
Interpretable Concept Bottlenecks to Align
Reinforcement Learning Agents

Anonymous Author(s)
Accepted to NeurIPS 2024 main Conference

Abstract

Goal misalignment, reward sparsity and difficult credit assignment are only a few of
the many issues that make it difficult for deep reinforcement learning (RL) agents to
learn optimal policies. Unfortunately, the black-box nature of deep neural networks
impedes the inclusion of domain experts for inspecting the model and revising
suboptimal policies. To this end, we introduce Successive Concept Bottleneck
Agents (SCoBots), that integrate consecutive concept bottleneck (CB) layers. In
contrast to current CB models, SCoBots do not just represent concepts as properties
of individual objects, but also as relations between objects which is crucial for many
RL tasks. Our experimental results1) provide evidence of SCoBots’ competitive
performances, but also of their potential for domain experts to understand and
regularize their behavior. Among other things, SCoBots enabled us to identify a
previously unknown misalignment problem in the iconic video game, Pong, and
resolve it. Overall, SCoBots thus result in more human-aligned RL agents.

1 Introduction

Deep Reinforcement learning (RL) agents are prone to suffer from a variety of issues that hinder them
from learning optimal or generalizable policies. Prominent examples are reward sparsity [Andrychow-
icz et al., 2017] and difficult credit assignment [Raposo et al., 2021, Wu et al., 2024]. A more pressing
issue is the goal misalignment problem. It occurs when an agent optimizes a different side-goal,
aligned with the original target goal during training [Koch et al., 2021], but not at test time. Such
misalignments can be difficult to identify [di Langosco et al., 2022]. For instance, we here discover
that such a misalignment can occur in the oldest and most iconic video game, Pong (cf. Fig. 1). In
Pong, the agent’s target goal is to catch a ball with its own paddle and to return it passed the enemy’s
one. The enemy is programmed to constantly follow the ball, thus, agents can learn to focus on the
position of the enemy paddle’s for placing their own, rather than the position of the ball itself. This
shortcut learning [Geirhos et al., 2020] phenomenon, where a model learns decision rules for the
provided training set, that fail to transfer to novel data sets. If left unchecked, it may lead to a lack of
model generalization and unintuitive failures e.g. at deployment time [Zhang et al., 2021].

Recently eXplainable AI (XAI) methods have emerged to detect such shortcut behavior, by identifying
the reasons behind a model’s decisions [Schramowski et al., 2020, Roy et al., 2022, Saeed and Omlin,
2023]. However, many XAI methods’ explanation do not faithfully present the model’s underlying
decision process [Chan et al., 2022]. For example, importance-map explanations indicate the
importance of an input element without indicating why this element is important [Kambhampati
et al., 2021, Stammer et al., 2021, Teso et al., 2023]. A recent branch of research therefore focuses
on models that provide inherent concept-based explanations. Prominent examples are concept
bottlenecks models (CBMs), which provide predictive performances on par with standard deep
learning approaches for supervised image classification [Koh et al., 2020]. More importantly, CBMs
allow to identify and revise incorrect model behavior on a concept level [Stammer et al., 2021].

1Code available at https://anonymous.4open.science/r/SCoBots-69C4

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://anonymous.4open.science/r/SCoBots-69C4

0. Raw State

ball: {x,y,R,G,B}
player: {x,y,R,G,B}
enemy: {x,y,R,G,B}
score1: {x,y,R,G,B}
score2: {x,y,R,G,B}

1. Symbolic
Abstraction

dist(player, ball).x
dist(player, enemy).y
color(ball)
speed(ball).x
speed(ball).y
...

2. Relational
Abstraction

dist(ball, player).y > -3

dist(enemy, player).y > 24

dist(ball, player).y > 63

dist(ball, player).y > 72

...

...

3. Decision Rules

SCoBots' inspection and revision mitigate misalignment

Training

Explanation

+
Action

Evaluation

Deep RL agents inspection falls short

Figure 1: Successive Concept Bottlenecks Agents (SCoBots) allow for easy inspection and
revision. Top: Deep RL agents trained on Pong produce high playing scores with importance map
explanations that suggest sensible underlying reasons for taking an action (). However, when the
enemy is hidden, the deep RL agent fails to even catch the ball without clear reasons (). Bottom:
SCoBots, on the other hand, allow for multi-level inspection of the reasoning behind the action
selection, e.g., at a relational concept, but also action level. Moreover, they allow users to easily
intervene on them () to prevent the agents from focusing on potentially misleading concepts. In this
way, SCoBots can mitigate RL specific caveats like goal misalignment.

Contrary to exising CBMs’ fields of applications, RL requires relational reasoning [Kaiser et al.,
2019]. In this work, we therefore introduce Successive Concept Bottleneck Agents (SCoBots,
cf. Fig. 1, bottom) bringing concept bottlenecks approach to RL. SCoBots integrate successive
concept bottlenecks into their decision processes, where each bottleneck layer provides concept
representations that integrate the concept representations of the previous bottleneck layer. Specifically,
provided a set of predefined concept functions, SCoBots automatically extract relational concept
representations based on objects and their properties of the initial bottleneck layers. Finally, the set
of relational and object concept representations are used for optimal action selection. SCoBots thus
represent inherently explainable RL agents and in comparison to deep RL agents, they allow for
inspecting and revising their learned decision policies at multiple levels of their reasoning processes:
from the single object properties, through the relational concepts to the action selection.

In our evaluations on the iconic Atari Learning Environments [Mnih et al., 2013] (ALE), we provide
experimental evidence of the performance abilities of SCoBots that is on par with deep RL agents.
More importantly, we showcase their ability to provide valuable explanations and the potential of
mitigating a variety of RL specific issues, from reward sparsity to misalignment problems, via simple
guidance from domain experts. In the course of our evaluations, we identify previously unknown
shortcut behavior of deep RL agents, even on a simple game as Pong. By utilizing the interaction
capabilities of SCoBots, this behavior is easily removed. Ultimately, our work thereby illustrates the
severity of goal misalignment issues in RL and the importance of being able to mitigate these and
other RL specific issues via relational concept based models. In summary, our contributions are:

(i) We introduce Successive Concept Bottleneck agents (SCoBots) that integrate relational concept
representations into their decision processes.

(ii) We show that SCoBots allow to inspect their internal decision processes.

(iii) We show that the inherent inspectable nature of SCoBots can be utilized for identifying previously
unknown misalignment problems of RL agents.

(iv) We show that they allow for human interactions for mitigating various RL specific issues.

We proceed as follows. We introduce SCoBots and discuss their specific properties. We continue
with experimental evaluations and analysis. Before concluding, we touch upon related work.

2

Environment

Environment reward Expert reward

Expert

ball: {x,y,R,G,B}
player: {x,y,R,G,B}
enemy: {x,y,R,G,B}
score1: {x,y,R,G,B}
score2: {x,y,R,G,B}

Object
Representations

Relational
Concepts

...

dist(player, ball).x
dist(player, enemy).y
color(ball)
speed(ball).x

LLM

...

Action

+

Figure 2: An overview of Successive Concept Bottlenecks Agents (SCoBots). SCoBots decompose
the policy into consecutive interpretable concept bottlenecks (ICB). Objects and their properties
are first extracted from the raw input, human-understandable functions are then employed to derive
relational concepts, used to select an action. The understandable concepts enable interactivity. Each
bottleneck allows expert users to, e.g., prune or utilize concepts to define additional reward signals.

2 Successive Concept Bottleneck Agents

RL problems are modelled as Markov decision processes (MDPs), and also of concept bottleneck
models (CBMs). In this work, we represent an RL problem through the framework of a Markov
Decision Process, M =< S,A, Ps,a, Rs,a >, with S as the state space, A the set of available actions,
P (s, a) the transition probability, and R(s, a) the immediate reward function, obtained from the
environment. Classic deep RL policies, πθ(s) = P (A = a|S = s) parameterized by θ, are usually
black-box models that process raw input states, e.g. a set of frames, to provide a distribution over the
action space [Mnih et al., 2015, van Hasselt et al., 2016].

Concept bottleneck models (CBMs) initiate a learning process by extracting relevant concepts from
raw input (e.g. image data). These concepts can represent the color or position of a depicted object.
Subsequently, these extracted concepts are used for downstream tasks such as image classification.
Formally, a bottleneck model g : x → c transforms an input x ∈ RD with D dimensions into a
concept representation c ∈ Rk (a vector of k concepts). Next, the predictor network f : c → y uses
this representation to generate the final target output (e.g. y ∈ R for classification problems).

The main body of research on CBMs focuses on image classification tasks, where extracted concepts
represent attributes of objects. In contrast, RL agents must learn not just from static data but also
through interaction with dynamic environments. RL tasks thus often require relational reasoning, as
they involve understanding the relationships between instances that evolve through time and interact
with another. This is crucial for learning effective policies in complex, dynamic environments. Note
that, in the following descriptions, we use specific fonts to distinguish objects’ properties from
their relations.

2.1 Building inspectable ScoBots

An underlying assumption of SCoBots is that their processing steps should be inspectable and
understandable by a human user. This stands in contrast to e.g. unsupervised CBM approaches Jabri
et al. [2019], Zhou et al. [2019], Srinivas et al. [2020], where there is no guarantee for learning human-
aligned concepts. SCoBots rather take a different approach by dividing the concept learning and
RL-specific action selection into several inspectable steps that are grounded in human-understandable
concept representations. These steps are described hereafter and depicted in Fig. 2.

Similar to other RL agents, SCoBots process the last n observed frames from a sequence of images,
st = {xi}ti=t−n. For each frame, SCoBots need an initial concept extraction method to extract
objects and their properties, as in previous works on CBMs [Stammer et al., 2021, Koh et al.,
2020]. Specifically, we start from an initial bottleneck model, ωθ1(·), that is parameterized by
parameter set, θ1. Given a state, st, this model provides a set of ci object representations per frame,
ωθ1(st) = Ωt = {{oji}

ci
j=1}ti=t−n, where each object representation corresponds to a tensor of

different extracted properties of that object, (e.g. its category, position (i.e. x, y coordinates),
etc.). As done in previous works on CBMs, the bottleneck model of our SCoBots, ωθ1 , can correspond
to a model that was supervisedly pretrained for extracting the objects and their properties from images.

3

One of the major differences to previous work on CBMs is that SCoBots further extract and utilize
relational concepts that are based on the previously extracted objects and their properties. Formally,
SCoBots utilize a consecutive bottleneck model, µF (·), called the relation extractor. This model, µ,
is parameterized by a predetermined set of transparent relational functions, F , used to extract a set of
dt relational concepts. These relations are based on each individual object (and its properties) for
unary relations or on combinations of objects for n-ary relations and are denoted as µF (Ωt) = Γt =

{gkt }
dt

k=1. Without strong prior knowledge, F can initially correspond to universal object relations
such as distance and speed. However, this set can easily be updated on the fly by a human user
with e.g. additional, novel relational functions. Note that F can include the identity, to let the relation
extractor pass through initial object concepts from Ωt to the relational concepts Γt.

Finally, SCoBots employ an action selector, ρθ2 , parameterized by θ2, on the relational concepts to
select the best action, at, given the initial state, st (i.e. the set of frames). Up to now, all extracted
concepts in SCoBots, both Ωt and Γt, represent human-understandable concept representations. To
guarantee understandability also within the action selection step of SCoBots, we need to embed
an interpretable action selector. While neural networks, a standard choice in RL literature, are
performative and easy to train using differentiable optimization methods, they lack this required
interpretability feature. However, Çağlar Aytekin [2022] have recently shown the equivalence between
ReLU-based neural networks and decision trees, which in contrast represent inherently interpretable
models. To trade-off these issues of flexibility and performance vs interpretability, SCoBots thus
break down the action selection process by initially training a small ReLU-based neural network
action selector, ρ̃θ′

2
, via gradient-based RL optimization. After this, ρ̃θ′

2
is finally distilled into a

decision tree ρθ2 . Lastly, note that one can add a residual link from the initial object concepts, Ωt, to
the relational concepts, Γt such that the action selector can, if necessary, also make decisions based
on basic object properties, e.g., the height of an object.

Overall, our approach preserves the MDP formulation used by classic deep approaches, but decom-
poses the classic deep policy st

πθ−→ at into a successive concept bottleneck one st
ωθ1−−→ Ωt

µF−−→
Γt

ρθ2−−→ at, where θ = (θ1, θ2,F) constitutes the set of policy parameters. For simplicity, we will
discard the parameter notations in the rest of the manuscript. Further explanations of the input and
output space of each module, as well as the properties and relational functions used in this work are
provided in the appendix (cf. App.A.5 and App. A.6).

Instead of jointly learning object detection, concept extraction, and policy search, SCoBots enable
independent optimization of each policy component. Separating the training procedure of different
components reduces the complexity of the overall optimization problem [Koh et al., 2020].

2.2 Guiding SCoBots

The inspectable nature of SCoBots not only brings the benefit of improved human-understandability,
but importantly allows for targeted human-machine interactions. In the following, we describe two
guidance approaches for interacting with the latent representations of SCoBots: concept pruning and
object-centric rewarding. We refer to the revised SCoBot agents as guided SCoBots in the following.

Concept pruning. The type and amount of concepts that are required for a successful policy may
vary across tasks. For instance, the objects colors are irrelevant in Pong but required to distinguish
vulnerable ghosts from dangerous ones in MsPacman. However, overloading the action selector with
irrelevant concepts, whether these are object properties (Ωt) or relational concepts (Γt), can lead
to difficult optimization (e.g. the agent focusing on noise in unimportant states) as well as difficult
inspection of the decision tree (ρ). Moreover, for a single RL task, the need for specific concepts
might even change during training, in e.g. progressive environments (where agents need to master
early stages before being provided with additional, more complex tasks [Delfosse et al., 2024]).

SCoBot’s human-comprehensible concepts therefore allow domain experts to prune unnecessary
concepts. In this way, expert users can guide the learning process towards relevant concepts. Formally,
users can (i) select a subset of the object property concepts, Ω. Additionally, by (ii) selecting a subset
of the relational functions, F , or (iii) specifying which objects specific functions should be applied
on, experts can implicitly define the relational concepts subset, Γ. Guided SCoBots thus formally
refining the policy extraction to st

ωθ1−−→ Ωt −→ Ωt
µF−−→ Γt

ρθ2−−→ at.

4

Figure 3: Object-centric agents can master different Atari environments and interactive SCoBots
allow for corrections. Human-normalized scores of deep and SCoBots agents trained using PPO
on 9 ALE environments, including 3 SCoBots variants: non-guided deep policy (NN+NG), guided
deep policy (NN) and guided decision tree policy (SCoBots). SCoBots obtain similar or better scores
than the deep agents, showing that object-centric agents can also solve RL tasks while making use
of human-understandable concepts (left). Guiding SCoBots allow to correct misalignment in Pong
(center) and to obtain the originally intended agents, depicted by a level complition score of 100% on
the intended goal’s evaluation in Kangaroo (right).

Furthermore, users can (iv) prune out redundant actions resulting in a new action space A.

To give brief examples of these four pruning possibilities we refer to Fig. 2, focusing here on
the blue subparts. Particularly, in Pong a user can remove objects (e.g. scores) or specific object
properties (e.g. R,G,B values) to obtain Ωt. Second, the color relation, color(·), is irrelevant for
successfully playing Pong and can therefore be removed from F . Third, the vertical distance function
(dist(·, ·).y) can be prevented from being applied to the (player, enemy) input couple. These
pruning actions provide SCoBots with Γt. Lastly, the only playable actions in Pong are UP and DOWN.
To ease the policy search, the available FIRE, LEFT and RIGHT from the base Atari action space
might be discarded to obtain A, as they are equivalent to NOOP (i.e. no action).

Importantly, being able to prune concepts can help mitigate misalignement issues such as those of
agents playing Pong (cf. Fig. 1), where an agent can base its action selection on the enemy’s position
instead of the ball’s one. Specifically, pruning the enemy position from the distance relation concept
enforces SCoBot agents to rely on relevant features for their decisions such as the ball’s position,
rather than the spurious correlation with the enemy’s paddle.

Object-centric feedback reward. Reward shaping [Touzet, 1997, Ng et al., 1999] is a standard RL
technique that is used to facilitate the agent’s learning process by introducing intermediate reward
signals, aggregated to the original reward signal. The object-centric and importantly concept-based
approach of SCoBots allows to easily craft additional reward signals. Formally, one can use the
extracted relational concepts to express a new expert reward signal:

Rexp(Γt) :=
∑
gt∈Γt

αgt · gt, (1)

where Rexp : Γ −→ R and Γt = µ(ω(st)) is the relational state, extracted by the relation extractor.
The coefficient αgt ∈ R is used to penalize or reward the agent proportionally to relational concepts.
Our expert reward only relies on the state, as we make use of the concepts extracted from it. However,
incorporating the action into the reward computation is straightforward. In practice, this expert reward
signal can lead to guiding the agent towards focusing on relevant concepts, but also help smoothing
sparse reward signals, which we will discuss further in our evaluations.

For example, experts have the ability to impose penalties, based on the distance between the agent
and objects (cf. “expert reward” arrow in Fig. 2), with the intention of incentivizing the agent to
maintain close proximity with the ball. As we show in our experimental evaluation, we can use this
concept pruning and concept based reward shaping to easily address many RL specific caveats such
as reward sparsity, ill-defined objectives, difficult credit assignment, and misalignment (cf. App. A.8
for details on each problem).

5

3 Experimental Evaluations

In our evaluations, we investigate several properties and potential benefits of the SCoBot agents. We
specifically aim to answer the following research questions:
(Q1) Are concept based agents able to learn competitive policies on different RL environments?
(Q2) Does the inspectable nature of SCoBots allow to detect issues in their decision processes?
(Q3) Can concept-based guidance help mitigate common RL caveats, such as policy misalignments?

Experimental setup: We evaluate SCoBots on 9 Atari games (cf. Fig. 3 (left) for complete list)
from the Atari Learning Environments [Bellemare et al., 2012] (by far the most used RL framework
(cf. App. A.1), as well as a variations of Pong where the enemy is not visible yet active i.e. still able to
return the ball (NoEnemy), and where the enemy stops moving after returning the ball (LazyEnemy).
We provide human normalized scores (following eq. 3) that are averaged over 3 seeds for each agent
configuration. We compare our SCoBot agents to deep agents with the classic convolutional network
introduced by Mnih et al. [2015], that process a stack of 4 black and white frames and denote these
as deep agents in the following. Note, that we evaluate all agents on the latest v5 version of the
environments2 to prevent overfitting. All agents are trained for 20M frames under the Proximal
Policy Optimization algorithm (PPO, [Schulman et al., 2017]), specifically the stable-baseline3
implementation [Raffin et al., 2021] and its default hyperparameters (cf. Tab. 2 in App. A.5).
We focus our SCoBot evaluations on the more interesting aspects of the agent’s reasoning process
underlying the action selection, rather than the basic object identification step (which has been
thoroughly investigated in previous works e.g. [Koh et al., 2020, Stammer et al., 2021, Wu et al.,
2024]). We thus assume access to a pretrained object extractor and provide our agents with object-
centric descriptions of these states (Ωt) based on the information from OCAtari [Delfosse et al.,
2023a]. Specifically, in our evaluations, the set of object properties consists of object class (e.g. enemy
paddle, ball etc.), (xt, yt) coordinates, coordinates at the previous position (xt−1, yt−1), height and
width, the most common RGB values (i.e. the most representative color of an object), and object
orientation. The specific set of functions, F , that are used to extract object relations is composed of:
euclidean distance, directed distances (on x and y axes), speed, velocity, plan intersection, the center
(of the shortest line between two objects), and color name (cf. App. A.5.1 for implementation details).
To distill SCoBots’ learned policies, we use the decision-tree extraction algorithm VIPER [Bastani
et al., 2018]. For the human-guided SCoBot evaluations (denoted as (guided) SCoBots in our
evaluations), we illustrate human guidance and prune out the concepts that we consider unimportant
to master the game (cf. Tab. 4). Furthermore, to mitigate RL specific problems, we also provide
SCoBot agents with simulated human-expert feedback signals, the details of which we describe at the
relevant sections below. More details about the setup and the hyperparameters are in App. A.5.

SCoBots learn competitive policies (Q1).
We present human-normalized (HN) scores of both SCoBot and deep agents trained on each inves-
tigated game individually in Fig. 3 (left). Numerical values are provided in Tab. 1 (cf. App. A.7).
We observe that SCoBot agents perform at least on par with deep agents on all games, even slightly
outperform these on 5 out of 9 (namely, Asterix, Boxing, Kangaroo, Seaquest and Tennis). Our
results suggest that SCoBots provide competitive performances on every tested game despite the
constraints of multiple bottlenecks within their architectures. Overall, our experimental evaluations
show that RL policies based on interpretable concepts extraction decoupled from the action selection
process can, in principle, lead to competitive agents.

Inspectable SCoBots’ to detect misalignments (Q2).
The main target of developing ScoBots is to obtain competitive, yet transparent agents that allow
for human users to identify their underlying reasoning process. Particularly, for a specific state, the
inspectable bottleneck structure of SCoBots allows to pinpoint not just the object properties, but
importantly the relational concepts being used for the final action decision. This is exemplified in
Fig. 4 on Skiing, Pong and Kangaroo (cf. App. A.4 for explanations of SCoBots on the remaining
games). Here we highlight the decision-making path (from SCoBots’ decision tree based policies),
at specific states of each game. For example, for the game state extracted from Skiing, the SCoBot
agent selects RIGHT as the best action, because the signed distance from its character to the left flag
is larger than a specific value (+15 pixels). Given the nature of the game this inherent explanation
suggests that the agent is indeed basing its selection process on relevant relational concepts.

2This leads to deep agents overall slightly worse than in Schulman et al. [2017], however we obtain similar
results when evaluating on the old v4 versions (cf. Tab. 1).

6

D(Ball,Player).y > -3

D(Ball,Player).y > 63

D(Ball,Player).y > 72

Player.y ≤ 116

D(Ball,Player).y > 58

UPD(Enemy,Player).y > 8

O(Player) > 12

Flag1.y > 102

DV(Player).x ≤0

O(Player) ≤12

Flag2.x ≤ 59

D(Player,Flag1).x > 15 RIGHT

DV(Player).x > 0

.....
.....

..... Fruit2.x < 42

D(Player1,Child1).x > 36

D(Player1,Ladder2).y > -50

Monkey2.x > 0

D(Player1, Monkey1).x < 70 FIRE

DV(Player1).x > 0

Figure 4: SCoBots allow to follow their decision process, because of their object centricity and
interpretable concepts. The decision processes of SCoBots (extracted from the decision trees) with
the associated states from a guided SCoBot on Skiing (left), and from normal SCoBots on Pong
(middle) and Kangaroo (right). For example, in this Skiing state, our SCoBot selects RIGHT, as the
signed distance between Player and the (left) Flag1 (on the x axis) is bigger than 15. This agent
selects the correct action for the right reasons.

A more striking display of the benefits of the inherent explanations of SCoBot agents is depicted
by the Pong agent in Fig 4. The provided explanation suggests that the agent is basing its decision
on the vertical positions of the enemy and of its own paddle (distance between the two paddles on
the y axis). In fact, this suggests that the agent is largely ignoring the ball’s position. Interestingly,
upon closer inspection of the enemy movements, we observed that, previously unknown, the enemy
is programmed to follow the ball’s vertical position (with a small delay). Thus, the vertical positions
of these two objects are highly correlated (Pearson’s and Spearman’s correlations coefficient above
99%, cf. App. A.7). Moreover, the ball’s rendering contains flickering, explaining why SCoBots base
their decision on this potentially more reliable feature, the enemy paddle’s vertical position.

To validate these findings further, we perform evaluations on 2 modified Pong environments in which
(i) the enemy is invisible, yet playing (NoEnemy, cf. Fig. 1), and on one environment where the
enemy is not moving after returning the ball (LazyEnemy). We reevaluate the deep and SCoBot
agents that were trained on the original Pong environment on NoEnemy and observe catastrophic
performance drops in HN scores (cf. Fig. 3) at a level of random policies for both types of agents.
Evaluations with different DQN agents lead to similar performance drops (cf. App. A.7). These drops
are particularly striking as initial importance maps produced by PPO and DQN agents highlight all 3
moving objects (i.e. the player, ball, and enemy) as relevant for their decisions (cf. Fig.1 top left and
App. A.7), aligned with findings on importance maps of Weitkamp et al. [2018]. These maps suggest
that the deep agents had based its decisions on right reasons. Our novel results on the NoEnemy and
LazyEnemy environments however greatly calls to question the faithfulness and granularity of such
post-hoc explainability methods in RL. They highlight the importance of inherently transparent RL
models on the level of concepts, as provided via SCoBots, to identify such potential issues. In the
following, we will investigate how to mitigate the discovered issues via SCoBot’s bottlenecks.

Guiding SCoBots to mitigate RL-specific caveats (Q3).
We here make use of the interactive properties of SCoBots to address several famous RL specific
problems: goal misalignment, ill-defined rewards, difficult credit assignment and reward sparsity.

Realigning SCoBots: For mitigating goal misalignment issues of the SCoBot agents trained on Pong,
we can simply remove (prune) the enemy from the set of considered objects (Ω). By doing so, the
enemy cannot be used for the action selection process. This leads to guided SCoBots that are able to
play Pong and its NoEnemy version (cf. guided SCoBot in Fig 3 (center)). Furthermore, this shows
that playing Pong without observing the enemy is achievable, by simply returning vertical shots,
difficult for the enemy to catch.

Ill-defined reward: Defining a reward upfront that incentivizes agents to learn an expected behavior
is a difficult problem. An example of ill-defined reward (i.e. a reward that will lead to an unaligned
behavior if the agent maximizes the return) is present in Kangaroo. According to the documentation
of the game3, “the mother kangaroo on the bottom floor tries to reach the top floor where her joey
is being held captive by some monkeys”. However, punching the monkey enemies gives a higher
cumulative reward than climbing up to save the baby. RL agents thus tend to learn to kick monkeys
on the bottom floor rather than reaching the joey (cf. Fig. 4). For revising such agents, we provide
an additional reward signal, based on the distance from the mother kangaroo to the joey (detailed in

3www.retrogames.cz/play_195-Atari2600.php

7

www.retrogames.cz/play_195-Atari2600.php

App. A.8). As can be seen in Fig. 3 (right), this reward allows the guided SCoBots to achieve the
originally intended goal by indeed completing the level. In contrast, deep agents and particularly
unguided SCoBots achieve relatively high HN scores, but do not complete the levels.

Difficult Credit Assignment Problem: The difficult credit assignment problem is the challenge
of correctly attributing credit or blame to past actions when the agent’s actions have delayed or
non-obvious effects on its overall performance. We illustrate this in the context of Skiing, where
in standard configurations, agents receive at each step a negative reward that corresponds to the
number of seconds elapsed since the last steps (i.e. varying between −3 and −7). This reward aims at
punishing agents for going down the slope slowly. Additionally, the game keeps track of the number
of flag pairs that the agent has correctly traversed (displayed at the top of the screen, cf. Fig. 4),
and provide a large reward, proportional to this number, at the end of the episode. Associating this
reward signal with the number of passed flags is extremely difficult, without prior knowledge on
human skiing competitions. In the next evaluations, we provide SCoBots with another reward at each
timestep, proportional to the agent’s progression to the flags’ position to incentivize the agent to
pass in between them, as well as a signal rewarding for higher speed:

Rexp =
∑

o∈{Flag1,F lag2}

D(Player, o)t −D(Player, o)t−1 + V (Player).y. (2)

These rewards are further detailed in App. A.8. They allow guided SCoBot agents to reach human
scores, whereas the deep and unguided SCoBot agents perform worse than random (cf. Fig. 3 (left)).

Note that providing additional reward signals, as done above, obviously also allows to mitigate reward
sparsity, as we illustrate on Pong (cf. App. A.8.3 for a detailed explanation).

Overall, our experimental evaluations not only show that SCoBots are on par with deep agents in
terms of performances, but that their concept-based and inspectable nature allows to identify and
revise several important RL specific caveats. Importantly, in the course of our evaluations, we
identified a previously unknown and critical misalignment of existing RL agents on the simple and
iconic Pong environment, via the previously mentioned properties of SCoBots.

4 Limitations

In our evaluations, we made use of the integrated object extractor (ω) of OCAtari which provides us
with ground truth data. Such extractors can however also be optimized using supervised [Redmon
et al., 2016] or self-supervised [Lin et al., 2020, Delfosse et al., 2023c] object detection methods.
Furthermore, our set of relational functions, F , is predefined and fixed. To eliminate the reliance
on expert users, this set may alternatively be obtained using the supervision from large language
models [Wu et al., 2024], via prior task-knowledge integration [Reid et al., 2022], or neural guidance
from a pretrained fully deep agent [Delfosse et al., 2023b]. Other environments require additional
information extraction processes. E.g. in MsPacman an agent must navigate a maze. Providing
concept representations for such environments is an important step for future work. Finally, during
our revision assessments, we presuppose that the user has adequate knowledge and positive intentions.

5 Related Work

The basic idea of Concept Bottleneck Models (CBMs) can be found in work as early as Lampert et al.
[2009] and Kumar et al. [2009]. A first systematic study of CBMs and their variations was delivered
by Koh et al. [2020] and Stammer et al. [2021] which described a CBM as a two-stage model that
first computes intermediate concept representations before generating the final task output. Where
learning valuable initial object concept representations without strong supervision is still a tricky and
open issue for concept-based models [Stammer et al., 2022, Steinmann et al., 2023, Sawada and
Nakamura, 2022, Marconato et al., 2022, Lage and Doshi-Velez, 2020], receiving relational concept
representations in SCoBots is performed automatically via the function set F . Since the initial works
on CBMs they have found utilization in several applications. Antognini and Faltings [2021] e.g.
apply CBMs to text sentiment classification. However, these works consider single object concept
representations and focus on supervised learning.

8

In fact, CBMs have found their way into RL only to a limited extent. Zabounidis et al. [2023] and
Grupen et al. [2022] utilized CBMs in a multi-agent setting, where both identify improved inter-
pretability through concept representations while maintaining competitive performance. Zabounidis
et al. [2023] further report better training stability and reduced sample complexity. Their extension
includes an optional “residual" layer which passes additional, latent information to the action selector
part. SCoBots omit such a residual component for the sake of human-understandability, yet offer
the flexibility to the user to modify the concept layer via updating F for improving the model’s
representations. Similar to how SCoBots invite the user to reuse the high-level concepts to shape the
reward signal, Guan et al. [2023] allow the user to design a reward function based on higher-level
properties that occur over a period of time. Lastly, SCoBots not only separate state representation
learning from policy search, as done by Cuccu et al. [2020], but also enforce object-centricity, putting
interpretability requirements on the consecutive feature spaces.

Explainable RL (XRL) is an extensively surveyed XAI subfield [Milani et al., 2023, Dazeley et al.,
2022, Krajna et al., 2022] with a wide range of yet unsolved issues [Vouros, 2022]. Milani et al.
[2023] introduce a taxonomy for XRL methods, with: (1) feature importance methods that generate
explanations that point out decision-relevant input features, (2) learning process & MDP methods
which present which past experience or MDP components affect the policy, and (3) policy-level
methods, describing the agent’s long-term behavior. Based on this, SCoBots extract relations from
low-level features making high-level information available to explanations and thereby support feature
importance methods. According to Qing et al. [2022]’s categorization of XRL frameworks, SCoBots
are “model-explaining” (in contrast to reward-, state-, and task-explaining). Other XRL methods rely
on decision trees [Fuhrer et al., 2024, Marton et al., 2024], logic [Jiang and Luo, 2019, Kimura et al.,
2021, Delfosse et al., 2023b, Sha et al., 2024] or programs [Verma et al., 2018, Trivedi et al., 2021,
Cao et al., 2022, Kohler et al., 2024, Wüst et al., 2024] to encode transparent policies.

The misalignment problem is an RL instantiation of the shortcut learning problem, a frequently
studied failure mode that has been identified in models and datasets across the spectrum of AI from
deep networks [Lapuschkin et al., 2019, Schramowski et al., 2020] to neuro-symbolic [Stammer
et al., 2021, Marconato et al., 2023], prototype-based models [Bontempelli et al., 2023] and RL
approaches [di Langosco et al., 2022]. A misaligned RL agent, first empirically studied by [Koch et al.,
2021] represents a serious issue, especially when it is misaligned to recognized ethical values [Arnold
and Kasenberg, 2017] or if the agent has broad capabilities [Ngo, 2022]. Nahian et al. [2021] ethically
align agents by introducing a second reward signal. In comparison, SCoBots aid to resolve RL
specific issues such as the misalignment problem through inherent interpretability.

6 Conclusion

In this work, we have provided evidence for the benefits of concept-based models in RL tasks,
specifically for identifying issues such as goal misalignment. Among other things our proposed
Successive Concept Bottleneck agents integrate relational concepts into their decision processes.
With this, we have exposed previously unknown misalignment problems of deep RL agents in a game
as simple as Pong. SCoBot agents allowed us to revise this issue, as well as different RL specific
caveats with minimal additional feedback. Our work thus represents an important step in developing
aligned RL agents, i.e. agents that are not just aligned with the underlying task goals, but also with
human user’s understanding and knowledge. Achieving this is particularly valuable for applying RL
agents in real-world settings where ethical and safety considerations are paramount.

Avenues for future research are incorporating a high level action bottleneck [Bacon et al., 2017]. One
can also incorporate attention mechanisms into RL agents, as discussed in [Itaya et al., 2021], or
use language models (and e.g., the game manuals) to generate the additional reward signal, as done
by Wu et al. [2024]. Additionally, we are considering the use of shallower decision trees [Broelemann
and Kasneci, 2019]. An interesting research question is how far the task reward signal can aid in
learning games object-centric representations [Delfosse et al., 2023c] in the first place.

Impact statement

Our work aims at developing transparent RL agents, whose decision can be understood and revised to
be aligned with the beliefs and values of a human user. We believe that such algorithms are critical to

9

uncover and mitigate potential misalignments of AI systems. A malicious user can, however, utilize
such approaches for aligning agents in a harmful way, thereby potentially leading to a negative impact
on further users or society as a whole. Even so, the inspectable nature of transparent approaches will
allow to identify such potentially harmful misuses, or hidden misalignment.

References
Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob

McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
Advances in neural information processing systems, 2017.

Diego Antognini and Boi Faltings. Rationalization through concepts. ArXiv, 2021.

Thomas Arnold and Daniel Kasenberg. Value alignment or misalignment – what will keep systems
accountable? In AAAI Workshop on AI, Ethics, and Society, 2017.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,
California, USA, 2017.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via policy
extraction. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò
Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems, NeurIPS, 2018.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents (extended abstract). In International Joint
Conference on Artificial Intelligence, 2012.

Andrea Bontempelli, Stefano Teso, Katya Tentori, Fausto Giunchiglia, and Andrea Passerini. Concept-
level debugging of part-prototype networks. In International Conference on Learning Representa-
tions (ICLR), 2023.

Klaus Broelemann and Gjergji Kasneci. A gradient-based split criterion for highly accurate and
transparent model trees. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, 2019.

Yushi Cao, Zhiming Li, Tianpei Yang, Hao Zhang, Yan Zheng, Yi Li, Jianye Hao, and Yang Liu.
Galois: boosting deep reinforcement learning via generalizable logic synthesis. Advances in Neural
Information Processing Systems, 2022.

Chun Sik Chan, Huanqi Kong, and Guanqing Liang. A comparative study of faithfulness metrics for
model interpretability methods. In Conference of the Association for Computational Linguistics
(ACL), 2022.

Karl Cobbe, Oleg Klimov, Christopher Hesse, Taehoon Kim, and John Schulman. Quantifying
generalization in reinforcement learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
2019.

Giuseppe Cuccu, Julian Togelius, and Philippe Cudré-Mauroux. Playing atari with six neurons
(extended abstract). In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI 2020, 2020.

Richard Dazeley, Peter Vamplew, and Francisco Cruz. Explainable reinforcement learning for
broad-xai: a conceptual framework and survey. Neural Computing and Applications, 2022.

Quentin Delfosse, Jannis Blüml, Bjarne Gregori, Sebastian Sztwiertnia, and Kristian Kersting.
Ocatari: Object-centric atari 2600 reinforcement learning environments. ArXiv, 2023a.

Quentin Delfosse, Hikaru Shindo, Devendra Singh Dhami, and Kristian Kersting. Interpretable
and explainable logical policies via neurally guided symbolic abstraction. In Advances in Neural
Information Processing (NeurIPS), 2023b.

10

Quentin Delfosse, Wolfgang Stammer, Thomas Rothenbacher, Dwarak Vittal, and Kristian Kersting.
Boosting object representation learning via motion and object continuity. In Danai Koutra, Claudia
Plant, Manuel Gomez Rodriguez, Elena Baralis, and Francesco Bonchi, editors, European Confer-
ence on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML), 2023c.

Quentin Delfosse, Patrick Schramowski, Martin Mundt, Alejandro Molina, and Kristian Kersting.
Adaptive rational activations to boost deep reinforcement learning. In International Conference on
Learning Representations (ICLR), 2024.

Lauro Langosco di Langosco, Jack Koch, Lee D. Sharkey, Jacob Pfau, and David Krueger. Goal
misgeneralization in deep reinforcement learning. In International Conference on Machine
Learning ICML, 2022.

Benjamin Fuhrer, Chen Tessler, and Gal Dalal. Gradient boosting reinforcement learning. arXiv,
2024.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard S. Zemel, Wieland Brendel,
Matthias Bethge, and Felix A. Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2020.

Niko Grupen, Natasha Jaques, Been Kim, and Shayegan Omidshafiei. Concept-based understanding
of emergent multi-agent behavior. In Deep Reinforcement Learning Workshop NeurIPS 2022,
2022.

Lin Guan, Karthik Valmeekam, and Subbarao Kambhampati. Relative behavioral attributes: Filling
the gap between symbolic goal specification and reward learning from human preferences. In
International Conference on Learning Representations (ICLR), 2023.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In AAAI Conference on Artificial Intelligence, 2017.

Geoffrey Irving, Paul Francis Christiano, and Dario Amodei. Ai safety via debate. ArXiv, 2018.

Hidenori Itaya, Tsubasa Hirakawa, Takayoshi Yamashita, Hironobu Fujiyoshi, and Komei Sugiura.
Visual explanation using attention mechanism in actor-critic-based deep reinforcement learning.
2021 International Joint Conference on Neural Networks (IJCNN), 2021.

A. Jabri, Kyle Hsu, Benjamin Eysenbach, Abhishek Gupta, Alexei A. Efros, Sergey Levine, and
Chelsea Finn. Unsupervised curricula for visual meta-reinforcement learning. ArXiv, 2019.

Zhengyao Jiang and Shan Luo. Neural logic reinforcement learning. In International conference on
machine learning, 2019.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell,
K. Czechowski, D. Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, G. Tucker, and Henryk Michalewski. Model-based reinforcement learning for atari.
ArXiv, 2019.

Subbarao Kambhampati, Sarath Sreedharan, Mudit Verma, Yantian Zha, and L. Guan. Symbols as
a lingua franca for bridging human-ai chasm for explainable and advisable ai systems. In AAAI
Conference on Artificial Intelligence, 2021.

Daiki Kimura, Masaki Ono, Subhajit Chaudhury, Ryosuke Kohita, Akifumi Wachi, Don Joven Agra-
vante, Michiaki Tatsubori, Asim Munawar, and Alexander Gray. Neuro-symbolic reinforcement
learning with first-order logic. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, 2021.

Jack Koch, Lauro Langosco, Jacob Pfau, James Le, and Lee Sharkey. Objective robustness in deep
reinforcement learning, 2021.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, 2020.

11

Hector Kohler, Quentin Delfosse, Riad Akrour, Kristian Kersting, and Philippe Preux. Interpretable
and editable programmatic tree policies for reinforcement learning. In Workshop on Interpretable
Policies in Reinforcement Learning@ RLC-2024, 2024.

Agneza Krajna, Mario Brčič, Tomislav Lipić, and Juraj Doncevic. Explainability in reinforcement
learning: perspective and position. ArXiv, 2022.

Neeraj Kumar, Alexander C. Berg, Peter N. Belhumeur, and Shree K. Nayar. Attribute and simile
classifiers for face verification. 2009 IEEE 12th International Conference on Computer Vision,
2009.

Isaac Lage and Finale Doshi-Velez. Learning interpretable concept-based models with human
feedback. ArXiv, 2020.

Christoph H. Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to detect unseen object
classes by between-class attribute transfer. 2009 IEEE Conference on Computer Vision and Pattern
Recognition, 2009.

Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire Montavon, Wojciech Samek,
and Klaus-Robert Müller. Unmasking clever hans predictors and assessing what machines really
learn. Nature communications, 2019.

Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong
Jiang, and Sungjin Ahn. SPACE: unsupervised object-oriented scene representation via spatial
attention and decomposition. In International Conference on Learning Representations, 2020.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents (extended abstract). In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI, 2018.

Emanuele Marconato, Andrea Passerini, and Stefano Teso. Glancenets: Interpretable, leak-proof
concept-based models. In Advances in Neural Information Processing (NeurIPS), 2022.

Emanuele Marconato, Stefano Teso, and Andrea Passerini. Neuro-symbolic reasoning shortcuts:
Mitigation strategies and their limitations. In International Workshop on Neural-Symbolic Learning
and Reasoning, 2023.

Sascha Marton, Tim Grams, Florian Vogt, Stefan Lüdtke, Christian Bartelt, and Heiner Stucken-
schmidt. Sympol: Symbolic tree-based on-policy reinforcement learning. arXiv, 2024.

Thomas Mesnard, Theophane Weber, Fabio Viola, Shantanu Thakoor, Alaa Saade, Anna Harutyunyan,
Will Dabney, Thomas S. Stepleton, Nicolas Heess, Arthur Guez, Eric Moulines, Marcus Hutter,
Lars Buesing, and Rémi Munos. Counterfactual credit assignment in model-free reinforcement
learning. In Proceedings of the 38th International Conference on Machine Learning (ICML), 2021.

Stephanie Milani, Nicholay Topin, Manuela Veloso, and Fei Fang. Explainable reinforcement
learning: A survey and comparative review. ACM Computing Surveys, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. ArXiv, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 2015.

Md Sultan Al Nahian, Spencer Frazier, Brent Harrison, and Mark O. Riedl. Training value-aligned
reinforcement learning agents using a normative prior. ArXiv, 2021.

A. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transformations: Theory
and application to reward shaping. In International Conference on Machine Learning, 1999.

12

Richard Ngo. The alignment problem from a deep learning perspective. ArXiv, 2022.

Yunpeng Qing, Shunyu Liu, Jie Song, and Mingli Song. A survey on explainable reinforcement
learning: Concepts, algorithms, challenges. ArXiv, 2022.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 2021.

David Raposo, Samuel Ritter, Adam Santoro, Greg Wayne, Théophane Weber, Matthew M. Botvinick,
H. V. Hasselt, and Francis Song. Synthetic returns for long-term credit assignment. ArXiv, 2021.

Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Conference on Computer Vision and Pattern Recognition,
CVPR 2016, 2016.

Machel Reid, Yutaro Yamada, and Shixiang Shane Gu. Can wikipedia help offline reinforcement
learning? ArXiv, 2022.

Nicholas A. Roy, Junkyung Kim, and Neil C. Rabinowitz. Explainability via causal self-talk. 2022.

Waddah Saeed and Christian W. Omlin. Explainable AI (XAI): A systematic meta-survey of current
challenges and future opportunities. Knowledge-Based Systems, 2023.

Yoshihide Sawada and Keigo Nakamura. Concept bottleneck model with additional unsupervised
concepts. IEEE Access, 2022.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
Yoshua Bengio and Yann LeCun, editors, 4th International Conference on Learning Representa-
tions, ICLR, 2016.

Patrick Schramowski, Wolfgang Stammer, Stefano Teso, Anna Brugger, Franziska Herbert, Xiaoting
Shao, Hans-Georg Luigs, Anne-Katrin Mahlein, and Kristian Kersting. Making deep neural
networks right for the right scientific reasons by interacting with their explanations. Nature
Machine Intelligence, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv, 2017.

Jingyuan Sha, Hikaru Shindo, Quentin Delfosse, Kristian Kersting, and Devendra Singh Dhami.
Expil: Explanatory predicate invention for learning in games. arXiv preprint, 2024.

A. Srinivas, Michael Laskin, and P. Abbeel. Curl: Contrastive unsupervised representations for
reinforcement learning. ArXiv, 2020.

Wolfgang Stammer, Patrick Schramowski, and Kristian Kersting. Right for the right concept: Revising
neuro-symbolic concepts by interacting with their explanations. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR, 2021.

Wolfgang Stammer, Marius Memmel, Patrick Schramowski, and Kristian Kersting. Interactive disen-
tanglement: Learning concepts by interacting with their prototype representations. In Conference
on Computer Vision and Pattern Recognition, (CVPR), 2022.

David Steinmann, Wolfgang Stammer, Felix Friedrich, and Kristian Kersting. Learning to intervene
on concept bottlenecks. ArXiv, 2023.

Stefano Teso, Öznur Alkan, Wolfgang Stammer, and Elizabeth Daly. Leveraging explanations in
interactive machine learning: An overview. Frontiers in Artificial Intelligence, 2023.

Claude F. Touzet. Neural reinforcement learning for behaviour synthesis. Robotics Auton. Syst.,
1997.

Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J Lim. Learning to synthesize programs as
interpretable and generalizable policies. Advances in neural information processing systems, 2021.

13

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February
12-17, 2016, Phoenix, Arizona, USA, 2016.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
Programmatically interpretable reinforcement learning. In International Conference on Machine
Learning. PMLR, 2018.

George A. Vouros. Explainable deep reinforcement learning: State of the art and challenges. ACM
Computing Surveys, 2022.

Laurens Weitkamp, Elise van der Pol, and Zeynep Akata. Visual rationalizations in deep reinforcement
learning for atari games. In BNCAI, 2018.

Yue Wu, Yewen Fan, Paul Pu Liang, Amos Azaria, Yuanzhi Li, and Tom M Mitchell. Read and
reap the rewards: Learning to play atari with the help of instruction manuals. Advances in Neural
Information Processing Systems, 2024.

Antonia Wüst, Wolfgang Stammer, Quentin Delfosse, Devendra Singh Dhami, and Kristian Kersting.
Pix2code: Learning to compose neural visual concepts as programs. In The 40th Conference on
Uncertainty in Artificial Intelligence, 2024.

Renos Zabounidis, Joseph Campbell, Simon Stepputtis, Dana Hughes, and Katia P. Sycara. Concept
learning for interpretable multi-agent reinforcement learning. ArXiv, 2023.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 2021.

Xiaomao Zhou, Tao Bai, Yanbin Gao, and Yuntao Han. Vision-based robot navigation through com-
bining unsupervised learning and hierarchical reinforcement learning. Sensors (Basel, Switzerland),
2019.

Çağlar Aytekin. Neural networks are decision trees. ArXiv, 2022.

14

A Appendix

As mentioned in the main body, the appendix contains additional materials and supporting information
for the following aspects: further information on the fact that Atari is the most common set of games
(A.1), details on the reward sparsity in Pong (A.8.3), detailed numerical results (A.2), learning curves
of our RL agents (A.3), the hyperparmeters used in this work (A.5), formal definitions on the SCoBots
policies (A.6) and further details on the misalignment problem in Pong.

A.1 Atari games are most common set of environments

We here show that the Atari games from the Arcade Learning Environment [Bellemare et al., 2012] is
the most used benchmark to test reinforcement learning agents.

Figure 5: The Atari Learning Environments is more used in scientific research than the next 8
other benchmarks together. Graph borrowed from [Delfosse et al., 2023a].

A.2 Detailed numerical results

For completeness, we here provide the numerical results of the performances obtained by each
agent type. For fair comparison, we reimplemeneted the deep PPO agents, and used the default
hyperparameters for Atari from stable-baselines3 for the deep RL agents. A detailed overview of
hyperparameters and their corresponding values can be found in A.5.

All agents are trained on gymnasium’s atari learning environments using 8 actors and 3 training seeds
([0, 16, 32]+rank). Each training seed’s performance is evaluated every 500k frames on 4 differently
seeded (42+training seed) environments for 8 episodes each. After training, the best performing
checkpoint is then ultimately evaluated on 4 seeded (123, 456, 789, 1011) test environments. The
final return is determined by averaging the return over 5 episodes per training-test seed pair and every
training seed for the respective environment. We use deterministic actions for both evaluation and
testing stages.

Game SCoBots
v5

SCoBots
guided-v5

PPO
ours-v5

PPO
ours-v4

PPO
Schulman et al.-v4 Random Human

Asterix 5080±614.8 5043.3±729.9 2126.7±148.6 10433.3±2772.9 4532 210 8503
Bowling 106.6±41.8 137.4±24.1 102.2±39.1 51.4±18.0 40.1 23.1 160.7
Boxing 97.1±2.2 69.0±10.9 90.3±3.0 99.5±1.4 94.6 0.10 4.3
Freeway 32.8±0.1 32.9±0.7 33.6±0.2 33.6±0.3 32.5 0.00 29.6
Kangaroo 2776.6±1332.4 4050.0±217.8 790.0±280.8 13296.7±1111.1 9929 52.0 3035
Pong 17.2±1.9 17.5±1.8 16.4±1.5 20.9±0.2 20.7 −20.7 14.6
Seaquest 1055.3±272.6 2411.3±377.0 837.3±46.7 1262.0±446.1 1204.5 68.4 20182
Skiing −23004±10333 −6530±3326 −23004±10333 −22983±10333 −13901 −17098 −4336
Tennis 2.4±3.6 0.0±0.0 −0.9±0.1 −1.2±0.3 −14.8 −23.8 −8.3

Table 1: ScoBots and guided ScoBots obtain similar results than deep agents averaged over 3 seeded
runs. Neural refers to the agent that use a CNN instead of our ICB layers. We added the results
reported in the original paper Schulman et al. [2017] (original), which are on par with ours, as well as
ones from a Random baseline and Humans (from van Hasselt et al. [2016]). Our agents have been
trained with only 20M frames.

15

Normalisation techniques. To compute human normalised scores, we used the following equation:

scorenormalised = 100×
score agent − score random

score human − score random
. (3)

A.3 Learning curves

0 5 10 15 20
Frames

0

1000

2000

3000

4000

5000

Sc
or

e

Asterix

0 5 10 15 20
Frames

20

40

60

80

100

120

Sc
or

e

Bowling

0 5 10 15 20
Frames

0

20

40

60

80

100

Sc
or

e

Boxing

0 5 10 15 20
Frames

0

5

10

15

20

25

30

35

Sc
or

e

Freeway

0 5 10 15 20
Frames

0

1000

2000

3000

4000

Sc
or

e

Kangaroo

0 5 10 15 20
Frames

20

15

10

5

0

5

10

15

20

Sc
or

e

Pong

0 5 10 15 20
Frames

0

500

1000

1500

2000

Sc
or

e

Seaquest

0 5 10 15 20
Frames

30000

25000

20000

15000

10000

5000

Sc
or

e

Skiing

0 5 10 15 20
Frames

25

20

15

10

5

0

5

10

Sc
or

e

Tennis

Figure 6: Training Return over frames (×106) seen for guided SCoBots, SCoBots and neural
agents.

16

A.4 Agent reasoning through the decision trees

In this section, we provide more decision trees from SCoBots on states from Freeway and Bowling.

(ED(Player1,Pin2) > 90)

(Ball1.y ≤ 162)

(Ball1.y > 166)

(Pin4.y ≤ 156)

(ED(Pin4,Ball1) > 62)

(ED(Pin4,Ball1) ≤ 75)

(Pin4.y > 156) (ED(Pin4,Ball1) > 37) UP

(Car2.x[t-1] > 42)

(LT(Car2,Chicken1).x > -157)

(D(Car1,Car4).x ≤ 32)

(D(Car3,Car4).x ≤-61)

(D(Car2,Car4).x > 43)

(D(Car2,Car4).x ≤ 0)

(Car3.y ≤ 64)

(LT(Car3,Chicken1).x > -220)

(D(Car2,Car3).x ≤ 47)

(LT(Car2,Chicken1).x ≤ -139 NOOP

Figure 7: Decision trees from Freeway and Bowling.

A.5 Hyperparameters and experimental details

Actors N 8
Minibatch size 32 ∗ 8
Horizon T 2048
Num. epochs K 3
Adam stepsize 2.5 ∗ 10−4 ∗ α
Discount γ 0.99
GAE parameter λ 0.95
Clipping parameter ϵ 0.1 ∗ α
VF coefficient c1 1
Entropy coefficient c2 0.01

Table 2: PPO Hyperparameter Values. α
linearly decreases from 1 to 0 over the
course of training.

All Experiments were run on a AMD Ryzen 7 processor,
64GB of RAM and one NVIDIA GeForce RTX 2080 Ti
GPU. Training a (i)SCoBots on 20M frames and using
8 actors takes approximately 4 hours. We use the same
PPO hyperparameters as the Schulman et al. [2017]
agents that learned to master the games. For the Adam
optimizer, SCoBots start with a slightly increased learn-
ing rate of 1×10−3 (compared to 2.5×10−4). The PPO
implementation used and the respective MLP hyperpa-
rameters are based on stable-baselines3 Raffin et al.
[2021]. SCoBots have the same PPO hyperparameter
values as deep agents but use MLPs (2×64) with ReLU
activation functions as policy and value networks. Deep
agents use CnnPolicy in stable-baselines3 as their pol-
icy value network architecture, which aligns with the
initial baseline implementation of PPO. Further, we normalize the advantages in our experiments,
since it showed only beneficial effects on learning. This is the default setting in the stable-baseline3
implementation.

The Atari environment version used in gymnasium is NoFrameskip-v4 for agents reproducing the
reported PPO results, and v5 for SCoBots and neural. v5 defines a deterministic skipping of 5 frames
per action taken and sets the probability to repeat the last action taken to 0.25. This is aligned with
recommended best practices by Machado et al. [2018]. The experiments using NoFrameskip-v4
utilize the same environment wrappers as OpenAI’s initial baselines implementation4. This includes
frame skipping of 4 and reward clipping. Frame stacking is not used. SCoBots are not trained on a
clipped reward signal. For comparability, the neural agents we compare SCoBots to, are not as well.
A list of all hyperparameter values used is provided in Table 2.

A.5.1 The properties and features used for SCoBots

In this paper, we used different properties and functions (to create features). They are listed hereafter.
Further, Table 4 shows a detailed overview of the concepts and actions pruned for every environment
evaluated.

A.6 SCoBots policies: formal definitions

The set S denotes the problem-specific set of raw environment states as defined by the RL problem,
e.g., the space of RGB images [0, 255]512×512×3. Similarly, A represents the action space, e.g.,
“move right" or “jump."

4github.com/openai/baselines

17

github.com/openai/baselines

Name Definition Description

Pr
op

er
tie

s class NAME object class (e.g. "Agent", "Ball", "Ghost")
position x, y position on the screen
position history xt, yt, xt−1, yt−1 position and past position on the screen
orientation o object’s orientation if available
RGB R,G,B RGB values

R
el

at
io

ns

distance Dx(o1, o2), Dy(o1, o2) distance the x and y axis
euclidean distance De(o1, o2) euclidean distance
trajectory landing_pointx(o1, o2) orthogonal projection of o1 onto o2 trajectory
center center(o1, o2) center of the shortest line between o1 and o2
speed s(xt, yt, xt−1, yt−1) speed of object (pixel per step)
velocity v(xt, yt, xt−1, yt−1) velocity of object (vector)
color color(o1) the CSS2.15 color category (e.g. Red)
top k Topk((o1, ..., on), k, class) only k closest (De to player) objects visible

Table 3: Descriptions of properties and relations used by SCoBots.

Features Bowling Boxing Pong Freeway Tennis Skiing Kangaroo Asterix Seaquest

Pr
op

er
tie

s

class ✓ ✓ no enemy ✓ ✓ ✓ ✓ ✓ ✓
position ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
position history ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓
orientation X X X X X ✓ X X ✓
RGB X X X X X X X X X

R
el

at
io

ns

trajectory X X X X ✓ X X X X
distance ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X
euclidean distance X X X X X X X X X
center X X X X X ✓ X X X
speed X X X ✓ ✓ X X X X
velocity X X ✓ X X ✓ ✓ ✓ X
color X X X X X X X X X
k closest objects 4 X X 4 X 2 2 X X

A
ct

io
ns

NOOP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
FIRE ✓ ✓ ✓ - ✓ - ✓ - ✓
UP ✓ ✓ - ✓ ✓ - ✓ ✓ ✓
RIGHT - ✓ ✓ - ✓ ✓ ✓ ✓ ✓
LEFT - ✓ ✓ - ✓ ✓ ✓ ✓ ✓
DOWN ✓ ✓ - ✓ ✓ - ✓ ✓ ✓
UPRIGHT - ✓ - - ✓ - ✓ ✓ -
UPLEFT - ✓ - - ✓ - ✓ ✓ -
DOWNRIGHT - ✓ - - ✓ - X ✓ -
DOWNLEFT - ✓ - - ✓ - X ✓ -
UPFIRE ✓ ✓ - - ✓ - X - -
RIGHTFIRE - ✓ X - ✓ - X - -
LEFTFIRE - ✓ X - ✓ - X - -
DOWNFIRE ✓ ✓ - - ✓ - X - -
UPRIGHTFIRE - ✓ - - X - X - -
UPLEFTFIRE - ✓ - - X - X - -
DOWNRIGHTFIRE - ✓ - - X - X - -
DOWNLEFTFIRE - ✓ - - X - X - -

Table 4: Feature selection and pruning for guided SCoBots. ✓ denotes the included features, whereas
X the features that are pruned out.

Let O0 be the set of all possible objects, identified by their ID and characterized by their properties
like position, size, color, etc. Then, O := {O ∈ P(O0) | id(o1) ̸= id(o2)∀o1, o2 ∈ O} is the object

18

S O

F
R A

ω
µ

ρ

Figure 8: Functional summary of the SCoBots model architecture: ω maps states to sets of objects, µ
maps sets of objects to relation vectors by applying relational functions, and ρ maps relation vectors
to actions.

detection space, defined as the family of object sets in which each object (identified by its ID) occurs
once at most.

F is the relation function space. It is the family of user-defined relation function sets F . Each relation
function f ∈ F is of the form f : Ok → Rn for k, n ∈ N, that is, it maps a fixed number of objects
to a real-valued vector. As an instance, the function that maps two objects to the Euclidean distance
between each other is a relation function.

The set R ⊆ Rm is the relation (or feature) space. The dimension m is implied by F . More
specifically, m =

∑
f∈F dim(co(f)), i.e., m is the sum of each relation function’s codomain

dimension.
Definition A.1. The overall model policy π : S → A given relation function set F is defined as
π := ρ ◦ µ(·, F) ◦ ω, where

1. ω : S → O is the object detector, defined as the function that maps a raw state s ∈ S to a
set of detected objects O ∈ O.

2. µ is the feature selector

µ : O ×F → R (4)
(O,F) 7→ r := (f(o1, ..., ok))f∈F ,where o1, ..., ok ∈ O. (5)

That is, µ applies each relation function f ∈ F to the respective detected object(s) in O ∈ O,
resulting in a real-valued relation vector.

3. ρ : R → A is the action selector that assigns actions to relation vectors.

See also Figure 8 for a summary. The policy parameters θ := (θ1, θ2, θ3) split up into the parameters
of the object detector, the feature selector, and the action selector, accordingly. They are left out for
brevity.

The architecture’s bottleneck is induced by the object detector ω and the feature selector µ. From this
function perspective, the bottleneck consists of two stages: an object-centric bottleneck stage at O
and a semantic bottleneck stage at R.

A.7 Pong misalignment problem

The misalignment problem had previously been identified in other games such as the Coinrun platform
game [Cobbe et al., 2019], in which an agent’s target-goal is to reach a coin which is always placed
at the end of a level at training time. When the coin is repositioned at test time di Langosco et al.
observed that trained deep RL agents avoid the coin and simply target the end of the level, indicating
that agents in fact learn to follow a simpler side-goal rather than the underlying strategy.

For the correlation between the enemy’s and the ball’s y positions, we let an random agent play
the game for 100000 frames and collect the positions of the enemy and ball every 10 frames. We
then compute different correlation coefficients, and obtain 99.6% as Pearson coefficient, 96.4% as
Kendall coefficient and 99.5% as Spearman coefficient.

We also collected importance maps of deep DQN RL agents playing Pong using ReLU and Rational
activation functions (borrowed from Delfosse et al. [2024].

19

Figure 9: More importance maps of DQN agents playing Pong, with ReLU (left) and rational
activation functions (right).

Heatmaps of deep DQN agents Original environment with hidden enemy

Figure 10: Importance maps of trained deep DQN agents playing Pong (left) show that all 3 moving
objects are important for the agent’s decision, suggesting that the agent takes aims at sending the ball
past the enemy. The same trained agent completely outperform its enemy in the original environment
while it cannot return the ball in a modified version of the game where the enemy is hidden.

A.8 RL specific caveats

In this section, we give more details on the different RL specific caveats, as well

A.8.1 Ill-defined Objectives

Defining an accurate reward signal when creating an RL task is challenging, as it requires the designer
to specify a precise and balanced reward function that effectively guides the agent towards the desired
behavior while avoiding unintended consequences [Henderson et al., 2017, Irving et al., 2018].
Shaping the reward after having observed (and understood) the non-intended behavior of the agent is
very common [Andrychowicz et al., 2017].

To realign our SCoBots agent, we provide them with a reward signal proportional to the progression
to the joey:

1 player = _get_game_objects_by_category(game_objects , ["Player"])
2

3 # Get current platform
4 platform = np.ceil((player.xy[1] - player.h - 16) / 48) # 0: topmost ,

3: lowest platform
5

6 # Encourage moving to the child
7 if not episode_starts and not last_crashed:
8 if platform % 2 == 0: # even platform , encourage left movement
9 reward = - player.dx

10 else: # encourage right movement
11 reward = player.dx
12

13 # Encourage upward movement
14 reward -= player.dy / 5
15 else:
16 reward = 0

20

Figure 11: iSCoBots learn to land in between the Flag to maximize its reward, when only Rexp
1 is

provided.

A.8.2 Difficult Credit Assignment

When an outcome is delayed or uncertain, it is challenging to identify the action that is relevant for
that outcome [Mesnard et al., 2021]. This problem arises in games like chess, where reward is passed
to the agent only when the game is over. The problem can be addressed by more instant informative
feedback, given directly after successful actions or after a positive state is reached.

In the main part of this manuscript, we address this problem on the game Skiing. To encourage the
agent to go in between the flag, we add a reward that corresponds to the distance to both of the next
flags (on the x axis):

Rexp
1 = D(Player, F lag1).x+D(Player, F lag2).x. (6)

This resulted in an agent that learned to stop itself in between the flags (depicted in Fig. 11), showing
once again, how difficult it is to create a reward that would favor a specific behavior. To correct it, we
therefore adjoined another signal to reward our SCoBot agents proportionally to the speed of the
agent:

Rexp
2 = V (Player).y. (7)

A.8.3 The reward sparsity of Pong

Let us move on to the issue of sparse reward in the context of RL. In Pong, to score a point, the
player needs to return the ball and have it go past the enemy. To do so, the player has to perform
a spiky shot, obtained by touching the ball on one of its paddle’s sides (otherwise, the shot is flat
and the enemy is easily catching it). Its vertical position may vary between 34 and 190. Its paddle
height is 16, but it needs to shoot from the side of the paddle (the 3 pixel of each border) to get a
spiky shot that is likely to go beyond the opponent. If the balls arrives not close to the top or bottom
borders, the enemy will still catch it, which has the probability of ∼ 22% in our experiments. The
probability of getting a successful shot is thus of ∼ 6/156 ∗ 0.78 = 3%. The average number of
corresponding tryouts for the agent to get rewarded is

∑∞
n=1

(
n× 0.03× 0.97n−1

)
= 33.3. The

agent usually need 60 steps (in average) from the initialization of the point to the reward attribution,
hence, it will need ∼ 2200 steps to be rewarded. This is consistent with the experiment depicted in
Figure 12. In this figure, a random agent (original) needs in average 2230 steps to observe reward.

1 3 5 10 15 20 25 30
Observed rewards

0K

20K

40K

60K

80K

St
ep

s

Reward discovery in Pong

Original
Assisted

Figure 12: Expert user feedback allow for faster discovering of the reward signal in the sparse reward
Pong environment.

Providing a SCoBot agent with an additional reward that is inversely proportional to the distance
between its paddle and the ball incentivizes the agent to keep a vertical position close to the ball’s

21

one:
Rexp = D(Player,Ball).y (8)

This extra reward signal lets a starting agent a winning shot every ∼820, multiplying by 2.7 their
occurrences. Thus, the reward signal in Pong is relatively sparse, but our example illustrates how the
interpretable concepts allow to easily guide SCoBots, making up for the reward sparsity. Interestingly,
this also giving a clearer incentive to the agent to concentrate on the ball’s position, and not on the
enemy’s one. We observe that such agent do not rely on the enemy to master the game. Alternative
techniques such as prioritized experience replay [Schaul et al., 2016] allow offline methods to learn in
such environments, but providing a smoother reward signal is another elegant way to address sparsity.
Note that sparser environments exists (such as robotics ones).

A.8.4 Misalignment

In our experimental evaluations, we used the concept based reward shaping to realign the agents on the
true (target) task objectives, preventing undesirable behaviors resulting from misaligned optimization.
Shortcut learning can be mitigated through the implementation of such reward signals that necessitate
the genuine objective’s consideration.

22

	Introduction
	Successive Concept Bottleneck Agents
	Building inspectable ScoBots
	Guiding SCoBots

	Experimental Evaluations
	Limitations
	Related Work
	Conclusion
	Appendix
	Atari games are most common set of environments
	Detailed numerical results
	Learning curves
	Agent reasoning through the decision trees
	Hyperparameters and experimental details
	The properties and features used for SCoBots

	SCoBots policies: formal definitions
	Pong misalignment problem
	RL specific caveats
	Ill-defined Objectives
	Difficult Credit Assignment
	The reward sparsity of Pong
	Misalignment

