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Abstract

The proliferation of AI-generated content online has fueled concerns over model1

collapse, a degradation in future generative models’ performance when trained2

on synthetic data generated by earlier models. Industry leaders, premier research3

journals and popular science publications alike have prophesied catastrophic so-4

cietal consequences stemming from model collapse. In this position piece, we5

contend this widespread narrative fundamentally misunderstands the scientific6

evidence. We highlight that research on model collapse actually encompasses7

eight distinct and at times conflicting definitions of model collapse, and argue8

that inconsistent terminology within and between papers has hindered building9

a comprehensive understanding of model collapse. To assess how significantly10

different interpretations of model collapse threaten future generative models, we11

posit what we believe are realistic conditions for studying model collapse and then12

conduct a rigorous assessment of the literature’s methodologies through this lens.13

While we leave room for reasonable disagreement, our analysis of research studies,14

weighted by how faithfully each study matches real-world conditions, leads us to15

conclude that certain predicted claims of model collapse rely on assumptions and16

conditions that poorly match real-world conditions, and in fact several prominent17

collapse scenarios are readily avoidable. Altogether, this position paper argues that18

model collapse has been warped from a nuanced multifaceted consideration into19

an oversimplified threat, and that the evidence suggests specific harms more likely20

under society’s current trajectory have received disproportionately less attention.21

1 Introduction22

The rapid surge of AI-generated content has sparked intense debate about potential ramifications23

of training future generative AI models on datasets containing synthetic data generated by previous24

models. One especially concerning prediction is model collapse, a phenomenon whereby future25

generative models fail due to being trained on synthetic data. Model collapse has captured attention26

at the highest levels of academia and industry: Nature prominently featured model collapse (Gibney,27

2024) alongside accompanying research stating that AI models trained on synthetic data would suffer28

catastrophic degradation in performance (Shumailov et al., 2024), while prominent science and news29

outlets like Scientific American and the Wall Street Journal amplified these concerns, writing “a30

training diet of AI-generated text, even in small quantities, eventually becomes poisonous to the31

model being trained." (Rao, 2023) and that “feeding a model text that is itself generated by AI is32

considered the computer-science version of inbreeding" (Seetharaman, 2024). Some industry leaders33

have highlighted model collapse as a critical challenge for the future of AI (Wang, 2024).34

In this position piece, we argue this widespread narrative of a bleak model-collapsed future,35

filled with polluted pretraining data and useless generative models, oversimplifies or misinter-36
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Figure 1: Model Collapse Has Been Defined in Multiple and Sometimes Conflicting Ways. By
hand-annotating 28 prior research publications, we identify 8 definitions of model collapse (Sec. 2).
The 8 definitions can be loosely grouped into three families: (1) the behavior of the test loss on
real data over model-fitting iterations (left), (2) the deformation of the real data distribution over
model-fitting iterations (center) and (3) the scaling behavior of the test loss with respect to typical
scaling quantities such as the amount of data (right).

prets the precise scientific claims and their underlying assumptions and mechanisms. Through37

careful analysis, we identify three critical gaps between the prevailing discourse and research reality:38

First, we reveal that the term “model collapse" encompasses eight definitions of performance degra-39

dation in model-data feedback loops. This multiplicity of definitions, used inconsistently between40

papers and at times inconsistently within papers, has resulted in papers talking past one another,41

thereby hindering development of a comprehensive understanding of likely futures for frontier deep42

generative models. We argue specific failure modes should be explicitly identified and discussed43

alongside comparable results.44

Second, we posit trends that we believe faithfully describe common practices of leading AI labs45

pretraining frontier AI systems on web-scale data: increasing compute, improving data quality, and46

expanding datasets of real and synthetic data. One key point that we emphasize here is that many47

prominent model collapse papers assume data are entirely deleted after each model-fitting iteration48

and that subsequent models are trained entirely on synthetic data generated by their predecessors,49

which we argue is not realistic.50

Third, we weigh different results in the model collapse literature based on the plausibility of their51

assumptions along multiple axes of consideration to assess which notions of model collapse pose52

significant and likely threats to future frontier AI models. We argue that some definitions of model53

collapse do not correspond to catastrophic outcomes under our realistic assumptions, and most54

concerning collapse predictions emerge from implausible experimental setups. However, there are55

very real threats to tails of the data distribution that should be taken seriously.56

Altogether we argue that model collapse has been inflated from a precise and important technical57

consideration into a mischaracterized and overstated threat. While synthetic data poses genuine58

challenges that warrant careful study, our analysis reveals that the most widely stated collapse59

scenarios can be avoided through standard ongoing practices in model development and dataset60

curation. Instead of worrying about unrealistic catastrophic notions of model collapse, by adopting a61

more realistic perspective, we can re-orient to focus on the real issues of diversity collapse happening62

now (Zhang et al., 2024; Padmakumar & He, 2024; Murthy et al., 2024; Wu et al., 2024). This63

position paper aims to clarify the scientific discourse around model collapse, propose best practices64

for future work on the subject, and redirect research attention towards understanding how to generate65

and curate synthetic data that improves future frontier AI systems while mitigating failure modes.66

2 Definitions of Model Collapse67

We begin with a non-obvious but critical point: the model collapse literature has at least eight68

different definitions based on different notions of model performance degradation. As evidence, we69
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Figure 2: Model Collapse Has Been Defined in Multiple and Sometimes Conflicting Ways. We
conduct a meta-analysis of research papers on model collapse. Top: We identify which papers offer
any explicit definition of model collapse (Yes (Y) or No (N)). Bottom: We identify which definition(s)
of model collapse each paper uses for its empirical and/or mathematical results, either explicitly (E)
or implicitly (I). Our annotations reveal that model collapse research is based on multiple definitions
that we will show sometimes conflict between papers and even within individual papers.

hand-annotated twenty-eight prominent prior research publications on model collapse to determine70

which papers offer explicit definition(s) of model collapse (Fig. 2), where we define explicit as71

either (1) any mathematical definition, or (2) any precise verbal description of the failure behavior72

independent from results. We additionally categorize which definition(s) of model collapse each73

paper uses, perhaps implicitly, across any and all mathematical and empirical results (Fig. 2 bottom).74

We find that many papers do not offer explicit definitions of model collapse and also sometimes use75

multiple definitions, leading to a lack of specificity and apparent contradictions both within single76

works and across multiple works.77

Before delving into the eight definitions, we first define some shared terminology. In general, we78

consider model-data feedback loops whereby ft is the t-th generative model, and we study the79

behavior of a sequence of generative models (ft)t that are iteratively fit to data and then sampled80

from. We call data sampled from a generative model synthetic data. We can evaluate the quality81

of a generative model in multiple ways. One prominent way is via the population risk, defined as82

the expected loss over the entire real data distribution Ex∼P [ℓ(ft(x))], where x is some real datum,83

P is the real data distribution, and ℓ is the loss function (Vapnik, 1991). Another way to evaluate84

the quality of a generative model is by its tail risk, defined as the expected loss conditioned on85

tail events Ex∈Tail(P )[ℓ(ft(x))], where Tail(P ) informally represents real data with low probability.86

Population risk provides a holistic view of performance, but may mask specific failure modes (Xu,87

2024; Kozerawski et al., 2022), whereas tail risk can reveal degradations in edge cases even when88

population risk remains stable (Hoffmann & Börner, 2020; Xu, 2024). There are many other salient89

properties of generative models one can use to assess whether the models collapse.90

1. Catastrophic Increase of Population Risk (Dohmatob et al., 2024b; Bertrand et al., 2023;91

Kazdan et al., 2024b): Perhaps the most colloquial definition, model collapse is a critical and92

rapid degradation in model performance due to the presence of synthetic data, as measured93

by population risk. We note that what constitutes catastrophic is often undefined.94

2. Any Increase of Population Risk (Alemohammad et al., 2023; Dohmatob et al., 2024b):95

Under this strict definition, model collapse occurs if there is any increase in population risk96

when training with synthetic data compared to training with real data alone.97

3. Asymptotically Diverging Population Risk (Gerstgrasser et al., 2024; Kazdan et al.,98

2024b; Dey & Donoho, 2024): This definition considers model collapse to occur when99
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the population risk grows without bound over successive model-fitting iterations. This100

represents a fundamentally unstable learning dynamic where each iteration of synthetic data101

generation and training leads to progressively worse performance.102

4. Collapsing Variance (Alemohammad et al., 2023; Shumailov et al., 2023; Bertrand et al.,103

2023) Model collapse here is when variance (or diversity) trends towards 0 and the learned104

distributions tend towards delta-like functions over successive model-fitting iterations.105

5. Change in Scaling Law (Dohmatob et al., 2024c): In this view, model collapse occurs if106

the governing scaling behavior changes due to the presence of synthetic data. Specifically,107

model collapse occurs if the relationship between model performance and training data size108

deviates from the expected scaling behavior observed with real data.109

6. Disappearance of or Entanglement of Real Data Mode(s) (Alemohammad et al., 2023):110

Sometimes called “Mode Collapse" (Goodfellow et al., 2014; Lucic et al., 2018; Brock et al.,111

2019), model collapse here is defined by the presence of synthetic data preventing the model112

from learning particular modes of the real data distribution or causing the model to blur113

different data modes together.114

7. Disappearance of Real Tail Data (Shumailov et al., 2023; Wyllie et al., 2024; Shumailov115

et al., 2024): Sometimes called “coverage collapse” (Zhu et al., 2024), model collapse here116

occurs when synthetic data leads to the under-representation of data from the tail of the117

distribution, leading to models that can only handle common cases but fail on rare ones.118

The disappearance of real tail data can be more subtle and more narrow than the generative119

model losing all diversity (Def. 4).120

8. Appearance of Hallucinated Data (Shumailov et al., 2023; Alemohammad et al., 2023;121

Bohacek & Farid, 2023): Model collapse occurs when the sequence of models begin122

producing fully-synthetic data not supported by the original real data’s distribution.123

We note that the definitions can themselves be loosely clustered into three families (Fig. 1): (i)124

population risk degrading (Definitions 1, 2 and 3), (ii) distributions deforming from their original125

shape (Definitions 4, 5, 6, 7, and 8), and (iii) decreasing value from additional data (Definition 5).126

2.1 Intra-Paper Definitions Can Cause Confusion127

The differences between different definitions of model collapse can be slippery, and understandably,128

authors sometimes move between them in the course of a paper. However, model collapse is a129

technical phenomenon that requires definitional rigor to properly characterize. In this section, we use130

a prominent prior work to demonstrate how easy it can be to slip between definitions. Our intention131

is not to call out this specific work, but rather demonstrate how a seemingly reasonable treatment of132

model collapse definitions can have serious implications for interpreting results.133

We consider Shumailov et al. (2023), which admirably provides explicit definitions of two different134

types of model collapse: “We separate two special cases: early model collapse and late model collapse.135

In early model collapse the model begins losing information about the tails of the distribution; in the136

late model collapse the model entangles different modes of the original distributions and converges to137

a distribution that carries little resemblance to the original one." These correspond to our Definitions 7138

and 6, respectively.139

However, the paper presents results on model collapse that fall under different definitions. Firstly,140

Shumailov et al. (2023) demonstrate Definition 3 in their Sections 4.2 and 4.3. We lightly generalize141

their results for clarity and generality. We consider repeatedly fitting multivariate Gaussians to142

data and sampling from the fitted Gaussians. We begin with n real data drawn from a multivariate143

Gaussian with mean µ(0) and covariance Σ(0):144

X
(0)
1 , ..., X(0)

n ∼i.i.d. N (µ(0),Σ(0)). (1)
For model fitting, we compute the unbiased mean and covariance of the most recent data:145

µ̂(t+1) def
=

1

n

n∑
j=1

X
(t)
j (2)

Σ̂(t+1) def
=

1

n− 1

n∑
j=1

(X
(t)
j − µ̂(t+1))(X

(t)
j − µ̂(t+1))T (3)
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and then draw n new synthetic samples from a Gaussian with the most recently fit parameters. In146

this model-data feedback loop, Shumailov et al. (2023) proved that as the model-fitting iteration147

t → ∞, the population risk as measured by the expected squared Wasserstein distance between the148

most recent multivariate Gaussian and the original multivariate Gaussian diverges asymptotically:149

E[W2
2(N (µ̂(t), Σ̂(t)) , N (µ(0),Σ(0)))] → ∞. (4)

This result demonstrates that the population risk diverges asymptotically, which aligns with neither of150

the two definitions of model collapse stated at the outset of the paper. Is it possible that the population151

risk is diverging because of one of the two other definitions? Recall that the squared Wasserstein152

distance between two Gaussians has two terms: a contribution from the means and a contribution153

from the covariances:154

E[W2
2(N (µ̂(t), Σ̂(t)),N (µ(0),Σ(0)))]

= ||µ̂(t) − µ(0)||22︸ ︷︷ ︸
→ ∞

+Tr
(
Σ̂(t) +Σ(0) − 2((Σ(0))1/2Σ̂(t)(Σ(0))1/2)1/2

)︸ ︷︷ ︸
→ 0

. (5)

Thus, while the variance collapses and tails do vanish, neither is the cause of the population risk155

diverging. Rather, the population risk diverges because the sequence of means (µ̂(t))t randomly156

walks away from the ground truth mean µ(0). This is one example in which a casual reader might fail157

to notice that while the population risk is indeed asymptotically diverging, such undesirable behavior158

is attributable to neither real data tails disappearing quickly nor to real data modes entangling slowly.159

The same paper also demonstrates how definitions of model collapse can go beyond subtle confusion160

to explicit contradiction. Shumailov et al. (2023) experimentally demonstrate model collapse under a161

fourth definition of model collapse: in their Section 5.2, the authors consider finetuning sequences of162

OPT-125M language models (Zhang et al., 2022) initially on wikitext2 (Merity et al., 2016) and163

then subsequently on the models’ own generated outputs. The authors’ Figure 10 shows that while164

the population risk (measured by test perplexity) initially increases, it then decreases and converges165

to a plateau about 12.5%− 50% above the population risk of the first model. Indeed, the authors find166

that “Over the generations models tend to produce samples that the original model trained with real167

data is more likely to produce." We believe that under Definitions 3, 6, and 7, these results suggest168

that model collapse has not occurred. However, the authors label this result as model collapse because169

later generations trained on purely synthetic data begin introducing fully synthetic tail data over time:170

“later generations start producing samples that would never be produced by the original model, i.e.,171

they start misperceiving reality based on errors introduced by their ancestors." Thus, this appearance172

of hallucinated data qualifies as model collapse under Definition 8.173

When a paper shifts definitions without explicitly acknowledging the change, it creates a cascade174

of problems undermining scientific clarity. Readers interpret results through the lens of the initially175

stated definitions, creating a false sense that all discussed phenomena represent the same underlying176

issue when they may be fundamentally distinct. This leads to misattribution of causes and effects, as177

demonstrated in the Gaussian example where population risk divergence was incorrectly associated178

with tail data disappearance rather than mean drift. Such definitional inconsistency fosters overgen-179

eralization of results, hampering cross-study comparisons and potentially prompting inappropriate180

technical responses or policy decisions. Most critically, when technical concepts like model collapse181

require precise characterization, unstated definitional shifts prevent the formation of a stable frame-182

work for interpreting claims, ultimately contributing to broader confusion about which phenomena183

deserve concern and how they might be addressed.184

2.2 Inter-Paper Definitions Can Cause Confusion185

To demonstrate how different researchers can look at the same results and reach different conclusions186

regarding model collapse, Alemohammad et al. (2023) studied a FFHQ-StyleGAN2 (Karras et al.,187

2020) trained on synthetic data and found that the population risk as measured by Frechet Inception188

Distance (FID) (Heusel et al., 2018) increased 2× by the 5th model-fitting iteration and then plateaued.189

The authors declared this result constituted model collapse because the authors had implicitly defined190

model collapse as any increase in the population risk (Definition 2). Gerstgrasser et al. (2024) then191

questioned this claim that the models had collapsed, writing, “Figure 7 from Alemohammad et al.192

(2023) shows that linearly accumulating data (“Synthetic augmentation loop”) causes poor behavior193

to plateau with the number of model-fitting iterations [...] We believe is that our evidence and their194
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evidence is more consistent with the conclusion that accumulating data avoids model collapse and195

does not merely delay it." This apparent disagreement was because Gerstgrasser et al. (2024) had196

defined model collapse as asymptotically diverging population risk (Definition 3). Thus, while197

looking at the exact same figure, the researchers came to differing conclusions because they were198

operating under different definitions.199

2.3 Stating and Adhering to Definitions Improves Clarity and Drives Progress200

In this position paper, our intention is not to argue in favor of specific definitions of model collapse201

or call out authors whose definitions we disagree with. Rather, we hope to emphasize that model202

collapse is a multifaceted phenomenon: under the same results, model collapse can simultaneously203

“occur" and “not occur" in different researchers’ opinions; in Appendix A, we include a case study204

of how confusing and entangled scientific insights can become on account of different definitions205

and methodologies. This makes building a comprehensive understanding of model collapse difficult,206

which can be especially concerning to specific communities. For instance, search providers like207

Google, Bing, and Perplexity may pay an especially high penalty if their models are trained on208

hallucinated facts, whereas the disappearance of real tail data can disproportionately affect marginal-209

ized groups or historically disadvantaged communities (Blodgett et al., 2016; Bender & Friedman,210

2018; Noble, 2018; Shah et al., 2020; Jo & Gebru, 2020; Koenecke et al., 2020; Bender et al., 2021;211

Hutchinson et al., 2021; Ji et al., 2023). By clarifying different definitions of model collapse and212

adhering to those definitions, researchers can build a better understanding of model collapse with213

greater nuance for what causes different failures modes and what actions can be taken to prevent each.214

Together, these definitions can form a “model collapse profile" which can characterize the different215

ways in which models worsen over time. Research on the harms of synthetic data should explicitly216

note the relevant aspects of the model collapse profile they study.217

3 Realistic Conditions for Studying Model Collapse218

Our goal is to understand likely outcomes as humanity pre-trains future frontier AI systems on web-219

scale datasets containing a mixture of real and synthetic data. We focus on pre-training both because220

the literature has (Shumailov et al. (2023)’s “What will happen to GPT-n once LLMs contribute221

much of the language found online?") and because pre-training’s tremendous capital and operating222

expenses render missteps extremely costly. Motivated by this goal, we posit trends that we believe223

describe the current trajectory of pre-training practices of frontier AI systems:224

1. Increasing Pre-training Compute: The total floating point operations used for pre-training225

has been rapidly increasing. For example, Meta pre-trained Llama 1 using 2k GPUs, Llama 2226

using 4k GPUs and Llama 3 using 16k GPUs (Goyal, 2024), and OpenAI recently announced227

a $500B initiative to increase compute capacity of the United States (OpenAI & SoftBank,228

2025), a fraction of which will be allocated for pre-training.229

2. Increasing Pre-training Data: The amount of data used has been rapidly increasing. For230

example, Meta’s series of Llama language models were pre-trained on increasing amounts231

of data: 1.4 trillion tokens for Llama 1, 2 trillion tokens for Llama 2, and most recently, 15232

trillion tokens for Llama 3. While pre-training data will inevitably max out, recent estimates233

place the total number of available language pre-training tokens at 1 quadrillion (1000234

trillion) tokens (Villalobos et al., 2024).235

3. Increasing Quality of Pre-training Data: Over time, pre-training data is becoming in-236

creasingly higher quality on account of pre-training data teams developing better filtering237

techniques to ensure high-quality training data (Gao et al., 2020; Penedo et al., 2024; Li238

et al., 2024). Moreover, whatever synthetic data is shared online is increasingly higher239

quality since models are improving over time Kiela et al. (2021, 2023); Maslej et al. (2024).240

4. Synthetic Data Accumulating Alongside Real Data: Real data are not deleted en masse241

after each iteration of model pre-training. When synthetic data are generated and released242

online, they amasses alongside prior data and new real data.243

5. Decreasing Proportion of Real Data: The fraction of real data relative to total (real plus244

synthetic) data is decreasing over time. However, whether the fraction of real data will245

asymptote to zero is unclear, a point we will return to later.246
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Figure 3: Dimensions of Consideration for Model-Data Feedback Loops: Propagation of Data
Over Time and Proportion of Real Data Over Time. When data are replaced after each model-
fitting iteration (left), the proportion of real data immediately becomes zero after the first iteration,
whereas when data instead accumulate (right), the proportion of real data falls asymptotically to
zero. Gerstgrasser et al. (2024); Kazdan et al. (2024b); Dey & Donoho (2024) showed that replacing
data over time causes the population risk to diverge, whereas accumulating data avoids diverging
population risk. In these works, synthetic data are assumed to grow linearly over time, contributing n
samples per model-sampling iteration. Credit: The bottom figure is copied from Gerstgrasser et al.
(2024) with permission.

We believe that researchers and policy makers interested in potential societal implications of model247

collapse should focus on research that adhere to these conditions as faithfully as possible (with the248

obvious caveat that computational budgets limit research).249

4 Key Dimensions of Consideration for Model-Data Feedback Loops250

4.1 Propagation of Data Over Time251

Early work that sounded the alarm about model collapse (Martínez et al., 2023; Alemohammad et al.,252

2023; Bohacek & Farid, 2023; Shumailov et al., 2023; Briesch et al., 2023; Bertrand et al., 2023)253

assumed that data propagate in a particular way: after training a model, all existing data are deleted,254

new data are sampled from the new model, and the next model is trained solely on this fresh synthetic255

data. Subsequent authors called this the replace paradigm Gerstgrasser et al. (2024); Kazdan et al.256

(2024b); Dey & Donoho (2024) because data are entirely replaced after each model-fitting iteration.257

When data are replaced, researchers demonstrated multiple harmful outcomes: variances collapse,258

real data tails disappear, population risk diverges, etc. (Fig. 3 left). This particular assumption of259

how data propagate over time is highly unrealistic: After a model finishes training, the entire260

internet is not deleted, nor is the next model necessarily trained solely on its predecessor’s261

outputs. Rather, a more realistic assumption is that synthetic data from each model accumulates262

on the internet alongside real data and past synthetic data such that all can be used for training the263

next model. To some, these differences might seem insignificant, but each produces vastly different264

asymptotic behavior in terms of population risk: Gerstgrasser et al. (2024) showed empirically and265

Kazdan et al. (2024b) and Dey & Donoho (2024) showed mathematically that population risk diverge266

if data are replaced, but population risk does not diverge if data instead accumulate (Fig. 3 right).267
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A slightly different but perhaps more realistic data propagation assumption is that real and synthetic268

data accumulate, but future models are trained on a downsampled proportion of the total available data269

(Kazdan et al., 2024b). This accumulate-subsample paradigm represents a middle ground between270

replace and accumulate: while test loss appears to stabilize, no analytic theory has been proven271

in this case to date. Individual beliefs about which data paradigm is most reflective of reality can272

influence perceptions of how model collapse will unfold in the future. However, to our knowledge,273

non-population risk-based notions of model collapse have not been connected to assumptions about274

how data propagate, leaving an important question open.275

4.2 Proportion of Real Data Over Time276

ChatGPT alone produces 1/1000 of all words produced by humanity each day Altman (2024), and as277

these models proliferate, over time, future generative models could produce vastly more data than278

humanity for training future models. Thus, the proportion of real data on the future internet plays279

a crucial role in the debate over the effects of model collapse. Bertrand et al. (2023) claimed that280

the population risk will not asymptotically diverge so long as the proportion of real data remains281

lower-bounded above 0 (in addition to other conditions). Relatedly, in Dohmatob et al. (2024b)’s282

view, any synthetic data causes “a critical degradation" to future models, writing model collapse283

“generally persists even when mixing real and synthetic data, as long as the fraction of training data284

which is synthetic does not vanish" and that “model collapse cannot generally be mitigated by simple285

adjustments [...] unless these strategies asymptotically remove all but a vanishing proportion of286

synthetic data from the training process."287

Results like these draw attention to what proportion of real data is necessary to avoid collapse,288

which is a valid consideration. However, correctly interpreting these results takes care. For instance,289

Bertrand et al. (2023)’s condition is sufficient, not necessary; it should not be understood as saying290

that model collapse is inevitable unless real data remains a non-zero proportion. Moreover, contrary291

work by Gerstgrasser et al. (2024), Marchi et al. (2024), and Kazdan et al. (2024b) established292

conceptually stronger guarantees: when data accumulate, but human data asymptotically occupy a293

vanishing fraction of the internet, the population risk will likely not diverge (in some cases, with294

an additional requirement that the rate of AI data generation does not grow super-linearly) (Fig. 3).295

Relatedly, Gillman et al. (2024) also show that the proportion of real data can asymptotically approach296

zero using a function to “correct" synthetic data towards the real data distribution. Due to uncertainty297

about the rate of synthetic data generation, one potential solution is to sequester real training data for298

future use, when the internet still contains an abundance of human-generated data; however, frontier299

AI labs have already collected such data, meaning no additional work is required.300

4.3 Model Training Assumptions301

While multiple works claim that models do not collapse under certain settings or propose interventions302

to avoid collapse, we urge the explicit declaration of strong technical assumptions that are frequently303

unrealistic. As an example, Bertrand et al. (2023) and Gillman et al. (2024) study iterative retraining,304

where each model is initialized from its predecessor’s parameters and optimizer state. Under an305

additional assumption that the first model is sufficiently high performing, since each model is assumed306

to be close to its predecessor, model collapse can be avoided. However, to the best of our knowledge,307

iterative retraining has not been used for any frontier AI model, including OpenAI’s GPT-2 (Radford308

et al., 2019), GPT-3 (Brown et al., 2020), GPT-4 Achiam et al. (2023), Anthropic’s Claude 1, 2 or 3,309

Google’s PaLM 1 (Chowdhery et al., 2022), PALM 2 (Anil et al., 2023) or Gemini (Team et al., 2024),310

DeepSeek’s V3 (DeepSeek-AI et al., 2024). Thus, Bertrand et al. (2023)’s sufficiency conditions for311

avoiding collapse are far from current practices.312

For another example, Zhu et al. (2024) propose data editing as a collapse mitigation strategy and313

analyze a self-consuming linear model. Each model iteration fits ŵn = X†Ỹn, where X are fixed314

Gaussian covariates, and generates synthetic data Ŷn+1 = Xŵn +En+1 where En+1 are Gaussian315

errors and Ỹn are regression targets sampled from the previous generation’s training targets with edits316

from the prior generations synthetic data:317

Ỹ ⊤
n = Mn−1Ŷn + (1−Mn−1)Ỹn−1
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Figure 4: Dimension of Consideration for Model-Data Feedback Loops: Timescales of Collapse.
Characterizing the timescale over which one should expect collapse is an underappreciated but crucial
consideration. Focusing on the discrete model of Shumailov et al. (2023), the expected number of
model-fitting iterations before total collapse is proportional to the number of data times the entropy
of the initial data distribution (left). Taking this model at face value, this means that trillions of
models can be trained before glimpsing the onset of collapse. However, total collapse is only the most
extreme outcome; in this model, we additionally show how the entropy of the initial data distribution
decays over time (right). Error bars are over 100 seeds (0 to 99, inclusive); for details, see Sec. 4.4.

Here, Mk is a diagonal matrix of 1’s or 0’s indicating whether to replace or not replace a label with a318

synthetic value. While Zhu et al. (2024) claim that this prevents model collapse, the proof of their319

test error bound (Theorem 2) assumes that ∥Mi∥ = η∥Mi−1∥ for some constant η ∈ (0, 1), meaning320

that the number of edits decreases by at least some fixed proportion each generation. This geometric321

decay guarantees that the total number of edits at any given generation is finite, and their proof fails322

without this. However, training GPT-2 on the Natural-Instructions dataset (Mishra et al., 2021) yields323

only a slight decline in edit percentage (Zhu et al., 2024). Moreover, if the number of edits is finite,324

each generation trains on mostly real data.325

4.4 Timescales of Collapse326

Another key dimension of consideration is the timescale of model deterioration, which is often327

omitted. For example, Shumailov et al. (2023) introduced a simple theoretical setting for studying328

model collapse: a discrete distribution (picture a histogram) with N outcomes (atoms):329

p(0)(x) =

N∑
n=1

wnδxn(x), (6)

where
∑

n wn = 1. If one sequentially draws D data from this distribution and computes a new330

distribution based on the empirical proportions, then this process forms a Markov chain with N331

absorbing states, each corresponding to a totally collapsed distribution, i.e., a distribution comprised332

of exactly one outcome. Consequently, one can use standard results from absorbing Markov chains to333

show that this simple process must collapse.334

However, one can go beyond a guarantee of collapse and ask: how many model-fitting iterations can335

we survive before total collapse consumes us? Again using standard results (Brydges, 2009), the336

expected number of model-fitting iterations before total collapse is:337

E[Model Iterations Till Total Collapse] ∝ DH[p(0)],

where H[·] is the Shannon entropy. For example, if our starting distribution is uniform, the entropy is338

log(N) and thus the expected number of model-fitting iterations before total collapse is D log(N).339

We confirmed this claim using numerical simulations starting from uniform distributions (Fig. 4 Left).340

We also numerically simulated how quickly the entropy of p̂(t) falls relative to the entropy of p(0)(x)341

to provide a description of the process more nuanced than just total collapse (Fig. 4 Right), since one342

might be interested in how quickly tail information is lost, not just how quickly total collapse arrives.343

While this mathematical model is simple, for the sake of argument, if we take this model at face344

value, we realize total model collapse poses virtually no present threat. This is because the number345
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of real public text data alone is on the order a quadrillion tokens (Villalobos et al., 2024), and text,346

image, video and agentic data are high dimensional with large entropy, meaning total collapse occurs347

so imperceptibly slowly that humanity could train trillions of models before noticing the onset of348

collapse. However, this highlights a more general point: characterizing the timescale over which one349

should expect model collapse to occur is an underappreciated but crucial consideration for describing350

the model collapse profile.351

Several authors do characterize timescales. Suresh et al. (2024) give an exact formulation of model352

collapse rate in the fundamental setting of recursive maximum likelihood estimation for discrete353

distributions and Gaussian mixtures; they find that for Bern(µ), Pois(λ), and Gaussian mixtures354

with shared variance σ2 distributions, the parameters µ, λ, and σ collapse to 0 exponentially in the355

number of generations. While Seddik et al. (2024) previously controlled the total collapse probability356

in both the fully synthetic and partially-synthetic recursive training regimes, Suresh et al. (2024)357

further control the number of unique symbols after k generations in the fully synthetic regime. Lastly,358

Kazdan et al. (2024b) note, in the context of kernel density estimators with fixed bandwidths, that the359

negative log likelihood does diverge asymptotically, although “this occurs at a rate so glacial that it360

doesn’t pose a practical concern."361

5 Is Model Collapse a Threat?362

In conclusion, is model collapse a threat? In our view, model collapse is a multifaceted phenomenon,363

and a single answer is not possible. By taking a realism-weighted average of different papers’ results,364

we synthesize our own forecast of model collapse under the different definitions:365

Population risk will not increase catastrophically or diverge asymptotically. Given the increase366

in pretraining dataset size and quality, we argue that models training on accumulating synthetic data367

alongside real data will not suffer from catastrophic population risk increase or diverging population368

risk. The jury remains out on whether the proportion of real data relative to available data will369

approach zero.370

Real tail data and modes will be lost, but how many and how quickly is unclear. Loss of diversity371

is a real issue, with disproportionate harms oftentimes born by subgroups. It is unclear how much372

of the tail we will lose or which of the real data modes will become entangled, and how synthetic373

data affect such changes that already occur naturally. We strongly encourage more research regarding374

coverage and mode collapse prevention strategies for realistic settings, building on prior work such as375

Hashimoto et al. (2018); Ensign et al. (2018); Taori & Hashimoto (2023).376

Scaling laws may change with the introduction of synthetic data. The precise nature of these377

changes under realistic conditions remains to be determined. Synthetic data could potentially remove378

what some researchers describe as a data bottleneck, but this benefit might come at the cost of379

altered scaling law parameters. We encourage further research into how synthetic data affects scaling380

behaviors to better characterize likely future outcomes.381

We emphasize that while real threats do exist, the popular perception that synthetic data on the382

internet will render future frontier AI models pretrained on web-scale data useless is likely unrealistic383

since such failures appear in conditions that do not faithfully match what is actually done in practice.384

Subtle degradations in data distributions might still insidiously occur, such as loss of real tail data,385

and future work should aim to explore what can be used to counter such outcomes.386

6 Alternative Views387

One may feel the conditions we identify in Section 3 are inaccurate, disproportionately emphasized,388

likely to change, or ignorant of important settings other than pre-training. One might also believe389

that the identified model collapse definitions in Section 2 do not fully encompass the literature or are390

inaccurately applied in Figure 2. Finally, a concerned bystander could argue that the benefits of being391

over-cautious outweigh the costs: if society fails to anticipate model collapse by allowing wanton392

generation of poor-quality synthetic data, then the internet could become flooded with low-quality393

samples that preclude future progress. These are valid points, and we look forward to engaging with394

researchers and policymakers to better identify what matters to them and what the future looks like in395

those directions.396
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NeurIPS Paper Checklist397

1. Claims398

Question: Do the main claims made in the abstract and introduction accurately reflect the399

paper’s contributions and scope?400

Answer: [Yes]401

Justification: Our abstract and introduction accurately reflect the paper’s main text.402

Guidelines:403

• The answer NA means that the abstract and introduction do not include the claims404

made in the paper.405

• The abstract and/or introduction should clearly state the claims made, including the406

contributions made in the paper and important assumptions and limitations. A No or407

NA answer to this question will not be perceived well by the reviewers.408

• The claims made should match theoretical and experimental results, and reflect how409

much the results can be expected to generalize to other settings.410

• It is fine to include aspirational goals as motivation as long as it is clear that these goals411

are not attained by the paper.412

2. Limitations413

Question: Does the paper discuss the limitations of the work performed by the authors?414

Answer: [NA]415

Justification: This is a position paper that does not introduce significant new research416

material.417

Guidelines:418

• The answer NA means that the paper has no limitation while the answer No means that419

the paper has limitations, but those are not discussed in the paper.420

• The authors are encouraged to create a separate "Limitations" section in their paper.421

• The paper should point out any strong assumptions and how robust the results are to422

violations of these assumptions (e.g., independence assumptions, noiseless settings,423

model well-specification, asymptotic approximations only holding locally). The authors424

should reflect on how these assumptions might be violated in practice and what the425

implications would be.426

• The authors should reflect on the scope of the claims made, e.g., if the approach was427

only tested on a few datasets or with a few runs. In general, empirical results often428

depend on implicit assumptions, which should be articulated.429

• The authors should reflect on the factors that influence the performance of the approach.430

For example, a facial recognition algorithm may perform poorly when image resolution431

is low or images are taken in low lighting. Or a speech-to-text system might not be432

used reliably to provide closed captions for online lectures because it fails to handle433

technical jargon.434

• The authors should discuss the computational efficiency of the proposed algorithms435

and how they scale with dataset size.436

• If applicable, the authors should discuss possible limitations of their approach to437

address problems of privacy and fairness.438

• While the authors might fear that complete honesty about limitations might be used by439

reviewers as grounds for rejection, a worse outcome might be that reviewers discover440

limitations that aren’t acknowledged in the paper. The authors should use their best441

judgment and recognize that individual actions in favor of transparency play an impor-442

tant role in developing norms that preserve the integrity of the community. Reviewers443

will be specifically instructed to not penalize honesty concerning limitations.444

3. Theory assumptions and proofs445

Question: For each theoretical result, does the paper provide the full set of assumptions and446

a complete (and correct) proof?447

Answer: [NA]448
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Justification: This is a position paper that does not introduce significant new research449

material.450

Guidelines:451

• The answer NA means that the paper does not include theoretical results.452

• All the theorems, formulas, and proofs in the paper should be numbered and cross-453

referenced.454

• All assumptions should be clearly stated or referenced in the statement of any theorems.455

• The proofs can either appear in the main paper or the supplemental material, but if456

they appear in the supplemental material, the authors are encouraged to provide a short457

proof sketch to provide intuition.458

• Inversely, any informal proof provided in the core of the paper should be complemented459

by formal proofs provided in appendix or supplemental material.460

• Theorems and Lemmas that the proof relies upon should be properly referenced.461

4. Experimental result reproducibility462

Question: Does the paper fully disclose all the information needed to reproduce the main ex-463

perimental results of the paper to the extent that it affects the main claims and/or conclusions464

of the paper (regardless of whether the code and data are provided or not)?465

Answer: [NA]466

Justification: This is a position paper that does not introduce significant new research467

material.468

Guidelines:469

• The answer NA means that the paper does not include experiments.470

• If the paper includes experiments, a No answer to this question will not be perceived471

well by the reviewers: Making the paper reproducible is important, regardless of472

whether the code and data are provided or not.473

• If the contribution is a dataset and/or model, the authors should describe the steps taken474

to make their results reproducible or verifiable.475

• Depending on the contribution, reproducibility can be accomplished in various ways.476

For example, if the contribution is a novel architecture, describing the architecture fully477

might suffice, or if the contribution is a specific model and empirical evaluation, it may478

be necessary to either make it possible for others to replicate the model with the same479

dataset, or provide access to the model. In general. releasing code and data is often480

one good way to accomplish this, but reproducibility can also be provided via detailed481

instructions for how to replicate the results, access to a hosted model (e.g., in the case482

of a large language model), releasing of a model checkpoint, or other means that are483

appropriate to the research performed.484

• While NeurIPS does not require releasing code, the conference does require all submis-485

sions to provide some reasonable avenue for reproducibility, which may depend on the486

nature of the contribution. For example487

(a) If the contribution is primarily a new algorithm, the paper should make it clear how488

to reproduce that algorithm.489

(b) If the contribution is primarily a new model architecture, the paper should describe490

the architecture clearly and fully.491

(c) If the contribution is a new model (e.g., a large language model), then there should492

either be a way to access this model for reproducing the results or a way to reproduce493

the model (e.g., with an open-source dataset or instructions for how to construct494

the dataset).495

(d) We recognize that reproducibility may be tricky in some cases, in which case496

authors are welcome to describe the particular way they provide for reproducibility.497

In the case of closed-source models, it may be that access to the model is limited in498

some way (e.g., to registered users), but it should be possible for other researchers499

to have some path to reproducing or verifying the results.500

5. Open access to data and code501
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Question: Does the paper provide open access to the data and code, with sufficient instruc-502

tions to faithfully reproduce the main experimental results, as described in supplemental503

material?504

Answer: [NA]505

Justification: This is a position paper that does not introduce significant new research506

material.507

Guidelines:508

• The answer NA means that paper does not include experiments requiring code.509

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/510

public/guides/CodeSubmissionPolicy) for more details.511

• While we encourage the release of code and data, we understand that this might not be512

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not513

including code, unless this is central to the contribution (e.g., for a new open-source514

benchmark).515

• The instructions should contain the exact command and environment needed to run to516

reproduce the results. See the NeurIPS code and data submission guidelines (https:517

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.518

• The authors should provide instructions on data access and preparation, including how519

to access the raw data, preprocessed data, intermediate data, and generated data, etc.520

• The authors should provide scripts to reproduce all experimental results for the new521

proposed method and baselines. If only a subset of experiments are reproducible, they522

should state which ones are omitted from the script and why.523

• At submission time, to preserve anonymity, the authors should release anonymized524

versions (if applicable).525

• Providing as much information as possible in supplemental material (appended to the526

paper) is recommended, but including URLs to data and code is permitted.527

6. Experimental setting/details528

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-529

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the530

results?531

Answer: [NA]532

Justification: This is a position paper that does not introduce significant new research533

material.534

Guidelines:535

• The answer NA means that the paper does not include experiments.536

• The experimental setting should be presented in the core of the paper to a level of detail537

that is necessary to appreciate the results and make sense of them.538

• The full details can be provided either with the code, in appendix, or as supplemental539

material.540

7. Experiment statistical significance541

Question: Does the paper report error bars suitably and correctly defined or other appropriate542

information about the statistical significance of the experiments?543

Answer: [NA]544

Justification: This is a position paper that does not introduce significant new research545

material.546

Guidelines:547

• The answer NA means that the paper does not include experiments.548

• The authors should answer "Yes" if the results are accompanied by error bars, confi-549

dence intervals, or statistical significance tests, at least for the experiments that support550

the main claims of the paper.551
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• The factors of variability that the error bars are capturing should be clearly stated (for552

example, train/test split, initialization, random drawing of some parameter, or overall553

run with given experimental conditions).554

• The method for calculating the error bars should be explained (closed form formula,555

call to a library function, bootstrap, etc.)556

• The assumptions made should be given (e.g., Normally distributed errors).557

• It should be clear whether the error bar is the standard deviation or the standard error558

of the mean.559

• It is OK to report 1-sigma error bars, but one should state it. The authors should560

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis561

of Normality of errors is not verified.562

• For asymmetric distributions, the authors should be careful not to show in tables or563

figures symmetric error bars that would yield results that are out of range (e.g. negative564

error rates).565

• If error bars are reported in tables or plots, The authors should explain in the text how566

they were calculated and reference the corresponding figures or tables in the text.567

8. Experiments compute resources568

Question: For each experiment, does the paper provide sufficient information on the com-569

puter resources (type of compute workers, memory, time of execution) needed to reproduce570

the experiments?571

Answer: [NA]572

Justification: This is a position paper that does not introduce significant new research573

material.574

Guidelines:575

• The answer NA means that the paper does not include experiments.576

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,577

or cloud provider, including relevant memory and storage.578

• The paper should provide the amount of compute required for each of the individual579

experimental runs as well as estimate the total compute.580

• The paper should disclose whether the full research project required more compute581

than the experiments reported in the paper (e.g., preliminary or failed experiments that582

didn’t make it into the paper).583

9. Code of ethics584

Question: Does the research conducted in the paper conform, in every respect, with the585

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?586

Answer: [Yes]587

Justification: We believe we have followed the NeurIPS Code of Ethics in every regard.588

Guidelines:589

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.590

• If the authors answer No, they should explain the special circumstances that require a591

deviation from the Code of Ethics.592

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-593

eration due to laws or regulations in their jurisdiction).594

10. Broader impacts595

Question: Does the paper discuss both potential positive societal impacts and negative596

societal impacts of the work performed?597

Answer: [NA]598

Justification: This is a position paper that does not introduce significant new research599

material. We do feel that we discuss societal impacts of prior research at length.600

Guidelines:601

• The answer NA means that there is no societal impact of the work performed.602
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• If the authors answer NA or No, they should explain why their work has no societal603

impact or why the paper does not address societal impact.604

• Examples of negative societal impacts include potential malicious or unintended uses605

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations606

(e.g., deployment of technologies that could make decisions that unfairly impact specific607

groups), privacy considerations, and security considerations.608

• The conference expects that many papers will be foundational research and not tied609

to particular applications, let alone deployments. However, if there is a direct path to610

any negative applications, the authors should point it out. For example, it is legitimate611

to point out that an improvement in the quality of generative models could be used to612

generate deepfakes for disinformation. On the other hand, it is not needed to point out613

that a generic algorithm for optimizing neural networks could enable people to train614

models that generate Deepfakes faster.615

• The authors should consider possible harms that could arise when the technology is616

being used as intended and functioning correctly, harms that could arise when the617

technology is being used as intended but gives incorrect results, and harms following618

from (intentional or unintentional) misuse of the technology.619

• If there are negative societal impacts, the authors could also discuss possible mitigation620

strategies (e.g., gated release of models, providing defenses in addition to attacks,621

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from622

feedback over time, improving the efficiency and accessibility of ML).623

11. Safeguards624

Question: Does the paper describe safeguards that have been put in place for responsible625

release of data or models that have a high risk for misuse (e.g., pretrained language models,626

image generators, or scraped datasets)?627

Answer: [NA]628

Justification: We do not release data, models, code or other artifacts with any high risk for629

misuse.630

Guidelines:631

• The answer NA means that the paper poses no such risks.632

• Released models that have a high risk for misuse or dual-use should be released with633

necessary safeguards to allow for controlled use of the model, for example by requiring634

that users adhere to usage guidelines or restrictions to access the model or implementing635

safety filters.636

• Datasets that have been scraped from the Internet could pose safety risks. The authors637

should describe how they avoided releasing unsafe images.638

• We recognize that providing effective safeguards is challenging, and many papers do639

not require this, but we encourage authors to take this into account and make a best640

faith effort.641

12. Licenses for existing assets642

Question: Are the creators or original owners of assets (e.g., code, data, models), used in643

the paper, properly credited and are the license and terms of use explicitly mentioned and644

properly respected?645

Answer: [Yes]646

Justification: We believe we have cited prior work and followed existing licenses where647

applicable.648

Guidelines:649

• The answer NA means that the paper does not use existing assets.650

• The authors should cite the original paper that produced the code package or dataset.651

• The authors should state which version of the asset is used and, if possible, include a652

URL.653

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.654
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• For scraped data from a particular source (e.g., website), the copyright and terms of655

service of that source should be provided.656

• If assets are released, the license, copyright information, and terms of use in the657

package should be provided. For popular datasets, paperswithcode.com/datasets658

has curated licenses for some datasets. Their licensing guide can help determine the659

license of a dataset.660

• For existing datasets that are re-packaged, both the original license and the license of661

the derived asset (if it has changed) should be provided.662

• If this information is not available online, the authors are encouraged to reach out to663

the asset’s creators.664

13. New assets665

Question: Are new assets introduced in the paper well documented and is the documentation666

provided alongside the assets?667

Answer: [Yes]668

Justification: Our figures are accompanied by adjacent captions that explain their contents.669

Guidelines:670

• The answer NA means that the paper does not release new assets.671

• Researchers should communicate the details of the dataset/code/model as part of their672

submissions via structured templates. This includes details about training, license,673

limitations, etc.674

• The paper should discuss whether and how consent was obtained from people whose675

asset is used.676

• At submission time, remember to anonymize your assets (if applicable). You can either677

create an anonymized URL or include an anonymized zip file.678

14. Crowdsourcing and research with human subjects679

Question: For crowdsourcing experiments and research with human subjects, does the paper680

include the full text of instructions given to participants and screenshots, if applicable, as681

well as details about compensation (if any)?682

Answer: [NA]683

Justification: This manuscript contains no crowdsourcing or research with human subjects.684

Guidelines:685

• The answer NA means that the paper does not involve crowdsourcing nor research with686

human subjects.687

• Including this information in the supplemental material is fine, but if the main contribu-688

tion of the paper involves human subjects, then as much detail as possible should be689

included in the main paper.690

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,691

or other labor should be paid at least the minimum wage in the country of the data692

collector.693

15. Institutional review board (IRB) approvals or equivalent for research with human694

subjects695

Question: Does the paper describe potential risks incurred by study participants, whether696

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)697

approvals (or an equivalent approval/review based on the requirements of your country or698

institution) were obtained?699

Answer: [NA]700

Justification: This manuscript contains no content that would require involving IRB or701

equivalent.702

Guidelines:703

• The answer NA means that the paper does not involve crowdsourcing nor research with704

human subjects.705
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• Depending on the country in which research is conducted, IRB approval (or equivalent)706

may be required for any human subjects research. If you obtained IRB approval, you707

should clearly state this in the paper.708

• We recognize that the procedures for this may vary significantly between institutions709

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the710

guidelines for their institution.711

• For initial submissions, do not include any information that would break anonymity (if712

applicable), such as the institution conducting the review.713

16. Declaration of LLM usage714

Question: Does the paper describe the usage of LLMs if it is an important, original, or715

non-standard component of the core methods in this research? Note that if the LLM is used716
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A A Case Study of Disagreement Between Papers950

The wide variety of non-equivalent definitions for model collapse often creates apparent contradictions951

between papers claiming to study the same phenomenon. A representative example presents itself in952

the study of model collapse for linear regression. In this data setting, one begins with a dataset (X, y)953

where we assume that954

y ∼ Xβ + ϵ, ϵ ∼ N (0, σ · I).
In the first iteration, one computes955

β̂(1) =
(
XTX

)−1
XT y,

and uses the fit parameter to generate new data (X, y(1)) with956

y(1) = Xβ̂(1) + ϵ1, ϵ1 ∼ N (0, σ · I).

One can then fit successive model iterations using an accumulate paradigm, in which the data for the957

nth model fitting takes the form958 ([
y, y(1), y(2), . . . , y(n−1)

]⊤
, [X,X, . . . ,X]

⊤
)

One can also fit the nth model iteration using a replace paradigm, in which β̂(n) is computed using959

only the data (X, y(n−1)). As proven by Gerstgrasser et al. (2024), in the accumulate paradigm, the960

ratio961

E
[
∥β̂(n)Xtest − ytest∥2

]
E
[
∥β̂(1)Xtest − ytest∥2

]
monotonically increases before converging to π2/6. Citing Definitions 3 and 4, Gerstgrasser et al.962

(2024) correctly asserted that model collapse does not occur. However, if one instead defines model963

collapse by Definition 2, this scenario does exhibit collapse.964

To complicate the story, Dohmatob et al. (2024a) studied the same model under the replace paradigm.965

Under the replace paradigm, Definition 3 suggests that model collapse occurs since the asymptotic966

risk diverges, while Definition 4 implies that model collapse does not occur, since the replace scenario967

does not exhibit vanishing variance. Table 1 shows how incompatible definitions lead to confusion.968

Table 1: Model collapse occurs under some definitions, but does not occur under others for the
regression setting described in Appendix A.

Definition Accumulate Replace
Def. 1 ✗ ✓
Def. 2 ✓ ✓
Def. 3 ✗ ✓
Def. 4 ✗ ✗
Def. 5 ✓ ✓
Def. 6 ✗ ✗
Def. 7 ✗ ✗
Def. 8 ✗ ✗
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