
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MCP-FLOW: FACILITATING LLM AGENTS TO MASTER
REAL-WORLD, DIVERSE AND SCALING MCP TOOLS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) increasingly rely on external tools to perform
complex, realistic tasks, yet their ability to utilize the rapidly expanding Model
Contextual Protocol (MCP) ecosystem remains limited. Existing MCP research
covers few servers, depends on costly manual curation, and lacks training support,
hindering progress toward real-world deployment. To overcome these limitations,
we introduce MCP-Flow, an automated web-agent-driven pipeline for large-scale
server discovery, data synthesis, and model training. MCP-Flow collects and filters
data from 1166 servers and 11536 tools, producing 68733 high-quality instruction-
function call pairs and 6439 trajectories, far exceeding prior work in scale and
diversity. Extensive experiments demonstrate MCP-Flow’s effectiveness in driving
superior MCP tool selection, function-call generation, and enhanced agentic task
performance. MCP-Flow (available at [URL].) thus provides a scalable foundation
for advancing LLM agents’ proficiency in real-world MCP environments.

1 INTRODUCTION

The development of tool-using agents has rapidly accelerated in recent years, driven by the need for
Large Language Models (LLMs) to perform complex, realistic tasks beyond pure language generation
(Shen, 2024; Yan et al., 2025). A key milestone in this area is the Model Contextual Protocol (MCP),
a framework designed to enhance models’ interactions with diverse external tools in a unified manner
(Anthropic, 2024a). Unlike traditional APIs with fixed interfaces and limited flexibility, MCP offers a
dynamic, context-aware environment, allowing LLM agents to adapt to heterogeneous servers and
continuously evolving functionalities (Yin et al., 2025; Mo et al., 2025).

The integration of MCP presents both extensive opportunities and pressing challenges for tool-using
agents, spurring a surge of research and benchmarks designed to evaluate model proficiency in
MCP utilization. Empirical evidence (Luo et al., 2025b; Liu et al., 2025) shows that even state-of-
the-art (SOTA) LLM agents struggle to fully exploit MCP tools, underscoring the need for more
comprehensive frameworks and concerted efforts to improve their mastery of real-world MCP
environments. The obstacle lies in the gap between the complexity, diversity and rapid proliferation
of real-world MCP servers, and the limited ability of current LLMs to utilize them.

Addressing this gap requires not only improved evaluation but also training resources that expose
models to realistic MCP scenarios. However, no large-scale, high-quality datasets are currently
available to fulfill this critical requirement, and existing MCP studies have yet to undertaken the
essential step towards data construction. As summarized in Table 1, they exhibit several notable
limitations: (1) most of them rely on only a small number of servers (≤ 20) and tools, resulting
in limited coverage, diversity and scalability; (2) they predominantly depend on labor-intensive
human data collection, which cannot keep pace with the rapid growth of open-source initiatives and
the continual emergence of new MCP servers; and (3) no existing MCP frameworks offer training
support, thereby failing to translate benchmark results into tangible improvements of LLMs.

To resolve the dataset absence, in this paper, we aim to introduce an approach for automatically
constructing high-quality datasets from a large number of MCP servers, thereby facilitating the
more effective utilization of real-world and continuously scaling MCP tools by LLM agents. That
said, building such an automated training framework is non-trivial, as several challenges remain:
(1) Each MCP server maintains its own repository and documentation. How to perform automated
data acquisition on a large scale while supporting dynamic updates? (2) With thousands of server

1

https://anonymous.4open.science/r/MCP-Flow

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

configurations, how to ensure the unified generation of high-quality and diverse datasets? (3) How
can the resulting datasets be effectively leveraged to strengthen MCP capability for both closed-ended
and open-ended models, and even support complex agentic tasks?

To tackle these challenges, we propose MCP-Flow, a comprehensive pipeline, data and model suite
that automatically constructs datasets from real-world, diverse and continuously scaling MCP servers,
thereby facilitating more effective utilization of MCP tools by LLM agents. MCP-Flow comprises two
key components: server discovery and data synthesis. Specifically, we first introduces a novel web-
agent–based automatic collection pipeline. Building on the contributions of MCP marketplaces which
aggregate a wealth of servers, our approach leverages web agents to automate server discovery and
acquisition. This implementation simplifies adaptation to new platforms and require only incremental
updates, thus accommodating the continuous emergence of real-world servers.

Second, we propose a scalable data synthesis pipeline, which comprises two main stages: data
generation and data filtration. We adopt a few-shot generation approach grounded in tool information,
therefore yield both instructions and corresponding ground-truth tool labels. To ensure instruction
specificity and diversity, we incorporate slot-fill revision and WizardLM evolution, which populate
each required parameter slot with valid values and rewrite instructions to increase difficulty and
promote reasoning (Xu et al., 2023), respectively. After rigorous filtering based on multiple criteria,
we obtain a dataset encompassing 1,166 servers and 11,536 tools, exceeding the scale of all previous
work combined, with 356 servers producing valid responses and trajectories. In total, the resulting
dataset contains 68733 instruction-function call pairs and 6,439 trajectories suitable for training.

Three versatile approaches demonstrate how MCP-Flow datasets empower LLM agents to maximize
their engagement with MCP tools: (1) training LLMs (particularly small-size models) to significantly
advance their real-world MCP tool-use capabilities; (2) establishing a retrieval database that can
augment closed-source models in MCP tool usage; and (3) serving as a playground for evaluating
MCP servers and tools themselves, rather than focusing solely on model performance.

We conduct extensive experiments on data from six MCP marketplaces, comparing MCP-Flow with
10+ strong LLMs and latest baselines. The models are evaluated on three test splits covering both
seen and unseen scenarios, and further assessed on the standard agentic benchmark GAIA (Mialon
et al., 2023). The results demonstrate that: (1) Contemporary SOTA models still exhibit suboptimal
performance on real-world MCP tool utilization, and their effectiveness further deteriorates as the
number of candidate tools increases. (2) Our trained MCP-Flow models consistently outperform
SOTA models in both MCP tool selection and function call formatting, despite substantially smaller
size. (3) By retrieving examples from MCP-Flow, closed-ended models such as GPT-4o (OpenAI,
2024) can further enhance their performance in MCP tool utilization. (4) By replacing initial tool
invocation, MCP-Flow can even improve agent performance on multi-turn, complex tasks while
simultaneously reducing inference costs. (5) Collected MCP servers exhibit diverse characteristics
and varying quality for identical tasks; MCP-Flow lays the groundwork for future research to
systematically compare MCP servers and tools. In summary, our contributions are as follows:

1. We propose MCP-Flow, a web-agent-driven automated pipeline capable of constructing datasets
that accommodate real-world, diverse, and continuously scaling MCP servers.

2. We release a large-scale, high-quality dataset that supports LLM training, evaluation and retrieval
augmentation, thereby enhancing both closed-ended and open-ended models on MCP utilization.

3. We offer a compact, fine-tuned LLM series; the extensive experiments verify the value of MCP-
Flow in both MCP tool selection and formatting, and the facilitation of agentic tasks.

2 RELATED WORK

2.1 TRADITIONAL API-BASED DATASETS AND BENCHMARKS

The integration of LLMs with external tools has emerged as a critical research direction for extending
model capabilities beyond their inherent knowledge. The data for tool learning are collected either
through automated synthetic data generation or relying on real-world APIs. Synthetic data generation
approaches including APIGen (Liu et al., 2024b) and ToolACE (Liu et al., 2024a) address data
scarcity through automated frameworks. However, they suffer from fundamental concerns regard-
ing real-world applicability, as artificially constructed interactions may not capture authentic tool
usage complexity and error patterns encountered in production environments. ToolLLM (Qin et al.,
2023) significantly expanded scope by incorporating real-world REST APIs from RapidAPI Hub,

2

https://rapidapi.com/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison of representative datasets and benchmarks for LLM tool usage. Compared
to contemporary MCP studies, MCP-Flow covers a substantially larger number of MCP servers,
provides an automated pipeline for newly uploaded servers, and supports model training.

Dataset/Benchmark Tool Type Training Support Data Scale (N)#
Chronological order Real-World Scalable Source Server Tool/API Sample

Traditional API-Based

ToolBench (Qin et al., 2023) ! % ! 1 – 3451 12.6k
τ -Bench (Yao et al., 2024) ! % % 2 – < 30 –
APIGen(xALM) (Liu et al., 2024b) % ! ! 1 – 3673 –
ToolACE (Liu et al., 2024a) % ! ! 1 – – 11.3k

Modern MCP-Specialized

MCPBench (Luo et al., 2025a) ! % % 1 10 10 –
MCP-Zero (Fei et al., 2025) ! % % 1 308 2797 0
LiveMCPBench (Mo et al., 2025) ! % % 1 70 527 95
MCPToolBench++ (Fan et al., 2025) ! % % 3 12 87 1509
MCP-Universe (Luo et al., 2025b) ! % % 1 11 133 231
MCP-Flow (Ours) ! ! ! 7 1166 11536 68733

introducing sophisticated planning algorithms through depth-first search-based approaches. Despite
notable progress in API-based datasets, current studies still face critical limitations, as REST APIs
are often unstable and lack standardized protocols. With the flourishing of MCP, research efforts
increasingly focus on unified and reliable MCP tools rather than traditional APIs, aiming to bridge
the gap between existing datasets and practical MCP scenarios.

2.2 MCP-SPECIALIZED DATASETS AND BENCHMARKS

With its increasing maturity and widespread adoption, MCP now offers extensive opportunities for
model training, evaluation, and real-world deployment (Hasan et al., 2025). While the proliferation
and success of MCP have stimulated considerable research interest, current approaches still encounter
three key limitations: (1) Most studies still rely on manually curated collections of MCP servers
and tools. For instance, MCPToolBench++ (Fan et al., 2025) reports 4,000 servers but experiments
on only 12. Similarly, MCP-Zero (Fei et al., 2025) pioneered MCP tool discovery with 308 servers
drawn from the official MCP website, but it operates exclusively on a simple position-based retrieval
task, without user queries or instruction-following contexts from any of these servers. (2) Current
server collection and data construction depend heavily on human efforts (Luo et al., 2025a; Mo et al.,
2025) or human-curated crawling code (Lin et al., 2025). No automated pipeline yet exists to keep
pace with the rapidly evolving number of MCP servers released in the community. (3) Despite the
revelation of performance limitations in even SOTA models, current benchmarks (Liu et al., 2025;
Luo et al., 2025b) function solely as evaluation platforms, failing to address the critical challenge of
training data scarcity that fundamentally constrains the effectiveness of LLMs in MCP environments.

This gap is particularly concerning given the critical importance of realistic training datasets for
developing tool-augmented systems capable of utilizing thousands of available MCP tools. The
absence of systematic data collection pipelines and large-scale MCP-specific datasets poses a major
barrier to fully realizing the potential of the unified MCP ecosystem. In contrast to previous works,
we propose an agent-based pipeline which automates the process of collecting newly updated servers
and building a high-quality dataset featuring real-world, diverse, and scaling MCP servers.

3 MCP-FLOW

In this section, we introduce MCP-Flow’s automated data construction pipeline, which begins
with web-agent–based server and tool collection (Section 3.1), followed by scalable data synthesis
comprising two stages: data generation (Section 3.2) and data filtration (Section 3.3). We also provide
statistical analyses of sample counts in Table 2; data distributions and diversity in Figure 3; and a
representative example illustrating all components of the constructed dataset in Figure 4.

3.1 AUTOMATED MCP SERVER & TOOL COLLECTION

In the first stage, we collect a large set of MCP servers from diverse sources and endpoints. The scale
of our collection surpasses the combined size of all existing MCP-related studies. After deduplication,
we then collect tool information through local deployment.

3

https://github.com/modelcontextprotocol/servers

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Deploy

MCP Server
Meta Data

Marketplaces

MCP Tool
Information

Function CallInstruction

ICL Generation

Slot-Fill Revision

WizardLM Evolution

Collect

Web Agent

Generative
Model Data Generation

Server & Tool Collection

Assemble

Tool
Response

Trajectory

Data Generation

Data Filtration

Embedding Simiarity

Tool Invocation

Quality Score

MCP
Servers

Local MCP
Client

Table 2: Dataset statistics
of servers, tools, function
calls and trajectories.

Type Count

Server 1166
Tool 11536

Train 52169
Seen Test 5216
Unseen Tool 5249
Unseen Server 6099

Trajectory 6439

Figure 1: Pipeline overview. MCP-Flow initiates with automated server discovery from various
marketplaces, and proceeds through scalable data synthesis (diverse generation + rigorous filtering).

Web-Agent Automated Server Crawling. To accommodate the rapid growth of MCP servers,
we propose an automated collection pipeline primarily driven by web agents. Specifically, we
employ Playwright, an MCP-compatible web agent, to systematically navigate widely used MCP
marketplaces and websites. This implementation ensures timely adaptation to modifications and
newly added servers. The process is illustrated in Figure 2, with efficiency analysis in Section B.5.

1. Navigation

2. Click each
MCP Server

3. Click
"JSON"

https://smithery.ai

4. Snapshot the MCP Configuration

Figure 2: Process of web-
agent automated server
crawling with more de-
tails in Appendix D.

Within a human-defined workflow, the agent autonomously navigates
to the target server’s dedicated page and retrieves its configuration file
(in JSON format) via page snapshots. Our pipeline supports various
platforms, Smithery, Glama, MCP.so, MCPHub, PipeDream, and
PulseMCP (DeepNLP). In principle, this web agent–based approach is
applicable to any well-structured website with minimal human modifi-
cation. Unlike traditional web crawlers, which typically require detailed
parsing logic tailored to each website’s HTML structure, our approach
operates with high-level instructions, avoiding low-level code dependen-
cies. This design not only offers cross-platform generalization but also
simplifies adaptation to future marketplaces and improves operational
flexibility. Importantly, after our large-scale crawling and pre-processing,
researchers only need to execute the pipeline incrementally for newly
released servers, rather than restarting the entire process. This design
significantly minimizes both time and computational costs.

Server Deduplication. Some popular servers may appear on multiple
websites. For example, context7 is included on all supported endpoints.
It is therefore necessary to perform deduplication, even when the servers
are listed under different names, interfaces and configurations. After an
in-depth examination of inter-server differences, we conclude that the
most reliable criterion for distinguishing servers is not their names or
providers, but rather the tool descriptions. If two servers share an identical
list of tool descriptions, we treat them as the same entity.

Local Deployment and Tool Collection. Using the collected config-
urations, we deploy servers locally via our MCP client. For standard
input/output (stdio)–based servers, deployment is handled through npm
and uvx, while servers using Server-Sent Events (SSE) are connected via
their URLs. The client implementation builds upon the popular repository
dolphin-mcp. For each successfully deployed server, we extract its
tool information, including tool name, description, and parameters (input schema). Certain servers
require API keys or access to specific software. Due to their sensitivity, these servers cannot be
automatically deployed and are therefore excluded. Nevertheless, we highlight the investigation of
such personalized servers as an interesting direction for future work, as discussed in Appendix A.

3.2 INSTRUCTION GENERATION AND TRAJECTORY COLLECTION

In the second stage, we generate diverse instructions with ground-truth function calls, and collect tool
responses to form the trajectories. Details are provided in Appendix D with prompts in Appendix E.1.

4

https://context7.com/
https://github.com/QuixiAI/dolphin-mcp

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

19.5%
2246

9.3%
1068

13.6%
1572

9.3%
1069

7.2%
832

40.2%
4634

115

23.4%
273

11.4%
133

9.9%
115 9.6%

112

8.6%
100

35.7%
416

17

Servers:
1,166
Tools:

11,536

Smithery
MCP.so

Glama
PulseMCP PipeDream

MCPHub
Manual
MCPHub
Manual

(a) Server & Tool Distributions

80 60 40 20 0 20 40 60 80
Dimension 1

60

40

20

0

20

40

60

80

D
im

en
si

on
 2

Instruction Embeddings (TSNE)
Smithery
Glama
MCP.so
PulseMCP
MCPHub
PipeDream

(b) Instruction Diversity

Sm
ith

ery
Glam

a
MCP.s

o

Pu
lse

MCP

MCPH
ub

Pip
eD

rea
m

Marketplace

Web Search & Data

Browser Automation

Map & Weather

Finance

File System

Communication

Developer Tools

Database

Art & Entertainment

Miscellaneous

Ca
te

go
ry

20

40

60

80

(c) Category Distributions

Figure 3: Dataset statistics. (a) MCP-Flow encompasses a large-scale collection of MCP servers
and tools from six distinct marketplaces. (b) T-SNE visualization of instruction embeddings (1,000
random samples per marketplace) shows the dataset diversity. (c) Each MCP server is classified into
one of ten categories, with the distributions reflecting the heterogeneity across marketplaces.

Few-Shot Generation. To construct datasets with inherent ground-truth labels, we initiate generation
from the tool perspective. Our focus is on diversity; therefore, for each tool, the model generates five
distinct instructions based on human-curated examples, all of which require the use of the target tool.

Slot-Fill Revision. Next, to enhance instruction detail and ensure that all tool-required input
parameters are specified, we employ a slot filling process. Each parameter required by the tool
is treated as a slot. If a slot is not provided in the original query, a valid value is automatically
generated. The query is then revised to include these new parameters for fluency. After slot filling,
some instructions may still contain placeholders. We then apply specialized regular-expression rules
(§D.3) to detect such strings and replace them with pre-collected candidates from our local system.

WizardLM Evolution. To further improve instruction complexity and diversity, we adopt the
evolution method proposed in Xu et al. (2023). The process randomly selects an evolution direction
for each query, such as concretization or reasoning. We set the evolution depth to 2 to balance
generation cost and output quality. After evolution, we obtain a large scale tool-specified instruction
sets with high diversity and complexity. The instructions are then filtered as described in Section 3.3.

Function Call Generation. Given the ground-truth tool, its input schema, and the corresponding
instruction, we prompt GPT-4o to generate the formalized function call. This generation is straight-
forward for strong models such as GPT-4o, as it involves no interference factors. With additional
filtration in Section 3.3, the correctness of the generated function calls can be substantially ensured.

Tool Response Collection. Based on the function calls, we collect tool responses by communicating
with the MCP server via the local client. The assistant model then summarizes these outcomes and
generates the final response. By integrating all components, we obtain the complete trajectory.

3.3 RIGOROUS DATA FILTRATION

Embedding Similarity Filtration. We filter instructions using a combination of rule-based and
LLM-based measurements. In particular, some original instructions are overly similar to the tool
descriptions, which is undesirable since such queries make tool selection trivial. To address this, we
compute the instruction–description embedding similarity. We empirically set a threshold of 0.8 and
discard instructions that exceed this value. Embedding details are provided in Section B.2.

Tool Invocation Filtration. We further ensure the reliability of ground-truth tool labels by instructing
GPT-4o and DeepSeek-V3 to select the correct tool from the labeled tool and two randomly sampled
candidates. Instructions for which both models fail to identify the expected tool under this simplified
setting are discarded. Negligible instruction removals confirming the tool annotation reliability.

Quality Score Filtration. To evaluate the quality of instructions and function calls, we employ
DeepSeek-V3, a SOTA reasoning model different from GPT-4o we use for generation. As previously
indicated by LiveMCPBench, DeepSeek-V3 (DeepSeek-AI, 2024) achieves strong agreement with
human annotators, thus serving as a good judge model. We discard instructions and function calls that
receive a quality score below a threshold of 6/10. Evaluation prompts are provided in Appendix E.1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

S
er

ve
r

M
et

a
D

at
a

 Evolved Instruction

Craft a singular visual depiction
illustrating a serene rural landscape
defined by untouched emerald-
green meadows, a vibrant cerulean
sky, and a picturesque, weathered
timber-built cottage, ensuring the
inclusion of subtle wildlife elements
such as birds or deer seamlessly
integrated into the scene.

 Tool Information

Name: GenerateImageUrl
Description: Generate an image
URL from a text prompt.
Schema: Prompt (Str, Required)

 Tool Response

Content:
https://image.pollinations.ai/
prompt/A%20serene%20rural
%20landscape...

 Server Config

Name: mcpollinations
Comand: npx
Args:
["-y", "@smithery/cli@latest", "run",
"@pinkpixel-dev/mcpollinations",
"--key", "Smithery_Key",
"--profile", "Smithery_Profile"]

 Revised Instruction

Produce a unique image portraying
a serene countryside scene with
pristine green fields, a clear blue
sky, and a small wooden cottage,
by providing this text prompt.

 Function Call

Name: GenerateImageUrl
Arguments: Prompt="Craft a
singular visual depiction..."

 Initial Instruction

Produce a unique image portraying
a serene countryside scene by
providing a concise text prompt.

 Server Information

Name: MCPollinations Multimodal
Server
Description: Generate images,
text, and audio from prompts
effortlessly. Leverage the Pollinations
APIs to enhance your AI assistants
with multimodal capabilities...

 Final Response

Content:
Here is the visual depiction of a
serene rural landscape you
requested:
![Serene Rural Landscape]
(https://image.pollinations.ai/
prompt/A%20serene%20rural%...

This image captures the essence of
untouched meadows, a beautiful
sky, and a charming cottage with
wildlife elements included.

 Trajectory

Component:

 Trajectory =
 1. Evolved Instruction

 (after filtration) +
 2. Function Call +
 3. Tool Response +

...
 4. Final Response

Figure 4: Data example using the MCPollinations Multimodal Server from Smithery. The first
column is collected as described in Section 3.1, and the remaining data as described in Section 3.2.
The server returns a URL linking to the image shown above. Note that all 1,166 servers have
corresponding tool information and generated function calls, but not all yield valid tool responses.

Trajectory Filtration. Trajectories are more vulnerable to inconsistencies, as they require valid
responses from external tool providers. In practice, many servers demand specific setups (e.g., API
keys, personal workspaces, or software dependencies), while others may be temporarily unavailable
even though their metadata remain valid. We filter out trajectories with invalid tool responses collected
under such conditions, also using DeepSeek-V3 as a judge.

4 EXPERIMENTS

In this section, we evaluate the fine-tuned models from the MCP-Flow suite in terms of tool selection
and formatting capabilities (Section 4.2). We further assess the effectiveness of MCP-Flow in
enhancing non-trainable models for both function-call generation (Section 4.3) and complex agentic
tasks (Section 4.4). Ablation studies are presented in Section 4.5. Supplementary experiments,
including server evaluation, are attached in Appendix B.

4.1 BASIC SETUPS

Models and Baselines. To demonstrate the utility of our datasets, we compare various SOTA models
and the latest MCP datasets. The model suite includes close-ended models including GPT-4o, Claude-
4-Sonnet, open-ended reasoning models like Qwen3-8B (Team, 2025), Llama3.1-8B (Meta, 2024),
tool-specialized models like ToolACE-8B (Liu et al., 2024a). We also compare between datasets by
finetuning models on our datasets and others like MCPToolBench++ (Fan et al., 2025).

Data Splits. To ensure a fair comparison and avoid data contamination under both seen and unseen
scenarios, we divide our full dataset into four data splits. For each marketplace, we first randomly
split the servers with a 12:1 ratio, assigning the held-out portion as the unseen-server subset. Within
the remaining (seen) servers, we further split all tools belonging to these servers at an 11:1 ratio,
assigning the held-out portion as the unseen-tool subset. The remaining samples are then divided into
a training set and a seen-test subset with a 10:1 ratio. The training split and the three test splits are in
a 10:1:1:1 ratio in expectation. In total, this process yields 6 marketplaces × 4 splits = 24 subsets.

Training Configuration. We employ LoRA finetuning (Hu et al., 2022) based on the implementation
of LLaMA-Factory (Zheng et al., 2024). In most experiments we set the training tool size to 10
and randomly sample candidate tools from the seen tool pool to form the training set for each
instruction-function call pair. If not otherwise mentioned, we test models after training for one epoch
to prevent over-fitting. Key parameters and environment details are provided in Appendix C.1.

Metrics. Following prior works, we report both rule-based metrics and LLM-as-a-judge metrics.
Specifically, to evaluate models’ tool use capability to generate function calls, we compute tool
accuracy (denoted as Tool) (Fei et al., 2025; Yuan et al., 2024), which measures the model’s tool-
selection capability; as well as parameter accuracy (denoted as Param) (Han et al., 2025); and abstract

6

https://smithery.ai/server/@pinkpixel-dev/mcpollinations

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Comparison of MCP tool selection and formatting capabilities across various models using
10 tools. MCP-Flow models achieve the best performance notably notably small model sizes, while
SOTA LLMs (e.g., Claude-4-Sonnet) exhibit suboptimal performance even under this simple setting.

Category Backbone Model Seen Test Unseen Tool Unseen Server
Tool Param AST Tool Param AST Tool Param AST

Large Models (> 10B) through Azure API

Closed-Ended

GPT-4o 88.6 68.2 58.8 85.0 71.4 62.0 81.4 55.6 50.8
GPT-4.1 77.6 61.4 52.2 71.8 62.8 54.8 70.8 51.4 45.4
Claude-4-Sonnet 85.8 68.6 56.6 83.0 74.4 63.6 72.6 56.0 48.4
Gemini-2.5-Pro 54.2 42.8 36.8 55.4 50.6 42.4 49.6 38.0 32.2

Open-Ended DeepSeek-V3 84.2 67.2 58.8 82.0 70.8 59.8 77.6 55.6 48.8
Kimi-K2 85.6 68.0 55.0 82.4 73.0 60.2 74.4 53.0 47.4

Small Models (≤ 10B) through Local Deployment

General Model
with Reasoning

Qwen3-0.6B 59.2 44.6 35.4 62.6 46.6 34.0 59.2 45.6 38.2
Qwen3-4B 79.6 66.2 57.8 81.8 75.4 65.4 74.8 55.2 46.8
Qwen3-8B 83.6 69.6 59.6 86.0 76.4 65.6 76.4 57.2 48.2
Llama3.1-8B 75.8 55.0 32.4 74.0 53.6 33.8 74.8 55.8 33.2

Tool-Specialized Groq-8B-Tool-Use 39.4 22.8 20.6 45.6 26.2 23.6 42.6 22.8 15.8
ToolACE-8B 89.4 49.8 45.6 83.4 49.0 44.4 88.4 51.8 46.0

MCPToolBench++ Qwen3-0.6B 76.4 57.0 47.4 80.2 57.2 47.0 70.0 46.4 35.8
Qwen3-4B 91.4 77.2 62.2 91.6 76.0 63.0 80.4 57.2 47.6

MCP-Flow
(Ours)

Qwen3-0.6B 96.8 87.2 75.4 98.2 86.8 75.2 98.4 70.6 58.0
Qwen3-4B 99.2 91.8 81.2 98.6 91.4 78.2 98.4 72.2 59.8
Llama3.1-8B 98.6 91.0 81.6 99.0 91.2 77.6 99.4 77.0 65.2

Table 4: Comparison of MCP utilization with a compa-
rably larger tool set (i.e., 100 tools) than Table 3. We
report averaged performance over three test splits.

Model Tool Param AST
GPT-4o 72.3 66.9 53.8
Claude-4-Sonnet 68.3 63.3 51.6
Qwen3-4B 61.7 59.8 49.0
Llama3.1-8B 39.8 37.7 23.5
Groq-8B-Tool-Use 2.9 1.4 1.3
ToolACE-8B 60.9 51.9 35.9
MCP-Flow (Qwen-0.6B) 64.7 63.4 51.6
MCP-Flow (Qwen-4B) 81.7 82.1 67.0

45

60

75

90
88.6
+2.6 85.0

+2.8 81.4
-5.468.2

+4.2
71.4
+5.2

55.6
+0.6

58.8
+3.9

62.0
+3.8

50.8
-2.8

Tool Param AST w/o w MCP-Flow

Seen Test Unseen Tool Unseen Server
45

60

75

90
85.8
+3.8

83.0
+6.4 72.6

+5.868.6
+2.2

74.4
+5.2

56.0
-4.2

56.6
+3.6

63.6
+6.2

48.4
-2.4

Sc
or

e
on

 S
m

it
he

ry
 (

%
)

Figure 5: Comparing API model perfor-
mance with and without retrieval aug-
mented samples from MCP-Flow.

syntax tree (AST) (Patil et al., 2025), which strictly measures the generated function call format. In
addition, we employ GPT-4o as the judge model to compute task success rate (SR) for experiments in
Section 4.4. We also report efficiency metrics which quantify the average number of steps the agents
incur to complete the requested tasks. Evaluation details are provided in Appendix C.2.

4.2 TRAINING SMALL LLMS FOR MCP TOOL UTILIZATION

Tool Selection and Formatting. The first use of the MCP-Flow dataset is to train small models to
master tool selection and formatting capabilities on real-world MCP servers. The task is, given a user
query or instruction and a list of candidate MCP tools, for the model to directly generate a function
call that both follows the MCP protocol and properly handles the user’s request. We fine-tuned three
backbone models of different sizes (i.e. Qwen3-0.6B, Qwen3-4B, and Llama3.1-8B) to accommodate
different performance-efficiency trade-offs. Models are fine-tuned on all the training subsets.

Undesired Performance of SOTA LLMs. As shown in Table 3 and Table 4, current SOTA LLMs
including Claude-4-Sonnet (Anthropic, 2024b) and GPT-4o (OpenAI, 2024) still have less than 60%
AST accuracy on real-world MCP tools. When the candidate tool size are extremely large, i.e. 100,
the results are worse, with Groq-8B-Tool-Use only achieve 3% accuracy.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: Evaluation results on GAIA. Weighted Step (WS) is computed using the token prices of the
tested model and Qwen3-4B as weights. Using MCP-Flow to generate initial function call yields
consistent improvements across models with varying capabilities and helps reduce overall costs.

Backbone Model Method SR SR Gain Step Weighted Step WS Gain

Qwen3-4B Base 10.68 – 1.88 1.88 –
+ MCP-Flow 21.36 +100% 2.01 2.01 –7%

GPT-4o Base 29.13 – 3.07 3.07 –
+ MCP-Flow 33.98 +17% 2.90 1.92 +32%

Claude-4-Sonnet Base 55.34 – 6.01 6.01 –
+ MCP-Flow 57.28 +4% 6.28 5.29 +12%

Superior Performance of MCP-Flow with Much Smaller Model Size. In contrast, MCP-Flow
achieves the best tool selection and formatting accuracy across different MCP marketplaces. Even
tuned with a very small sized model, the output one can match or outperform much bigger competitor
like Claude-4 and DeepSeek-V3. Other MCP datasets (MCPToolBench++) although with comparable
data quality, are limited in scale and coverage and thus resulting very limited improvement.

Out-of-Domain Generalization. (1) Due to intrinsic differences among MCP servers, the unseen-
server subset is harder, as nearly all models show performance drops when switching from seen-test
to unseen-server. Conversely, the unseen-tool subset shares servers with seen-test, resulting in similar
performance. (2) The fine-tuned MCP-Flow models demonstrate good generalization capabilities
on unseen-tool and unseen-server and achieve marked improvement over the backbone models. (3)
Tool-specialized models trained on traditional APIs still fall short in real-world MCP evaluation. In
particular, Groq-8B-Tool-Use often predicts “I can’t help”, which largely weakens its performance.

4.3 ENHANCING LARGE LLMS ON MCP TOOL UTILIZATION

For large closed-ended models that cannot be directly fine-tuned, our constructed dataset still proves
highly useful through training-free distillation, serving as a retrieval database.

Retrieval-Augmented Function Call. Analogous to conventional Retrieval-Augmented Generation
(RAG) paradigms, upon receiving a user instruction we first retrieve the top-k (set to 5) most
semantically similar data samples from our database and append them to the system prompt, thereby
enhancing the model’s ability to generate accurate function calls. The database of training instructions
is constructed using embeddings produced by Sentence-Transformers (details in Appendix
C.2). Retrieval is implemented via Faiss-GPU, employing cosine similarity as the ranking metric.

As illustrated in Figures 5 and 8 in Appendix: (1) Incorporating retrieved function-call exemplars
consistently improves model performance, which underscores the continued value of our datasets. (2)
We observe that Claude-4-Sonnet exhibits greater gains than GPT-4o, likely reflecting its stronger
reasoning capacity; (3) Despite the inclusion of recalled samples, these large models still underperform
relative to MCP-Flow, particularly on the unseen-server test set. This finding confirms the usefulness
of fine-tuned, small-scale models for MCP function-call generation.

4.4 ENHANCING LLM AGENTS ON AGENTIC TASKS

GAIA Benchmark. GAIA (Mialon et al., 2023) is a challenging agentic benchmark that requires
multi-step web searches and the proper use of external tools to successfully complete each test case.
We demonstrate the third use case of MCP-Flow by generating the agent’s initial function call and
then allowing the agent to proceed based on this starting point. Details are discussed in Section C.3.

From Table 5 we conclude that: (1) Enhanced tool-call tendency: During our experiments, we
observed that although GAIA tasks are highly challenging, models such as Qwen3 and GPT-4o often
resist to invoking external tools and instead attempted to generate answers solely from their internal
knowledge. However, such internal knowledge can be outdated or incomplete, thus introducing
hallucination. By contrast, using our model to generate the initial function call helps mitigate this
resistance to tool usage and guides the agent onto a path of more effective tool interactions. (2)
Reduced distraction from unavailable servers: Leveraging our pre-constructed database allows us
to filter out unavailable servers, thereby minimizing wasted attempts and reducing task failures. (3)
These factors account for the observed improvements in performance and reductions in cost when
replacing either expensive closed-ended models or weaker open-source models with MCP-Flow.

8

https://github.com/facebookresearch/faiss

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

10
20

30
40

50
60

70
80

Seen
Test

Unseen
Tool

Unseen Server Seen Test

Unseen
Tool

Unseen
Server

Seen
Test

Unseen
Tool

Unseen ServerSeenTest

Unseen
Tool

Unseen
Server

Glama MCP.so

PulseNLPMCPHub

Claude-4-Sonnet
Groq-8B-Tool-Use

GPT-4o
ToolACE-8B

MCP-Flow (0.6B)
MCP-Flow (4B)

(a) AST across Marketplaces

10 20 30 40Test

10

20

30

40

Tr
ai

n

T: 98.6
P: 90.2
A: 79.6

T: 97.0
P: 89.0
A: 77.2

T: 96.2
P: 88.2
A: 78.2

T: 92.6
P: 83.8
A: 72.6

T: 98.8
P: 90.0
A: 79.0

T: 96.6
P: 89.4
A: 78.4

T: 97.2
P: 89.4
A: 78.0

T: 95.0
P: 86.8
A: 74.8

T: 99.2
P: 90.8
A: 77.2

T: 97.2
P: 88.6
A: 76.2

T: 97.8
P: 89.4
A: 77.6

T: 95.0
P: 87.0
A: 75.2

T: 99.2
P: 91.6
A: 79.4

T: 96.8
P: 88.6
A: 77.4

T: 97.0
P: 88.0
A: 77.0

T: 95.8
P: 87.6
A: 77.2

Ablation on Tool Size

(b) Tool Size Ablation

0 4 8 12 16 20
Data Size (k)

60

65

70

75

80

85

90

95

100

Sc
or

e
on

 S
m

it
he

ry
 S

ee
n

Te
st

 (
%

) MCP-Flow

MCP-Flow

MCP-Flow

MCPToolBench++

MCPToolBench++

GPT-4o

GPT-4o

GPT-4o

Performance with Data Size Scaling

MCPToolBench++

Tool
Para
AST

(c) Scaling Law on Qwen3-4B

Figure 6: Ablation results. (a) Model comparison across four platforms on three test splits. MCP-Flow
significantly outperforms previous SOTA models. (b) The (x, y) model is trained with tool size y and
tested with tool size x. Color darkness represents the Tool metric, while the width and height of the
box represent Param and AST, respectively. (c) MCP-Flow features larger scale than the converted
training version of MCPToolBench++ and provides better utility for tool-use training.

4.5 ABLATION STUDY

In this section, we conduct further ablation experiments to explore important aspects of tool use
training. The experiment setup follows that of Section 4.2, with more results shown in Appendix B.3.

Cross-Marketplace Comparison. As shown in Figure 6.a: (1) Across all platforms, MCP-Flows
consistently outperform all baseline models, which aligns with the results reported in Table 3. (2) The
MCPHub and Glama datasets are more challenging than the Smithery dataset, likely due to the
inclusion of less widely known servers. Such tools are more difficult for LLMs to predict because of
their limited exposure to the Internet. (3) Although minor differences exist across marketplaces, these
variations are insufficient to constitute severe data heterogeneity. This can be attributed to the fact
that all marketplaces aggregate large-scale and diverse MCP servers, resulting in broadly comparable
data distributions (also reflected by the dispersed embeddings shown in Figures 3.b and 7).

Ablation on Candidate Tool Size. We conduct experiments to investigate the effect of tool size (i.e.,
the number of candidate tools) on both model training and testing. Evaluations are performed on
the seen-test split. As shown in Figure 6.b: (1) Model performance decreases on test sets with more
candidate tools, which aligns with expectations since a larger number of tools increases task difficulty
and may introduce distractions. (2) Models trained with larger tool sizes are more robust and perform
better when evaluated with more candidate tools.

Scaling Law Analysis. Figure 6.c vividly illustrates that model performance increases with data
size scaling. Among the three metrics, Tool accuracy quickly reaches a plateau, approaching
nearly 100%, whereas the AST metric still shows potential for further improvement. Compared to
MCPToolBench++, our constructed datasets not only offer better utility, as models improve more
rapidly, but also encompass a much larger scale. Together, these two strengths make MCP-Flow
currently the most effective dataset for training LLMs to master real-world MCP tools.

5 CONCLUSION

In this work, we introduce MCP-Flow, an automated pipeline, dataset and model suite designed to
amplify LLM agents’ utilization of real-world and rapidly evolving MCP servers and tools. MCP-
Flow automates web-agent-driven server discovery from various MCP marketplaces and scalable data
synthesis, producing a high-quality dataset with 60k+ samples covering 1,166 servers and 11,536
tools. We further develop compact fine-tuned models and a retrieval-augmented framework that
significantly enhance LLMs in MCP tool selection, function call formatting, and multi-turn agentic
tasks. Extensive experiments on standard benchmarks demonstrate that MCP-Flow consistently
outperforms SOTA models and latest datasets, offering superior effectiveness at lower inference cost.
Beyond model training and agentic enhancement, MCP-Flow lays the foundation for multi-dimension
evaluation of MCP servers and tools, uncovering their heterogeneity and quality variations.

We believe MCP-Flow establishes a solid foundation for advancing real-world MCP tool capabilities
for current LLM agents, and opens promising avenues for future research.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research focuses on constructing a large-scale high-quality dataset to facilitate LLM agents in
utilizing real-world diverse and continuously scaling MCP servers and tools.

The data are obtained from official marketplaces and websites, synthesizing using LLMs, or repro-
cessed versions of previously released datasets, with all sources and benchmarks properly cited. No
discrimination, bias, or fairness issues are identified in this work. All collected information is stored
locally in JSON format, which allows future research to operate without connecting to third-party
servers and thereby avoids introducing external threats or security risks. Furthermore, our models
only generate function calls and are not expected to produce potentially harmful content.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide all experimental setups and details in Section 4 and Appendix C.
The dataset construction process and its statistics are described in Section 3 and Appendices D
and E.1. Examples of the datasets are shown in Figure 4 as well as Tables 17 and 16. We have
released initial samples in the anonymous repository and will make all data, source code, and model
checkpoints publicly available upon acceptance of the paper.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, LLMs are primarily used for data synthesis and experiments in MCP-Flow. The process
for data synthesis is described in Section 3, and the experimental procedures are detailed in Section 4,
with additional information provided in the corresponding appendices. The prompts used are listed in
Appendix E.1.

Apart from the usage in MCP-Flow, we also use LLMs to assist with paper writing. Specifically, we
first draft the manuscript and then use LLMs (primarily OpenAI GPT models) to improve and revise
the text. Afterward, all generated content is manually inspected, and we make final adjustments or
rewrites as needed to ensure accuracy.

We additionally employ LLMs to support code writing for simple tasks, such as drawing figures and
calculating statistics and use LLMs for repetitive tasks such as reformatting tables into LaTeX. All
outputs are double-checked to ensure that no errors are introduced.

REFERENCES

Anthropic. Introducing the model context protocol. Online, nov 2024a. URL https://www.
anthropic.com/news/model-context-protocol. Accessed: 2025-09-19.

Anthropic. Introducing claude 4. https://www.anthropic.com/news/claude-4, 2024b.
Accessed: July 2025.

DeepSeek-AI. Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/2412.
19437.

Shiqing Fan, Xichen Ding, Liang Zhang, and Linjian Mo. MCPToolBench++: A Large Scale AI
Agent Model Context Protocol MCP Tool Use Benchmark, August 2025.

Xiang Fei, Xiawu Zheng, and Hao Feng. MCP-Zero: Proactive Toolchain Construction for LLM
Agents from Scratch, June 2025.

Xuanqi Gao, Siyi Xie, Juan Zhai, Shqing Ma, and Chao Shen. MCP-RADAR: A Multi-Dimensional
Benchmark for Evaluating Tool Use Capabilities in Large Language Models, May 2025.

Han Han, Tong Zhu, Xiang Zhang, Mengsong Wu, Hao Xiong, and Wenliang Chen. NesTools: A
Dataset for Evaluating Nested Tool Learning Abilities of Large Language Models, January 2025.

10

https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/claude-4
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mohammed Mehedi Hasan, Hao Li, Emad Fallahzadeh, Gopi Krishnan Rajbahadur, Bram Adams,
and Ahmed E. Hassan. Model context protocol (mcp) at first glance: Studying the security and
maintainability of mcp servers, 2025. URL https://arxiv.org/abs/2506.13538.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability.
CoRR, abs/2504.21776, 2025. doi: 10.48550/ARXIV.2504.21776. URL https://doi.org/
10.48550/arXiv.2504.21776.

Zhiwei Lin, Bonan Ruan, Jiahao Liu, and Weibo Zhao. A large-scale evolvable dataset for model
context protocol ecosystem and security analysis. arXiv preprint arXiv:2506.23474, 2025.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yuxian Wang, Wu Ning, Yutai Hou, Bin Wang,
Chuhan Wu, Xinzhi Wang, Yong Liu, Yasheng Wang, Duyu Tang, Dandan Tu, Lifeng Shang, Xin
Jiang, Ruiming Tang, Defu Lian, Qun Liu, and Enhong Chen. ToolACE: Winning the Points of
LLM Function Calling, September 2024a.

Zhiwei Liu, Jielin Qiu, Shiyu Wang, Jianguo Zhang, Zuxin Liu, Roshan Ram, Haolin Chen, Weiran
Yao, Huan Wang, Shelby Heinecke, Silvio Savarese, and Caiming Xiong. MCPEval: Automatic
MCP-based Deep Evaluation for AI Agent Models, July 2025.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
Yao, Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei Yang, Silvio Savarese, Juan Carlos
Niebles, Huan Wang, Shelby Heinecke, and Caiming Xiong. APIGen: Automated Pipeline for
Generating Verifiable and Diverse Function-Calling Datasets, June 2024b.

Zhiling Luo, Xiaorong Shi, Xuanrui Lin, and Jinyang Gao. Evaluation report on mcp servers. arXiv
preprint arXiv:2504.11094, 2025a. URL https://arxiv.org/abs/2504.11094.

Ziyang Luo, Zhiqi Shen, Wenzhuo Yang, Zirui Zhao, Prathyusha Jwalapuram, Amrita Saha, Doyen
Sahoo, Silvio Savarese, Caiming Xiong, and Junnan Li. MCP-Universe: Benchmarking Large
Language Models with Real-World Model Context Protocol Servers, August 2025b.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018. URL https:
//arxiv.org/abs/1802.03426.

AI Meta. Introducing meta llama 3: The most capable openly available llm to date. Meta AI, 2(5):6,
2024.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas Scialom.
Gaia: a benchmark for general ai assistants, 2023. URL https://arxiv.org/abs/2311.
12983.

Guozhao Mo, Wenliang Zhong, Jiawei Chen, Xuanang Chen, Yaojie Lu, Hongyu Lin, Ben He,
Xianpei Han, and Le Sun. LiveMCPBench: Can Agents Navigate an Ocean of MCP Tools?,
August 2025.

OpenAI. Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276.

11

https://arxiv.org/abs/2506.13538
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.48550/arXiv.2504.21776
https://doi.org/10.48550/arXiv.2504.21776
https://arxiv.org/abs/2504.11094
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2410.21276

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shishir G. Patil, Huanzhi Mao, Fanjia Yan, Charlie Cheng-Jie Ji, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to
Agentic Evaluation of Large Language Models. In Forty-Second International Conference on
Machine Learning, June 2025.

Karl Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine,
2(11):559–572, 1901.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating Large Language Models to
Master 16000+ Real-world APIs, October 2023.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. {Zero-offload}: Democratizing {billion-scale} model training.
In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pp. 551–564, 2021.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng
Li, and Yueting Zhuang. TaskBench: Benchmarking Large Language Models for Task Automation.
Advances in Neural Information Processing Systems, 37:4540–4574, December 2024.

Zhuocheng Shen. LLM With Tools: A Survey, September 2024.

Hao Song, Yiming Shen, Wenxuan Luo, Leixin Guo, Ting Chen, Jiashui Wang, Beibei Li, Xiaosong
Zhang, and Jiachi Chen. Beyond the Protocol: Unveiling Attack Vectors in the Model Context
Protocol Ecosystem, June 2025.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9:2579–2605, 2008. URL https://www.jmlr.org/papers/
volume9/vandermaaten08a/vandermaaten08a.pdf.

Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu Zhang,
Zekun Xi, Gang Fu, Yong Jiang, Pengjun Xie, Fei Huang, and Jingren Zhou. Webdancer: Towards
autonomous information seeking agency, 2025. URL https://arxiv.org/abs/2505.
22648.

Mengsong Wu, Tong Zhu, Han Han, Chuanyuan Tan, Xiang Zhang, and Wenliang Chen. Seal-Tools:
Self-Instruct Tool Learning Dataset for Agent Tuning and Detailed Benchmark, May 2024.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. WizardLM: Empowering Large Pre-Trained Language Models to Fol-
low Complex Instructions. In The Twelfth International Conference on Learning Representations,
October 2023.

Yunhe Yan, Shihe Wang, Jiajun Du, Yexuan Yang, Yuxuan Shan, Qichen Qiu, Xianqing Jia, Xinge
Wang, Xin Yuan, Xu Han, Mao Qin, Yinxiao Chen, Chen Peng, Shangguang Wang, and Mengwei
Xu. MCPWorld: A Unified Benchmarking Testbed for API, GUI, and Hybrid Computer Use
Agents, June 2025.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. $τ$-bench: A Benchmark for
Tool-Agent-User Interaction in Real-World Domains, June 2024.

Ming Yin, Dinghan Shen, Silei Xu, Jianbing Han, Sixun Dong, Mian Zhang, Yebowen Hu, Shujian
Liu, Simin Ma, Song Wang, Sathish Reddy Indurthi, Xun Wang, Yiran Chen, and Kaiqiang Song.
LiveMCP-101: Stress Testing and Diagnosing MCP-enabled Agents on Challenging Queries,
August 2025.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Yongliang Shen, Ren Kan, Dongsheng Li, and
Deqing Yang. EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction, March
2024.

12

https://arxiv.org/abs/2505.09388
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://arxiv.org/abs/2505.22648
https://arxiv.org/abs/2505.22648

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xinyu Zhang, Huiyu Xu, Zhongjie Ba, Zhibo Wang, Yuan Hong, Jian Liu, Zhan Qin, and Kui
Ren. PrivacyAsst: Safeguarding User Privacy in Tool-Using Large Language Model Agents.
IEEE Transactions on Dependable and Secure Computing, pp. 1–16, 2024. ISSN 1941-0018. doi:
10.1109/TDSC.2024.3372777.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational
Linguistics. URL http://arxiv.org/abs/2403.13372.

A CHALLENGES AND FUTURE DIRECTIONS

Coverage of API-Required or Software-Specific MCP Servers. MCP servers that depend on
specific software environments or require API keys represent two of the most significant challenges for
automated MCP data construction. The deployment and configuration of certain software packages
can be highly complex, demanding substantial manual effort even from experienced developers. In
addition, the procedures for obtaining and applying API keys vary widely across server providers,
making it difficult to standardize or fully automate this process.

Building on the automated data-construction pipeline of MCP-Flow, future work could extend
coverage to these two types of servers, thereby enabling LLMs to master more diverse real-world
MCP servers.

Detection of Adversarial MCP Servers. The trustworthiness of MCP servers poses a critical
challenge, as adversarial actors may maliciously upload or update servers on public marketplaces
(Zhang et al., 2024; Song et al., 2025). Such adversarial servers can inject misleading information,
exploit vulnerabilities in tool interfaces, or return deliberately manipulated outputs to mislead
downstream agents. Detecting these malicious behaviors is inherently difficult because MCP servers
often appear functionally similar to benign ones and may only exhibit malicious activity under specific
triggers. Moreover, the lack of standardized auditing protocols and insufficient provenance tracking
for server updates further exacerbate the risks of untrusted execution environments.

To the best of our knowledge, current MCP marketplaces do not implement explicit mechanisms to
detect potentially malicious or harmful servers uploaded to their platforms. Future work may explore
attack and defense strategies informed by the practices demonstrated in MCP-Flow.

Evaluation of MCP Servers and Tools. During our investigation and experiments, we observe
that current state-of-the-art agents (e.g., GPT, Claude) perform comparably in tool selection when the
tools serve clearly different purposes. However, selecting between tools with similar functionalities
remains challenging, as LLM agents rely primarily on tool descriptions, which may not accurately
reflect the true quality or reliability of the tools.

Although we do not resolve this challenge in the present work, MCP-Flow provides a data platform
that enables systematic investigation of this problem. As further discussed in Section B.1, our
large-scale collection of MCP servers and systematic data construction establish a strong foundation
for future research to explore this research direction.

Promising directions include (1) creating unified benchmarking datasets that test the same task across
multiple tools with similar functionalities; (2) designing automated stress tests or scenario-based
evaluations to capture stability, reliability, and latency under varying workloads; (3) introducing richer
and more standardized metadata schemas, such as structured capability statements or performance
profiles, to reduce ambiguity in tool descriptions; and (4) leveraging reinforcement learning (RL) or
multi-agent comparison strategies to dynamically rank tools based on observed performance rather
than static descriptions. Such efforts would enable more accurate tool selection, foster transparency,
and ultimately improve the effectiveness of MCP ecosystems.

13

http://arxiv.org/abs/2403.13372

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 6: Multi-dimension evaluation of MCP servers for weather tasks. Monthly tool calls are
recorded from Smithery as of September 16, 2025. Although all servers target the same tasks, they
differ in response quality, capability coverage, and efficiency. For instance, the United States Weather
server balances response authenticity and token length but is limited to the U.S., while Weather API
Server provides global coverage. Weather360 Server delivers comprehensive analyses, but its long
responses may increase unnecessary cost and latency in multi-turn interactions.

Server name Performance Capability Efficiency Popularity
SR Quality Feature Coverage Time(s) Token Monthly Call

Weather API Server 76.9 3.27 3 5 2.40 35.2 2,400
Weather Service 46.2 2.82 1 5 2.66 11.0 1,802
Weather360 Server 76.9 3.92 5 5 2.62 7538.4 2,189
Weather Server 23.1 3.25 2 1 2.13 6596.2 2,849
Weather Forecast Server 84.6 3.45 5 5 2.21 225.6 5,292
United States Weather 38.5 4.25 6 1 1.93 372.0 67,400

B SUPPLEMENTARY EXPERIMENTS AND RESULTS

B.1 EVALUATION OF MCP SERVERS

Weather Domain Case Study. Beyond training LLMs for improved tool utilization, MCP-Flow
also establishes the data foundation for the systematic evaluation of functionally similar MCP servers.
To demonstrate this capability, we take the weather task as an case study and conduct a comparative
analysis of six distinct weather-related MCP servers across multiple dimensions.

Note that with the large-scale crawling performed by MCP-Flow, our collected servers can support
a wide range of task evaluations with numerous candidate servers and tools. For example, we have
around 20 servers dedicated to weather tasks, providing a comprehensive playground for server-wise
evaluation.

We use the instructions generated by MCP-Flow, as elaborated in Section 3.2, and randomly sample
13 test instructions from the pool across all tested servers to avoid bias toward any specific server.
Subsequently, we deploy GPT-4o (OpenAI, 2024) as both the execution agent and evaluation judge.
The agent attempts to resolve each constructed instruction using the tested MCP server’s available
tools, while the judge component assesses the quality and effectiveness of the responses. The prompt
for judgments is provided in Section E.1.

Multi-Dimension Evaluation. We evaluate each MCP server across four key dimensions, capturing
its overall effectiveness and usability.

1. Performance covers the query success rate, abbreviated as SR, which measures the percentage of
instructions receiving valid responses, and Quality, defined as the average score over successfully
answered queries. The scoring mechanism employs a 0–5 point scale: instructions that fail to
elicit any valid response receive zero points, while successful responses are scored from 1 to 5
based on comprehensiveness, accuracy, and practical utility. Quality thus represents the mean of
all non-zero scores;

2. Capability assesses two aspects: Feature represents the number of available functions; and
Coverage measures geographic applicability scored from one to five, where one indicates country-
specific functionality and five indicates global coverage;

3. Efficiency measures both time consumption and token usage. Time refers to the average response
latency in seconds, and Token denotes the average number of output tokens generated;

4. Popularity reflects real-world adoption, measured through the Monthly Call frequency on hosting
platforms.

Varying Characteristics and Performance across MCP Servers. As shown in Table 6, significant
performance variations exist among functionally similar weather MCP servers. The Weather Forecast
Server achieves the highest success rate (84.6%), while United States Weather demonstrates superior

14

https://github.com/iremaltunay55/WeatherApi
https://github.com/emineturan/weather
https://github.com/musabz360/Weather360
https://github.com/adarshem/mcp-server-learn
https://github.com/iremaltunay55/deneme
https://github.com/smithery-ai/mcp-servers/tree/main/weather

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0.6 0.4 0.2 0.0 0.2 0.4
Dimension 1

0.4

0.2

0.0

0.2

0.4

0.6

D
im

en
si

on
 2

Instruction Embeddings (PCA)
Smithery
Glama
MCP.so
PulseMCP
MCPHub
PipeDream

(a) PCA Embeddings

2 0 2 4 6 8 10
Dimension 1

4

2

0

2

4

6

D
im

en
si

on
 2

Instruction Embeddings (UMAP)
Smithery
Glama
MCP.so
PulseMCP
MCPHub
PipeDream

(b) UMAP Embeddings

Alpaca LiveMCP
Bench

MCPTool
Bench++

MCP
-Flow

85

86

87

88

89

90

91

D
iv

er
si

ty

87.88

90.01
89.74

90.43

0

2

4

6

8

10

12

14

Se
rv

er
 C

ou
nt

 (
k)

70
12

1157

Instruction Diversity & Server Count
Diversity
Server
Count

(c) Average Cosine Distance

Figure 7: Visualization of instruction diversity. Across different dimensionality reduction techniques,
MCP-Flow demonstrates a high diversity of instructions. Compared to other MCP datasets and
benchmarks, MCP-Flow exhibits superior data scale and diversity, as measured by the MCP server
count and average cosine distance.

response quality (4.25 average quality) and feature richness (6 points). Notably, Feature richness
scores correlate strongly with average Quality, validating the hypothesis that MCP servers with more
comprehensive and sophisticated tool ecosystems tend to deliver higher-quality responses

The United States Weather MCP, despite having the highest monthly usage (67,400 calls), shows
moderate success rates (38.5%), indicating that popularity and technical performance may diverge. the
disparity between popularity and technical performance metrics across different servers underscores
the complex factors influencing user adoption, including ease of deployment, documentation quality,
and ecosystem support beyond pure technical capabilities. These findings highlight the importance of
systematic evaluation frameworks for MCP selection and ecosystem improvement.

B.2 INSTRUCTION DIVERSITY

Embedding Visualization. We visualize instruction embeddings using several dimensionality re-
duction techniques, including PCA (Principal Component Analysis), t-SNE (t-distributed Stochastic
Neighbor Embedding), and UMAP (Uniform Manifold Approximation and Projection), to compre-
hensively demonstrate the diversity of the MCP-Flow datasets. Specifically, PCA (Pearson, 1901) is
a linear method that identifies the directions (principal components) capturing the maximum variance
in the data, providing a straightforward global view of the embedding distribution. t-SNE (van der
Maaten & Hinton, 2008), in contrast, is a nonlinear technique that excels at preserving local structure
and revealing fine-grained clusters in high-dimensional data. UMAP (McInnes et al., 2018) combines
the strengths of both linear and nonlinear methods, maintaining both local and global structures while
being computationally efficient for large-scale embeddings.

The results in Figures B.2.a and B.2.b show that the embeddings are ubiquitous throughout the space,
highlighting the diversity of instructions.

Average Cosine Distance. We also calculate diversity quantitatively by measuring pairwise cosine
distances between instruction embeddings. We randomly sample 1,000 samples from MCP-Flow
and each of the baselines. As shown in Figure 7.c, MCP-Flow achieves comparable diversity to
human-written instructions from LiveMCPBench (Mo et al., 2025), demonstrating that our automated
generation pipeline can produce instructions that match or even surpass human-crafted data in terms
of variety.

B.3 SUPPLEMENTARY ABLATION STUDY

Cross-Marketplace Comparison. We provide additional visualizations in the form of radar charts
(Figure 9), illustrating other metrics for cross-marketplace performance comparisons. Detailed
numerical results are presented in Section B.4.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Comparison of MCP utilization capability on
very large tool size (i.e. 100). We report averaged
performance over three test splits.

Model Tool Param AST
GPT-4o-Mini 69.4 66.5 52.8
DeepSeek-V3 64.7 62.3 49.8
Kimi-K2 65.7 62.7 49.6
Qwen3-0.6B 23.5 23.1 18.3
MCPToolBench++ (0.6B) 26.7 24.4 19.7
MCPToolBench++ (4B) 58.7 56.4 42.6
MCP-Flow (Llama-8B) 64.3 62.6 51.1
MCP-Flow (Qwen-4B) 81.7 82.1 67.0

40

55

70

85
78.4
+3.2 74.0

+3.2

77.6
+5.4

56.8
+3.4

59.8
+2.2 47.2

+4.4
48.8
+4.4

56.6
+1.4

40.2
+3.2

Tool Param AST w/o w MCP-Flow

Seen Test Unseen Tool Unseen Server
40

55

70

85
82.0
+3.4 76.6

+2.4
78.4
+4.2

59.4
+5.0 60.2

+2.0
45.0
+3.0

50.6
+4.4

55.6
+2.4

38.4
+3.8

Sc
or

e
on

 G
la

m
a

(%
)

Figure 8: Comparing API model per-
formance with and without retrieval en-
hanced samples from MCP-Flow.

30
40

50
60

70
80

90
100

Seen
Test

Unseen
Tool

Unseen Server Seen Test

Unseen
Tool

Unseen
Server

Seen
Test

Unseen
Tool

Unseen ServerSeenTest

Unseen
Tool

Unseen
Server

Glama MCP.so

PulseNLPMCPHub

Claude-4-Sonnet
Groq-8B-Tool-Use

GPT-4o
ToolACE-8B

MCP-Flow (0.6B)
MCP-Flow (4B)

(a) Tool across Marketplaces

20
30

40
50

60
70

80
90

Seen
Test

Unseen
Tool

Unseen Server Seen Test

Unseen
Tool

Unseen
Server

Seen
Test

Unseen
Tool

Unseen ServerSeenTest

Unseen
Tool

Unseen
Server

Glama MCP.so

PulseNLPMCPHub

Claude-4-Sonnet
Groq-8B-Tool-Use

GPT-4o
ToolACE-8B

MCP-Flow (0.6B)
MCP-Flow (4B)

(b) Param across Marketplaces

Figure 9: Supplementary results comparing different models across various marketplaces. The AST
results are shown in Figure 6, and the remaining two metrics are presented here. Note that the
maximum values of the radial axes differ across figures. These results further prove the effectiveness
of MCP-Flow compared to other baselines.

Scaling Law Analysis. For the scaling-law analysis, further results are shown in Figure 10. These
charts demonstrate findings aligned with the conclusions drawn in Section 4.5. Compared with
MCPToolBench++ (Fan et al., 2025), currently the only MCP effort that can be transformed into
trainable samples, MCP-Flow offers both higher data quality and larger quantity. Notably, the
MCPToolBench++ authors did not use these samples for model training, but focused solely on
evaluation. This highlights the value of MCP-Flow as the only dataset capable of distilling practical
knowledge about MCP servers into LLMs.

B.4 MCP TOOL SELECTION AND FORMAT EXPERIMENT ON VARIOUS MARKETPLACES

In this section, we present detailed experimental results covering nearly all marketplaces and models,
with the complete results summarized in Table 8, Table 9, and Table 10. These findings reaffirm the
primary conclusion discussed in Section 4.2: training small-scale models with MCP-Flow is effective
to enhances their ability to utilize real-world MCP tools.

By comparing the performance of the same models across different platforms and test sets, we
also identify additional observations and novel insights that extend our previous analysis: (1) Per-
formance of MCPToolBench++: We notice that models trained on MCPToolBench++ perform
relatively better when evaluated on MCP.so than other marketplaces. We attribute this to the fact that
MCPToolBench++ is largely composed of servers from MCP.so, leading to a closer match in data
characteristics. (2) Difficulty of the Glama Unseen-Server split: This split appears to be the most
challenging, as most models perform poorly. For example, Groq-8B-Tool-Use achieves only 27.0%
tool selection accuracy. (3) Challenges for API-based large models: They achieve particularly worse
results on MCP.so than smaller models endowed with reasoning abilities. Our investigation reveals

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 4 8 12 16 20
Data Size (k)

60

65

70

75

80

85

90

95

100

Sc
or

e
on

 S
m

it
he

ry
 U

ns
ee

n
To

ol
 (

%
) Auto-MCP

Auto-MCP

Auto-MCP

MCPToolBench++

MCPToolBench++

GPT-4o

GPT-4o

GPT-4o

Performance with Data Size Scaling

MCPToolBench++

Tool
Para
AST

(a) Smithery Unseen-Tool

0 4 8 12 16 20
Data Size (k)

50

60

70

80

90

100

Sc
or

e
on

 G
la

m
a

Se
en

 T
es

t
(%

)

MCP-Flow

MCP-Flow

MCP-Flow

MCPToolBench++

MCPToolBench++

GPT-4o

GPT-4o

GPT-4o

Performance with Data Size Scaling

MCPToolBench++

Tool
Para
AST

(b) Glama Seen-Test

0 4 8 12 16 20
Data Size (k)

40

50

60

70

80

90

100

Sc
or

e
on

 G
la

m
a

U
ns

ee
n

Se
rv

er
 (

%
) MCP-Flow

MCP-Flow

MCP-Flow

MCPToolBench++

MCPToolBench++

GPT-4o

GPT-4o

GPT-4o

Performance with Data Size Scaling

MCPToolBench++

Tool
Para
AST

(c) Glama Unseen-Server

Figure 10: Supplementary results for the scaling law analysis.

Table 8: Evaluation on subsets sourced from the Glama marketplace. Each model is evaluated on
Seen-Test, Unseen-Tool, and Unseen Server test splits with Tool selection accuracy, Param format
accuracy, and AST metrics.

Category Backbone Model Seen Test Unseen Tool Unseen Server
Tool Param AST Tool Param AST Tool Param AST

Large Models (> 10B) through Azure API

Closed-Ended

GPT-4o 83.6 59.4 51.8 82.2 64.2 60.6 85.6 51.6 42.6
GPT-4o-Mini 83.6 60.6 50.4 78.6 61.4 57.2 81.6 46.2 39.2
GPT-4.1 71.8 52.8 44.2 66.4 56.0 50.6 72.6 47.8 39.0
Claude-4-Sonnet 78.2 59.0 50.2 76.4 61.2 57.4 74.0 47.4 39.6

Open-Ended DeepSeek-V3 78.4 56.8 48.8 74.0 59.8 56.6 77.6 47.2 40.2
Kimi-K2 82.0 59.4 50.6 76.6 60.2 55.6 78.4 45.0 38.4

Small Models (≤ 10B) through Local Deployment

General Model
with Reasoning

Qwen3-0.6B 59.4 40.4 33.0 55.4 34.4 26.6 64.2 39.0 33.2
Qwen3-4B 84.0 64.2 54.8 78.4 67.4 56.2 78.2 55.0 45.4
Llama3.1-8B 70.2 42.6 27.2 68.8 43.8 30.6 66.2 37.2 20.2

Tool-Specialized Groq-8B-Tool-Use 32.6 18.0 15.8 30.6 18.2 14.8 27.0 13.4 11.4
ToolACE-8B 80.0 40.2 36.6 75.4 41.0 36.8 76.2 28.6 24.8

MCPToolBench++ Qwen3-0.6B 78.6 50.6 39.6 74.6 50.8 40.4 73.4 52.2 34.8
Qwen3-4B 90.0 65.6 52.8 89.6 71.8 58.8 84.4 60.4 44.4

MCP-Flow
(Ours)

Qwen3-0.6B 98.2 81.6 68.0 96.0 79.4 66.2 97.6 80.8 66.6
Qwen3-4B 98.6 85.8 72.0 98.6 85.8 71.2 98.0 84.2 73.0
Llama3.1-8B 98.6 84.6 71.2 97.8 85.6 73.2 98.0 83.0 72.0

that some servers from MCP.so lack formalized tool descriptions that strictly adhere to the OpenAI
API protocol for tool invocation, which leads to frequent execution failures. This raises an important
question about the robustness of LLM agents when interacting with less-formalized MCP tools.

B.5 EFFICIENCY ANALYSIS

To evaluate the computational efficiency of the automated MCP server collection pipeline of MCP-
Flow, we conduct a comprehensive analysis of resource and time consumption during the web
agent-based crawling process. This analysis provides insights into the practical costs and scalability
considerations of large-scale MCP server discovery.

Using Smithery as a representative example of all marketplaces, we track both token consumption
and execution time for each MCP server collection attempt. Specifically, for every assistant turn
during the collection process, we record input and output token usage of the GPT-4o model, including
system prompts, user instructions, and prior tool interactions. We also record the wall-clock time

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: Evaluation on subsets sourced from the MCP.so marketplace. Each model is evaluated on
Seen-Test, Unseen-Tool, and Unseen Server with Tool selection accuracy, Param format accuracy,
and AST metrics.

Category Backbone Model Seen Test Unseen Tool Unseen Server
Tool Param AST Tool Param AST Tool Param AST

Large Models (> 10B) through API

Closed-Ended
GPT-4o 76.6 56.0 50.8 82.6 65.6 59.8 80.0 71.0 60.8
GPT-4o-Mini 75.4 55.0 46.6 81.8 66.4 58.4 85.0 73.4 60.6
Claude-4-Sonnet 72.6 57.4 48.0 80.6 64.6 58.2 72.2 65.8 55.0

Open-Ended DeepSeek-V3 77.0 59.8 51.6 83.2 65.0 60.8 83.4 72.2 62.2
Kimi-K2 77.0 59.6 50.8 81.0 64.4 57.2 74.6 66.2 56.4

Small Models (≤ 10B) through Local Deployment

General Model
with Reasoning

Qwen3-0.6B 59.8 42.2 35.4 59.0 42.4 39.0 63.0 44.8 36.6
Qwen3-4B 85.8 68.4 57.2 87.2 72.0 62.2 81.8 72.0 59.6
Llama3.1-8B 74.4 69.5 44.1 73.2 69.6 45.8 71.0 63.3 38.6

Tool-Specialized Groq-8B-Tool-Use 37.0 24.8 20.6 39.4 28.8 27.0 40.8 28.2 24.0
ToolACE-8B 84.4 49.0 44.8 84.2 56.4 53.6 79.4 58.0 53.2

MCPToolBench++ Qwen3-0.6B 78.0 53.4 42.8 85.8 64.6 52.6 79.8 63.8 48.4
Qwen3-4B 91.6 68.8 54.2 94.8 78.2 66.0 91.2 78.8 62.6

MCP-Flow
(Ours)

Qwen3-0.6B 97.2 80.8 65.8 99.0 87.4 77.6 95.0 80.2 66.0
Qwen3-4B 99.0 85.8 72.4 99.0 88.0 78.2 98.8 89.6 72.2
Llama3.1-8B 99.2 84.8 72.0 99.4 88.2 78.0 97.2 87.6 72.2

Table 10: Evaluation on subsets sourced from the MCPHub marketplace. Each model is evaluated on
Seen-Test, Unseen-Tool, and Unseen Server test splits with Tool selection accuracy, Param format
accuracy, and AST metrics.

Category Backbone Model Seen Test Unseen Tool Unseen Server
Tool Param AST Tool Param AST Tool Param AST

Large Models (> 10B) through API

Closed-Ended

GPT-4o 84.8 56.0 49.0 86.4 57.2 44.0 80.2 49.6 44.2
GPT-4o-Mini 81.0 51.4 44.2 83.2 59.6 44.0 76.4 52.6 41.8
Claude-4-Sonnet 81.4 58.8 49.8 80.6 56.0 44.0 83.0 56.0 47.6

Open-Ended DeepSeek-V3 80.4 53.2 46.8 87.4 58.0 44.0 74.8 52.2 41.0
Kimi-K2 78.4 54.2 46.6 83.4 56.4 43.2 70.3 47.7 40.6

Small Models (≤ 10B) through Local Deployment

General Model
with Reasoning

Qwen3-0.6B 71.4 43.4 24.8 74.8 51.6 20.6 71.2 46.8 28.8
Qwen3-4B 81.8 59.2 49.6 86.2 62.6 47.6 76.2 56.0 42.4
Llama3.1-8B 70.4 43.4 24.8 73.4 50.4 21.4 68.6 44.0 27.8

Tool-Specialized Groq-8B-Tool-Use 32.8 23.2 20.4 34.6 22.2 16.6 34.8 21.0 15.2
ToolACE-8B 78.4 37.2 34.4 80.8 33.8 30.2 71.6 38.4 31.8

MCPToolBench++ Qwen3-0.6B 84.4 57.2 41.0 83.4 55.2 33.2 79.2 53.6 34.6
Qwen3-4B 92.2 62.8 46.0 93.6 65.0 38.0 90.6 68.4 44.8

MCP-Flow
(Ours)

Qwen3-0.6B 96.2 80.0 66.8 97.4 80.6 59.6 94.0 75.6 59.6
Qwen3-4B 98.0 80.8 68.6 98.2 86.2 68.8 97.0 81.4 64.6
Llama3.1-8B 98.0 83.2 71.6 97.8 87.2 68.2 97.4 82.0 65.6

from the initiation to the completion of each MCP server’s detailed page scraping. For each MCP
collection attempt, input and output tokens were aggregated across all turns, and the final metrics
represent averages computed over all MCP attempts that successfully produced MCP configurations.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 11: Efficiency metrics for automated MCP server collection from Smithery. Averages are
computed over successful collection attempts that produce MCP server configurations.

Efficiency Metric Average Value per Server
Input Tokens 97,827
Output Tokens 414.39
Execution Time (s) 42.17
Price (US cent ¢) 24.87

Table 12: Key training parameters regarding optimization, data and efficiency.

Parameter Value Parameter Value
Optimization

Device Number 2 Batch Size 2
Gradient Accumulation Steps 8 Learning Rate 5e-5
LR Scheduler Type cosine Warmup Ratio 0.1

Data
Preprocessing Workers 16 Dataloader Workers 4
D-type BF16 Max Length (Input+Output) 8192

Efficiency
LoRA Rank 16 LoRA Alpha 32
DeepSpeed Stage 0 Load in 8bit False

Experimental results summarized in Table 11 demonstrate that the collection of newly updated servers
is cost-effective. For instance, crawling 100 latest servers incurs a cost of approximately 2 dollars.
We reiterate that, based on our large-scale collection, future work only needs to carry out incremental
crawling, instead of re-collecting the entire marketplaces.

C EXPERIMENT DETAILS

In this section, we provide detailed information about the our experiments, including parameters,
setups and metrics. Training and inference details are presented in Section C.1. Evaluation details are
presented in Section C.2. Details related to the GAIA benchmark are presented Section C.3.

C.1 TRAINING AND INFERENCE DETAILS

Training Framework and Parameters. We adopt LLaMA-Factory (Zheng et al., 2024) to fine-tune
our local models, as it is widely used and supports training of the latest model series, including
Qwen3 and Llama3. For smaller models, we employ LoRA fine-tuning (Hu et al., 2022) due to its
superior resource efficiency.

To further reduce GPU memory consumption, we utilize DeepSpeed (Ren et al., 2021), setting the
Zero Redundancy Optimizer (ZeRO) stage to 0, following LLaMA-Factory’s implementation. Other
key training parameters are summarized in Table 12.

Inference Parameters. We employ vLLM (Kwon et al., 2023) to accelerate inference and deploy
the local model on a single H100 GPU. Other parameters are presented in Table 13.

In Section 4.2, for Qwen base models, we adopt the non-thinking template to ensure a fair comparison,
as all models are evaluated without additional reasoning techniques. In Section 4.2, all models are
evaluated using the thinking template, since the evaluation is conducted on a challenging agentic
benchmark.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 13: Key inference parameters regarding data generation and vLLM.

Parameter Value Parameter Value
Generation

Do Sample True Temperature 0.7
Top P 0.8 Max Tokens (Output) 4096

vLLM
Max Length (Input+Output) 32768 Enforce Eager True

Table 14: Models used in the experiments. Details about the API model versions and the specific
Hugging Face URLs for the locally deployed models are presented.

Azure API Local Deployment
Model Name Version Model Name Hugging Face URL

GPT-4o gpt-4o-2024-11-20 Qwen3-0.6B Qwen/Qwen3-0.6B
GPT-4o-Mini gpt-4o-mini-2024-07-18 Qwen3-4B Qwen/Qwen3-4B
Gemini-2.5-Pro gemini-2.5-pro Qwen3-8B Qwen/Qwen3-8B
Claude-4-Sonnet claude-4-sonnet Llama3.1-8B meta-llama/Llama-3.1-8B-Instruct
DeepSeek-V3 deepseek-v3-0324 Groq-8B-Tool-Use Groq/Llama-3-Groq-8B-Tool-Use
Kimi-K2 kimi-k2-0905-preview ToolACE-8B Team-ACE/ToolACE-8B

Model Version. As shown in Table 14, for reproducibility and fair comparison, we provide a
detailed description of our models. All API-based models are accessed through Microsoft’s Azure
platform1, while the relatively small open-source models are downloaded from Hugging Face.

Environment and Resources. For the MCP client and server deployment, the tool responses were
obtained in a macOS environment with Node.js. We configured the path to the current workspace
directory. All training and evaluation experiments were conducted on a Linux server equipped with
eight NVIDIA H100-SXM-80GB GPUs.

Training the Qwen3-4B models on the full function call dataset for two epochs take approximately
12 hours on 2 GPUs.

C.2 EVALUATION DETAILS

Metrics for Tool Selection and Formatting. For tool selection and format evaluation, we adopt
three metrics with increasing strictness following representative prior work (Wu et al., 2024; Shen
et al., 2024; Liu et al., 2024a; Patil et al., 2025; Gao et al., 2025).

1. Tool selection accuracy (Tool): This metric measures the correctness of tool selection by calculat-
ing the percentage of predicted tool names that match the ground-truth tool names.

2. Parameter format accuracy (Param): This metric evaluates the model’s ability to generate
correctly formatted tool parameters. Each predicted parameter name is compared recursively with
the corresponding ground-truth parameter, without requiring positional alignment. The evaluation
follows an all-or-nothing rule: if any ground-truth parameter is unmatched, the entire prediction is
considered incorrect. This ensures that the model identifies all required parameters, regardless of
order.

3. Abstract Syntax Tree (AST): AST is adopted from BFCL (Patil et al., 2025). According to the
authors, this metric exhibits a strong alignment with actual execution results. A function call is
deemed correct if the function name matches exactly and all parameter values fall within their
respective allowed sets. For further details on the AST matching rules, please refer to Patil et al.
(2025).

1https://azure.microsoft.com/en-us/pricing/details/cognitive-services/
openai-service/

20

https://huggingface.co/Qwen/Qwen3-0.6B
https://huggingface.co/Qwen/Qwen3-4B
https://huggingface.co/Qwen/Qwen3-8B
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/Groq/Llama-3-Groq-8B-Tool-Use
https://huggingface.co/Team-ACE/ToolACE-8B
https://azure.microsoft.com/en-us/pricing/details/cognitive-services/openai-service/
https://azure.microsoft.com/en-us/pricing/details/cognitive-services/openai-service/

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Metrics for Evaluating MCP Servers.

1. Query Success Rate: Measures the percentage of queries that receive non-zero scores, serving as
an indicator of the MCP’s functional robustness and universal applicability. Higher success rates
suggest that the MCP can handle a broader range of weather-related queries effectively.

2. Average Performance: Calculates the mean score across all successful queries, reflecting the
professional quality and effectiveness of the MCP’s responses when it functions correctly.

3. Feature Richness: Evaluates the comprehensiveness and sophistication of each MCP’s tool
ecosystem. For this assessment, we employ a comparative scoring methodology where each
individual tool within an MCP is evaluated against functionally similar tools across all weather
MCPs in our dataset. Each tool receives a score from 1-5 based on two primary criteria: (1) the
level of detail and granularity in its functionality, and (2) the breadth of its applicability and use
case coverage. Tools offering basic weather information retrieval receive lower scores, while
those providing advanced features such as multi-location forecasting, historical data analysis, or
specialized meteorological computations receive higher scores. The final Feature Richness score
for each MCP represents the sum of scores across all its constituent tools, providing a quantitative
measure of the server’s overall functional depth and versatility.

4. Efficiency Metrics: We measure Average Execution Time to assess the computational responsive-
ness of each MCP, while Average Output Token metrics quantify the communication overhead and
resource consumption associated with each interaction. These efficiency metrics are particularly
crucial for production deployments where latency and cost considerations significantly impact
user experience and system scalability.

5. Monthly Tool Calls: Captures real-world adoption patterns by measuring the frequency of user
interactions with each MCP on its respective hosting platform. This metric serves as a proxy for
community acceptance and practical utility, as user preference patterns often reflect the perceived
value and reliability of different MCP implementations.

Instruction Diversity and Embedding Details. We employ the python package
Sentence-Transformers2 to compute instruction embeddings. This setup is applied
for similarity filtration in Section 3.3, retrieval augmentation in Section 4.3, and instruc-
tion diversity analysis in Section B.2. For filtering and retrieval, we adopt the widely used
model mxbai-embed-large-v13, while all-MiniLM-L6-v24 is employed for diversity
computation.

To ensure reproducibility, we provide a concise code snippet illustrating how embedding similarity is
calculated:

1 from sklearn.metrics.pairwise import cosine_similarity
2 model = SentenceTransformer(model_path, device="cuda", trust_remote_code=True)
3 embeddings_1 = model.encode(sentence1, max_length=512, task="text-matching")
4 embeddings_2 = model.encode(sentence2, max_length=512, task="text-matching")
5 similarity = cosine_similarity([embeddings_1], [embeddings_2])

C.3 GAIA BENCHMARK DETAILS

Setups. For the GAIA benchmark evaluation, we carefully select several powerful web-search
MCP tools, including Google Search using Serper API, Jina Web Parser, and Firecrawl.

Following common practice in agentic research (Wu et al., 2025; Li et al., 2025), we adopt the
Pass@1 metric for evaluation. All experiments are conducted on the text-only validation subset5,
which comprises 103 questions. To ensure a fair comparison and minimize potential confounding
effects arising from tool heterogeneity, we disable Firecrawl during the experiments. We also cap the
maximum number of execution steps at 10, a limit that is rarely approached in practice. Furthermore,
to prevent excessive context accumulation across multiple turns in web parsing, we employ GPT-
4.1-nano to summarize the retrieved content before subsequent processing. To prevent the agent

2https://github.com/UKPLab/sentence-transformers
3https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1
4https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
5https://github.com/sunnynexus/WebThinker/blob/main/data/GAIA/dev.json

21

https://serper.dev
https://github.com/jina-ai/reader
https://github.com/firecrawl/firecrawl-mcp-server
https://github.com/UKPLab/sentence-transformers
https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://github.com/sunnynexus/WebThinker/blob/main/data/GAIA/dev.json

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

from exploiting trivial shortcuts, such as directly querying answers related to GAIA, we employ a
keyword-filtering mechanism that removes terms including “GAIA” and “HuggingFace” from the
search inputs, while still allowing general external resource access.

Metrics. For the evaluation of models on the GAIA benchmark, we adopt the official success rate
metric to assess performance, and use two additional metrics, step number and weighted step number,
to evaluate efficiency.

1. Success Rate (SR): SR is computed using an LLM-as-a-judge approach, comparing the agent’s
final answer with the ground-truth label. The evaluation prompt is provided in ??. Specifically,
we use GPT-4o as the judge model. For the third label, partially correct, where the judge model
is uncertain about correctness, we manually verify whether the ground-truth label is included in
the answer. For example, an answer of “INT. THE CASTLE - DAY” is considered correct with
the ground truth “THE CASTLE”, even though GPT-4o notes: “The model’s answer includes
additional detail (’INT.’ and ’- DAY’) that is not part of the ground truth answer (’THE CASTLE’).
While the core location is correct, the format does not exactly match the ground truth.”

2. Step Number: This metric directly computes the average number of assistant messages in
a trajectory. It accounts for function calls without semantic content, direct textual responses,
intermediate reasoning steps, and the final answer.

3. Weighted Step Number (WS): Since our tuned function-call model is considerably smaller than
typical LLM agents, employing MCP-Flow to initiate function calls substantially reduces cost.
We use the API input-token price difference as the weighting factor to compute a weighted step
number. The model price of MCP-Flow is based on the official pricing of Qwen3-4B6, and we
assume an exchange rate of 7 Chinese yuan to 1 US dollar for estimation.

D DATASET CONSTRUCTION DETAILS

In this section, we detail the implementation of the automated data construction pipeline of MCP-
Flow, drawing on the server collection described in Section D.1 and the marketplace introduction
provided in Section D.2.

D.1 AUTOMATED SERVER AND TOOL COLLECTION DETAILS

Web Agent. For Smithery, MCPHub, Glama, MCP.so, and PipeDream, the server collection process
follows a largely unified procedure. We employ the web agent based on Playwright MCP7 to (1)
navigate to the home page, (2) collect all listed server information (including names, descriptions,
and IDs), (3) click on each server entry, (4) use the tool snapshot function to capture information and
extract the MCP server configuration from the current page in JSON format, and (5) proceed to the
next page and repeat steps (2)–(4).

Glama differs in that it does not provide a single homepage listing all servers. Instead, its homepage
allows repeatedly clicking “Load More,” which yields only about 30 servers, a quantity insuffi-
cient for our purposes. We therefore adapted our approach by navigating to multiple search-result
pages using query keywords such as https://glama.ai/mcp/servers?query=a&sort=
github-stargazers%3Adesc, and collected all servers listed on these pages. To prioritize the
most popular servers, we sorted the results by GitHub star counts.

For MCPHub, to maximize efficiency we selected the homepage https://mcphub.com/
online-hosted-servers, which lists all servers hosted through MCPHub endpoints. These
servers typically provide explicit server configurations, unlike many others on the platform.

For MCP.so, to improve efficiency and avoid redundant crawling, we directly leveraged pre-crawled
server information from MCPCorpus (Lin et al., 2025), supplementing it with additional tool infor-
mation to generate function call.

6https://help.aliyun.com/zh/model-studio/models?spm=a2ty02.30268951.d_
model-market.17.71dc74a1GUEilx#2c9c4628c9yyd

7https://github.com/microsoft/playwright-mcp

22

https://glama.ai/mcp/servers?query=a&sort=github-stargazers%3Adesc
https://glama.ai/mcp/servers?query=a&sort=github-stargazers%3Adesc
https://mcphub.com/online-hosted-servers
https://mcphub.com/online-hosted-servers
https://help.aliyun.com/zh/model-studio/models?spm=a2ty02.30268951.d_model-market.17.71dc74a1GUEilx##2c9c4628c9yyd
https://help.aliyun.com/zh/model-studio/models?spm=a2ty02.30268951.d_model-market.17.71dc74a1GUEilx##2c9c4628c9yyd
https://github.com/microsoft/playwright-mcp

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 1 Automated MCP Server Collection from Marketplaces

Require: Marketplace URLs:M = {M1,M2, ...,Mk}
Ensure: Deduplicated server configurations S and tool information T

1: Initialize empty sets: Sraw ← ∅, S ← ∅, T ← ∅
2: for each marketplace Mi ∈M do
3: Initialize Playwright web agent
4: Navigate to marketplace homepage Mi

5: while more pages available do
6: Extract server list from current page using MCP List Collection Prompt
7: for each server s in server list do
8: Navigate to server detail page
9: Extract JSON configuration using Server Configuration Extraction Prompt

10: Sraw ← Sraw ∪ {s}
11: end for
12: Navigate to next page
13: end while
14: end for
15: // Server Deduplication
16: for each server si ∈ Sraw do
17: Extract tool descriptions Di from si
18: if ∄sj ∈ S such that Di = Dj then
19: S ← S ∪ {si}
20: end if
21: end for
22: // Local Deployment and Tool Collection
23: for each server s ∈ S do
24: Deploy server locally using MCP client (npm/uvx for stdio, URL for SSE)
25: Extract tool information: name, description, input schema
26: T ← T ∪ {tools from s} deployment failure
27: Mark server as unavailable and continue
28: end for
29: return S, T

Python SDK. MCP-Marketplace8 implements a python SDK which provides direct post-get ap-
proach for obtaining server information. Our code snippet is provided below:

1 import mcp_marketplace as mcpm
2
3 # Select data source
4 mcpm.set_endpoint("deepnlp")
5
6 # Query MCP Marketplace
7 result_q = mcpm.search(mode="list", page_id=0, count_per_page=100)
8
9 # Extract information

10 for item in result_q["items"]:
11 item_id = item["id"]
12 item_name = item["content_name"]
13 item_description = item["description"]
14 item_url = item["detail_url"]

We note that the agent method is also applicable to these two endpoints. We employ Python SDK as
a cheaper method as we crawled 10,000 servers and conduct filtration.

For PipeDream the difficulty lies in that almost all servers from this endpoint requires personalized
API key for deployment which, as we have previous elaborate, is of great difficulty for automated
collection. However, after some digging and cross-comparison, we find that PipeDream demon-

8https://pypi.org/project/mcp-marketplace/

23

https://pypi.org/project/mcp-marketplace/

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 15: List of all marketplaces utilized in this paper. In the main paper, we treat PulseMCP and
DeepNLP as the same market source, as the Python SDK collection method supports both. Server
Host indicates whether the marketplace self-hosts any MCP servers and provides proxy access to
them. Server counts are recorded as of 2025.09.16.

Icon Marketplace Home Page Server Host Server Count

Smithery smithery.ai ! 6859

Glama glama.ai/mcp/servers % 9361

MCP.so mcp.so % 16563

MCPHub mcphub.com ! 27793

PulseMCP pulsemcp.com/servers % 6073

DeepNLP deepnlp.org/store/mcp-server % 11k+

PipeDream mcp.pipedream.com ! 2877

state tool information for almost all servers on corresponding page and each server is linked to its
GitHub directory on the PipeDream official repository. For example, https://github.com/
PipedreamHQ/pipedream/tree/master/components/notion contains information
for the Notion Server. Each tool has a seperate directory under ”/actions”. And each tool has
a js file which specifies its name, description and parameters. Based on this discovery, we implement
a crawling agent to collect servers and tool information from the whole website and obatin around
1,500 servers and filter the 100 most popular.

D.2 MARKETPLACE INTRODUCTION

We provide a brief introduction to each of the six marketplaces we utilize.

1. Smithery9 is an emerging platform that standardizes the integration of external services into
large language models and autonomous agents via the Model Context Protocol (MCP). It lowers
deployment and maintenance costs by providing a centralized registry, development tool chains,
and hosting infrastructure, thereby promoting reusability and interoperability. However, its
adoption also requires careful attention to security, privacy, and version control.

2. Glama is a platform that provides discovery, indexing, and connectivity for MCP servers, clients,
and tools. It enables users to search, compare, and access thousands of MCP servers through
multiple transports, as well as via an API gateway or chat-UI. Servers are ranked along dimensions
such as security, compatibility, and usability, helping users choose the right ones.

3. MCP.so is a community-driven platform that collects and organizes third-party MCP Servers. It
serves as a central directory where users can discover, share, and learn about various MCP Servers
available for AI applications.

4. MCPHub is a central platform for discovering, testing, and integrating Model Context Protocol
(MCP) servers. It allows AI assistants to securely connect with external data sources and tools,
extending their capabilities beyond their training data. Users can browse detailed server documen-
tation, test servers in an online inspector, and seamlessly integrate them into their applications.

5. PipeDream offers a dedicated MCP server that integrates thousands of applications and pre-built
tools through a standardized interface. It allows large language models and AI assistants to securely
invoke external APIs and perform real-world tasks using managed OAuth and encrypted credential
storage. This setup streamlines authentication and interaction patterns, enabling scalable, secure,
and protocol-compliant access to a wide range of services.

9https://smithery.ai/

24

https://smithery.ai/
https://glama.ai/mcp/servers
https://mcp.so/
https://mcphub.com
https://www.pulsemcp.com/servers
http://www.deepnlp.org/store/mcp-server
https://mcp.pipedream.com/
https://github.com/PipedreamHQ/pipedream/tree/master/components/notion
https://github.com/PipedreamHQ/pipedream/tree/master/components/notion
https://smithery.ai/

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 16: A list of example MCP Servers. We present details about the server names, corresponding
URLs, source marketplaces, and descriptions.

Name Marketplace Category Description

Youtube Tran-
script

Smithery Art & Enter-
tainment

Retrieve transcripts of YouTube videos.

Gen-PDF
Server

Smithery File System Generate professional PDF documents from markdown
content with customizable styling options including dark
mode and advanced page settings. Convert any github
flavored markdown to high-quality PDFs using the Gen-
PDF API.

YGO Chinese
Card Database

Smithery Database Provide fast and easy access to Chinese Yu-Gi-Oh! card
information and images through keyword search and ID
queries. Integrate seamlessly with your applications to
retrieve detailed card data and visuals. Support both
stdio and Streamable HTTP modes for flexible deploy-
ment.

ESA MCP
Server

Glama Web Search
& Data

API through the Model Context Protocol, supporting
article search and retrieval with a compliant MCP inter-
face.

Deepwiki MCP
Server

Glama Developer
Tools

An MCP server that fetches and converts Deepwiki docu-
mentation into Markdown, allowing users to crawl pages
from deepwiki.

code-runner-
mcp

MCP.so Developer
Tools

Run JavaScript/Python code in a secure sandbox with
support for **any package import**.”

Get My Loca-
tion

MCP.so Map &
Weather

Get My Location is a location acquisition server that
retrieves the precise current location of the user through
browser authorization, integrating with weather and map
services for enhanced functionality.

Crypto Price &
Market Analy-
sis MCP Server

MCP.so Finance A Model Context Protocol (MCP) server that provides
comprehensive cryptocurrency analysis using the Coin-
Cap API. This server offers real-time price data, market
analysis, and historical trends through an easy-to-use
interface.

browser-
scraper

MCPHub Browser
Automation

The browser-scraper MCP is designed to facilitate web
scraping using a browser, providing content in Mark-
down format.

google-news-
search

MCPHub Web Search
& Data

Aigeon AI Google News Search is a Python-based server
application designed to interact with the Google News
search engine via the SerpApi.

AutoBlogger PipeDream Art & Enter-
tainment

Automatically create and publish posts Set it up once
and then redirect your focus to more important tasks.

Todoist PipeDream File System Todoist is a delightfully simple yet powerful task planner
and to-do list app.

travel-planner Manual Map &
Weather

A Travel Planner Model Context Protocol (MCP) server
implementation for interacting with Google Maps and
travel planning services. This server enables LLMs
to perform travel-related tasks such as location search,
place details lookup, and travel time calculations.

D.3 DATA GENERATION DETAILS

Slot-Fill Revision. As part of the regular-expression rules outlined in Section 3.2, we detect
three types of placeholders: file names, URLs, and directories. For file names, we substitute
the placeholders with valid local files based on their extensions. For URLs, we replace them with

25

https://smithery.ai/server/@jkawamoto/mcp-youtube-transcript
https://smithery.ai/server/@jkawamoto/mcp-youtube-transcript
https://smithery.ai/server/@gen-pdf/mcp
https://smithery.ai/server/@gen-pdf/mcp
https://smithery.ai/server/@lieyanqzu/ygocdb-mcp
https://smithery.ai/server/@lieyanqzu/ygocdb-mcp
https://glama.ai/mcp/servers/@d-kimuson/esa-mcp-server
https://glama.ai/mcp/servers/@d-kimuson/esa-mcp-server
https://glama.ai/mcp/servers/@regenrek/deepwiki-mcp
https://glama.ai/mcp/servers/@regenrek/deepwiki-mcp
https://mcp.so/server/code-runner-mcp/mcpc-tech
https://mcp.so/server/code-runner-mcp/mcpc-tech
https://mcp.so/server/getmylocation/mcpcn
https://mcp.so/server/getmylocation/mcpcn
https://mcp.so/server/mcp-crypto-price/truss44
https://mcp.so/server/mcp-crypto-price/truss44
https://mcp.so/server/mcp-crypto-price/truss44
https://mcphub.com/mcp-servers/mcphub-com/browser-scraper
https://mcphub.com/mcp-servers/mcphub-com/browser-scraper
https://mcphub.com/mcp-servers/aigeon-ai/google-news-search
https://mcphub.com/mcp-servers/aigeon-ai/google-news-search
https://mcp.pipedream.com/app/autoblogger
https://mcp.pipedream.com/app/todoist
https://github.com/GongRzhe/TRAVEL-PLANNER-MCP-Server

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 17: Example test instructions used to evaluate the quality and functionality of weather-related
MCP servers, as discussed in Section B.1.

Instruction Test Purpose

What’s the current temperature at 40.7128,-74.0060? Temperature query with coordinates

Are there any active weather alerts near 29.7604,-95.3698? Weather alerts query with coordinates

Show current weather alerts for TX. Weather alerts query by state abbrevia-
tion

Provide current weather conditions at -12.0464,-77.0428. General weather conditions with coordi-
nates

What is the current weather in Gweru, Zimbabwe? Weather query by city and country name

real-world examples collected from GitHub10 . For directories, we normalize them to the absolute
path of our local working directory.

To preserve anonymity and protect the authors’ privacy, we substitute all local file names and
directories with specific placeholders and provide simple code that allows other researchers to replace
them with customized input.

E PROMPTS AND EXAMPLES

E.1 PROMPT TEMPLATES

Prompt 1: MCP Server List Collection Prompt

Use the tool Playwright to obtain the information about listed mcp servers in a json format
from the given url.
A mcp server is a tool that can be used to interact with the system, such as “Exa Search”,
“xxx MCP Server”.
The mcp server name is usually contained in the “heading”.
The description of the mcp server is usually contained in the “paragraph” near the “heading”.

Url: {url}&page={page}

Only need to return the json data, no other text.
Only need the names and descriptions of the mcp servers.
Prefer browser snapshot than browser evaluate.

Figure 11: Prompt for automated MCP server discovery across marketplace pages. This prompt
instructs the web agent to systematically collect server names and descriptions from marketplace
listings, supporting the large-scale server collection described in Section 3.1.

10https://gist.github.com/bejaneps/ba8d8eed85b0c289a05c750b3d825f61#
file-websites-csv

26

https://gist.github.com/bejaneps/ba8d8eed85b0c289a05c750b3d825f61#file-websites-csv
https://gist.github.com/bejaneps/ba8d8eed85b0c289a05c750b3d825f61#file-websites-csv

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Prompt 2: Smithery Server Configuration Extraction Prompt

Use the tool Playwright to obtain the json data of the given mcp server.
You need to follow the steps below:
1. Open the browser: {url}&page={page}
2. Click the corresponding mcp server {mcp name}.
3. Click button “JSON” at the right side of the new page.
4. Click the “Connect” button poped up.
5. Retrieve the json data from the current page which specify how to install the mcp server.

Only need to return the json data that contains “mcpServers” and “command”.
Prefer browser snapshot than browser evaluate.
Don’t click on “Generate URL” button!

Figure 12: Prompt for extracting MCP server configuration files from Smithery marketplace. This
prompt guides the web agent through the specific navigation steps required to access and retrieve
JSON configuration data for individual servers, as part of the automated server collection pipeline.

Prompt 3: Tool-based Instruction Generation Prompt

You are given a specific tool from a mcp server. You need to generate an instruction which
requires to utilize this tool.
Each instruction needs to use exactly {number} tools belong to the mcp server.

Input
- **MCP Server information**:
[MCP Server Name] {mcp name}
[MCP Server Description] {mcp description}
- **Tool information**:
[Tool Name] {tool name}
[Tool Description] {tool description}
[Tool Schema] {tool schema}

Requirement
The instruction should not directly include the name of the mcp server or the name of the
tools.
The instruction must not look similar to the tool description.
Make sure The tool and instruction in your output are aligned.
Try to improvise and return 5 instruction candidates.

Example
{example}

Output Format
[Instruction1] <your generated instruction>
[Instruction2] <your generated instruction>
[Instruction3] <your generated instruction>
[Instruction4] <your generated instruction>
[Instruction5] <your generated instruction>

Figure 13: Prompt for tool-based few-shot instruction generation. This prompt ensures instructions
are naturally formulated without directly mentioning tool names, as described in the tool-based
few-shot generation stage of Section 3.2.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Prompt 4: Slot-Fill Revision Prompt

You are an expert at identifying missing but necessary details.
You will be provided with a tool’s parameters and a user query. Your task is to supplement
any missing information required by the tool in the user query.

If the query lacks required details, retrieve them from the provided environmental
context. Then, revise the user query by adding the appropriate missing details.
Ensure that your revisions are realistic and reasonable.

Requirements
1. Be realistic and authentic, stick to the given environmental context if given.
2. For not included details in the environmental context, like place, date and institutions,
etc, try to use real-world names; if they don’t affect the common knowledge, you can create
as you wish.

Example and Format

—
Now you need to generate a revised query based on the information below.

Input
- **MCP Server information**:
[MCP Server Name] {mcp name}
[MCP Server Description] {mcp description}
- **Tool information**:
[Tool Name] {tool name}
[Tool Description] {tool description}
[Tool Schema] {tool schema}
- **User Query**: {query}
- **Environmental Context**:
{environment context}

Output

Figure 14: Prompt for slot-fill revision in Section 3.2 to supplement missing tool parameters.

Prompt 5: WizardLM Evolution Prompt

I want you act as a Prompt Rewriter.
Your objective is to rewrite a given prompt into a more complex version to make those
famous AI systems (e.g., chatgpt and GPT4) a bit harder to handle.
But the rewritten prompt must be reasonable and must be understood and responded by
humans.
Your rewriting cannot omit the non-text parts such as the table and code in #The Given
Prompt#:. Also, please do not omit the input in #The Given Prompt#.
You SHOULD complicate the given prompt using the following method:
{}
You should try your best not to make the #Rewritten Prompt# become verbose, #Rewritten
Prompt# can only add 10 to 20 words into #The Given Prompt#.
‘#The Given Prompt#’, ‘#Rewritten Prompt#’, ‘given prompt’ and ‘rewritten prompt’ are
not allowed to appear in #Rewritten Prompt#

Figure 15: Prompt for WizardLM evolution in Section 3.2 to increase query complexity and diversity.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Prompt 6: LLM Quality Filtering Prompt

You are an expert in information retrieval and query optimization. Your task is to evaluate
the quality of the following query:

“{query}”.

When assessing the query, consider:
1. **Clarity** – Is the query unambiguous and easy to understand?
2. **Specificity** – Does it include enough detail to retrieve relevant results?
3. **Relevance** – Is it likely to produce results aligned with the user’s intent?
4. **Completeness** – Does it provide all necessary context or constraints?

Output Format
[Score]: 1–10 (10 = excellent)

Figure 16: Prompt for LLM-based quality filtering of generated instructions, as elaborated in Section
3.3.

Prompt 7: Weather MCP Quality Assessment Prompt

You are an expert evaluator. Given a user query and multiple answers from different MCPs,
score each answer on a 0-5 scale.

User Query: {query}

MCP Answers:
{answers text}

Scoring Criteria:
- 0: Answer is irrelevant, unhelpful, or “I don’t know”
- 1: Answer is barely relevant but provides minimal useful information
- 2: Answer is somewhat relevant and provides basic information
- 3: Answer is relevant and provides good information
- 4: Answer is very relevant and provides detailed, useful information
- 5: Answer is excellent, comprehensive, and directly addresses the query perfectly

Respond with a JSON object mapping MCP names to scores (0-5 integers only):
{“MCP Name”: score, ...}

Figure 17: Prompt for weather MCP quality assessment using a 0-5 point scale, as discuessed in
Section B.1.

29

	Introduction
	Related Work
	Traditional API-Based Datasets and Benchmarks
	MCP-Specialized Datasets and Benchmarks

	MCP-Flow
	Automated MCP Server & Tool Collection
	Instruction Generation and Trajectory Collection
	Rigorous Data Filtration

	Experiments
	Basic Setups
	Training Small LLMs for MCP Tool Utilization
	Enhancing Large LLMs on MCP Tool Utilization
	Enhancing LLM Agents on Agentic Tasks
	Ablation Study

	Conclusion
	Challenges and Future Directions
	Supplementary Experiments and Results
	Evaluation of MCP Servers
	Instruction Diversity
	Supplementary Ablation Study
	MCP Tool Selection and Format Experiment on Various Marketplaces
	Efficiency Analysis

	Experiment Details
	Training and Inference Details
	Evaluation Details
	GAIA Benchmark Details

	Dataset Construction Details
	Automated Server and Tool Collection Details
	Marketplace Introduction
	Data Generation Details

	Prompts and Examples
	Prompt Templates

