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Abstract001

Reinforcement learning has become a corner-002
stone technique for developing reasoning mod-003
els in complex tasks, ranging from mathemat-004
ical problem-solving to imaginary reasoning.005
However, prevailing methods typically employ006
static advantage estimation, neglecting the dy-007
namic utility of training samples over time.008
This limitation often results in slower conver-009
gence rates and increased learning instability,010
as models fail to adapt to evolving sample util-011
ities effectively. To address this problem, we012
introduce ADORA (Advantage Dynamics via013
Online Rollout Adaptation), a simple yet ef-014
fective reinforcement learning technique that015
dynamically differentiates training data into016
temporarily advantageous and disadvantageous017
samples through model rollouts guided by a018
tailored data differentiation strategy. Instead of019
static optimization, ADORA adjusts advantage020
signals on the fly, enabling more efficient pol-021
icy updates. Extensive evaluations on various022
tasks demonstrate that ADORA significantly023
enhances long chain-of-thought reasoning in024
both mathematical and geometric tasks across025
large language models and vision–language026
models, achieving notable performance gains.027

1 Introduction028

Recently, R1-like reasoning models have attracted029

significant attention for their remarkable perfor-030

mance on challenging mathematical reasoning031

tasks through extensive chains of thought in both032

LLMs (Liu et al., 2025) and VLMs (Shen et al.,033

2025). The technical report introducing R1 (Guo034

et al., 2025) has already demonstrated that rein-035

forcement learning (RL) fine-tuning plays a pivotal036

role in enabling this reasoning capability. In partic-037

ular, Group Relative Policy Optimization (GRPO)038

(Zhang and Zuo, 2025), which removes the critic039

network and replaces Generalized Advantage Es-040

timator (GAE) (Schulman et al., 2015) with a041

rule-based, outcome-driven reward scheme, has042

emerged as a promising alternative to traditional 043

methods such as PPO (Schulman et al., 2017) and 044

DPO (Rafailov et al., 2023), primarily due to its 045

efficiency and its intrinsic compatibility with lan- 046

guage model training. 047

However, existing GRPO implementations still 048

face substantial limitations. One key issue is that 049

the static computation of sample utility implicitly 050

assumes that the informativeness of each training 051

example remains constant throughout policy opti- 052

mization, thereby ignoring the dynamic nature of 053

learning and severely hindering both training effi- 054

ciency and the performance ceiling of RL. Specif- 055

ically, as the model is trained and the policy im- 056

proves, the learning signal provided by the same 057

example changes over different training iterations. 058

Some samples may provide significant learning 059

opportunities at certain stages, while others may 060

involve concepts that are either already mastered 061

or beyond the model’s current capacity to learn 062

effectively. Treating all samples with uniform im- 063

portance, or with pre-defined static weights, fails 064

to leverage this dynamic utility, potentially leading 065

to suboptimal learning trajectories and inefficient 066

use of data, as also noted by observations that cur- 067

rent methods lack robust mechanisms for handling 068

samples of varying utility during training (Ye et al., 069

2025). 070

To address this limitation, we propose that a sam- 071

ple’s advantage should evolve alongside the policy. 072

We introduce ADORA (Advantage Dynamics via 073

Online Rollout Adaptation), a novel RL frame- 074

work designed to dynamically calibrate advantage 075

estimation. ADORA categorizes training data 076

into Temporarily Advantageous Samples (TAS) 077

and Temporarily Disadvantageous Samples (TDS) 078

based on the model’s rollout performance under a 079

predefined data differentiation strategy. It then re- 080

weights advantages—inflating those for TAS and 081

deflating those for TDS—on the fly, thereby direct- 082

ing updates to the most informative data at each 083
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training stage to accelerate convergence and boost084

data efficiency.085

We conducted extensive controlled experiments086

on both LLMs for mathematical reasoning and087

VLMs for geometry reasoning. Empirically,088

ADORA significantly improves long chain-of-089

thought reasoning and task generalization. For090

instance, on the Qwen-7B-base model, ADORA091

achieved an average of 3.4 percentage points im-092

provement over standard GRPO on math tasks.093

For VLMs, using fewer than 2,000 samples and094

no warm-starting, the Qwen2.5-VL-7B-instruct095

model achieved 73.5% accuracy on MathVista with096

ADORA.097

Our key contributions and findings include:098

• The ADORA framework: A plug-and-play099

method for dynamically calibrating advantage100

estimation weights in RL based on live rollout101

statistics.102

• Task-specific differentiation strategies: We103

designed and validated distinct strategies for104

distinguishing TAS and TDS across different105

reasoning domains, consistently demonstrat-106

ing improvements over GRPO.107

• Comprehensive empirical analysis: Ex-108

tensive experiments statistically evaluate109

ADORA’s impact on reflective token fre-110

quency, CoT length, generalization ability,111

and Pass@K scaling laws, providing insights112

into its mechanisms of action.113

2 Related Works114

Curriculum Learning. The core idea of Curricu-115

lum Learning (CL) (Bengio et al., 2009; Elman,116

1993) is to present training samples in a meaning-117

ful order, typically from easy to hard, to enhance118

learning efficiency and generalization capabilities.119

Several variants have been proposed. (Kumar et al.,120

2010)dynamically selects easier samples based on121

the model’s current prediction loss, thereby imple-122

menting an easy-to-hard training schedule. (Mati-123

isen et al., 2019)introduces a teacher-student frame-124

work where the teacher selects sub-tasks demon-125

strating the fastest learning progress for the student,126

guided by the student’s learning curve. More re-127

cently, (Wang et al., 2025) dynamically adjusts128

sampling probabilities across different data distri-129

butions to achieve an adaptive training schedule.130

(Deng et al., 2025) proposed a three-stage rein-131

forcement learning approach employing a progres-132

sive difficulty reward mechanism to optimize RL 133

training. (Wen et al., 2025) utilizes a two-stage 134

curriculum-guided training. However, methods re- 135

lying on pre-defined difficulty metrics or staged 136

curricula are often costly, complex to implement, 137

and may not be universally applicable across all 138

models. This highlights the need for more effi- 139

cient, adaptive, and model-specific data selection 140

techniques. 141

Reinforcement Learning for Reasoning in LLMs 142

and VLMs. Leveraging GRPO, DeepSeek-R1 143

(Guo et al., 2025) demonstrated significant im- 144

provements in reasoning capabilities through rule- 145

based reward reinforcement learning (RL), often 146

accompanied by the emergence of reflection tokens 147

and an increase in the length of Chain-of-Thought 148

(CoT) (Wei et al., 2022) responses. Subsequent re- 149

search has extensively applied R1-style rule-based 150

RL to LLMs (Xie et al., 2025; Zeng et al., 2025; 151

Yan et al., 2025) and VLMs (Shen et al., 2025; Li 152

et al., 2025; Meng et al., 2025). On one hand, 153

efforts have focused on optimizing GRPO. For 154

instance, (Yu et al., 2025)introduced decoupled 155

clipping and dynamic sampling strategies, among 156

other techniques, to enhance RL training stabil- 157

ity and efficiency for long-chain reasoning tasks. 158

(Zhang and Zuo, 2025)incorporated mechanisms 159

such as length-aware accuracy rewards and error 160

penalties. On the other hand, VLMs often pos- 161

sess weaker intrinsic reasoning abilities, making 162

direct RL training less effective and typically fail- 163

ing to achieve stable increases in response length. 164

This has led to strategies such as cold-starting with 165

large-scale data (Huang et al., 2025) or multi-stage 166

training, sometimes beginning with text-only data 167

to enhance model capabilities (Peng et al., 2025). 168

However, these approaches are often resource- 169

intensive, treat all samples homogeneously during 170

training, and their cross-domain transferability re- 171

mains questionable. In contrast, ADORA dynami- 172

cally assesses whether samples are ’advantageous’ 173

or ’disadvantageous’ to scale the advantage estima- 174

tion signal in real-time. This approach requires no 175

cold-start, leverages the entire dataset effectively, 176

and has demonstrated steady improvements in both 177

response length and performance for LLMs and 178

VLMs. 179

3 Method 180

This section details ADORA , our proposed frame- 181

work for dynamically guiding reinforcement learn- 182
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ing. ADORA achieves this by classifying training183

samples into TAS or TDS categories based on the184

model’s live rollouts. The core idea is to make the185

model focus its learning effort on TAS, with this186

classification evolving dynamically as training pro-187

gresses. We first briefly review GRPO, the baseline188

upon which ADORA builds.189

3.1 GRPO190

Due to the success of Deepseek-R1 (Guo et al.,191

2025), GRPO (Shao et al., 2024) becomes the192

de facto approach with zero-RL training. Un-193

like standard PPO, GRPO eliminates the need for194

a separate value network by computing sample-195

wise advantages directly from normalized reward196

scores across multiple sampled trajectories. Let197

D = {(xi, ri)}Ni=1 be prompts with scalar rewards.198

Denote the trainable policy by πθ and a frozen ref-199

erence by πref. Given a question q, a set of sampled200

responses {τi}Ni=1 generated by the old policy πθold ,201

and a reward function R(τi), GRPO computes the202

per-sample advantage Ai as:203

Ai =
R(τi)−mean (R(τ1), . . . , R(τN ))

std (R(τ1), . . . , R(τN ))
, (1)204

This normalization is done globally over the cur-205

rent batch, meaning all Ai values within one epoch206

are determined solely by the reward values and207

are independent of the specific token-level predic-208

tions. Crucially, during training, R(τi) is indirectly209

shaped by the updated policy through its effect on210

the token-level probabilities.211

To estimate the policy update, GRPO uses token-212

level importance weights:213

ri,t(θ) =
πθ(τi,t|q, τi,<t)

πθold(τi,t|q, τi,<t)
, (2)214

The GRPO training objective is then defined as:215

JGRPO(θ) =
1∑N

i=1 |τi|

N∑
i=1

|τi|∑
t=1

min [ri,t(θ)Ai,

clip (ri,t(θ); 1− ϵ, 1 + ϵ)Ai]− β · DKL,

(3)

216

In the RL objective, GRPO follows PPO, using the217

importance sampling (ri,t in Eq. (2)) to calibrate218

the gradient as the rollouts are generated by πθold .219

The clipping threshold ϵ stabilizes training by pre-220

venting large deviations in token probability ratios.221

This makes Ai a fixed scalar weight across all to-222

kens in a sample, and its interaction with ri,t(θ)223

ensures that updates are localized to high-reward 224

trajectories. Crucially, in standard GRPO, the per- 225

sample advantage Ai is computed based on rewards 226

and remains static throughout an epoch or even the 227

entire training process for that sample. This static 228

nature, as discussed in Section (1), limits its adapt- 229

ability to the model’s evolving capabilities. 230

3.2 ADORA 231

While GRPO normalizes scalar rewards into 232

sample-level advantages Ai, it treats all samples 233

equally during training. To better leverage the het- 234

erogeneous quality and utility of training trajec- 235

tories, we propose ADORA, which dynamically 236

calibrates the advantage estimates by assigning per- 237

sample weights depending on whether a rollout is 238

deemed temporarily advantageous or disadvanta- 239

geous within the current epoch. 240

Formally, for each trajectory i, we define a scalar 241

weight wi ∈ R+ and apply it to the normalized 242

advantage: 243

Ãi = wi ·Ai, (4) 244

where Ai is the normalized reward-based advan- 245

tage as in GRPO. The ADORA training objective 246

is given by: 247

JADORA(θ) =
1∑N

i=1 |τi|

N∑
i=1

|τi|∑
t=1

min
[
ri,t(θ)Ãi,

clip (ri,t(θ); 1− ϵ, 1 + ϵ) Ãi

]
− β · DKL,

(5)

248

Since wi is trajectory-level and independent of sam- 249

pled actions, this modification preserves the unbi- 250

asedness of the policy gradient. 251

Two key questions must be addressed: 252

1. How to determine whether a sample is advan- 253

tageous or not? 254

2. How to assign a corresponding weight wi that 255

reflects its training utility? 256

VLM Case: Length-Based Advantage Atten- 257

uation (Subtraction): Visual language models 258

(VLMs) often exhibit weak multi-hop reasoning 259

capabilities in the early stages of RL training. Stan- 260

dard GRPO optimization, with its static advantages, 261

can thus overfit on short, trivial responses if these 262

yield high initial rewards, hindering progress on 263

complex, long-horizon reasoning tasks. ADORA 264

employs an attenuation strategy for VLMs to penal- 265

ize unpromising samples. Specifically, we define 266
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a sample as temporarily disadvantageous if its suc-267

cessful rollout length does not significantly exceed268

the average length of unsuccessful rollouts:269

Specifically, We define a length advantage as:270

Length_adv ⇐⇒
max(lengthcorrect) > mean(lengthincorrect),

(6)
271

Based on this criterion, we assign:272

wi =

{
1, if Length_adv
0.1, otherwise

, (7)273

Temporarily advantageous samples retain their274

full advantage signal (wi = 1), while temporarily275

disadvantageous ones are down-weighted (wi =276

0.1). This "subtraction" mechanism reduces the277

negative impact of samples that are currently un-278

helpful for long-horizon learning.279

LLM Case: Length + Difficulty-Based Ad-280

vantage Amplification (Addition): In contrast,281

large language models (LLMs) for tasks like math282

reasoning may already possess moderate reason-283

ing ability at initialization. Under GRPO, re-284

sponse lengths tend to grow, and many samples285

can provide useful learning signals. Therefore,286

rather than primarily suppressing low-utility sam-287

ples, ADORA for LLMs focuses on amplifying288

the signal from high-value samples—those that are289

both difficult and demonstrate promising reasoning290

depth.291

We additionally define a difficulty advantage as:292

Difficulty_adv ⇐⇒ Correct rate ≤ 0.5, (8)293

and again reuse Length_adv from above. We then294

assign:295

wi =

{
2, if Difficulty_adv & Length_adv
1, otherwise

(9)296

Temporarily advantageous samples (those that are297

harder and longer) receive an amplified learning298

signal (wi = 2), while others retain their original299

strength (wi = 1). This "addition" effect reinforces300

learning from challenging and instructive samples,301

promoting curriculum-style progression.302

In summary, ADORA introduces a general and303

lightweight mechanism to enhance GRPO via dy-304

namic advantage calibration. By re-weighting train-305

ing samples adaptively, it supports more targeted306

policy optimization across both weak (VLM) and307

strong (LLM) model regimes.308

3.3 Algorithm 309

Algorithm 1 shows an ADORA instantiation. 310

ADORA-GRPO replaces the value function with 311

group baselines (Shao et al., 2024).

Algorithm 1 ADORA-GRPO
Input: Policy πθ, reference πref, data D

1: Initialise Adam optimiser
2: repeat
3: Sample mini-batch {xi}Bi=1 ∼ D
4: Generate actions ai ∼ πθ(·|xi) and re-

wards ri
5: Compute advantages Âi via GRPO
6: wi ← weight_func(ξi)
7: Ãi ← wi · Âi (ADORA)
8: Update θ ← θ − η∇θLADORA
9: until convergence or budget exhausted

312
Implementation: In practice, the dynamic 313

weighting can be implemented as: 314

wi = weight_func(seqs, rewards, aux_info),
(10) 315

where weight_func computes wi from rollout 316

statistics such as CoT length and correct rate. 317

4 Experiment 318

To empirically validate the efficacy of ADORA, we 319

conduct a series of controlled experiments across 320

both LLMs for mathematical reasoning and VLMs 321

for geometry reasoning. Our primary goal is to 322

demonstrate that ADORA’s dynamic advantage cal- 323

ibration leads to improved performance and train- 324

ing efficiency compared to a baseline GRPO. We 325

select Qwen2.5-7B-Base (Yang et al., 2024) for 326

LLM tasks and Qwen2.5-VL-7B (Bai et al., 2025) 327

for VLM tasks. This experimental setup allows 328

us to directly test our central hypothesis: dynami- 329

cally adjusting advantage weights based on rollout 330

statistics enhances the learning process for complex 331

reasoning. 332

Part-1: VLM 333

ADORA and the baseline GRPO were initialized 334

with Qwen2.5-VL-7B-Instruct and directly trained 335

via Reinforcement Learning (RL) on 2000 sam- 336

ples from the Geometry3K training set (Lu et al., 337

2021), without a cold-start phase. Detailed train- 338

ing hyperparameter settings are reported at (A). 339

All training was conducted over three independent 340

runs, with average performance reported. For eval- 341

uation, VLM performance was primarily assessed 342
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Model Base model Cold-Start Data RL Data

MM-EUREKA-8B (Meng et al., 2025) InternVL2.5-8B-Ins 54k (open-source) 9.3k (open-source)

MMR1-math-v0 (Leng* et al., 2025) Qwen2.5-VL-7B-Ins None 6k (open-source)

Vision-R1-7B (Huang et al., 2025) Qwen2.5-VL-7B-Ins 200k (synthetic data) 10k (open-source)

ADORA (ours) Qwen2.5-VL-7B-Ins None 2k (open-source)

Table 1: Cold-Start and RL training data comparison of multimodal methods with different base models.

Figure 1: Training dynamics comparison of GRPO
vs ADORA on Qwen2.5-VL-7B-Instruct (geometry3k).
GRPO exhibits stagnant response length growth with
KL/policy loss outliers. ADORA achieves sustained
length expansion with stabilized optimization at the cost
of slight training reward degradation because it performs
"subtraction" on VLMs. Benchmark results demonstrate
ADORA’s superior in/out-of-domain task performance.

on MathVista (Lu et al., 2023) and MMStar (Chen343

et al., 2024) datasets using a sampling temperature344

of 0. MathVista contains 44.7% In-Domain (id)345

geometric tasks and 55.3% Out-of-Domain (ood)346

non-geometric samples.The evaluation metric was347

pass@1, with results averaged over three runs.348

(Meng et al., 2025; Leng* et al., 2025; Huang349

et al., 2025)have reproduced R1 on VLMs. Ta-350

ble (1) presents the resource configurations for351

ADORA and these works in terms of base model352

selection, cold-start usage, and the amount of353

training data at each stage. It demonstrates that354

ADORA operates without a cold start and utilizes355

minimal data. The results in Table (2) indicate356

ADORA’s significant improvements over the base-357

line GRPO on all metrics. Specifically, ADORA358

achieves 73.5% on MathVista, matching Vision-359

R1-7B (Huang et al., 2025) and considerably out-360

performing Claude3.7-Sonnet and Gemini2-flash,361

alongside stronger OOD capabilities. Although362

ADORA’s performance on MMStar is slightly363

(0.1%) below Qwen2.5-VL-7B, this is still a sub-364

stantial gain over GRPO, which underperformed365

Model
MathVista

MMStar

avg id ood

Qwen2.5-VL-7B-Instruct 67.3 69.6 65.5 63.9

Claude3.7-Sonnet 66.8 - - -

Gemini2-flash 70.4 - - -

MM-EUREKA-8B 68.1 73.4 63.8 64.3

MMR1-math-v0 70.2 72.3 68.5 64.9
Vision-R1-7B (report) 73.5 81.9 66.8 -

GRPO 70.2 71.6 69.1 61.9

ADORA (ours) 73.5 76.1 71.4 63.8

Table 2: Zero-shot pass@1 performance on benchmarks
across various difficulty based on Qwen2.5-VL-7B-Ins.
Dashes (–) denote unavailable official scores. Bold and
underline represent the 1st and 2nd in performan.

Qwen2.5-VL-7B by 2%. This slight variance is 366

attributed to the potential limitations of employing 367

homogeneous training data. 368

Part-2: LLM 369

We conducted RL training directly on Qwen2.5-7b- 370

base with the Math dataset (Hendrycks et al., 2021), 371

which contains 12,000 samples, and used Math- 372

Verify to perform rule-based outcome verification 373

using Math500 (Hendrycks et al., 2021) as the test 374

set. For both GRPO and ADORA, we carried out 375

three separate RL training runs and reported the 376

average performance. Detailed training hyperpa- 377

rameter settings are reported at (A). For evaluation, 378

we mainly focus on seven widely used math reason- 379

ing benchmarks, including GSM8K (Cobbe et al., 380

2021),Gaokao2023 (Zhang et al., 2024), College- 381

Math (Tang et al., 2024), AIME24, AMC23 (Li 382

et al., 2024), OlympiadBench (He et al., 2024), and 383

MATH500 (Hendrycks et al., 2021). For all those 384

benchmarks, we report pass@1, setting the sam- 385

pling temperature to 0 and repeating the evaluation 386

three times, taking the average result. 387

Table (3) reports the performance of ADORA 388
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Model GSM8K Math500 AMC23 Gaokao2023 CollegeMath OlympiadBench AIME24 Avg

Qwen2.5-7B-base 56.3 57.2 37.5 42.0 24.3 26.3 10.0 36.2
GRPO 89.1 73.2 50.0 52.7 28.6 35.1 13.3 48.7

ADORA + L_adv 90.0 74.8 52.5 53.0 29.0 34.6 16.7 50.2
ADORA + D_adv 90.3 75.0 55.0 52.7 28.8 35.4 16.7 50.7
ADORA + L_adv + D_adv 89.6 76.2 62.5 54.3 29.3 36.0 16.7 52.1

Table 3: Zero-shot pass@1 performance on math benchmarks across various difficulty based on Qwen2.5-7B-base.
L_adv and D_adv represent the Length_adv and the Difficulty_adv used in data classification. Bold and
underline represent the 1st and 2nd in performan.

Figure 2: Training dynamics comparison of GRPO
vs ADORA on Qwen2.5-7B-base. As training pro-
gresses, GRPO exhibits a non-monotonic trend in chain-
of-thought (CoT) length, initially increasing and subse-
quently decreasing. In contrast, ADORA demonstrates
a consistently increasing CoT length, with a growth
rate approximately three times that of GRPO. More-
over, ADORA achieves a performance improvement
over GRPO on the Math500 test set.

and GRPO under various settings indicating that389

ADORA achieved higher scores compared to390

GRPO. Specifically, when only the Length_adv391

(L_adv) or Difficulty_adv (D_adv) was applied,392

the performance improvement was modest. How-393

ever, when both L_adv and D_adv were used,394

ADORA consistently outperformed GRPO across395

all test sets, achieving scores such as 76.2 (+3.0) on396

Math500 and 62.5 (+12.5) on AMC23, among oth-397

ers. On average, ADORA outperformed GRPO by398

3.4 points, demonstrating that dynamically adjust-399

ing advantage estimates during training effectively400

guides the model toward learning from more bene-401

ficial samples, thereby enhancing its generalization402

capability.403

Efficiency and performance. In addition, we404

compared the differences between DAPO (Yu et al.,405

2025) and ADORA in terms of training efficiency406

and final performance. Specifically, compared to407

GRPO and ADORA, DAPO requires the training408

data advantage computation to be non-zero, which 409

leads to more efficient training. However, in terms 410

of final performance, DAPO shows no significant 411

advantage over ADORA. Furthermore, when we 412

incorporate the ADORA method on top of DAPO, 413

both the training efficiency and final performance 414

are further improved. 415

5 Analysis 416

Beyond achieving superior aggregate performance, 417

understanding of how ADORA improves reason- 418

ing is crucial. This section analyzes ADORA’s 419

impact on model behavior and learning dynam- 420

ics relative to the GRPO baseline. We investi- 421

gate several facets: the induced cognitive patterns 422

via reflection frequency (Section (5.1)), structural 423

changes in model outputs via length distributions 424

(Section (5.2)), the adaptive learning trajectory 425

(Section (5.3)), and the upper-bound reasoning ca- 426

pabilities through Pass@K analysis (Section (5.4)). 427

These analyses collectively illuminate the mecha- 428

nisms underlying ADORA’s effectiveness. 429

5.1 Reflection Frequency 430

A key aspect of understanding how different rein- 431

forcement learning strategies influence reasoning 432

capabilities lies in examining the model’s explicit 433

thought processes. Section (5.1) delves into the fre- 434

quency of reflective vocabulary, providing insights 435

into the cognitive behaviors fostered by ADORA 436

compared to the baseline GRPO method across 437

various mathematical benchmarks, as illustrated in 438

Figure 3. This analysis aims to quantify the ten- 439

dency of models to engage in self-monitoring, ver- 440

ification, and structured thinking during problem- 441

solving. 442

Two major trends are observed: Increased use 443

of core reflective terms: Words that directly in- 444

dicate verification, evaluation, and deliberate rea- 445

soning—such as "verify", "evaluate", "consider", 446
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Figure 3: Distribution of Reasoning-Related Keywords
for GRPO and ADORA across Various Reasoning
Benchmarks.

"reflect" and "check"—appear more frequently in447

the outputs of models trained with ADORA across448

most benchmarks. For instance, the use of "verify"449

is markedly higher on the AIME 2024 benchmark,450

while "evaluate" shows similar trends on AMC23451

and MATH500. More structured and transi-452

tional language: Terms that signal structured rea-453

soning, such as "but" and "however" are also used454

more frequently by ADORA-trained models on455

several benchmarks (e.g., MATH500, Olympiad-456

Bench). In addition, compared with GRPO, the457

frequency of the word "steps" drops significantly458

in ADORA.459

By dynamically calibrating advantage estimates,460

ADORA preferentially rewards trajectories exhibit-461

ing deeper reasoning, cautious verification, and462

structured expression. Assigning greater learning463

weight to TAS directly reinforces the associated464

cognitive behavior patterns and lexical expressions.465

Compared to the standard GRPO approach, the466

ADORA training framework more effectively en-467

courages the model to develop a reasoning style468

characterized by more frequent self-reflection, ver-469

ification, and structured thinking. This shift in470

cognitive behavior, as reflected in the model’s out-471

put text, represents a key underlying factor be-472

hind ADORA’s performance gains across evaluated473

mathematical reasoning tasks.474

5.2 Distribution of Length Differences475

This section examines how reinforcement learn-476

ing frameworks influence response length, a struc-477

tural characteristic indicative of Chain-of-Thought478

(CoT) elaboration and reasoning depth. Figure 4479

consistently shows that across multiple bench-480

marks, ADORA-trained models produce longer re-481

sponses than GRPO-trained models, evidenced by482

rightward-shifted and heavier-tailed token length483

distributions for ADORA. 484

Figure 4: Comparison of Token Length Distributions
Generated by GRPO and ADORA across Various Rea-
soning Benchmarks.

These longer responses under ADORA suggest 485

more elaborate reasoning, clearer articulation, and 486

thorough verification, offering greater "cognitive 487

space" for complex problems; this aligns with Fig- 488

ure 1 and 2, where ADORA’s CoT length grows 489

significantly faster during training. Conversely, 490

GRPO’s tendency for shorter responses may in- 491

dicate premature convergence to incomplete solu- 492

tions due to shallower reasoning. Overall, ADORA 493

impacts not only qualitative aspects (reflective vo- 494

cabulary) but also quantitatively alters output struc- 495

ture (response length). By encouraging longer, 496

more detailed responses, ADORA better equips 497

models for complex tasks, further supporting its ef- 498

fectiveness through dynamic advantage calibration. 499

5.3 How ADORA affects the learning 500

trajectory of RL? 501

To gain deeper insight into how the ADORA frame- 502

work optimizes the reinforcement learning process 503

through dynamic adjustment of advantage estima- 504

tion, this section aims to examine ADORA’s con- 505

crete influence on the model’s learning trajectory. 506

The central question is: how does ADORA dy- 507

namically select and emphasize training samples 508

of varying difficulty and type based on the model’s 509

real-time performance during training? Through 510

both visualization and quantitative analysis on 2K 511

samples of the Geometry3K dataset, we investigate 512

how ADORA distinguishes between TAS and TDS 513

throughout training iterations, and how this distinc- 514

tion guides the model to progressively tackle more 515

challenging problems. 516

Figure 5 and Figure 6 reveal that ADORA per- 517

forms better when selecting half of the data in each 518

epoch, and the number of "selected samples" de- 519

creases as the epochs progress. In terms of dif- 520
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Figure 5: The blue sections represent the samples se-
lected for each epoch (clustered for easier visualiza-
tion), while the red sections illustrate the distribution of
samples under different Correct N settings in once sam-
pling, representing the difficulty of the samples, both
of which gradually deepen as epochs progress. The top
and bottom rows (from left to right) respectively show
the changes in TAP and TDP as the difficulty increases
(Correct 0, Correct 1-3, Correct 4-7, Correct 8).

Figure 6: The changes in the number of samples of each
difficulty level for the two corresponding categories of
samples across epochs.

ficulty, "unselected samples" are mostly simple521

ones, while more difficult samples tend to require522

repeated selection as "selected samples" for addi-523

tional training. However, as the epochs progress,524

the model consistently fails to find the correct525

answers for over 600 difficult samples. Mean-526

while, an increasing number of mastered tasks are527

added to the "unselected samples", meaning they528

no longer require excessive training by the model.529

Compared to the standard GRPO method,530

ADORA employs an "Easy to hard; iterate if chal-531

lenged." optimization strategy in its learning trajec-532

tory, enabling the model to build a more robust ca-533

pability reserve when tackling subsequently harder534

samples. This dynamic sample prioritization mech-535

anism not only accelerates the model’s generaliza-536

tion on medium-difficulty examples but also sig-537

nificantly reduces redundant training on easy ones,538

making it a key factor in ADORA’s performance 539

breakthroughs on geometry reasoning tasks. 540

5.4 PASS@K: ADORA vs. GRPO 541

Figure 7: Pass@k curves of base model and
ADORA/GRPO across multiple mathematical bench-
marks.

The Pass@K metric, which assesses if a model 542

can correctly solve a problem in at least one of K 543

attempts (thus indicating its upper-bound reasoning 544

capability), was used to compare ADORA against 545

GRPO in Figure 7. Consistent with prior findings 546

(Yue et al., 2025), We manually inspect to ensure 547

that the problem-solving process is not coinciden- 548

tal and observe that ADORA consistently outper- 549

formed or matched GRPO across benchmarks, with 550

both RL methods significantly surpassing the base 551

model at smaller K values. Interestingly, while the 552

base model sometimes overtook both at larger K, 553

ADORA notably achieved 100% accuracy on the 554

AMC dataset with fewer than 64 samples, outper- 555

forming both GRPO and the base model. 556

These Pass@K comparisons highlight ADORA’s 557

strength: it not only improves efficiency in reaching 558

known solutions but also appears to expand the set 559

of viable reasoning paths the model can explore. 560

This creates a broader "solvable problem space," 561

enabling ADORA-trained models, given enough 562

attempts, to solve problems where GRPO-trained 563

counterparts might still struggle. 564

6 Conclusion 565

ADORA dynamically calibrates reinforcement 566

learning advantages via online rollouts, signifi- 567

cantly enhancing reasoning performance and ef- 568

ficiency for both LLMs and VLMs by differentiat- 569

ing sample utility. Further analysis elucidates the 570

mechanisms behind ADORA’s effectiveness, de- 571

tailing its influence on reflective reasoning patterns, 572

output elaboration, adaptive learning trajectories, 573

and overall reasoning capabilities. 574
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Limitations575

(1)Specific differentiation strategies may require576

tuning for new tasks/models: This implies that the577

definitions of Temporarily Advantageous Samples578

(TAS) and Temporarily Disadvantageous Samples579

(TDS) within ADORA, along with their weight ad-580

justment mechanisms, might not be universally ap-581

plicable. When applying ADORA to new tasks or582

models, these strategies may need to be redesigned583

or adjusted. (2)Efficacy is tied to rollout qual-584

ity: ADORA relies on the outcomes of the model’s585

online rollouts to dynamically assess sample util-586

ity. If the quality of these rollouts is low (e.g.,587

the model generates poor-quality reasoning trajec-588

tories), then the classification of samples and the589

subsequent weight adjustments may be inaccurate,590

consequently impacting overall training effective-591

ness.592
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A Training Hyperparameter Details777

To conduct a rigorous controlled experiment, we778

consistently use the same detailed training hyper-779

parameter settings for GRPO and ADORA.780

LLM Training Settings. Based on Qwen2.5-7B-781

Base, we set the KL coefficient to 0.001 and the782

entropy coefficient to 0. Our rollout batch size783

is 256, and the update batch size is 128. Rollout784

generation is performed with a temperature of 1.0,785

generating 5 responses per sample, with a maxi-786

mum response length of 4096 tokens. The learning787

rate is fixed at 1e-6 throughout training.788

VLM Training Settings. Based on Qwen2.5-VL-789

7B-Ins, we set the KL coefficient to 0.001 and the790

entropy coefficient to 0. Our rollout batch size791

is 128, and the update batch size is 128. Rollout792

generation is performed with a temperature of 1.0,793

generating 8 responses per sample, with a maxi-794

mum response length of 4096 tokens. The learning795

rate is fixed at 1e-6 throughout training.796
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B Study Cases797

Figure 8: Comparative analysis of responses to AMC Problem 48. The Base model, lacking verification, incorrectly
solves the problem. GRPO exhibits hallucinated reasoning steps. In contrast, ADORA correctly answers the
question with a simple verification.
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Figure 9: Comparative analysis of responses to MathVista Problem 819. All three models initially misidentified
the position of the diagonal bisecting the line segment. Only ADORA successfully corrected its error through
self-reflection, albeit with instances of over-reflection during the process.
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