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Abstract

Reinforcement learning has become a corner-
stone technique for developing reasoning mod-
els in complex tasks, ranging from mathemat-
ical problem-solving to imaginary reasoning.
However, prevailing methods typically employ
static advantage estimation, neglecting the dy-
namic utility of training samples over time.
This limitation often results in slower conver-
gence rates and increased learning instability,
as models fail to adapt to evolving sample util-
ities effectively. To address this problem, we
introduce ADORA (Advantage Dynamics via
Online Rollout Adaptation), a simple yet ef-
fective reinforcement learning technique that
dynamically differentiates training data into
temporarily advantageous and disadvantageous
samples through model rollouts guided by a
tailored data differentiation strategy. Instead of
static optimization, ADORA adjusts advantage
signals on the fly, enabling more efficient pol-
icy updates. Extensive evaluations on various
tasks demonstrate that ADORA significantly
enhances long chain-of-thought reasoning in
both mathematical and geometric tasks across
large language models and vision—-language
models, achieving notable performance gains.

1 Introduction

Recently, R1-like reasoning models have attracted
significant attention for their remarkable perfor-
mance on challenging mathematical reasoning
tasks through extensive chains of thought in both
LLMs (Liu et al., 2025) and VLMs (Shen et al.,
2025). The technical report introducing R1 (Guo
et al., 2025) has already demonstrated that rein-
forcement learning (RL) fine-tuning plays a pivotal
role in enabling this reasoning capability. In partic-
ular, Group Relative Policy Optimization (GRPO)
(Zhang and Zuo, 2025), which removes the critic
network and replaces Generalized Advantage Es-
timator (GAE) (Schulman et al., 2015) with a
rule-based, outcome-driven reward scheme, has

emerged as a promising alternative to traditional
methods such as PPO (Schulman et al., 2017) and
DPO (Rafailov et al., 2023), primarily due to its
efficiency and its intrinsic compatibility with lan-
guage model training.

However, existing GRPO implementations still
face substantial limitations. One key issue is that
the static computation of sample utility implicitly
assumes that the informativeness of each training
example remains constant throughout policy opti-
mization, thereby ignoring the dynamic nature of
learning and severely hindering both training effi-
ciency and the performance ceiling of RL. Specif-
ically, as the model is trained and the policy im-
proves, the learning signal provided by the same
example changes over different training iterations.
Some samples may provide significant learning
opportunities at certain stages, while others may
involve concepts that are either already mastered
or beyond the model’s current capacity to learn
effectively. Treating all samples with uniform im-
portance, or with pre-defined static weights, fails
to leverage this dynamic utility, potentially leading
to suboptimal learning trajectories and inefficient
use of data, as also noted by observations that cur-
rent methods lack robust mechanisms for handling
samples of varying utility during training (Ye et al.,
2025).

To address this limitation, we propose that a sam-
ple’s advantage should evolve alongside the policy.
We introduce ADORA (Advantage Dynamics via
Online Rollout Adaptation), a novel RL frame-
work designed to dynamically calibrate advantage
estimation. ADORA categorizes training data
into Temporarily Advantageous Samples (TAS)
and Temporarily Disadvantageous Samples (TDS)
based on the model’s rollout performance under a
predefined data differentiation strategy. It then re-
weights advantages—inflating those for TAS and
deflating those for TDS—on the fly, thereby direct-
ing updates to the most informative data at each



training stage to accelerate convergence and boost
data efficiency.

We conducted extensive controlled experiments
on both LLLMs for mathematical reasoning and
VLMs for geometry reasoning. Empirically,
ADORA significantly improves long chain-of-
thought reasoning and task generalization. For
instance, on the Qwen-7B-base model, ADORA
achieved an average of 3.4 percentage points im-
provement over standard GRPO on math tasks.
For VLMs, using fewer than 2,000 samples and
no warm-starting, the Qwen2.5-VL-7B-instruct
model achieved 73.5% accuracy on MathVista with
ADORA.

Our key contributions and findings include:

* The ADORA framework: A plug-and-play
method for dynamically calibrating advantage
estimation weights in RL based on live rollout
statistics.

* Task-specific differentiation strategies: We
designed and validated distinct strategies for
distinguishing TAS and TDS across different
reasoning domains, consistently demonstrat-
ing improvements over GRPO.

¢ Comprehensive empirical analysis: Ex-
tensive experiments statistically evaluate
ADORA’s impact on reflective token fre-
quency, CoT length, generalization ability,
and Pass @K scaling laws, providing insights
into its mechanisms of action.

2 Related Works

Curriculum Learning. The core idea of Curricu-
lum Learning (CL) (Bengio et al., 2009; Elman,
1993) is to present training samples in a meaning-
ful order, typically from easy to hard, to enhance
learning efficiency and generalization capabilities.
Several variants have been proposed. (Kumar et al.,
2010)dynamically selects easier samples based on
the model’s current prediction loss, thereby imple-
menting an easy-to-hard training schedule. (Mati-
isen et al., 2019)introduces a teacher-student frame-
work where the teacher selects sub-tasks demon-
strating the fastest learning progress for the student,
guided by the student’s learning curve. More re-
cently, (Wang et al., 2025) dynamically adjusts
sampling probabilities across different data distri-
butions to achieve an adaptive training schedule.
(Deng et al., 2025) proposed a three-stage rein-
forcement learning approach employing a progres-

sive difficulty reward mechanism to optimize RL
training. (Wen et al., 2025) utilizes a two-stage
curriculum-guided training. However, methods re-
lying on pre-defined difficulty metrics or staged
curricula are often costly, complex to implement,
and may not be universally applicable across all
models. This highlights the need for more effi-
cient, adaptive, and model-specific data selection
techniques.

Reinforcement Learning for Reasoning in LLMs
and VLMs. Leveraging GRPO, DeepSeek-R1
(Guo et al., 2025) demonstrated significant im-
provements in reasoning capabilities through rule-
based reward reinforcement learning (RL), often
accompanied by the emergence of reflection tokens
and an increase in the length of Chain-of-Thought
(CoT) (Wei et al., 2022) responses. Subsequent re-
search has extensively applied R1-style rule-based
RL to LLMs (Xie et al., 2025; Zeng et al., 2025;
Yan et al., 2025) and VLMs (Shen et al., 2025; Li
et al., 2025; Meng et al., 2025). On one hand,
efforts have focused on optimizing GRPO. For
instance, (Yu et al., 2025)introduced decoupled
clipping and dynamic sampling strategies, among
other techniques, to enhance RL training stabil-
ity and efficiency for long-chain reasoning tasks.
(Zhang and Zuo, 2025)incorporated mechanisms
such as length-aware accuracy rewards and error
penalties. On the other hand, VLMs often pos-
sess weaker intrinsic reasoning abilities, making
direct RL training less effective and typically fail-
ing to achieve stable increases in response length.
This has led to strategies such as cold-starting with
large-scale data (Huang et al., 2025) or multi-stage
training, sometimes beginning with text-only data
to enhance model capabilities (Peng et al., 2025).

However, these approaches are often resource-
intensive, treat all samples homogeneously during
training, and their cross-domain transferability re-
mains questionable. In contrast, ADORA dynami-
cally assesses whether samples are ’advantageous’
or "disadvantageous’ to scale the advantage estima-
tion signal in real-time. This approach requires no
cold-start, leverages the entire dataset effectively,
and has demonstrated steady improvements in both
response length and performance for LLMs and
VLMs.

3 Method

This section details ADORA , our proposed frame-
work for dynamically guiding reinforcement learn-



ing. ADORA achieves this by classifying training
samples into TAS or TDS categories based on the
model’s live rollouts. The core idea is to make the
model focus its learning effort on TAS, with this
classification evolving dynamically as training pro-
gresses. We first briefly review GRPO, the baseline
upon which ADORA builds.

3.1 GRPO

Due to the success of Deepseek-R1 (Guo et al.,
2025), GRPO (Shao et al., 2024) becomes the
de facto approach with zero-RL training. Un-
like standard PPO, GRPO eliminates the need for
a separate value network by computing sample-
wise advantages directly from normalized reward
scores across multiple sampled trajectories. Let
D = {(x;,7;)}}¥, be prompts with scalar rewards.
Denote the trainable policy by my and a frozen ref-
erence by 7.¢. Given a question ¢, a set of sampled
responses {7; }1¥_, generated by the old policy g,
and a reward function R(7;), GRPO computes the
per-sample advantage A; as:

R(7;) — mean (R(11), ...

std (R(11), ...

, R(7v))
, R(7w)) 7

This normalization is done globally over the cur-
rent batch, meaning all A; values within one epoch
are determined solely by the reward values and
are independent of the specific token-level predic-
tions. Crucially, during training, R(7;) is indirectly
shaped by the updated policy through its effect on
the token-level probabilities.

To estimate the policy update, GRPO uses token-
level importance weights:

A = (1
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The GRPO training objective is then defined as:
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In the RL objective, GRPO follows PPO, using the
importance sampling (r; ; in Eq. (2)) to calibrate
the gradient as the rollouts are generated by mg_,.
The clipping threshold e stabilizes training by pre-
venting large deviations in token probability ratios.
This makes A; a fixed scalar weight across all to-
kens in a sample, and its interaction with 7;+(6)

ensures that updates are localized to high-reward
trajectories. Crucially, in standard GRPO, the per-
sample advantage A; is computed based on rewards
and remains static throughout an epoch or even the
entire training process for that sample. This static
nature, as discussed in Section (1), limits its adapt-
ability to the model’s evolving capabilities.

3.2 ADORA

While GRPO normalizes scalar rewards into
sample-level advantages A;, it treats all samples
equally during training. To better leverage the het-
erogeneous quality and utility of training trajec-
tories, we propose ADORA, which dynamically
calibrates the advantage estimates by assigning per-
sample weights depending on whether a rollout is
deemed temporarily advantageous or disadvanta-
geous within the current epoch.

Formally, for each trajectory i, we define a scalar
weight w; € R and apply it to the normalized
advantage: )

Ai = Wy - Ai, (4)
where A; is the normalized reward-based advan-
tage as in GRPO. The ADORA training objective
is given by:
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Since wj is trajectory-level and independent of sam-
pled actions, this modification preserves the unbi-

asedness of the policy gradient.
Two key questions must be addressed:

JApORA(0) =

1. How to determine whether a sample is advan-
tageous or not?

2. How to assign a corresponding weight w; that
reflects its training utility?

VLM Case: Length-Based Advantage Atten-
uation (Subtraction): Visual language models
(VLMs) often exhibit weak multi-hop reasoning
capabilities in the early stages of RL training. Stan-
dard GRPO optimization, with its static advantages,
can thus overfit on short, trivial responses if these
yield high initial rewards, hindering progress on
complex, long-horizon reasoning tasks. ADORA
employs an attenuation strategy for VLMs to penal-
ize unpromising samples. Specifically, we define



a sample as temporarily disadvantageous if its suc-

cessful rollout length does not significantly exceed

the average length of unsuccessful rollouts:
Specifically, We define a length advantage as:

Length_adv <=

max(lengthcorrect) > mean(lengthincorrect)?
(6)
Based on this criterion, we assign:
1, if Length_adv
w; = . ; (7)
0.1, otherwise

Temporarily advantageous samples retain their
full advantage signal (w; = 1), while temporarily
disadvantageous ones are down-weighted (w; =
0.1). This "subtraction" mechanism reduces the
negative impact of samples that are currently un-
helpful for long-horizon learning.

LLM Case: Length + Difficulty-Based Ad-
vantage Amplification (Addition): In contrast,
large language models (LLMs) for tasks like math
reasoning may already possess moderate reason-
ing ability at initialization. Under GRPO, re-
sponse lengths tend to grow, and many samples
can provide useful learning signals. Therefore,
rather than primarily suppressing low-utility sam-
ples, ADORA for LLMs focuses on amplifying
the signal from high-value samples—those that are
both difficult and demonstrate promising reasoning
depth.

We additionally define a difficulty advantage as:

Difficulty_adv <= Correctrate < 0.5, (8)

and again reuse Length_adv from above. We then
assign:

2, if Difficulty_adv & Length_adv
w; = ) )
1, otherwise

Temporarily advantageous samples (those that are
harder and longer) receive an amplified learning
signal (w; = 2), while others retain their original
strength (w; = 1). This "addition" effect reinforces
learning from challenging and instructive samples,
promoting curriculum-style progression.

In summary, ADORA introduces a general and
lightweight mechanism to enhance GRPO via dy-
namic advantage calibration. By re-weighting train-
ing samples adaptively, it supports more targeted
policy optimization across both weak (VLM) and
strong (LLM) model regimes.

3.3 Algorithm

Algorithm 1 shows an ADORA instantiation.
ADORA-GRPO replaces the value function with
group baselines (Shao et al., 2024).

Algorithm 1 ADORA-GRPO

Input: Policy my, reference mpf, data D
1: Initialise Adam optimiser

2: repeat

3 Sample mini-batch {z;}2; ~ D

4: Generate actions a; ~ 7p(+|z;) and re-
wards 7;

5 Compute advantages A; via GRPO

6 w; < weight_func(&;)

7. A w4 (ADORA)
8 Update 0« 60— WVGL:ADORA

9

: until convergence or budget exhausted

Implementation: In practice, the dynamic
weighting can be implemented as:

w; = weight_func(segs, rewards, aux_info),
(10)

where weight_func computes w; from rollout

statistics such as CoT length and correct rate.

4 Experiment

To empirically validate the efficacy of ADORA, we
conduct a series of controlled experiments across
both LLMs for mathematical reasoning and VLMs
for geometry reasoning. Our primary goal is to
demonstrate that ADORA’s dynamic advantage cal-
ibration leads to improved performance and train-
ing efficiency compared to a baseline GRPO. We
select Qwen2.5-7B-Base (Yang et al., 2024) for
LLM tasks and Qwen2.5-VL-7B (Bai et al., 2025)
for VLM tasks. This experimental setup allows
us to directly test our central hypothesis: dynami-
cally adjusting advantage weights based on rollout
statistics enhances the learning process for complex
reasoning.

Part-1: VLM

ADORA and the baseline GRPO were initialized
with Qwen2.5-VL-7B-Instruct and directly trained
via Reinforcement Learning (RL) on 2000 sam-
ples from the Geometry3K training set (Lu et al.,
2021), without a cold-start phase. Detailed train-
ing hyperparameter settings are reported at (A).
All training was conducted over three independent
runs, with average performance reported. For eval-
uation, VLM performance was primarily assessed



Model

Base model

Cold-Start Data RL Data

MM-EUREKA-8B (Meng et al., 2025)
MMR1-math-vO (Leng* et al., 2025)
Vision-R1-7B (Huang et al., 2025)
ADORA (ours)

InternVL2.5-8B-Ins

Qwen2.5-VL-7B-Ins
Qwen2.5-VL-7B-Ins
Qwen2.5-VL-7B-Ins

54k (open-source) 9.3k (open-source)

None 6k (open-source)
200k (synthetic data) 10k (open-source)
None 2k (open-source)

Table 1: Cold-Start and RL training data comparison of multimodal methods with different base models.
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Figure 1: Training dynamics comparison of GRPO
vs ADORA on Qwen2.5-VL-7B-Instruct (geometry3k).
GRPO exhibits stagnant response length growth with
KL/policy loss outliers. ADORA achieves sustained
length expansion with stabilized optimization at the cost
of slight training reward degradation because it performs
"subtraction” on VLMs. Benchmark results demonstrate
ADORA’s superior in/out-of-domain task performance.

on MathVista (Lu et al., 2023) and MMStar (Chen
et al., 2024) datasets using a sampling temperature
of 0. MathVista contains 44.7% In-Domain (id)
geometric tasks and 55.3% Out-of-Domain (ood)
non-geometric samples.The evaluation metric was
pass@1, with results averaged over three runs.
(Meng et al., 2025; Leng* et al., 2025; Huang
et al., 2025)have reproduced R1 on VLMs. Ta-
ble (1) presents the resource configurations for
ADORA and these works in terms of base model
selection, cold-start usage, and the amount of
training data at each stage. It demonstrates that
ADORA operates without a cold start and utilizes
minimal data. The results in Table (2) indicate
ADORA’s significant improvements over the base-
line GRPO on all metrics. Specifically, ADORA
achieves 73.5% on MathVista, matching Vision-
R1-7B (Huang et al., 2025) and considerably out-
performing Claude3.7-Sonnet and Gemini2-flash,
alongside stronger OOD capabilities. Although
ADORA’s performance on MMStar is slightly
(0.1%) below Qwen2.5-VL-7B, this is still a sub-
stantial gain over GRPO, which underperformed

Model MathVista MMStar
avg id ood

Qwen2.5-VL-7B-Instruct 67.3 69.6 65.5 63.9
Claude3.7-Sonnet 66.8 - - -
Gemini2-flash 70.4 - - -
MM-EUREKA-8B 68.1 73.4 63.8 64.3
MMR 1-math-v0 70.2 72.3 68.5 64.9
Vision-R1-7B (report) 73.5 81.9 66.8 -
GRPO 70.2 71.6 69.1 61.9
ADORA (ours) 73.5 76.1 71.4 63.8

Table 2: Zero-shot pass@ 1 performance on benchmarks
across various difficulty based on Qwen2.5-VL-7B-Ins.
Dashes (-) denote unavailable official scores. Bold and
underline represent the 1st and 2nd in performan.

Qwen2.5-VL-7B by 2%. This slight variance is
attributed to the potential limitations of employing
homogeneous training data.

Part-2: LLM

We conducted RL training directly on Qwen2.5-7b-
base with the Math dataset (Hendrycks et al., 2021),
which contains 12,000 samples, and used Math-
Verify to perform rule-based outcome verification
using Math500 (Hendrycks et al., 2021) as the test
set. For both GRPO and ADORA, we carried out
three separate RL training runs and reported the
average performance. Detailed training hyperpa-
rameter settings are reported at (A). For evaluation,
we mainly focus on seven widely used math reason-
ing benchmarks, including GSM8K (Cobbe et al.,
2021),Gaokao2023 (Zhang et al., 2024), College-
Math (Tang et al., 2024), AIME24, AMC23 (Li
et al., 2024), OlympiadBench (He et al., 2024), and
MATHS500 (Hendrycks et al., 2021). For all those
benchmarks, we report pass@1, setting the sam-
pling temperature to O and repeating the evaluation
three times, taking the average result.

Table (3) reports the performance of ADORA



Model

GSM8K Math500 AMC23 Gaokao2023 CollegeMath OlympiadBench AIME24 Avg

Qwen2.5-7B-base 56.3 57.2 375 42.0 243 26.3 100 | 362
GRPO 89.1 732 50.0 52.7 28.6 35.1 133 | 487
ADORA + L_adv 90.0 74.8 52.5 53.0 29.0 34.6 16.7 | 502
ADORA +D_adv 90.3 75.0 55.0 52.7 28.8 35.4 167 | 50.7
ADORA +L_adv+D_adv  89.6 76.2 62.5 54.3 29.3 36.0 167 | 521

Table 3: Zero-shot pass@1 performance on math benchmarks across various difficulty based on Qwen2.5-7B-base.
L_adv and D_adv represent the Length_adv and the Dif ficulty_adv used in data classification. Bold and

underline represent the 1st and 2nd in performan.
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Figure 2: Training dynamics comparison of GRPO
vs ADORA on Qwen2.5-7B-base. As training pro-
gresses, GRPO exhibits a non-monotonic trend in chain-
of-thought (CoT) length, initially increasing and subse-
quently decreasing. In contrast, ADORA demonstrates
a consistently increasing CoT length, with a growth
rate approximately three times that of GRPO. More-
over, ADORA achieves a performance improvement
over GRPO on the Math500 test set.

and GRPO under various settings indicating that
ADORA achieved higher scores compared to
GRPO. Specifically, when only the Length_adv
(L_adv) or Dif ficulty_adv (D_adv) was applied,
the performance improvement was modest. How-
ever, when both L_adv and D_adv were used,
ADORA consistently outperformed GRPO across
all test sets, achieving scores such as 76.2 (+3.0) on
Math500 and 62.5 (+12.5) on AMC23, among oth-
ers. On average, ADORA outperformed GRPO by
3.4 points, demonstrating that dynamically adjust-
ing advantage estimates during training effectively
guides the model toward learning from more bene-
ficial samples, thereby enhancing its generalization
capability.

Efficiency and performance. In addition, we
compared the differences between DAPO (Yu et al.,
2025) and ADORA in terms of training efficiency
and final performance. Specifically, compared to
GRPO and ADORA, DAPO requires the training

data advantage computation to be non-zero, which
leads to more efficient training. However, in terms
of final performance, DAPO shows no significant
advantage over ADORA. Furthermore, when we
incorporate the ADORA method on top of DAPO,
both the training efficiency and final performance
are further improved.

S Analysis

Beyond achieving superior aggregate performance,
understanding of how ADORA improves reason-
ing is crucial. This section analyzes ADORA’s
impact on model behavior and learning dynam-
ics relative to the GRPO baseline. We investi-
gate several facets: the induced cognitive patterns
via reflection frequency (Section (5.1)), structural
changes in model outputs via length distributions
(Section (5.2)), the adaptive learning trajectory
(Section (5.3)), and the upper-bound reasoning ca-
pabilities through Pass@K analysis (Section (5.4)).
These analyses collectively illuminate the mecha-
nisms underlying ADORA’s effectiveness.

5.1 Reflection Frequency

A key aspect of understanding how different rein-
forcement learning strategies influence reasoning
capabilities lies in examining the model’s explicit
thought processes. Section (5.1) delves into the fre-
quency of reflective vocabulary, providing insights
into the cognitive behaviors fostered by ADORA
compared to the baseline GRPO method across
various mathematical benchmarks, as illustrated in
Figure 3. This analysis aims to quantify the ten-
dency of models to engage in self-monitoring, ver-
ification, and structured thinking during problem-
solving.

Two major trends are observed: Increased use
of core reflective terms: Words that directly in-
dicate verification, evaluation, and deliberate rea-

soning—such as "verify", " consider",

n "

evaluate",
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Figure 3: Distribution of Reasoning-Related Keywords
for GRPO and ADORA across Various Reasoning
Benchmarks.

"reflect" and "check"—appear more frequently in
the outputs of models trained with ADORA across
most benchmarks. For instance, the use of "verify"
is markedly higher on the AIME 2024 benchmark,
while "evaluate" shows similar trends on AMC23
and MATH500. More structured and transi-
tional language: Terms that signal structured rea-
soning, such as "but" and "however" are also used
more frequently by ADORA-trained models on
several benchmarks (e.g., MATH500, Olympiad-
Bench). In addition, compared with GRPO, the
frequency of the word "steps" drops significantly
in ADORA.

By dynamically calibrating advantage estimates,
ADORA preferentially rewards trajectories exhibit-
ing deeper reasoning, cautious verification, and
structured expression. Assigning greater learning
weight to TAS directly reinforces the associated
cognitive behavior patterns and lexical expressions.
Compared to the standard GRPO approach, the
ADORA training framework more effectively en-
courages the model to develop a reasoning style
characterized by more frequent self-reflection, ver-
ification, and structured thinking. This shift in
cognitive behavior, as reflected in the model’s out-
put text, represents a key underlying factor be-
hind ADORA’s performance gains across evaluated
mathematical reasoning tasks.

5.2 Distribution of Length Differences

This section examines how reinforcement learn-
ing frameworks influence response length, a struc-
tural characteristic indicative of Chain-of-Thought
(CoT) elaboration and reasoning depth. Figure 4
consistently shows that across multiple bench-
marks, ADORA-trained models produce longer re-
sponses than GRPO-trained models, evidenced by
rightward-shifted and heavier-tailed token length

distributions for ADORA.

AIME 2024

AMC 23 GSMBK

Token Length
GRPO ADORA

Figure 4: Comparison of Token Length Distributions
Generated by GRPO and ADORA across Various Rea-
soning Benchmarks.

These longer responses under ADORA suggest
more elaborate reasoning, clearer articulation, and
thorough verification, offering greater "cognitive
space" for complex problems; this aligns with Fig-
ure 1 and 2, where ADORA’s CoT length grows
significantly faster during training. Conversely,
GRPO’s tendency for shorter responses may in-
dicate premature convergence to incomplete solu-
tions due to shallower reasoning. Overall, ADORA
impacts not only qualitative aspects (reflective vo-
cabulary) but also quantitatively alters output struc-
ture (response length). By encouraging longer,
more detailed responses, ADORA better equips
models for complex tasks, further supporting its ef-
fectiveness through dynamic advantage calibration.

5.3 How ADORA affects the learning
trajectory of RL?

To gain deeper insight into how the ADORA frame-
work optimizes the reinforcement learning process
through dynamic adjustment of advantage estima-
tion, this section aims to examine ADORA’s con-
crete influence on the model’s learning trajectory.
The central question is: how does ADORA dy-
namically select and emphasize training samples
of varying difficulty and type based on the model’s
real-time performance during training? Through
both visualization and quantitative analysis on 2K
samples of the Geometry3K dataset, we investigate
how ADORA distinguishes between TAS and TDS
throughout training iterations, and how this distinc-
tion guides the model to progressively tackle more
challenging problems.

Figure 5 and Figure 6 reveal that ADORA per-
forms better when selecting half of the data in each
epoch, and the number of "selected samples” de-
creases as the epochs progress. In terms of dif-
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Figure 5: The blue sections represent the samples se-
lected for each epoch (clustered for easier visualiza-
tion), while the red sections illustrate the distribution of
samples under different Correct N settings in once sam-
pling, representing the difficulty of the samples, both
of which gradually deepen as epochs progress. The top
and bottom rows (from left to right) respectively show
the changes in TAP and TDP as the difficulty increases
(Correct 0, Correct 1-3, Correct 4-7, Correct 8).
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Figure 6: The changes in the number of samples of each
difficulty level for the two corresponding categories of
samples across epochs.

ficulty, "unselected samples" are mostly simple
ones, while more difficult samples tend to require
repeated selection as "selected samples" for addi-
tional training. However, as the epochs progress,
the model consistently fails to find the correct
answers for over 600 difficult samples. Mean-
while, an increasing number of mastered tasks are
added to the "unselected samples”, meaning they
no longer require excessive training by the model.

Compared to the standard GRPO method,
ADORA employs an "Easy to hard; iterate if chal-
lenged." optimization strategy in its learning trajec-
tory, enabling the model to build a more robust ca-
pability reserve when tackling subsequently harder
samples. This dynamic sample prioritization mech-
anism not only accelerates the model’s generaliza-
tion on medium-difficulty examples but also sig-
nificantly reduces redundant training on easy ones,

making it a key factor in ADORA’s performance
breakthroughs on geometry reasoning tasks.

5.4 PASS@K: ADORA vs. GRPO

ADORA —— GRPO —— Qwen2.5-78
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T

Figure 7: Pass@k curves of base model and
ADORA/GRPO across multiple mathematical bench-
marks.

The Pass @K metric, which assesses if a model
can correctly solve a problem in at least one of K
attempts (thus indicating its upper-bound reasoning
capability), was used to compare ADORA against
GRPO in Figure 7. Consistent with prior findings
(Yue et al., 2025), We manually inspect to ensure
that the problem-solving process is not coinciden-
tal and observe that ADORA consistently outper-
formed or matched GRPO across benchmarks, with
both RL methods significantly surpassing the base
model at smaller K values. Interestingly, while the
base model sometimes overtook both at larger K,
ADORA notably achieved 100% accuracy on the
AMC dataset with fewer than 64 samples, outper-
forming both GRPO and the base model.

These Pass @K comparisons highlight ADORA’s
strength: it not only improves efficiency in reaching
known solutions but also appears to expand the set
of viable reasoning paths the model can explore.
This creates a broader "solvable problem space,"
enabling ADORA-trained models, given enough
attempts, to solve problems where GRPO-trained
counterparts might still struggle.

6 Conclusion

ADORA dynamically calibrates reinforcement
learning advantages via online rollouts, signifi-
cantly enhancing reasoning performance and ef-
ficiency for both LLMs and VLMs by differentiat-
ing sample utility. Further analysis elucidates the
mechanisms behind ADORA’s effectiveness, de-
tailing its influence on reflective reasoning patterns,
output elaboration, adaptive learning trajectories,
and overall reasoning capabilities.



Limitations

(1)Specific differentiation strategies may require
tuning for new tasks/models: This implies that the
definitions of Temporarily Advantageous Samples
(TAS) and Temporarily Disadvantageous Samples
(TDS) within ADORA, along with their weight ad-
justment mechanisms, might not be universally ap-
plicable. When applying ADORA to new tasks or
models, these strategies may need to be redesigned
or adjusted. (2)Efficacy is tied to rollout qual-
ity: ADORA relies on the outcomes of the model’s
online rollouts to dynamically assess sample util-
ity. If the quality of these rollouts is low (e.g.,
the model generates poor-quality reasoning trajec-
tories), then the classification of samples and the
subsequent weight adjustments may be inaccurate,
consequently impacting overall training effective-
ness.
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A Training Hyperparameter Details

To conduct a rigorous controlled experiment, we
consistently use the same detailed training hyper-
parameter settings for GRPO and ADORA.

LLM Training Settings. Based on Qwen2.5-7B-
Base, we set the KL coefficient to 0.001 and the
entropy coefficient to 0. Our rollout batch size
is 256, and the update batch size is 128. Rollout
generation is performed with a temperature of 1.0,
generating 5 responses per sample, with a maxi-
mum response length of 4096 tokens. The learning
rate is fixed at 1e-6 throughout training.

VLM Training Settings. Based on Qwen2.5-VL-
7B-Ins, we set the KL coefficient to 0.001 and the
entropy coefficient to 0. Our rollout batch size
is 128, and the update batch size is 128. Rollout
generation is performed with a temperature of 1.0,
generating 8 responses per sample, with a maxi-
mum response length of 4096 tokens. The learning
rate is fixed at 1e-6 throughout training.
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B Study Cases

ADORA

In a table tennis tournament every participant played every other participant exactly
once. Although there were twice as many right-handed players as left-handed
players, the number of games won by left-handed players was 40% more than the
number of games won by right-handed players. (There were no ties and no
ambidextrous players.) What is the total number of games played?

<think> To solve this problem, let's define the variables and set up the equations
based on the given information.

Let ( L ) be the number of left-handed players and ( R ) be the number of right-handed
players. According to the problem, there are twice as many right-handed players as
left-handed players, so we have:

R=2L

Each player plays every other player exactly once, so the total number of games played
is the number of ways to choose 2 players out of (L + R ) players, which is given by
the combination formula:
L+R\_(L+R(L+R-1)
(T) 2

Let ( W, ) be the number of games won by left-handed players and ( W ) be the
number of games won by right-handed players. According to the problem, the number
of games won by left-handed players is 40% more than the number of games won by
right-handed players, so we have:

W, = 14Wy

Since each game has exactly one winner, the total number of games won is equal to
the total number of games played:

L+R
wrm (%)

Substituting (W;, = 1.4 Wy ) into the equation, we get:

L+R
LaWp +We = (",

L+R
24w = (",

Now, let's substitute (R = 2L ) into the equation:

3L

2
3L(3L—1)

24Wg =

24W, =
4.8Wg =3L(3L—1)
3L(3L-1)
R348
3L(3L-1) SLEBL-1
, = 34BL=D TSLEL=D

4.8 8

Since ( Wg ) must be an integer, ( 5L(3L — 1) ) must be divisible by 8. Let's check the
possible values of ( L ) that satisfy this condition.

(L =1)
5.1-(3:1—1)=10 (not divisible by 8)
(L =2):
5.2-(3:2—1) =50 (notdivisible by 8)
If(L =3):

5.3-(3:3-1) =120 (divisible by 8)

So, (L = 3)isavalid solution. Then (R = 2L =

6).

The total number of games played is:

(39)-

The total number of games played is ((36]).</think>

<answer> [36] </answer>

GRPO

C

Qwen2.5-VL-
7B-Instruct

<think> To solve this problem, let's denote the number of left-handed players as ( L ) and the number of right-handed
players as ( R ). According to the problem, (R = 2L ).

Each player plays every other player exactly once, so the total number of games played is the number of ways to
choose 2 players out of the total ( L + R ) players, which is given by the combination formula ( (“3F) = ‘“")(Zi“) )

Let's denote the number of games won by left-handed players as ( W, ) and the number of games won by right-
handed players as ( Wy ). According to the problem, ( W, = 1.4Wy ).

Since every game has a winner, the total number of games won is equal to the total number of games played, so
(W, + W = (137)).

Substituting (R = 2L ) into the equations, we get:

3L\ 3LBL-1)
Wt We =% ) ==—5—

W, = 1.4W,
Let (Wg = x ). Then ( W, = 1.4x ), and the total number of games won is:

L(3L—1
1.41+1:Z.4X:M

_3L(3L—1) _5LBL-1)
S48 8

since (Wg = x) and (W = (%) = 2= = 1(2L - 1) ), we can set up the equation:

5L(3L—1
L2L-1) _BHEL=1)
8L(2L—1) =5L(3L—1)
8(2L—1 53L-1)
16L — 8 = 15L — 5
L=3
So, (R = 2L = 6).The total number of playersis (L + R = 3 + 6 = 9). The total number of games played is:
9x8
)=z ~%
Thus, the total number of games played is ([36]). </think>

<answer> </answer>

To determine the total number of games played in the tournament, we first need to establish the relationship
between the number of left-handed and right-handed players and the number of games won by each group.

Let ( L ) be the number of left-handed players and ( R ) be the number of right-handed players. According to the
problem, (R = 2L ). The total number of playersis (L + R = L + 2L = 3L).

The total number of games played in a round-robin tournament where every participant plays every other participant
exactly onceis given by the combination formula ( (%) = 2£=1).

Let ( W, ) be the number of games won by left-handed players and ( Wy ) be the number of games won by right-
handed players. According to the problem, ( W, = 1.4Wg ).

In any individual game, there is a winner and a loser, and the total number of games won by all players must equal the
total number of games played. Therefore, we have:

3L(3L—1)
Wy + Wy =———
Substituting (W, = 1.4Wj ) into the equation, we get:
3L(3L—1)
LW+ We = ———,
3L(3L—1
24w, = 3LGEZ D

2
3L(3L—1) 3L(3L-1) 5L(3L-1)
Wy = - S 5 .
Now, we need to check the consistency of the values. Since ( WR ) must be an integer, ( 5L(3L — 1) ) must be divisible
by 8. We can test small values of ( L ) to find a suitable number.

If(L = 4), then (3% ‘;“’ =441 _ 220 _ 275), which is not an integer.

(L = 5), then (2205 = 5514 350 _ 4375 whichis not an integer.

If(L = 6),then( w = 2:7 = ? = 63.75 ), which is not an integer.

(L = 8),then (2240 = 5825 _ 415 which is an integer.

Thus, (L = 8 ) is a valid solution. Therefore, the total number of players is (3L = 3 -8 = 24 ), and the total

number of games played is:

3L(3L—1) 24-23
= T TN o276

2

The total number of games played is (|

Figure 8: Comparative analysis of responses to AMC Problem 48. The Base model, lacking verification, incorrectly
solves the problem. GRPO exhibits hallucinated reasoning steps. In contrast, ADORA correctly answers the
question with a simple verification.
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ADORA

"Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.

Question: Find the value of $t$ in the parallelogram.
w,

Choices: V X
(A)6 _
®)7 s-7
(©8 A 2t-6
(D) 13" Y

z

To solve for the value of \( t\) in the parallelogram, we
need to use the properties of the diagonals of a
parallelogram.  Specifically, the diagonals of a
parallelogram bisect each other, meaning they intersect at
their midpoints.

In the given parallelogram, the diagonals intersect at point
\( X \). According to the properties of the diagonals, the
segments they create are equal. Therefore, we can set up
the equation:

\[s-7=2t-6\]

However, we need to use the correct property for the
diagonals of a parallelogram, which is that the segments
they create are equal. Let's assume the correct
interpretation is that the segments are equal, so we can
set up the equation:

\[8=2t-6\]

Now, solve for \(t):

\[8+6=2t\]

\[14=2t\]

\[t=\frac{14}{2}\]

\[t=7\]

But let's recheck the correct interpretation. The correct
property is that the segments created by the diagonals are
equal, so we should have:

\[s-7=2t-6\]

But the correct interpretation should be:

\[8=2t-6\]

Solving this:

\[8+6=2t\]

\[14=2t\]

\[ t = \frac{14}{2}\]

\[t=7\]

But the correct interpretation should be:

\[s-7=2t-6\]

So the correct value is:

\[t=7\]

But the correct interpretation should be:

\[8=2t-6\]

Solving this:

\[8+6=2t\]

\[14=2t\]

\[t = \frac{14}2}\]

\[t=7\]

The correct answer is:

\boxed{7}

GRPO

|

—
Qwen2.5-VL-
7B-Instruct

To solve for \( t\) in the parallelogram, we need to use the
properties of parallelograms and the given information.

1. **Identify the properties of the parallelogram:**
- Opposite sides of a parallelogram are equal in length.
- Opposite angles of a parallelogram are equal.
- The diagonals of a parallelogram bisect each other.

2. **Given information:**
- The length of one diagonal segment is 6.
- The length of the other diagonal segment is \(s-7\).
- The length of the third diagonal segmentis \(2t-6 ).

3. **Set up the equation:**

Since the diagonals of a parallelogram bisect each other,
the segments created by the intersection are equal.
Therefore, we can set up the following equation:

\[s-7=2t-6\]

4. **Solve for \(t\):**

- First, simplify the equation:
\[s-7=2t-6\]

- Add 7 to both sides:
\[s=2t+1\]

- Subtract 2t from both sides:
\[s-2t=1\]

- Solve for \(t\):
\['t = \frac{s - 1{2}\]

5. **Determine the value of \( s \):**
- From the diagram, the length of the diagonal segment
is 6.
- Therefore, \(s-7=6).
- Solve for \( s \):
\[s=13\]

6. **Substitute \( s \) back into the equation for \(t\):**
\[ t = \frac{13 - 142} = \frac{12}{2} =6 \]

Therefore, the value of \( t\) is \(\boxed{6}\).

To solve for the value of \( t\) in the parallelogram, we
need to use the property that the diagonals of a
parallelogram bisect each other. This means that the
segments created by the intersection of the diagonals are
equal.

Given:

- One segment of the diagonal \( WX \) is 8.

- The other segment of the diagonal \( WX \) is \(s-7\).
- One segment of the diagonal \( YZ ) is 6.

- The other segment of the diagonal \( YZ\)is\(2t-6).

Since the diagonals bisect each other, we can set up the
following equations:

\[8=5-7\]

\[6=2t-6\]

First, solve for \( s \):
\[8=5-7\]
\[s=8+7\]
\[s=15\]

Next, solve for \(t\):
\[6=2t-6\]
\[6+6=2t\]
\[12=2t\]

\[t = \frac{12}{2} \]
\[t=6\]

Therefore, the value of \(t\)is \( 6 \).

The correct answer is:
(A) 6

Figure 9: Comparative analysis of responses to MathVista Problem 819. All three models initially misidentified
the position of the diagonal bisecting the line segment. Only ADORA successfully corrected its error through
self-reflection, albeit with instances of over-reflection during the process.
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