall costs.

Backbone Model ~ Method | SR SR Gain | Step Weighted Step WS Gain
¥ Quen3-4B SMCPFlow | 2096 +100% | 201 201 7%
© crrao SMCPFlow | 358 +17% | 2.90 ro +32%

Clande-4-Somnet P00 p o 13558 30 | s 320 +12%

Superior Performance of MCP-Flow with Much Smaller Model Size. In contrast, MCP-Flow
achieves the best tool selection and formatting accuracy across different MCP marketplaces. Even
tuned with a very small sized model, the output one can match or outperform much bigger competitor
like Claude-4 and DeepSeek-V3. Other MCP datasets (MCPToolBench++) although with comparable
data quality, are limited in scale and coverage and thus resulting very limited improvement.

Out-of-Domain Generalization. (1) Due to intrinsic differences among MCP servers, the unseen-
server subset is harder, as nearly all models show performance drops when switching from seen-test
to unseen-server. Conversely, the unseen-tool subset shares servers with seen-fest, resulting in similar
performance. (2) The fine-tuned MCP-Flow models demonstrate good generalization capabilities
on unseen-tool and unseen-server and achieve marked improvement over the backbone models. (3)
Tool-specialized models trained on traditional APIs still fall short in real-world MCP evaluation. In
particular, Grog-8B-Tool-Use often predicts “I can’t help”, which largely weakens its performance.

4.3 ENHANCING LARGE LLMS oN MCP TooL UTILIZATION

For large closed-ended models that cannot be directly fine-tuned, our constructed dataset still proves
highly useful through training-free distillation, serving as a retrieval database.

Retrieval-Augmented Function Call. Analogous to conventional Retrieval-Augmented Generation
(RAG) paradigms, upon receiving a user instruction we first retrieve the top-k (set to 5) most
semantically similar data samples from our database and append them to the system prompt, thereby
enhancing the model’s ability to generate accurate function calls. The database of training instructions
is constructed using embeddings produced by Sentence-Transformers (details in Appendix
[C.2). Retrieval is implemented via|[Faiss—GPU, employing cosine similarity as the ranking metric.

As illustrated in Figures [5|and [8]in Appendix: (1) Incorporating retrieved function-call exemplars
consistently improves model performance, which underscores the continued value of our datasets. (2)
We observe that Claude-4-Sonnet exhibits greater gains than GPT-40, likely reflecting its stronger
reasoning capacity; (3) Despite the inclusion of recalled samples, these large models still underperform
relative to MCP-Flow, particularly on the unseen-server test set. This finding confirms the usefulness
of fine-tuned, small-scale models for MCP function-call generation.

4.4 ENHANCING LLM AGENTS ON AGENTIC TASKS

GAIA Benchmark. GAIA (Mialon et al.,[2023)) is a challenging agentic benchmark that requires
multi-step web searches and the proper use of external tools to successfully complete each test case.
We demonstrate the third use case of MCP-Flow by generating the agent’s initial function call and
then allowing the agent to proceed based on this starting point. Details are discussed in Section

From Table [5] we conclude that: (1) Enhanced tool-call tendency: During our experiments, we
observed that although GAIA tasks are highly challenging, models such as Qwen3 and GPT-40 often
resist to invoking external tools and instead attempted to generate answers solely from their internal
knowledge. However, such internal knowledge can be outdated or incomplete, thus introducing
hallucination. By contrast, using our model to generate the initial function call helps mitigate this
resistance to tool usage and guides the agent onto a path of more effective tool interactions. (2)
Reduced distraction from unavailable servers: Leveraging our pre-constructed database allows us
to filter out unavailable servers, thereby minimizing wasted attempts and reducing task failures. (3)
These factors account for the observed improvements in performance and reductions in cost when
replacing either expensive closed-ended models or weaker open-source models with MCP-Flow.
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Figure 6: Ablation results. (a) Model comparison across four platforms on three test splits. MCP-Flow
significantly outperforms previous SOTA models. (b) The (x, y) model is trained with tool size y and
tested with tool size z. Color darkness represents the Too! metric, while the width and height of the
box represent Param and AST, respectively. (c) MCP-Flow features larger scale than the converted
training version of MCPToolBench++ and provides better utility for tool-use training.

4.5 ABLATION STUDY

In this section, we conduct further ablation experiments to explore important aspects of tool use
training. The experiment setup follows that of Section[.2] with more results shown in Appendix B3]

Cross-Marketplace Comparison. As shown in Figure[6la: (1) Across all platforms, MCP-Flows
consistently outperform all baseline models, which aligns with the results reported in Table[3] (2) The
MCPHub and Glama datasets are more challenging than the Smithery dataset, likely due to the
inclusion of less widely known servers. Such tools are more difficult for LLMs to predict because of
their limited exposure to the Internet. (3) Although minor differences exist across marketplaces, these
variations are insufficient to constitute severe data heterogeneity. This can be attributed to the fact
that all marketplaces aggregate large-scale and diverse MCP servers, resulting in broadly comparable
data distributions (also reflected by the dispersed embeddings shown in Figures [3]b and[7).

Ablation on Candidate Tool Size. We conduct experiments to investigate the effect of tool size (i.e.,
the number of candidate tools) on both model training and testing. Evaluations are performed on
the seen-test split. As shown in Figure[6]b: (1) Model performance decreases on test sets with more
candidate tools, which aligns with expectations since a larger number of tools increases task difficulty
and may introduce distractions. (2) Models trained with larger tool sizes are more robust and perform
better when evaluated with more candidate tools.

Scaling Law Analysis. Figure[6]c vividly illustrates that model performance increases with data
size scaling. Among the three metrics, Tool accuracy quickly reaches a plateau, approaching
nearly 100%, whereas the AST metric still shows potential for further improvement. Compared to
MCPToolBench++, our constructed datasets not only offer better utility, as models improve more
rapidly, but also encompass a much larger scale. Together, these two strengths make MCP-Flow
currently the most effective dataset for training LLMs to master real-world MCP tools.

5 CONCLUSION

In this work, we introduce MCP-Flow, an automated pipeline, dataset and model suite designed to
amplify LLM agents’ utilization of real-world and rapidly evolving MCP servers and tools. MCP-
Flow automates web-agent-driven server discovery from various MCP marketplaces and scalable data
synthesis, producing a high-quality dataset with 60k+ samples covering 1,166 servers and 11,536
tools. We further develop compact fine-tuned models and a retrieval-augmented framework that
significantly enhance LLMs in MCP tool selection, function call formatting, and multi-turn agentic
tasks. Extensive experiments on standard benchmarks demonstrate that MCP-Flow consistently
outperforms SOTA models and latest datasets, offering superior effectiveness at lower inference cost.
Beyond model training and agentic enhancement, MCP-Flow lays the foundation for multi-dimension
evaluation of MCP servers and tools, uncovering their heterogeneity and quality variations.

We believe MCP-Flow establishes a solid foundation for advancing real-world MCP tool capabilities
for current LLM agents, and opens promising avenues for future research.
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ETHICS STATEMENT

This research focuses on constructing a large-scale high-quality dataset to facilitate LLM agents in
utilizing real-world diverse and continuously scaling MCP servers and tools.

The data are obtained from official marketplaces and websites, synthesizing using LLMs, or repro-
cessed versions of previously released datasets, with all sources and benchmarks properly cited. No
discrimination, bias, or fairness issues are identified in this work. All collected information is stored
locally in JSON format, which allows future research to operate without connecting to third-party
servers and thereby avoids introducing external threats or security risks. Furthermore, our models
only generate function calls and are not expected to produce potentially harmful content.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide all experimental setups and details in Sectiondand Appendix[C]
The dataset construction process and its statistics are described in Section [3] and Appendices [D|
and [E.I] Examples of the datasets are shown in Figure [f] as well as Tables [17]and [T6] We have
released initial samples in the anonymous repository and will make all data, source code, and model
checkpoints publicly available upon acceptance of the paper.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, LLMs are primarily used for data synthesis and experiments in MCP-Flow. The process
for data synthesis is described in Section [3] and the experimental procedures are detailed in Section 4}
with additional information provided in the corresponding appendices. The prompts used are listed in

Appendix

Apart from the usage in MCP-Flow, we also use LLMs to assist with paper writing. Specifically, we
first draft the manuscript and then use LLMs (primarily OpenAl GPT models) to improve and revise
the text. Afterward, all generated content is manually inspected, and we make final adjustments or
rewrites as needed to ensure accuracy.

We additionally employ LLMs to support code writing for simple tasks, such as drawing figures and
calculating statistics and use LL.Ms for repetitive tasks such as reformatting tables into LaTeX. All
outputs are double-checked to ensure that no errors are introduced.
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A CHALLENGES AND FUTURE DIRECTIONS

Coverage of API-Required or Software-Specific MCP Servers. MCP servers that depend on
specific software environments or require API keys represent two of the most significant challenges for
automated MCP data construction. The deployment and configuration of certain software packages
can be highly complex, demanding substantial manual effort even from experienced developers. In
addition, the procedures for obtaining and applying API keys vary widely across server providers,
making it difficult to standardize or fully automate this process.

Building on the automated data-construction pipeline of MCP-Flow, future work could extend
coverage to these two types of servers, thereby enabling LLMs to master more diverse real-world
MCP servers.

Detection of Adversarial MCP Servers. The trustworthiness of MCP servers poses a critical
challenge, as adversarial actors may maliciously upload or update servers on public marketplaces
(Zhang et al., [2024; Song et al.| 2025). Such adversarial servers can inject misleading information,
exploit vulnerabilities in tool interfaces, or return deliberately manipulated outputs to mislead
downstream agents. Detecting these malicious behaviors is inherently difficult because MCP servers
often appear functionally similar to benign ones and may only exhibit malicious activity under specific
triggers. Moreover, the lack of standardized auditing protocols and insufficient provenance tracking
for server updates further exacerbate the risks of untrusted execution environments.

To the best of our knowledge, current MCP marketplaces do not implement explicit mechanisms to
detect potentially malicious or harmful servers uploaded to their platforms. Future work may explore
attack and defense strategies informed by the practices demonstrated in MCP-Flow.

Evaluation of MCP Servers and Tools. During our investigation and experiments, we observe
that current state-of-the-art agents (e.g., GPT, Claude) perform comparably in tool selection when the
tools serve clearly different purposes. However, selecting between tools with similar functionalities
remains challenging, as LLM agents rely primarily on tool descriptions, which may not accurately
reflect the true quality or reliability of the tools.

Although we do not resolve this challenge in the present work, MCP-Flow provides a data platform
that enables systematic investigation of this problem. As further discussed in Section our
large-scale collection of MCP servers and systematic data construction establish a strong foundation
for future research to explore this research direction.

Promising directions include (1) creating unified benchmarking datasets that test the same task across
multiple tools with similar functionalities; (2) designing automated stress tests or scenario-based
evaluations to capture stability, reliability, and latency under varying workloads; (3) introducing richer
and more standardized metadata schemas, such as structured capability statements or performance
profiles, to reduce ambiguity in tool descriptions; and (4) leveraging reinforcement learning (RL) or
multi-agent comparison strategies to dynamically rank tools based on observed performance rather
than static descriptions. Such efforts would enable more accurate tool selection, foster transparency,
and ultimately improve the effectiveness of MCP ecosystems.
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Table 6: Multi-dimension evaluation of MCP servers for weather tasks. Monthly tool calls are
recorded from Smithery as of September 16, 2025. Although all servers target the same tasks, they
differ in response quality, capability coverage, and efficiency. For instance, the United States Weather
server balances response authenticity and token length but is limited to the U.S., while Weather API
Server provides global coverage. Weather360 Server delivers comprehensive analyses, but its long
responses may increase unnecessary cost and latency in multi-turn interactions.

Server name Performance Capability Efficiency Popularity
SR Quality Feature Coverage Time(s) Token Monthly Call
Weather API Server 769 3.27 3 5 2.40 35.2 2,400
Weather Service 462 2.82 1 5 2.66 11.0 1,802
Weather360 Server 769 392 5 5 2.62 75384 2,189
Weather Server 23.1  3.25 2 1 2.13  6596.2 2,849
Weather Forecast Server 84.6  3.45 5 5 2.21 225.6 5,292
United States Weather 38.5 4.25 6 1 1.93 372.0 67,400

B SUPPLEMENTARY EXPERIMENTS AND RESULTS

B.1 EVALUATION OF MCP SERVERS

Weather Domain Case Study. Beyond training LLMs for improved tool utilization, MCP-Flow
also establishes the data foundation for the systematic evaluation of functionally similar MCP servers.
To demonstrate this capability, we take the weather task as an case study and conduct a comparative
analysis of six distinct weather-related MCP servers across multiple dimensions.

Note that with the large-scale crawling performed by MCP-Flow, our collected servers can support
a wide range of task evaluations with numerous candidate servers and tools. For example, we have
around 20 servers dedicated to weather tasks, providing a comprehensive playground for server-wise
evaluation.

We use the instructions generated by MCP-Flow, as elaborated in Section and randomly sample
13 test instructions from the pool across all tested servers to avoid bias toward any specific server.
Subsequently, we deploy GPT-40 (OpenAl, [2024) as both the execution agent and evaluation judge.
The agent attempts to resolve each constructed instruction using the tested MCP server’s available
tools, while the judge component assesses the quality and effectiveness of the responses. The prompt
for judgments is provided in Section [E.1]

Multi-Dimension Evaluation. We evaluate each MCP server across four key dimensions, capturing
its overall effectiveness and usability.

1. Performance covers the query success rate, abbreviated as SR, which measures the percentage of
instructions receiving valid responses, and Quality, defined as the average score over successfully
answered queries. The scoring mechanism employs a 0—5 point scale: instructions that fail to
elicit any valid response receive zero points, while successful responses are scored from 1 to 5
based on comprehensiveness, accuracy, and practical utility. Quality thus represents the mean of
all non-zero scores;

2. Capability assesses two aspects: Feature represents the number of available functions; and
Coverage measures geographic applicability scored from one to five, where one indicates country-
specific functionality and five indicates global coverage;

3. Efficiency measures both time consumption and token usage. Time refers to the average response
latency in seconds, and Token denotes the average number of output tokens generated;

4. Popularity reflects real-world adoption, measured through the Monthly Call frequency on hosting
platforms.

Varying Characteristics and Performance across MCP Servers. As shown in Table[d] significant
performance variations exist among functionally similar weather MCP servers. The Weather Forecast
Server achieves the highest success rate (84.6%), while United States Weather demonstrates superior
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Figure 7: Visualization of instruction diversity. Across different dimensionality reduction techniques,
MCP-Flow demonstrates a high diversity of instructions. Compared to other MCP datasets and
benchmarks, MCP-Flow exhibits superior data scale and diversity, as measured by the MCP server
count and average cosine distance.

response quality (4.25 average quality) and feature richness (6 points). Notably, Feature richness
scores correlate strongly with average Quality, validating the hypothesis that MCP servers with more
comprehensive and sophisticated tool ecosystems tend to deliver higher-quality responses

The United States Weather MCP, despite having the highest monthly usage (67,400 calls), shows
moderate success rates (38.5%), indicating that popularity and technical performance may diverge. the
disparity between popularity and technical performance metrics across different servers underscores
the complex factors influencing user adoption, including ease of deployment, documentation quality,
and ecosystem support beyond pure technical capabilities. These findings highlight the importance of
systematic evaluation frameworks for MCP selection and ecosystem improvement.

B.2 INSTRUCTION DIVERSITY

Embedding Visualization. We visualize instruction embeddings using several dimensionality re-
duction techniques, including PCA (Principal Component Analysis), t-SNE (t-distributed Stochastic
Neighbor Embedding), and UMAP (Uniform Manifold Approximation and Projection), to compre-
hensively demonstrate the diversity of the MCP-Flow datasets. Specifically, PCA (Pearson,|1901) is
a linear method that identifies the directions (principal components) capturing the maximum variance
in the data, providing a straightforward global view of the embedding distribution. t-SNE (van der
Maaten & Hinton, [2008), in contrast, is a nonlinear technique that excels at preserving local structure
and revealing fine-grained clusters in high-dimensional data. UMAP (Mclnnes et al.| 2018)) combines
the strengths of both linear and nonlinear methods, maintaining both local and global structures while
being computationally efficient for large-scale embeddings.

The results in Figures[B.2]a and[B.2]b show that the embeddings are ubiquitous throughout the space,
highlighting the diversity of instructions.

Average Cosine Distance. We also calculate diversity quantitatively by measuring pairwise cosine
distances between instruction embeddings. We randomly sample 1,000 samples from MCP-Flow
and each of the baselines. As shown in Figure [7jc, MCP-Flow achieves comparable diversity to
human-written instructions from LiveMCPBench (Mo et al., 2025}, demonstrating that our automated
generation pipeline can produce instructions that match or even surpass human-crafted data in terms
of variety.

B.3 SUPPLEMENTARY ABLATION STUDY
Cross-Marketplace Comparison. We provide additional visualizations in the form of radar charts

(Figure [9)), illustrating other metrics for cross-marketplace performance comparisons. Detailed
numerical results are presented in Section [B.4]
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Figure 9: Supplementary results comparing different models across various marketplaces. The AST
results are shown in Figure [6] and the remaining two metrics are presented here. Note that the
maximum values of the radial axes differ across figures. These results further prove the effectiveness
of MCP-Flow compared to other baselines.

Scaling Law Analysis. For the scaling-law analysis, further results are shown in Figure 10} These
charts demonstrate findings aligned with the conclusions drawn in Section .5] Compared with
MCPToolBench++ (Fan et al., 2025)), currently the only MCP effort that can be transformed into
trainable samples, MCP-Flow offers both higher data quality and larger quantity. Notably, the
MCPToolBench++ authors did not use these samples for model training, but focused solely on
evaluation. This highlights the value of MCP-Flow as the only dataset capable of distilling practical
knowledge about MCP servers into LLMs.

B.4 MCP ToOL SELECTION AND FORMAT EXPERIMENT ON VARIOUS MARKETPLACES

In this section, we present detailed experimental results covering nearly all marketplaces and models,
with the complete results summarized in Table[8] Table[9] and Table[I0} These findings reaffirm the
primary conclusion discussed in Section[d.2} training small-scale models with MCP-Flow is effective
to enhances their ability to utilize real-world MCP tools.

By comparing the performance of the same models across different platforms and test sets, we
also identify additional observations and novel insights that extend our previous analysis: (1) Per-
formance of MCPToolBench++: We notice that models trained on MCPToolBench++ perform
relatively better when evaluated on MCP . so than other marketplaces. We attribute this to the fact that
MCPToolBench++ is largely composed of servers from MCP . so, leading to a closer match in data
characteristics. (2) Difficulty of the Glama Unseen-Server split: This split appears to be the most
challenging, as most models perform poorly. For example, Grog-8B-Tool-Use achieves only 27.0%
tool selection accuracy. (3) Challenges for API-based large models: They achieve particularly worse
results on MCP . so than smaller models endowed with reasoning abilities. Our investigation reveals
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Figure 10: Supplementary results for the scaling law analysis.

Table 8: Evaluation on subsets sourced from the G1ama marketplace. Each model is evaluated on
Seen-Test, Unseen-Tool, and Unseen Server test splits with Tool selection accuracy, Param format
accuracy, and AST metrics.

Seen Test Unseen Tool Unseen Server
Category Backbone Model Tool Param AST | Tool Param AST | Tool Param AST
Large Models (> 10B) through Azure API
GPT-40 83.6 594 51.8]822 642 606|856 516 42.6
Closed-Ended GPT-40-Mini 83.6 60.6 504|786 614 572|816 462 392
GPT-4.1 71.8 52.8 442|664 560 506|726 47.8 39.0
Claude-4-Sonnet 782 59.0 502|764 612 574|740 474 396
Open-Ended DeepSeek-V3 78.4 56.8 48.8 740 598 56.6|77.6 472 40.2
p Kimi-K2 82.0 594 506|766 602 556|784 450 384
Small Models (< 10B) through Local Deployment
Qwen3-0.6B 59.4 404 33.0(554 344 266|642 390 332
General Model Qwen3-4B 84.0 642 548|784 674 562|782 550 454
with Reasoning Llama3.1-8B 702 42,6 27.2|688 438 306|662 372 202
Tool-Specialized Grog-8B-Tool-Use | 32.6 18.0 158|306 182 148 |27.0 134 114
P ToolACE-8B 80.0 402 366|754 41.0 368|762 286 2438
Qwen3-0.6B 78.6 50.6 39.6|746 508 404|734 522 348
MCPToolBench++ 0013 4B 900 656 528|896 718 588|844 604 444
MCP-Flow Qwen3-0.6B 982 81.6 68.0960 794 662|97.6 80.8 66.6
(Ours) Qwen3-4B 98.6 858 72.0]98.6 858 712|980 842 730
Llama3.1-8B 98.6 846 712|978 856 732[98.0 830 720

that some servers from MCP . so lack formalized tool descriptions that strictly adhere to the OpenAl
API protocol for tool invocation, which leads to frequent execution failures. This raises an important
question about the robustness of LLM agents when interacting with less-formalized MCP tools.

B.5 EFFICIENCY ANALYSIS

To evaluate the computational efficiency of the automated MCP server collection pipeline of MCP-
Flow, we conduct a comprehensive analysis of resource and time consumption during the web
agent-based crawling process. This analysis provides insights into the practical costs and scalability
considerations of large-scale MCP server discovery.

Using Smithery as a representative example of all marketplaces, we track both token consumption
and execution time for each MCP server collection attempt. Specifically, for every assistant turn
during the collection process, we record input and output token usage of the GPT-40 model, including
system prompts, user instructions, and prior tool interactions. We also record the wall-clock time
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Table 9: Evaluation on subsets sourced from the MCP . so marketplace. Each model is evaluated on
Seen-Test, Unseen-Tool, and Unseen Server with Tool selection accuracy, Param format accuracy,
and AST metrics.

Seen Test Unseen Tool Unseen Server
Category Backbone Model | 1 "p.im  AST | Tool Param AST | Tool Param AST
Large Models (> 10B) through API
GPT-40 76.6 560 50.8|82.6 656 59.8|80.0 71.0 60.8
Closed-Ended GPT-40-Mini 754 550 46.6 |81.8 664 584|850 734 606
Claude-4-Sonnet 726 574 48.0|80.6 646 582|722 658 550
Open-Ended DeepSeek-V3 77.0 598 51.6|832 650 608|834 722 622
P Kimi-K2 77.0 596 50.8|81.0 644 572|746 662 564
Small Models (< 10B) through Local Deployment
General Model Qwen3-0.6B 598 422 354|59.0 424 39.0]|63.0 448 36.6
with Reasonin Qwen3-4B 85.8 684 572|872 720 622 (81.8 720 59.6
g Llama3.1-8B 744 695 44.1 1732 69.6 458 |71.0 633 386
Tool-Specialized Grog-8B-Tool-Use | 37.0 24.8 20.6 | 39.4 288 27.0|408 282 24.0
P ToolACE-8B 844 490 448|842 564 536|794 580 532
Qwen3-0.6B 780 534 428|858 646 52.6|79.8 638 484
MCPToolBench++ /03 4B 916 688 542|948 782 660|912 788 626
MCP-Flow Qwen3-0.6B 972 808 65.8]99.0 874 77.6|950 80.2 66.0
(Ours) Qwen3-4B 99.0 858 724199.0 880 782|988 896 722
Llama3.1-8B 992 848 72.0]|994 882 7801|972 876 722

Table 10: Evaluation on subsets sourced from the MCPHub marketplace. Each model is evaluated on
Seen-Test, Unseen-Tool, and Unseen Server test splits with Tool selection accuracy, Param format
accuracy, and AST metrics.

Seen Test Unseen Tool Unseen Server
Category Backbone Model | 1 "p;im  AST | Tool Param AST | Tool Param AST
Large Models (> 10B) through API
GPT-4o0 84.8 560 490|864 572 440|802 496 442
Closed-Ended GPT-40-Mini 81.0 514 442832 596 440|764 526 418
: Claude-4-Sonnet | 81.4 588 498 [80.6 560 440|830 560 476
Oven-Ended DeepSeek-V3 80.4 532 468|874 580 440|748 522 410
P Kimi-K2 784 542 466|834 564 432|703 477 406
Small Models (< 10B) through Local Deployment
General Model Qwen3-0.6B 714 434 248|748 516 206|712 468 288
with Reasonds Qwen3-4B 81.8 592 496|862 626 476|762 560 424
€ Llama3.1-8B 704 434 248|734 504 214|686 440 27.8
Tool-Shecialiged  GT0d-8B-Tool-Use [ 32.8 232 204|346 222 166348 21.0 152
P Tool ACE-8B 784 372 344808 338 302|716 384 31.8
Qwen3-0.6B 844 572 410|834 552 332|792 536 346
MCPToolBench++ 1013 4B 922 628 460|936 650 380|906 684 448
MCP-Flow Qwen3-0.6B 962 80.0 668|974 806 596|940 756 59.6
(Ours) Qwen3-4B 98.0 80.8 686|982 862 688|970 814 64.6
Llama3.1-8B 98.0 832 716|978 872 682|974 820 656

from the initiation to the completion of each MCP server’s detailed page scraping. For each MCP
collection attempt, input and output tokens were aggregated across all turns, and the final metrics
represent averages computed over all MCP attempts that successfully produced MCP configurations.
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Table 11: Efficiency metrics for automated MCP server collection from Smithery. Averages are
computed over successful collection attempts that produce MCP server configurations.

Efficiency Metric  Average Value per Server

Input Tokens 97,827
Output Tokens 414.39
Execution Time (s) 42.17
Price (US cent ¢) 24.87

Table 12: Key training parameters regarding optimization, data and efficiency.

Parameter Value | Parameter Value
Optimization
Device Number 2 Batch Size 2
Gradient Accumulation Steps 8 Learning Rate 5e-5
LR Scheduler Type cosine Warmup Ratio 0.1
Data
Preprocessing Workers 16 Dataloader Workers 4
D-type BF16 Max Length (Input+Output) 8192
Efficiency
LoRA Rank 16 LoRA Alpha 32
DeepSpeed Stage 0 Load in 8bit False

Experimental results summarized in Table(l I|demonstrate that the collection of newly updated servers
is cost-effective. For instance, crawling 100 latest servers incurs a cost of approximately 2 dollars.
We reiterate that, based on our large-scale collection, future work only needs to carry out incremental
crawling, instead of re-collecting the entire marketplaces.

C EXPERIMENT DETAILS

In this section, we provide detailed information about the our experiments, including parameters,
setups and metrics. Training and inference details are presented in Section [C.1] Evaluation details are
presented in Section[C.2] Details related to the GAIA benchmark are presented Section

C.1 TRAINING AND INFERENCE DETAILS

Training Framework and Parameters. We adopt LLaMA-Factory (Zheng et al.,[2024) to fine-tune
our local models, as it is widely used and supports training of the latest model series, including
Qwen3 and Llama3. For smaller models, we employ LoRA fine-tuning (Hu et al., 2022} due to its
superior resource efficiency.

To further reduce GPU memory consumption, we utilize DeepSpeed (Ren et al.,[2021), setting the
Zero Redundancy Optimizer (ZeRO) stage to 0, following LLaMA-Factory’s implementation. Other
key training parameters are summarized in Table[I2]

Inference Parameters. We employ vLLM (Kwon et al.,[2023) to accelerate inference and deploy
the local model on a single HI00 GPU. Other parameters are presented in Table [I3]

In Section[d.2] for Qwen base models, we adopt the non-thinking template to ensure a fair comparison,
as all models are evaluated without additional reasoning techniques. In Section[4.2] all models are
evaluated using the thinking template, since the evaluation is conducted on a challenging agentic
benchmark.
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Table 13: Key inference parameters regarding data generation and vLLM.

Parameter Value | Parameter Value
Generation
Do Sample True Temperature 0.7
Top P 0.8 Max Tokens (Output) 4096
vLLM
Max Length (Input+Output) 32768 \ Enforce Eager True

Table 14: Models used in the experiments. Details about the API model versions and the specific
Hugging Face URLs for the locally deployed models are presented.

Azure API Local Deployment

Model Name Version Model Name Hugging Face URL

GPT-40 gpt-40-2024-11-20 Qwen3-0.6B Qwen/Qwen3-0.6B

GPT-40-Mini gpt-40-mini-2024-07-18 | Qwen3-4B Qwen/Qwen3-4B

Gemini-2.5-Pro gemini-2.5-pro Qwen3-8B Qwen/Qwen3-8B
Claude-4-Sonnet  claude-4-sonnet Llama3.1-8B meta-1lama/Llama-3.1-8B-Instruct
DeepSeek-V3 deepseek-v3-0324 Grog-8B-Tool-Use  Grog/Llama-3-Grog-8B-Tool-Use
Kimi-K2 kimi-k2-0905-preview ToolACE-8B Team-ACE/ToolACE-8B

Model Version. As shown in Table for reproducibility and fair comparison, we provide a
detailed description of our models. All API-based models are accessed through Microsoft’s Azure
platfornﬂ while the relatively small open-source models are downloaded from Hugging Face.

Environment and Resources. For the MCP client and server deployment, the tool responses were
obtained in a macOS environment with Node.js. We configured the path to the current workspace
directory. All training and evaluation experiments were conducted on a Linux server equipped with
eight NVIDIA H100-SXM-80GB GPUs.

Training the Qwen3-4B models on the full function call dataset for two epochs take approximately
12 hours on 2 GPUs.

C.2 EVALUATION DETAILS

Metrics for Tool Selection and Formatting. For tool selection and format evaluation, we adopt
three metrics with increasing strictness following representative prior work (Wu et al., [2024; Shen
et al., [2024; |Liu et al., [2024a; [Patil et al., [2025; |Gao et al., [2025).

1. Tool selection accuracy (7ool): This metric measures the correctness of tool selection by calculat-
ing the percentage of predicted tool names that match the ground-truth tool names.

2. Parameter format accuracy (Param): This metric evaluates the model’s ability to generate
correctly formatted tool parameters. Each predicted parameter name is compared recursively with
the corresponding ground-truth parameter, without requiring positional alignment. The evaluation
follows an all-or-nothing rule: if any ground-truth parameter is unmatched, the entire prediction is
considered incorrect. This ensures that the model identifies all required parameters, regardless of
order.

3. Abstract Syntax Tree (AST): AST is adopted from BFCL (Patil et al.,2025). According to the
authors, this metric exhibits a strong alignment with actual execution results. A function call is
deemed correct if the function name matches exactly and all parameter values fall within their
respective allowed sets. For further details on the AST matching rules, please refer to|Patil et al.
(2025)).

1https ://azure.microsoft.com/en-us/pricing/details/cognitive—services/
openai-service/
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Metrics for Evaluating MCP Servers.

1. Query Success Rate: Measures the percentage of queries that receive non-zero scores, serving as
an indicator of the MCP’s functional robustness and universal applicability. Higher success rates
suggest that the MCP can handle a broader range of weather-related queries effectively.

2. Average Performance: Calculates the mean score across all successful queries, reflecting the
professional quality and effectiveness of the MCP’s responses when it functions correctly.

3. Feature Richness: Evaluates the comprehensiveness and sophistication of each MCP’s tool
ecosystem. For this assessment, we employ a comparative scoring methodology where each
individual tool within an MCP is evaluated against functionally similar tools across all weather
MCPs in our dataset. Each tool receives a score from 1-5 based on two primary criteria: (1) the
level of detail and granularity in its functionality, and (2) the breadth of its applicability and use
case coverage. Tools offering basic weather information retrieval receive lower scores, while
those providing advanced features such as multi-location forecasting, historical data analysis, or
specialized meteorological computations receive higher scores. The final Feature Richness score
for each MCP represents the sum of scores across all its constituent tools, providing a quantitative
measure of the server’s overall functional depth and versatility.

4. Efficiency Metrics: We measure Average Execution Time to assess the computational responsive-
ness of each MCP, while Average Output Token metrics quantify the communication overhead and
resource consumption associated with each interaction. These efficiency metrics are particularly
crucial for production deployments where latency and cost considerations significantly impact
user experience and system scalability.

5. Monthly Tool Calls: Captures real-world adoption patterns by measuring the frequency of user
interactions with each MCP on its respective hosting platform. This metric serves as a proxy for
community acceptance and practical utility, as user preference patterns often reflect the perceived
value and reliability of different MCP implementations.

Instruction Diversity and Embedding Details. We employ the python package
SentencefTransformersE] to compute instruction embeddings. This setup is applied
for similarity filtration in Section [3.3] retrieval augmentation in Section [4.3] and instruc-
tion diversity analysis in Section For filtering and retrieval, we adopt the widely used
model mxbai-embed-large-v1P’, while allfMiniLMfL6fv2E] is employed for diversity
computation.

To ensure reproducibility, we provide a concise code snippet illustrating how embedding similarity is
calculated:

from sklearn.metrics.pairwise import cosine_similarity

model = SentenceTransformer (model_path, device= , trust_remote_code=True)
embeddings_1 = model.encode (sentencel, max_length=512, task= )
embeddings_2 = model.encode (sentence2, max_length=512, task= )
similarity = cosine_similarity ([embeddings_1], [embeddings_2])

C.3 GAIA BENCHMARK DETAILS

Setups. For the GAIA benchmark evaluation, we carefully select several powerful web-search
MCP tools, including Google Search using Serper API, Jina Web Parser, and Firecrawl.

Following common practice in agentic research (Wu et al., |2025; [Li et al., [2025), we adopt the
Pass@1 metric for evaluation. All experiments are conducted on the text-only validation subseﬂ
which comprises 103 questions. To ensure a fair comparison and minimize potential confounding
effects arising from tool heterogeneity, we disable Firecrawl during the experiments. We also cap the
maximum number of execution steps at 10, a limit that is rarely approached in practice. Furthermore,
to prevent excessive context accumulation across multiple turns in web parsing, we employ GPT-
4.1-nano to summarize the retrieved content before subsequent processing. To prevent the agent

https://github.com/UKPLab/sentence—transformers
*https://huggingface.co/mixedbread-ai/mxbai-embed-large-vl
‘nttps://huggingface.co/sentence-transformers/all-MinilM-L6-v2
Shttps://github.com/sunnynexus/WebThinker/blob/main/data/GAIA/dev. json
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from exploiting trivial shortcuts, such as directly querying answers related to GAIA, we employ a
keyword-filtering mechanism that removes terms including “GAIA” and “HuggingFace” from the
search inputs, while still allowing general external resource access.

Metrics. For the evaluation of models on the GAIA benchmark, we adopt the official success rate
metric to assess performance, and use two additional metrics, step number and weighted step number,
to evaluate efficiency.

1. Success Rate (SR): SR is computed using an LL.M-as-a-judge approach, comparing the agent’s
final answer with the ground-truth label. The evaluation prompt is provided in ??. Specifically,
we use GPT-4o as the judge model. For the third label, partially correct, where the judge model
is uncertain about correctness, we manually verify whether the ground-truth label is included in
the answer. For example, an answer of “INT. THE CASTLE - DAY” is considered correct with
the ground truth “THE CASTLE”, even though GPT-40 notes: “The model’s answer includes
additional detail (’INT. and ’- DAY’) that is not part of the ground truth answer ('THE CASTLE’).
While the core location is correct, the format does not exactly match the ground truth.”

2. Step Number: This metric directly computes the average number of assistant messages in
a trajectory. It accounts for function calls without semantic content, direct textual responses,
intermediate reasoning steps, and the final answer.

3. Weighted Step Number (WS): Since our tuned function-call model is considerably smaller than
typical LLM agents, employing MCP-Flow to initiate function calls substantially reduces cost.
We use the API input-token price difference as the weighting factor to compute a weighted step
number. The model price of MCP-Flow is based on the official pricing of Qwen3-4B and we
assume an exchange rate of 7 Chinese yuan to 1 US dollar for estimation.

D DATASET CONSTRUCTION DETAILS

In this section, we detail the implementation of the automated data construction pipeline of MCP-
Flow, drawing on the server collection described in Section[D.T|and the marketplace introduction
provided in Section

D.1 AUTOMATED SERVER AND TOOL COLLECTION DETAILS

Web Agent. For Smithery, MCPHub, Glama, MCP.so, and PipeDream, the server collection process
follows a largely unified procedure. We employ the web agent based on Playwright MCH'|to (1)
navigate to the home page, (2) collect all listed server information (including names, descriptions,
and IDs), (3) click on each server entry, (4) use the tool snapshot function to capture information and
extract the MCP server configuration from the current page in JSON format, and (5) proceed to the
next page and repeat steps (2)—(4).

Glama differs in that it does not provide a single homepage listing all servers. Instead, its homepage
allows repeatedly clicking “Load More,” which yields only about 30 servers, a quantity insuffi-
cient for our purposes. We therefore adapted our approach by navigating to multiple search-result
pages using query keywords such as https://glama.ai/mcp/servers?query=a&sort=
github-stargazers$3Adesc, and collected all servers listed on these pages. To prioritize the
most popular servers, we sorted the results by GitHub star counts.

For MCPHub, to maximize efficiency we selected the homepage https://mcphub.com/
online-hosted-servers, which lists all servers hosted through MCPHub endpoints. These
servers typically provide explicit server configurations, unlike many others on the platform.

For MCP . so, to improve efficiency and avoid redundant crawling, we directly leveraged pre-crawled
server information from MCPCorpus (Lin et al.| 2025)), supplementing it with additional tool infor-
mation to generate function call.

6https ://help.aliyun.com/zh/model-studio/models?spm=a2ty02.30268951.d_
model-market.17.71dc74alGUE11x#2c9c4628c9yyd
'"https://github.com/microsoft/playwright-mcp
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Algorithm 1 Automated MCP Server Collection from Marketplaces

Require: Marketplace URLs: M = {M;, Mo, ..., My}

Ensure: Deduplicated server configurations S and tool information 7
1: Initialize empty sets: Syqu < 0, S + 0, T < 0
2: for each marketplace M; € M do

3:  Initialize Playwright web agent
4:  Navigate to marketplace homepage M;
5:  while more pages available do
6: Extract server list from current page using MCP List Collection Prompt
7: for each server s in server list do
8: Navigate to server detail page
9: Extract JSON configuration using Server Configuration Extraction Prompt
10: Sraw — Sraw U {s}
11: end for
12: Navigate to next page
13:  end while
14: end for

15: // Server Deduplication

16: for each server s; € S,4., do

17:  Extract tool descriptions D; from s;

18:  if #s; € S such that D; = D; then

19: S+ SuU{si}

20:  end if

21: end for

22: // Local Deployment and Tool Collection

23: for each server s € S do

24:  Deploy server locally using MCP client (npm/uvx for stdio, URL for SSE)
25:  Extract tool information: name, description, input schema
26: T <« T U{tools from s} deployment failure

27:  Mark server as unavailable and continue

28: end for

29: return S, T

Python SDK. MCP-MarketplaceE] implements a python SDK which provides direct post-get ap-
proach for obtaining server information. Our code snippet is provided below:

import mcp_marketplace as mcpm

# Select data source
mcpm. set_endpoint ( )

# Query MCP Marketplace
result_g = mcpm.search (mode= , page_id=0, count_per_page=100)

# Extract information
for item in result_gl ]:

item_id = item] ]

item_name = item|[ ]
item_description = item]| ]
item_url = item][ ]

We note that the agent method is also applicable to these two endpoints. We employ Python SDK as
a cheaper method as we crawled 10,000 servers and conduct filtration.

For PipeDream the difficulty lies in that almost all servers from this endpoint requires personalized
API key for deployment which, as we have previous elaborate, is of great difficulty for automated
collection. However, after some digging and cross-comparison, we find that PipeDream demon-

$https://pypi.org/project/mcp-marketplace/
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Table 15: List of all marketplaces utilized in this paper. In the main paper, we treat PulseMCP and
DeepNLP as the same market source, as the Python SDK collection method supports both. Server
Host indicates whether the marketplace self-hosts any MCP servers and provides proxy access to
them. Server counts are recorded as of 2025.09.16.

Icon  Marketplace Home Page Server Host  Server Count

b ¢ Smithery smithery.ai v 6859

‘?’ Glama glama.ai/mcp/servers X 9361

[E] MCP.so mcp.so X 16563

£€® McPHW  mcphubcom v 27793

putse PulseMCP pulsemcp.com/servers X 6073
DeepNLP deepnlp.org/store/mcp-server X 11k+
PipeDream mcp.pipedream.com v 2877

state tool information for almost all servers on corresponding page and each server is linked to its
GitHub directory on the PipeDream official repository. For example, https://github.com/
PipedreamHQ/pipedream/tree/master/components/notion| contains information
for the Notion Server. Each tool has a seperate directory under “/actions”. And each tool has
a js file which specifies its name, description and parameters. Based on this discovery, we implement
a crawling agent to collect servers and tool information from the whole website and obatin around
1,500 servers and filter the 100 most popular.

D.2 MARKETPLACE INTRODUCTION

We provide a brief introduction to each of the six marketplaces we utilize.

1.

Smither}ﬂ is an emerging platform that standardizes the integration of external services into
large language models and autonomous agents via the Model Context Protocol (MCP). It lowers
deployment and maintenance costs by providing a centralized registry, development tool chains,
and hosting infrastructure, thereby promoting reusability and interoperability. However, its
adoption also requires careful attention to security, privacy, and version control.

Glama is a platform that provides discovery, indexing, and connectivity for MCP servers, clients,
and tools. It enables users to search, compare, and access thousands of MCP servers through
multiple transports, as well as via an API gateway or chat-UI. Servers are ranked along dimensions
such as security, compatibility, and usability, helping users choose the right ones.

. MCP.so is a community-driven platform that collects and organizes third-party MCP Servers. It

serves as a central directory where users can discover, share, and learn about various MCP Servers
available for Al applications.

MCPHub is a central platform for discovering, testing, and integrating Model Context Protocol
(MCP) servers. It allows Al assistants to securely connect with external data sources and tools,
extending their capabilities beyond their training data. Users can browse detailed server documen-
tation, test servers in an online inspector, and seamlessly integrate them into their applications.

PipeDream offers a dedicated MCP server that integrates thousands of applications and pre-built
tools through a standardized interface. It allows large language models and Al assistants to securely
invoke external APIs and perform real-world tasks using managed OAuth and encrypted credential
storage. This setup streamlines authentication and interaction patterns, enabling scalable, secure,
and protocol-compliant access to a wide range of services.

‘nttps://smithery.ai/
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Table 16: A list of example MCP Servers. We present details about the server names, corresponding
URLSs, source marketplaces, and descriptions.

Name Marketplace Category Description

Youtube Tran: Smithery Art & Enter-  Retrieve transcripts of YouTube videos.

script tainment

Gen-PDF Smithery File System  Generate professional PDF documents from markdown
Server content with customizable styling options including dark

mode and advanced page settings. Convert any github
flavored markdown to high-quality PDFs using the Gen-
PDF APL

YGO Chinesel  Smithery Database Provide fast and easy access to Chinese Yu-Gi-Oh! card
Card Database information and images through keyword search and ID
queries. Integrate seamlessly with your applications to
retrieve detailed card data and visuals. Support both
stdio and Streamable HTTP modes for flexible deploy-

ment.
ESA MCP Glama Web Search ~ API through the Model Context Protocol, supporting
Server & Data article search and retrieval with a compliant MCP inter-
face.
Deepwiki MCP,  Glama Developer An MCP server that fetches and converts Deepwiki docu-
Server Tools mentation into Markdown, allowing users to crawl pages
from deepwiki.
code-runner- MCP:so Developer Run JavaScript/Python code in a secure sandbox with
mcp Tools support for **any package import**.”
Get My Loca: MCP.so Map & Get My Location is a location acquisition server that
tion Weather retrieves the precise current location of the user through

browser authorization, integrating with weather and map
services for enhanced functionality.

Crypto Price & MCP:so Finance A Model Context Protocol (MCP) server that provides

Market Analy- comprehensive cryptocurrency analysis using the Coin-

sis MCP Server Cap APL This server offers real-time price data, market
analysis, and historical trends through an easy-to-use
interface.

browser- MCPHub Browser The browser-scraper MCP is designed to facilitate web

scraper Automation  scraping using a browser, providing content in Mark-

down format.

google-news- MCPHub Web Search  Aigeon Al Google News Search is a Python-based server
search & Data application designed to interact with the Google News
search engine via the SerpApi.

AutoBlogger PipeDream  Art & Enter- Automatically create and publish posts Set it up once
tainment and then redirect your focus to more important tasks.
Todoist PipeDream  File System  Todoist is a delightfully simple yet powerful task planner
and to-do list app.
travel-planner Manual Map & A Travel Planner Model Context Protocol (MCP) server
Weather implementation for interacting with Google Maps and

travel planning services. This server enables LLMs
to perform travel-related tasks such as location search,
place details lookup, and travel time calculations.

D.3 DATA GENERATION DETAILS

Slot-Fill Revision. As part of the regular-expression rules outlined in Section [3.2] we detect
three types of placeholders: file names, URLs, and directories. For file names, we substitute
the placeholders with valid local files based on their extensions. For URLs, we replace them with
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Table 17: Example test instructions used to evaluate the quality and functionality of weather-related
MCP servers, as discussed in Section

Instruction

Test Purpose

What’s the current temperature at 40.7128,-74.0060?

Temperature query with coordinates

Are there any active weather alerts near 29.7604,-95.3698?

Weather alerts query with coordinates

Show current weather alerts for TX.

Weather alerts query by state abbrevia-
tion

Provide current weather conditions at -12.0464,-77.0428.

General weather conditions with coordi-
nates

What is the current weather in Gweru, Zimbabwe?

Weather query by city and country name

real-world examples collected from GitHule]. For directories, we normalize them to the absolute
path of our local working directory.

To preserve anonymity and protect the authors’ privacy, we substitute all local file names and
directories with specific placeholders and provide simple code that allows other researchers to replace
them with customized input.

E

E.1

PROMPTS AND EXAMPLES

PROMPT TEMPLATES

Prompt 1: MCP Server List Collection Prompt

.

Use the tool Playwright to obtain the information about listed mcp servers in a json format
from the given url.

A mcp server is a tool that can be used to interact with the system, such as “Exa Search”,
“xxx MCP Server”.

The mcp server name is usually contained in the “heading”.

The description of the mcp server is usually contained in the “paragraph” near the “heading”.

Url: {url}&page={page}
Only need to return the json data, no other text.

Only need the names and descriptions of the mcp servers.
Prefer browser_snapshot than browser_evaluate.

v

Figure 11: Prompt for automated MCP server discovery across marketplace pages. This prompt
instructs the web agent to systematically collect server names and descriptions from marketplace
listings, supporting the large-scale server collection described in Section

Uhttps://gist.github.com/bejaneps/ba8d8eed85b0c289a05c750b3d825£61 4
file-websites-csv
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Prompt 2: Smithery Server Configuration Extraction Prompt

Use the tool Playwright to obtain the json data of the given mcp server.

You need to follow the steps below:

1. Open the browser: {url} &page={page}

2. Click the corresponding mcp server {mcp_name}.

3. Click button “JSON” at the right side of the new page.

4. Click the “Connect” button poped up.

5. Retrieve the json data from the current page which specify how to install the mcp server.

Only need to return the json data that contains “mcpServers” and “command”.
Prefer browser_snapshot than browser_evaluate.
Don’t click on “Generate URL” button!

Figure 12: Prompt for extracting MCP server configuration files from Smithery marketplace. This
prompt guides the web agent through the specific navigation steps required to access and retrieve
JSON configuration data for individual servers, as part of the automated server collection pipeline.

Prompt 3: Tool-based Instruction Generation Prompt

You are given a specific tool from a mcp server. You need to generate an instruction which
requires to utilize this tool.
Each instruction needs to use exactly {number} tools belong to the mcp server.

## Input

- #*MCP Server information**:

[MCP Server Name] {mcp_name}

[MCP Server Description] {mcp_description }
- **Tool information**:

[Tool Name] {tool_name}

[Tool Description] {tool_description}

[Tool Schema] {tool_schema}

## Requirement

The instruction should not directly include the name of the mcp server or the name of the
tools.

The instruction must not look similar to the tool description.

Make sure The tool and instruction in your output are aligned.

Try to improvise and return 5 instruction candidates.

## Example
{example}

## Output Format

[Instruction1] <your generated instruction>
[Instruction2] <your generated instruction>
[Instruction3] <your generated instruction>
[Instruction4] <your generated instruction>
[Instruction5] <your generated instruction>

Figure 13: Prompt for tool-based few-shot instruction generation. This prompt ensures instructions
are naturally formulated without directly mentioning tool names, as described in the tool-based
few-shot generation stage of Section 3.2}
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Prompt 4: Slot-Fill Revision Prompt

You are an expert at identifying missing but necessary details.
You will be provided with a tool’s parameters and a user query. Your task is to supplement
any missing information required by the tool in the user query.

If the query lacks required details, retrieve them from the provided environmental
context. Then, revise the user query by adding the appropriate missing details.
Ensure that your revisions are realistic and reasonable.

## Requirements

1. Be realistic and authentic, stick to the given environmental context if given.

2. For not included details in the environmental context, like place, date and institutions,
etc, try to use real-world names; if they don’t affect the common knowledge, you can create
as you wish.

## Example and Format

Now you need to generate a revised query based on the information below.

### Input

- ¥*MCP Server information**:
[MCP Server Name] {mcp_name}
[MCP Server Description] {mcp_description }
- ¥*Tool information**:

[Tool Name] {tool_name}

[Tool Description] {tool_description}
[Tool Schema] {tool_schema}

- *#*¥ser Query**: {query}

- **Environmental Context**:
{environment context}

### Output

Figure 14: Prompt for slot-fill revision in Section|3.2|to supplement missing tool parameters.

Prompt 5: WizardLLM Evolution Prompt

I want you act as a Prompt Rewriter.

Your objective is to rewrite a given prompt into a more complex version to make those
famous Al systems (e.g., chatgpt and GPT4) a bit harder to handle.

But the rewritten prompt must be reasonable and must be understood and responded by
humans.

Your rewriting cannot omit the non-text parts such as the table and code in #The Given
Prompt#:. Also, please do not omit the input in #The Given Prompt#.

You SHOULD complicate the given prompt using the following method:

You should try your best not to make the #Rewritten Prompt# become verbose, #Rewritten
Prompt# can only add 10 to 20 words into #The Given Prompt#.

‘#The Given Prompt#’, ‘#Rewritten Prompt#’, ‘given prompt’ and ‘rewritten prompt’ are
not allowed to appear in #Rewritten Prompt#

Figure 15: Prompt for WizardLM evolution in Section to increase query complexity and diversity.
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Prompt 6: LLM Quality Filtering Prompt

You are an expert in information retrieval and query optimization. Your task is to evaluate
the quality of the following query:

k<L query 7k,

When assessing the query, consider:

1. **Clarity** — Is the query unambiguous and easy to understand?

2. **Specificity** — Does it include enough detail to retrieve relevant results?
3. **Relevance** — Is it likely to produce results aligned with the user’s intent?
4. **Completeness** — Does it provide all necessary context or constraints?

## Output Format
[Score]: 1-10 (10 = excellent)

Figure 16: Prompt for LLM-based quality filtering of generated instructions, as elaborated in Section

B3

Prompt 7: Weather MCP Quality Assessment Prompt

You are an expert evaluator. Given a user query and multiple answers from different MCPs,
score each answer on a 0-5 scale.

User Query: {query}

MCP Answers:
{answers_text}

Scoring Criteria:

- 0: Answer is irrelevant, unhelpful, or “I don’t know”

- 1: Answer is barely relevant but provides minimal useful information

- 2: Answer is somewhat relevant and provides basic information

- 3: Answer is relevant and provides good information

- 4: Answer is very relevant and provides detailed, useful information

- 5: Answer is excellent, comprehensive, and directly addresses the query perfectly

Respond with a JSON object mapping MCP names to scores (0-5 integers only):
{“MCP Name”: score, ...}

Figure 17: Prompt for weather MCP quality assessment using a 0-5 point scale, as discuessed in

Section
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