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Abstract

Diffusion probabilistic models have been shown to generate state-of-the-art results on sev-
eral competitive image synthesis benchmarks but lack a low-dimensional, interpretable latent
space, and are slow at generation. On the other hand, standard Variational Autoencoders
(VAEs) typically have access to a low-dimensional latent space but exhibit poor sample
quality. We present DiffuseVAE, a novel generative framework that integrates VAE within
a diffusion model framework, and leverage this to design novel conditional parameteriza-
tions for diffusion models. We show that the resulting model equips diffusion models with
a low-dimensional VAE inferred latent code which can be used for downstream tasks like
controllable synthesis. The proposed method also improves upon the speed vs quality trade-
off exhibited in standard unconditional DDPM/DDIM models (for instance, FID of 16.47
vs 34.36 using a standard DDIM on the CelebA-HQ-128 benchmark using T=10 reverse
process steps) without having explicitly trained for such an objective. Furthermore, the
proposed model exhibits synthesis quality comparable to state-of-the-art models on stan-
dard image synthesis benchmarks like CIFAR-10 and CelebA-64 while outperforming most
existing VAE-based methods. Lastly, we show that the proposed method exhibits inherent
generalization to different types of noise in the conditioning signal. For reproducibility, our
source code is publicly available at https://github.com/kpandey008/DiffuseVAE.

1 Introduction

Generative modeling is the task of capturing the underlying data distribution and learning to generate novel
samples from a posited explicit/implicit distribution of the data in an unsupervised manner. Variational
Autoencoders (VAEs) (Kingma & Welling, 2014; Rezende & Mohamed, 2016) are a type of explicit-likelihood
based generative models which are often also used to learn a low-dimensional latent representation for the
data. The resulting framework is very flexible and can be used for downstream applications, such as learning
disentangled representations (Higgins et al., 2017; Chen et al., 2019; Burgess et al., 2018), semi-supervised
learning (Kingma et al., 2014), anomaly detection (Pol et al., 2020), among others. However, in image
synthesis applications, VAE generated samples (or reconstructions) are usually blurry and fail to incorporate
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Figure 1: DiffuseVAE generated samples on the CelebA-HQ-256 (Left), CelebA-HQ-128 (Middle), CIFAR-
10 (Right, Top) and CelebA-64 (Right, Bottom) datasets using just 25, 10, 25 and 25 time-steps in the
reverse process for the respective datasets. The generation is entirely driven by low dimensional latents –
the diffusion process latents are fixed and shared between samples after the model is trained (See Section
4.2 for more details).

high-frequency information (Dosovitskiy & Brox, 2016). Despite recent advances (van den Oord et al., 2018;
Razavi et al., 2019; Vahdat & Kautz, 2021; Child, 2021; Xiao et al., 2021) in improving VAE sample quality,
most VAE-based methods require large latent code hierarchies. Even then, there is still a significant gap in
sample quality between VAEs and their implicit-likelihood counterparts like GANs (Goodfellow et al., 2014;
Karras et al., 2018; 2019; 2020b).

In contrast, Diffusion Probabilistic Models (DDPM) (Sohl-Dickstein et al., 2015; Ho et al., 2020) have been
shown to achieve impressive performance on several image synthesis benchmarks, even surpassing GANs on
several such benchmarks (Dhariwal & Nichol, 2021; Ho et al., 2021). However, conventional diffusion models
require an expensive iterative sampling procedure and lack a low-dimensional latent representation, limiting
these models’ practical applicability for downstream applications.

We present DiffuseVAE, a novel framework which combines the best of both VAEs and DDPMs in an
attempt to alleviate the aforementioned issues with both types of model families. We present a novel two-
stage conditioning framework where, in the first stage, any arbitrary conditioning signal (y) can be first
modeled using a standard VAE. In the second stage, we can then model the training data (x) using a DDPM
conditioned on y and the low-dimensional VAE latent code representation of y. With some simplifying design
choices, our framework reduces to a generator-refiner framework which involves fitting a VAE on the training
data (x) itself in the first stage followed by modeling x in the second stage using a DDPM conditioned on
the VAE reconstructions (x̂) of the training data,. The main contributions of our work can be summarized
as follows:

1. A novel conditioning framework: We propose a generic DiffuseVAE conditioning framework and
show that our framework can be reduced to a simple generator-refiner framework in which blurry
samples generated from a VAE are refined using a conditional DDPM formulation (See Fig.2).
This effectively equips the diffusion process with a low dimensional latent space. As a part of
our conditioning framework, we explore two types of conditioning formulations in the second stage
DDPM model.

2. Controllable synthesis from a low-dimensional latent: We show that, as part of our model
design, major structure in the DiffuseVAE generated samples can be controlled directly using the
low-dimensional VAE latent space while the diffusion process noise controls minor stochastic details
in the final generated samples.

3. Better speed vs quality tradeoff : We show that DiffuseVAE inherently provides a better speed vs
quality tradeoff as compared to a standard DDPM model on several image benchmarks. Moreover,
combined with DDIM sampling (Song et al., 2021a), the proposed model can generate plausible
samples in as less as 10 reverse process sampling steps (For example, the proposed method achieves
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an FID (Heusel et al., 2018) of 16.47 as compared to 34.36 by the corresponding DDIM model at
T=10 steps on the CelebA-HQ-128 benchmark (Karras et al., 2018)).

4. State of the art comparisons: We show that DiffuseVAE exhibits synthesis quality comparable to
recent state-of-the-art on standard image synthesis benchmarks like CIFAR-10 (Krizhevsky, 2009),
CelebA-64 (Liu et al., 2015)) and CelebA-HQ (Karras et al., 2018) while maintaining access to a
low-dimensional latent code representation.

5. Generalization to different noises in the conditioning signal: We show that a pre-trained
DiffuseVAE model exhibits generalization to different noise types in the DDPM conditioning signal
exhibiting the effectiveness of our conditioning framework.

2 Background

2.1 Variational Autoencoders

VAEs (Kingma & Welling, 2014; Rezende & Mohamed, 2016) are based on a simple but principled encoder-
decoder based formulation. Given data x with a latent representation z, learning the VAE is done by
maximizing the evidence lower bound (ELBO) on the data log-likelihood, log p(x) (which is intractable to
compute in general). The VAE optimization objective can be stated as follows

L(θ, φ) = Eqφ(z|x)[log pθ(x|z)]−DKL[qφ(z|x)‖p(z)] (1)

Under amortized variational inference, the approximate posterior on the latents, i.e., (qφ(z|x)), and the
likelihood (pθ(x|z)) distribution can be modeled using deep neural networks with parameters φ and θ,
respectively, using the reparameterization trick (Kingma & Welling, 2014; Rezende & Mohamed, 2016). The
choice of the prior distribution p(z) is flexible and can vary from a standard Gaussian (Kingma & Welling,
2014) to more expressive priors (van den Berg et al., 2019; Grathwohl et al., 2018; Kingma et al., 2017).

2.2 Denoising Diffusion Probabilistic Models

DDPMs (Sohl-Dickstein et al., 2015; Ho et al., 2020) are latent-variable models consisting of a forward noising
process (q(x1:T |x0)) which gradually destroys the structure of the data x0 and a reverse denoising process
((p(x0:T ))) which learns to recover the original data x0 from the noisy input. The forward noising process
is modeled using a first-order Markov chain with Gaussian transitions and is fixed throughout training, and
the noise schedules β1 to βT can be fixed or learned. The form of the forward process can be summarized
as follows:

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1) (2)

q(xt|xt−1) = N (
√

1− βtxt−1, βtI) (3)

q(xt|x0) = N (
√
ᾱtx0, (1− ᾱt)I) where αt = (1− βt) and ᾱt =

∏
t

αt (4)

The reverse process can also be parameterized using a first-order Markov chain with a learned Gaussian
transition distribution as follows

p(x0:T ) = p(xT )
T∏
t=1

pθ(xt−1|xt) (5)

pθ(xt−1|xt) = N (µθ(xt, t),Σθ(xt, t)) (6)

Given a large enough T and a well-behaved variance schedule of βt, the distribution q(xT |x0) will approximate
an isotropic Gaussian. The entire probabilistic system can be trained end-to-end using variational inference.
During sampling, a new sample can be generated from the underlying data distribution by sampling a latent
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Figure 2: Proposed DiffuseVAE generative process under the simplifying design choices discussed in Section
3.2. DiffuseVAE is trained in a two-stage manner: The VAE encoder takes the original image x0 as input
and generates a reconstruction x̂0 which is used to condition the second stage DDPM.

(of the same size as the training data point x0) from p(xT ) (chosen to be an isotropic Gaussian distribution)
and running the reverse process. We highly encourage the readers to refer to Appendix A for a more detailed
background on diffusion models.

3 DiffuseVAE: VAEs meet Diffusion Models

3.1 DiffuseVAE Training Objective

Given a high-resolution image x0, an auxiliary conditioning signal y to be modelled using a VAE, a latent
representation z associated with y, and a sequence of T representations x1:T learned by a diffusion model,
the DiffuseVAE joint distribution can be factorized as:

p(x0:T , y, z) = p(z)pθ(y|z)pφ(x0:T |y, z) (7)

where θ and φ are the parameters of the VAE decoder and the reverse process of the conditional diffusion
model, respectively. Furthermore, since the joint posterior p(x1:T , z|y, x0) is intractable to compute, we
approximate it using a surrogate posterior q(x1:T , z|y, x0) which can also be factorized into the following
conditional distributions:

q(x1:T , z|y, x0) = qψ(z|y, x0)q(x1:T |y, z, x0) (8)

where ψ are the parameters of the VAE recognition network (qψ(z|y, x0)). As considered in previous works
(Sohl-Dickstein et al., 2015; Ho et al., 2020) we keep the DDPM forward process (q(x1:T |y, z, x0)) non-
trainable throughout training. The log-likelihood of the training data can then be obtained as:

log p(x0, y) = log
∫
p(x0:T , y, z)dx1:T dz (9)

Since this estimate is intractable to estimate analytically, we optimize the ELBO corresponding to the log-
likelihood. It can be shown that the log-likelihood estimate of the data can be approximated using the
following lower bound (See Appendix D.1 for the proof)

log p(x0, y) ≥ Eqψ(z|y,x0)[pθ(y|z)]−DKL(qψ(z|y, x0)||p(z))︸ ︷︷ ︸
LVAE

+

Ez∼q(z|y,x0)

[
Eq(x1:T |y,z,x0)

[
pφ(x0:T |y, z)
q(x1:T |y, z, x0)

]
︸ ︷︷ ︸

LDDPM

]
(10)

We next discuss the choice of the conditioning signal y, some simplifying design choices and several param-
eterization choices for the VAE and the DDPM models.
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3.2 Simplifying design choices

In this work we are interested in unconditional modeling of data. To this end, we make the following
simplifying design choices:

1. Choice of the conditioning signal y: We assume the conditioning signal y to be x0 itself which
ensures a deterministic mapping between y and x0. Given this choice, we do not condition the
reverse diffusion process on y and take it as pφ(x0:T |z) in Eq. 10.

2. Choice of the conditioning signal z: Secondly, instead of conditioning the reverse diffusion
directly on the VAE inferred latent code z, we condition the second stage DDPM model on the VAE
reconstruction x̂0 which is a deterministic function of z.

3. Two-stage training: We train Eq. 10 in a sequential two-stage manner, i.e., first optimizing LVAE
and then optimizing for LDDPM in the second stage while fixing θ and ψ (i.e. freezing the VAE
encoder and the decoder).

With these design choices, as shown in Fig. 2, the DiffuseVAE training objective reduces to simply training
a VAE model on the training data x0 in the first stage and conditioning the DDPM model on the VAE
reconstructions in the second stage. We next discuss the specific parameterization choices for the VAE and
DDPM models. We also justify these design choices in Appendix E.

3.3 VAE parameterization

In this work, we only consider the standard VAE (with a single stochastic layer) as discussed in Section
2.1. However, in principle, due to the flexibility of the DiffuseVAE two-stage training, more sophisticated,
multi-stage VAE approaches as proposed in (Razavi et al., 2019; Child, 2021; Vahdat & Kautz, 2021) can
also be utilized to model the input data x0. One caveat of using multi-stage VAE approaches is that we
might no longer have access to the useful low-dimensional representation of the data.

3.4 DDPM parameterization

In this section, we discuss the two types of conditional DDPM formulations considered in this work.

3.4.1 Formulation 1

In this formulation, we make the following simplifying assumptions

1. The forward process transitions are conditionally independent of the VAE reconstructions x̂ and the
latent code information z i.e. q(x1:T |z, x0) ≈ q(x1:T |x0).

2. The reverse process transitions are conditionally dependent on only the VAE reconstruction, i.e.,
p(x0:T |z) ≈ p(x0:T |x̂0)

A similar parameterization has been considered in recent work on conditional DDPM models (Ho et al.,
2021; Saharia et al., 2021). We concatenate the VAE reconstruction to the reverse process representation xt
at each time step t to obtain xt−1.

3.4.2 Formulation 2

In this formulation, we make the following simplifying assumptions

1. The forward process transitions are conditionally dependent on the VAE reconstruction, i.e.,
q(x1:T |z, x0) ≈ q(x1:T |x̂0, x0)
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(a) Formulation-1 (b) Formulation-2

Figure 3: Illustration of the generator-refiner framework in DiffuseVAE. The VAE generated samples (Bottom
row) are refined by the Stage-2 DDPM model with T=1000 during inference (Top Row).

2. The reverse process transitions are conditionally dependent on only the VAE reconstruction, i.e.,
p(x0:T |z) ≈ p(x0:T |x̂0)

Specifically, we design the forward process transitions to incorporate the VAE reconstruction x̂0 as follows:

q(x1|x0, x̂0) = N (
√

1− β1x0 + x̂0, β1I) (11)

q(xt|xt−1, x̂0) = N (
√

1− βtxt−1 + (1−
√

1− βt)x̂0, βtI) for t > 1

It can be shown that the forward conditional marginal in this case becomes (See Appendix D.2 for proof)

q(xt|x0, x̂0) = N (
√
ᾱtx0 + x̂0, (1− ᾱt)I) (12)

For t = T and a well-behaved noise schedule βt, ᾱT ≈ 0 which implies q(xT |x0, x̂0) ≈ N (x̂0, I). Intuitively,
this means that the Gaussian N (x̂0, I) becomes our base measure (p(xT )) during inference on which we need
to run our reverse process. Since the simplified denoising training formulation proposed in (Ho et al., 2020)
depends on the functional form of the forward process posterior q(xt−1|xt, x0), this formulation results in
several modifications in the standard DDPM training and inference which are discussed in Appendix B.

4 Experiments

We now investigate several properties of the DiffuseVAE model. We use a mix of qualitative and quan-
titative evaluations for demonstrating these properties on several image synthesis benchmarks including
CIFAR-10 (Krizhevsky, 2009), CelebA-64 (Liu et al., 2015), CelebA-HQ (Karras et al., 2018) and LHQ-256
(Skorokhodov et al., 2021) datasets. For quantitative evaluations involving sample quality, we use the FID
(Heusel et al., 2018) metric. We also report the Inception Score (IS) metric (Salimans et al., 2016) for state-
of-the-art comparisons on CIFAR-10. For all the experiments, we set the number of diffusion time-steps
(T ) to 1000 during training. The noise schedule in the DDPM forward process was set to a linear schedule
between β1 = 10−4 and β2 = 0.02 during training. More details regarding the model and training hyperpa-
rameters can be found in Appendix F. Some additional experimental results are presented in Appendix G.

4.1 Generator-refiner framework

Fig. 3 shows samples generated from the proposed DiffuseVAE model trained on the CelebA-HQ dataset at
the 128 x 128 resolution and their corresponding Stage-1 VAE samples. For both DiffuseVAE formulations-1
and 2, DiffuseVAE generated samples (Fig. 3 (Top row) are a refinement of the blurry samples generated by
our single-stage VAE model (Bottom row).
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Non-smooth interpolations

Smooth interpolations

Figure 4: DiffuseVAE samples generated by linearly interpolating in the VAE latent space (Formulation-
1, T=1000). λ denotes the interpolation factor. Middle row: VAE generated interpolation between two
samples. Top row: Corresponding DDPM refinements for VAE samples in the Middle Row. Bottom row:
DDPM refinements for VAE samples in the Middle Row with shared DDPM stochasticity among all samples.

FID@10k ↓

Baseline VAE 87.28
Baseline VAE + DDPM Refiner (Form-1) 10.87
Baseline VAE + DDPM Refiner (Form-2) 11.44

Table 1: Quantitative Illustration of the generator-refiner framework in DiffuseVAE for the CelebA-HQ (128
x 128) dataset. FID reported on 10k samples (Lower is better)

This observation qualitatively validates our generator-refiner framework in which the Stage-1 VAE model
acts as a generator and the Stage-2 DDPM model acts as a refiner. The results in Table 1 quantitatively
justify this argument where on the CelebA-HQ-128 benchmark, DiffuseVAE improves the FID score of a
baseline VAE by about eight times. Additional qualitative results demonstrating this observation can be
found in Fig. 13.

4.2 Controllable synthesis via low-dimensional DiffuseVAE latents

4.2.1 DiffuseVAE Interpolation

The proposed DiffuseVAE model consists of two types of latent representations: the low-dimensional VAE
latent code zvae and the DDPM intermediate representations x1:T associated with the DDPM reverse process
(which are of the same size of the input image x0 and thus might not be beneficial for downstream tasks). We
next discuss the effects of manipulating both zvae and xT . Although, it is possible to inspect interpolations
on the intermediate DDPM representations x1:T−1, we do not investigate this case in this work. We consider
the following interpolation settings:

Interpolation in the VAE latent space zvae: We first sample two VAE latent codes z(1)
vae and z(2)

vae using
the standard Gaussian distribution. We then perform linear interpolation between z(1)

vae and z(2)
vae to obtain

intermediate VAE latent codes z̃vae = λz
(1)
vae + (1− λ)z(2)

vae for (0 < λ < 1), which are then used to generate
the corresponding DiffuseVAE samples.

Fig. 4 (Middle Row) shows the VAE samples generated by interpolating between two sampled VAE codes
as described previously. The corresponding DiffuseVAE generated samples obtained by interpolating in the
zvae space are shown in Fig. 4 (Top Row). It can be observed that the refined samples corresponding to the
blurry VAE samples preserve the overall structure of the image (facial expressions, hair style, gender etc).
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VAE Samples

Figure 5: DiffuseVAE samples generated by linearly interpolating in the xT latent space (Formulation-1,
T=1000). λ denotes the interpolation factor.

However, due to the stochasticity in the reverse process sampling in the second stage DDPM model, minor
image details (like lip color and minor changes in skin tone) do not vary smoothly between the interpolation
samples due to which the overall interpolation is not smooth. This becomes more clear when interpolating
the DDPM latent xT while keeping the VAE code zvae fixed as discussed next.

Interpolation in the DDPM latent space with fixed zvae: Next, we sample the VAE latent code zvae
using the standard Gaussian distribution. With a fixed zvae, we then sample two initial DDPM represen-
tations x(1)

T and x
(2)
T from the reverse process base measure p(xT ). We then perform linear interpolation

between x
(1)
T and x

(2)
T with a fixed zvae to generate the final DiffuseVAE samples (Note that interpola-

tion is not performed on other DDPM latents, x1:T , which are obtained using ancestral sampling from the
corresponding xT ’s as usual).

Fig 5 shows the DiffuseVAE generated samples with a fixed zvae and the interpolated xT . As can be
observed, interpolating in the DDPM latent space leads to changes in minor features (skin tone, lip color,
collar color etc.) of the generated samples while major image structure (face orientation, gender, facial
expressions) is preserved across samples. This observation implies that the low-dimensional VAE latent
code mostly controls the structure and diversity of the generated samples and has more entropy than the
DDPM representations xT , which carry minor stochastic information. Moreover, this results in non-smooth
DiffuseVAE interpolations. We discuss a potential remedy next.

Handling the DDPM stochasticity: The stochasticity in the second stage DDPM sampling process can
occasionally result in artifacts in DiffuseVAE samples which might be undesirable in downstream applications.
To make the samples generated from DiffuseVAE deterministic (i.e. controllable only from zvae), we simply
share all stochasticity in the DDPM reverse process (i.e. due to xT and zt) across all generated samples. This
simple technique adds more consistency in our latent interpolations as can be observed in Fig. 4 (Bottom
Row) while also enabling deterministic sampling. This observation is intuitive as initializing the second stage
DDPM in DiffuseVAE with different stochastic noise codes during sampling might be understood as imparting
different styles to the refined sample. Thus, sharing this stochasticity in DDPM sampling across samples
implies using the same stylization for all refined samples leading to smoothness between interpolations.
Having achieved more consistency in our interpolations, we can now utilize the low-dimensional VAE latent
code for controllable synthesis which we discuss next.

4.2.2 From Interpolation to Controllable Generation

Since DiffuseVAE gives us access to the entire low dimensional VAE latent space, we can perform image
manipulation by performing vector arithmetic in the VAE latent space (See Appendix G.2 for details). The
resulting latent code can then be used to sample from DiffuseVAE to obtain a refined manipulated image. As
discussed in the previous section, we share the DDPM latents across samples to prevent the generated samples
from using different styles. Fig. 6 demonstrates single-attribute image manipulation using DiffuseVAE on
several attributes like Gender, Age and Hair texture. Moreover, the vector arithmetic in the latent space can
be composed to generate composite edits (See Fig. 6), thus signifying the usefulness of a low-dimensional
latent code representation. Some additional results on image manipulation are illustrated in Fig. 14.
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Original Black Hair YoungMale Eyeglasses Receding
Hairline

Original Male Young Black Hair

Figure 6: Controllable generation on DiffuseVAE generated samples on the CelebA-HQ 256 dataset. Red
and green arrows indicate vector subtract and addition operations respectively. Top and Bottom panels show
single edits and composite edits respectively.

4.3 Better Sampling Speed vs Quality tradeoffs with DiffuseVAE

There exists a trade-off between the number of reverse process sampling steps vs the quality of the generated
samples in DDPMs. Usually the best sample quality is achieved when the number of reverse process steps
used during inference matches the number of time-steps used during training. However, this can be very
time-consuming (Song et al., 2021a). On the other hand, as the number of reverse process steps is reduced,
the sample quality gets worse. We next examine this trade-off in detail.

Comparison with a baseline unconditional DDPM: Table 2 compares the sample quality (in terms
of FID) vs the number of sampling steps between DiffuseVAE and our unconditional DDPM baseline on
the CelebA-HQ-128 dataset. For all time-steps T = 10 to T = 100, DiffuseVAE outperforms the standard
DDPM by large margins in terms of FID. Between DiffuseVAE formulations, the sample quality is similar
with Formulation-1 performing slightly better. More notably, the FID score of DiffuseVAE at T = 25 and 50
is better than that of unconditional DDPM at T = 50 and 100 respectively. Thus, in low time-step regimes,
the speed vs quality tradeoff in DiffuseVAE is significantly better than an unconditional DDPM baseline.
It is worth noting that this property is intrinsic to DiffuseVAE as the model was not specifically trained to
reduce the number of reverse process sampling steps during inference (Salimans & Ho, 2022).

However, at T = 1000 the unconditional DDPM baseline performs better than both DiffuseVAE formulations-
1 and 2. We hypothesize that this gap in performance can be primarily attributed to the prior-hole problem,
i.e., the mismatch between the VAE prior p(z) and the aggregated posterior q(z) (Bauer & Mnih, 2019; Dai
& Wipf, 2019; Ghosh et al., 2020) due to which VAEs can generate poor samples from regions of the latent
space unseen during training. DDPM refinement of such samples can affect the FID scores negatively. We
confirm this hypothesis next.

Improving DiffuseVAE sample quality using post-fitting: One way to alleviate the prior-hole problem
is to fit a density estimator (denoted by Ex-PDE) on the training latent codes and sample from this estimator
during inference as in (van den Oord et al., 2017; Razavi et al., 2019; Ghosh et al., 2020). Along similar lines,
we fit a GMM on the VAE latent code representations of the training data. We then use this estimator to

9



Published in Transactions on Machine Learning Research (11/2022)

10 25 50 100 1000

DDPM (Uncond) 41.25 27.83 21.40 16.29 8.93

DiffuseVAE (Form-1) 31.11 19.44 15.31 13.68 12.63
DiffuseVAE (Form-2) 31.08 19.67 15.96 13.96 13.20

DiffuseVAE (Form-1, GMM=100) 30.74 18.55 14.10 12.12 10.87
DiffuseVAE (Form-2, GMM=100) 30.66 18.98 14.45 12.50 11.44

Table 2: Comparison of sample quality (FID@10k) vs speed on the CelebA-HQ-128 dataset (DiffuseVAE vs
unconditional DDPM). Top Row represents the number of reverse process sampling steps.

CelebAHQ-128 CelebA-64

10 25 50 100 10 25 50 100

DDIM (uncond) 34.36 25.04 19.83 16.69 14.14 7.88 6.77 6.38

DiffuseVAE (Form-1) 19.42 15.12 14.53 14.53 10.79 6.87 6.08 5.82
DiffuseVAE (Form-1, Ex-PDE) 18.01 13.21 12.40 12.28 10.44 6.59 5.81 5.55

DiffuseVAE (Form-2) 17.51 13.45 12.56 12.51 9.81 6.34 5.83 5.59
DiffuseVAE (Form-2, Ex-PDE) 16.47 11.62 10.83 10.28 9.56 5.90 5.43 5.21

Table 3: Comparison of sample quality (FID@10k) vs speed between DiffuseVAE and the unconditional
DDIM on the CelebA-HQ-128 and CelebA-64 datasets. DiffuseVAE with Form-2 shows a better speed-
quality tradeoff than Form-1. Overall, DiffuseVAE achieves upto 4x and 10x speedups on the CelebA-64 and
the CelebA-HQ-128 datasets respectively as compared to the uncondtional DDIM

.

sample VAE latent codes during DiffuseVAE sampling. Table 2 shows the FID scores on the CelebA-HQ-128
dataset for both DiffuseVAE formulations using a GMM with 100 components. Across all time-steps, using
Ex-PDE during sampling leads to a reduced gap in sample quality at T = 1000, thereby confirming our
hypothesis. We believe that the remaining gap can be closed by using stronger density estimators which
we do not explore in this work. Moreover, a side benefit of using a Ex-PDE during sampling is further
improvement in the speed-quality tradeoff.

Further improvements with DDIM: DDIM (Song et al., 2021a) employs a non-Markovian forward
process and achieves a better speed-quality tradeoff than DDPM along with deterministic sampling. Since
DiffuseVAE employs a DDPM model in the refiner stage, we found DDIM sampling to be complementary
with the DiffuseVAE framework. Notably, since the forward process for DiffuseVAE (Form-2) is different, we
derive the DDIM updates for this formulation in Appendix B. Table 3 compares the speed-quality tradeoff
between DDIM and DiffuseVAE (with DDIM sampling) on the CelebA-HQ-128 and CelebA-64 datasets.
DiffuseVAE (both formulations) largely outperforms the standard unconditional DDIM at all time-steps.
For the CelebA-HQ-128 benchmark, similar to our previous observation, DiffuseVAE (with DDIM sampling
and Ex-PDE using GMMs) at T = 25 and 50 steps performs better than the standard DDIM at T = 50 and
100 steps respectively. In fact, at T = 10, DiffuseVAE (with Formulation-2) achieves a FID of 16.47 which
is better than DDIM with T = 100 steps, thus providing a speedup of almost 10x. Similarly for the CelebA-
64 benchmark, at T = 25, DiffuseVAE (Formulation-2) performs similarly to the unconditional DDIM at
T = 100, thus providing a 4x speedup. Lastly, it can be observed from Tables 3, 11 and 12 that in the
low time-step regime, DiffuseVAE (Form-2) usually performs better than Form-1 and that the speed-quality
trade-off in DiffuseVAE becomes better with increasing image resolutions.

4.4 State-of-the-art comparisons

For reporting comparisons with the state-of-the-art we primarily use the FID (Heusel et al., 2018) metric to
assess sample quality. We compute FID on 50k samples for CIFAR-10 and CelebA-64. For comparisons on
the CelebA-HQ-256 dataset, we report the FID only for 10k samples (as opposed to 30k samples which is
the norm on this benchmark) due to compute limitations. Due to this, we anticipate the true FID score on
this benchmark using our method to be lower. However, as we show, the FID score obtained by DiffuseVAE
on this benchmark on 10k samples is still comparable to state-of-the-art.
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Method FID@50k ↓ IS ↑

Ours

DiffuseVAE (Form-1, T=1000) 2.95 9.60 ± 0.11
DiffuseVAE (Form-2, T=1000) 2.86 9.59 ± 0.13

DiffuseVAE (Form-1, T=1000, GMM=50) 2.84 9.51 ± 0.08
DiffuseVAE (Form-2, T=1000, GMM=50) 2.80 9.51 ± 0.08

DiffuseVAE-72M (Form-2, T=1000, GMM=50) 2.62 9.75 ± 0.08
DDPM (T=1000, Our impl.) 3.01 9.55 ± 0.16

VAE Baseline 139.50 3.23± 0.02
VAE Baseline (GMM=50) 137.68 3.30± 0.02

VAE-based
methods

VAEBM (Xiao et al., 2021) (w/ PC) 12.19 8.43
DC-VAE (Parmar et al., 2021) 17.90 8.2
NVAE (Vahdat & Kautz, 2021) 51.67 5.51
NCP-VAE (Aneja et al., 2020) 24.08 -

LSGM (FID) (Vahdat et al., 2021) 2.10 -
D2C (Sinha et al., 2021) 10.15 -

GAN-based
methods

AutoGAN (Cao et al., 2020) 12.4 8.55± 0.1
ProGAN (Karras et al., 2018) 15.52 8.56± 0.10

StyleGAN2 (w/o ADA) (Karras et al., 2019) 8.32 9.21± 0.09
StyleGAN2-ADA (Karras et al., 2020a) 2.92 9.83± 0.04

SNGAN (Miyato et al., 2018) 21.7 8.22± 0.05
SNGAN + DDLS (Che et al., 2021) 15.42 9.09± 0.10

Score-based
methods

NCSN (Song & Ermon, 2020a) 25.32 8.87± 0.12
NCSNv2 (w/denoising) (Song & Ermon, 2020b) 10.87 8.40± 0.07

DDPM (Ho et al., 2020) 3.17 9.46± 0.11
SDE (NCSN++) (Song et al., 2021b) 2.45 9.73
SDE (DDPM++) (Song et al., 2021b) 2.78 9.64

Table 4: Generative performance on unconditional CIFAR-10. FID and IS computed on 50k samples

Table 4 shows quantitative comparison between DiffuseVAE and other state-of-the-art unconditional gen-
erative models in terms of sample quality (FID@50k) and sample diversity (IS) on the CIFAR-10 dataset.
Interestingly, our unconditional DDPM baseline achieves better FID scores on CIFAR-10 than reported in
(Ho et al., 2020). DiffuseVAE clearly outperforms the DDPM baseline (with and without Ex-PDE) in terms
of FID while maintaining a competitive IS score with continuous score based methods indicating good sam-
ple diversity. Notably, with the exception of LSGM (Vahdat et al., 2021), DiffuseVAE outperforms all prior
state-of-the-art VAE-based methods (Vahdat & Kautz, 2021; Xiao et al., 2021; Sinha et al., 2021), even when
most of these methods utilize powerful hierarchical VAE-based backbones. In contrast, DiffuseVAE utilizes a
simple VAE backbone with a very poor baseline FID score and it would be interesting to benchmark LSGM
using a simple VAE backbone as ours (some initial evaluations on CIFAR-10 already suggest that LSGM
might perform much worse than DiffuseVAE with a simple VAE baseline 1). In this work our CIFAR-10
model is the same size as in (Ho et al., 2020) which is an order of magnitude smaller than LSGM (See Table
14). Indeed, like LSGM, DiffuseVAE can also take advantage of larger model sizes (DiffuseVAE-72M with
Ex-PDE achieves a FID of 2.62 and a mean IS of 9.75 on CIFAR-10. See Appendix G.4). Moreover, to the
best of our knowledge, DiffuseVAE is the first model to outperform StyleGAN2-ADA (Karras et al., 2020a)
on this benchmark while being trained using non-adversarial losses and retaining access to a low-dimensional
latent code.

We also benchmarked DiffuseVAE (with Ex-PDE) on two popular face image benchmarks: CelebA-64 and
CelebA-HQ-256. On the CelebA-64 benchmark, DiffuseVAE performs comparably with the DDPM baseline.
Similar to CIFAR10, DiffuseVAE outperforms other VAE-based methods (Sinha et al., 2021; Aneja et al.,
2020; Xiao et al., 2021) by a significant margin. We observed similar trends on the CelebA-HQ-256 dataset
where DiffuseVAE outperforms competing VAE based methods except LSGM and is comparable to VQGAN
(Esser et al., 2020). However, when comparing with LSGM on this benchmark, similar arguments as pointed
out for CIFAR-10 hold. Interestingly, we found that for CelebA-HQ-256 dataset, samples generated during
intermediate training stages (and even after convergence) suffer from color bleeding. We found that this
problem can be alleviated by using temperature sampling in the second stage DDPM latents (Appendix
G.4). Therefore, only for T = 1000, we report the FID scores on this benchmark with a scaling factor of 0.8.

1See https://openreview.net/forum?id=P9TYG0j-wtG&noteId=Z7AYukcBJ_q
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Method FID@50k ↓

DiffuseVAE (Form-1, T=1000, GMM=75) 4.05
DiffuseVAE (Form-2, T=1000, GMM=75) 3.97

DDPM (T=1000, Our impl.) 3.93
VAE Baseline (GMM=75) 72.11

D2C (Sinha et al., 2021) 5.7
NCP-VAE (Aneja et al., 2020) 5.25
VAEBM (Xiao et al., 2021) 5.31

NVAE (Vahdat & Kautz, 2021) 14.74
NCSN (Song & Ermon, 2020a) 25.30

NCSNv2 (Song & Ermon, 2020b) 10.23
QA-GAN (PARIMALA & Channappayya, 2019) 6.42

COCO-GAN (Lin et al., 2020) 4.0

Table 5: Generative performance on CelebA-64

Method FID ↓

DiffuseVAE (T=1000, GMM=100, FID@10k) 11.28
VAE Baseline (GMM=100, FID@10k) 97.07

LSGM (Vahdat et al., 2021) 7.22
VQGAN + Transformer (Esser et al., 2020) 10.2

D2C (Sinha et al., 2021) 18.74
DCVAE (Parmar et al., 2021) 15.81
VAEBM (Xiao et al., 2021) 20.38

NCP-VAE (Aneja et al., 2020) 24.8
NVAE (Vahdat & Kautz, 2021) 40.26

Table 6: Generative performance on CelebA-HQ-256

4.5 Generalization to different noise types

To test if DiffuseVAE can generalize over different types of noisy conditioning signals during sample gener-
ation, we condition the second stage DDPM model in DiffuseVAE (pre-trained on the CIFAR-10 dataset)
on different types of noisy conditioning signals (instead of the VAE reconstruction). More specifically, we
experiment with two such types of conditioning signals obtained by adding noise to CIFAR-10 test samples:
downsampling CIFAR samples to 16x16 resolution (effectively blurring them when scaled back) and adding
Gaussian noise (with standard deviation = 0.3). Final DiffuseVAE samples obtained after conditioning on
these noisy inputs are visualized in Fig. 7 (with additional results on the CelebA-HQ-128 samples illustrated
in Fig. 16). We observed that DiffuseVAE is able to recover the original samples from the noisy inputs which
demonstrates generalization to different noisy conditioning inputs.

Intuitively, these results can be expected since, during training, the proposed DiffuseVAE method learns to
refine VAE reconstructions which lack a lot of detail. Hence the task of refining these reconstructions might
be more challenging, thus allowing the network to generalize to simpler tasks inherently as illustrated above.
However, it is worth noting that certain artifacts in the generated refinements are evident (For instance in
Figure 16, the sample quality shows a sharp degradation as more noise is added to the conditioning signal),
leaving scope for design of more stronger conditioning mechanisms in diffusion models that allow to adapt
conditional diffusion models on downstream tasks like image super-resolution in an out-of-the-box fashion.

5 Related Work

Following the seminal work of (Sohl-Dickstein et al., 2015; Ho et al., 2020) on diffusion models, there has
been a lot of recent progress in both unconditional (Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021;
Kingma et al., 2021) and conditional diffusion models (Ho et al., 2021; Saharia et al., 2021; Choi et al., 2021;
Chen et al., 2020) (including score-based models (Song et al., 2021b; Song & Ermon, 2020a)) for a variety of
downstream tasks including image synthesis, audio synthesis and likelihood estimation among others. Here
we only compare DiffuseVAE to recent methods which attempt to combine VAEs with diffusion models. We
refer the readers to Appendix C for a detailed comparison of DiffuseVAE to other types of model families.

Among recent advances, there are several works which apply diffusion models in the latent space of powerful
autoencoding baselines. D2C (Sinha et al., 2021) utilizes a learned diffusion-based prior over the NVAE
(Vahdat & Kautz, 2021) latent representations while also refining the latent space using a contrastive loss.
LSGM (Vahdat et al., 2021) performs score-based generative modeling in the latent space of NVAE baseline.
Similarly, Latent Diffusion Models (LDM) (Rombach et al., 2021) apply diffusion models in the latent space
of a powerful pretrained VQ-GAN (Esser et al., 2020) autoencoding baseline. In contrast, our method refines
“blurry” reconstructions generated by an extremely lightweight VAE using a downstream diffusion model. A
possible benefit of having a generator-refiner framework in contrast to the latent diffusion framework could be
the requirement of a powerful VAE baseline as a pre-requisite to generate high-quality samples. Since there
exists a trade-off between latent code disentanglement and high quality reconstructions (Higgins et al., 2017),
the need of a high fidelity autoencoding baseline can be disadvantageous in situations where a fine-grained
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Figure 7: Illustration of DiffuseVAE generalization to different noise types in the conditioning signal on the
CIFAR-10 test set.

control over the generated samples is required. We hypothesize that this problem is alleviated in DiffuseVAE
since our first stage model can readily tradeoff more disentanglement for lower fidelity reconstructions due
to a powerful second stage diffusion-based refiner model. Lastly, we hypothesize that the latent diffusion
framework is complementary to DiffuseVAE since the prior used in our VAE training can be modeled using
a diffusion model.

(Luo & Hu, 2021) present a probabilistic autoencoding framework for point cloud generation via a VAE-like
encoder and a diffusion model based decoder. Notably, the most closest to our approach is the concurrent
work on DiffAE (Preechakul et al., 2022) which uses an end-to-end autoencoding framework for conditioning
the diffusion process decoder on the latent code output of an encoder. This equips the diffusion model
with a low-dimensional latent space. However, since the model is non-probabilistic, DiffAE relies on fitting
a powerful DDIM density estimator on the latent space of the encoder to enable sampling. Moreover,
it’s unclear if DiffAE exhibits good sample quality when fitting simple density estimators on the encoder
latent space. In contrast, sampling in DiffuseVAE is straightforward due to a probabilistic formulation.
Additionally, DiffuseVAE can also take advantage of fitting external density estimators on the latent space
as demonstrated in this work.

6 Limitations and Discussion

In this work, we presented a novel unifying framework for training VAEs and diffusion models and demon-
strated its effectiveness in generating high-quality samples, providing a better sample quality vs number of
steps trade-off while equipping DDPM with a low dimensional latent code which can be used for controllable
synthesis using DDPM, and generalizing to different types of noise in the conditioning signal. However, the
DiffuseVAE model is not without its limitations:

1. Due to a generator-refiner framework, the semantics of the final generated samples depends largely
on the coarse sample generated by the generator model (a simple VAE in our case). Therefore, if the
coarse sample is not semantically meaningful, this will propagate to the final generated sample after
refinement. This can be expected from VAEs due to a mismatch between the aggregated posterior
q(z) and the prior p(z) during VAE training which we alleviate using Ex-PDE estimation but the
problem still persists (which is evident from the gap in sample quality between an unconditional
DDPM baseline and DiffuseVAE even after Ex-PDE).

2. We also observed that when the conditioning signal provided by the first stage VAE is uninformative
(too blurry), the second stage DDPM model can generate unpredictable refinements. On this note, it
would be interesting to explore the impact of the choice of VAE on the overall sample quality of the
model. Moreover, since we work with vanilla VAEs, some artifacts in controllable synthesis results
are evident due to correlated attribute-specific latent directions (See Figure 15). Using variants
like β-VAEs (Higgins et al., 2017) can help achieve more disentanglement between image attributes
leading to better controllable synthesis results.
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3. In this work, since we focus on sample quality, we did not explore the impact of the diffusion model
training on the latent space of the VAE when trained end-to-end. It would be interesting to explore
if end-to-end training might alleviate some problems with VAE’s.

4. Lastly, it would be interesting to explore stronger conditioning mechanisms in the context of diffusion
models which reduce the reliance of the final sample on the stochastic DDPM sub-code. In the
context of DiffuseVAE, this can also be useful in improving model generalization to downstream
tasks like image super-resolution and denoising as presented in Section 4.5

Broader Impact Statement

In addition to modelling images, our proposed approach can also be used to model data of other modalities
like speech, text, etc. It has the potential to mitigate bias and privacy issues for related ML models that
require data collection and annotation. However, such techniques could also be misused to produce fake or
misleading information, and researchers should be aware of these risks and explore the proposed approaches
responsibly.
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Figure 8: Forward Process Figure 9: Reverse Process

A Background on Diffusion models

DDPMs (Sohl-Dickstein et al., 2015; Ho et al., 2020) are latent-variable models consisting of a forward
noising process (q(x1:T |x0)) (corresponding to an inference model in other generative model families like
VAEs (Kingma & Welling, 2014; Rezende & Mohamed, 2016). See Fig. 8) and a reverse denoising process
(p(x0:T )) (corresponding to a generator or decoder in VAEs. See Fig. 9). The forward process is modeled
using a Markov chain which gradually destroys the structure of the data x0 over a number of time-steps T.
Similarly, the reverse process is also modeled as a Markov chain which learns to recover the original data
x0 from the noisy input xT . The form of the forward process and some notable properties of the forward
process conditional distributions are summarized in the following equations ( Eqs. (13-19)).

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1) (13)

q(xt|xt−1) = N (
√

1− βtxt−1, βtI) (14)

The forward process of DDPMs admits a closed form for xt for any t, as follows:

q(xt|x0) = N (
√
ᾱtx0, (1− ᾱt)I) (15)

where αt = (1− βt) and ᾱt =
∏
t

αt (16)

The forward process posteriors are also tractable and are given by

q(xt−1|xt, x0) = N (µ̃t(xt, x0), β̃t) (17)

where µ̃t(xt, x0) =
√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt (18)

and β̃t = 1− ᾱt−1

1− ᾱt
βt (19)

The reverse process can also be parameterized using a first-order Markov chain with a learned Gaussian
transition distribution as follows

p(x0:T ) = p(xT )
T∏
t=1

pθ(xt−1|xt) (20)

pθ(xt−1|xt) = N (µθ(xt, t),Σθ(xt, t)) (21)

pθ(xt−1|xt) = N (µθ(xt, t),Σθ(xt, t)) (22)

Given a large enough T and a well-behaved variance schedule of βt, the distribution q(xT |x0) will approximate
an isotropic Gaussian. We can generate a new sample from the underlying data distribution q(x0) by sampling
a latent from p(xT ) (chosen to be an isotropic Gaussian distribution) and running the reverse process. As
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proposed in (Ho et al., 2020), the reverse process in DDPM is trained to minimize the following upper bound
over the negative log-likelihood (See (Sohl-Dickstein et al., 2015) for detailed proofs):

Eq

[
DKL(q(xT |x0)‖p(xT )) +

∑
t>1
DKL(q(xt−1|xt, x0)‖pθ(xt−1|xt))− log pθ(x0|x1)

]
(23)

A notable aspect of the above objective is that all the KL divergences involve Gaussians and, consequently, are
available in closed form. Notably, (Ho et al., 2020) parameterize the reverse process conditional pθ(xt−1|xt)
using the forward process posterior q(xt−1|xt, x0). (Ho et al., 2020) show that such a parameterization
simplifies the second term in Eq. 23 at any given time-step t to the following objective in Eq. 24.

‖ε− εθ(
√
ᾱtx0 +

√
1− ᾱtε, t))‖22 (24)

where xt =
√
ᾱtx0 + ε

√
1− ᾱt and ε ∼ N (0, I). Intuitively, this means that the reverse process in DDPM

is trained to predict the noise added to the input x0 at any time-step t. We use this simplified training
formulation throughout our work to train all proposed parameterizations of diffusion models as (Ho et al.,
2020) show that this formulation yields superior sample quality than other forms of reverse process param-
eterizations. For further details on the exact training and inference processes, we encourage the readers to
refer to (Ho et al., 2020).
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B Discussion of DiffuseVAE (Formulation-2)

Algorithm 1 DDPM Training (Form. 2)
repeat

x0 ∼ q(x0)
x̂0 = V AE(x0)
t ∼ Uniform({1 . . . T})
ε ∼ N (0, I)
Take gradient descent step on:
Oθ‖ε− εθ(

√
ᾱtx0 + x̂0 +

√
1− ᾱtε, t, x̂0)‖2

until convergence

Algorithm 2 DDPM Inference (Form. 2)
zvae ∼ N (0, I)
y = VAEDEC(zvae)
xT ∼ N (y, I)
for t = T to 1 do

z = N (0, I), if t > 1 else 0
x̂0 = 1√

ᾱt
(xt − y − εθ(xt, y, t)

√
1− ᾱt)

x̂t−1 = γ0x̂0 + γ1xt + γ2y
xt−1 = x̂t−1 + zσ̂t

end for

return x0 − y

The DDPM training objective proposed in (Ho et al., 2020), has the following form:

Eq

[
DKL (q(xT |x0)‖p(xT ))︸ ︷︷ ︸

LT

+
∑
t>1
DKL(q(xt−1|xt, x0)‖pθ(xt−1|xt))︸ ︷︷ ︸

Lt−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0

]
(25)

B.1 Reverse Process parameterization

Following (Ho et al., 2020), we parameterize the reverse process transition pθ(xt−1|xt) using the functional
form of the forward process posterior q(xt−1|xt, x0). For the DiffuseVAE formulation proposed in Section
3.4.2 in our paper, the forward process conditional distributions can be specified as:

q(xt|xt−1, x̂0) = N
(√

1− βtxt−1 + (1−
√

1− βt)x̂0, βtI
)

where t > 1 (26)

q(xt|x0, x̂0) = N
(√
ᾱtx0 + x̂0, (1− ᾱt)I

)
(27)

The posterior distribution q(xt−1|xt, x0, x̂0) will also be a Gaussian distribution with the following form:

q(xt−1|xt, x0, x̂0) = N (µ̂t(xt, x0, x̂0), β̂tI) (28)

where,

µ̂t(xt, x0, x̂0) = βt
√
ᾱt−1

1− ᾱt
x0 +

(1− ᾱt−1)√αt
1− ᾱt

xt︸ ︷︷ ︸
µ̃t(xt,x0)

+ (1−
(1− ᾱt−1)√αt

1− ᾱt
)︸ ︷︷ ︸

κ

x̂0 (29)

β̂t = (1− ᾱt−1)
1− ᾱt

βt and x0 = 1√
ᾱt

(xt − x̂0 − ε
√

1− ᾱt)

where ε ∼ N (0, I)
(30)

Hence the forward process posterior in this DiffuseVAE formulation is a shifted version of the forward process
posterior proposed in (Ho et al., 2020). Since the VAE reconstruction x̂0 for an image x0 is constant during
DDPM training, we can parameterize the reverse process posterior as µ̂θ(xt, x0, x̂0, t) = µ̃θ(xt, x0, t) + κx̂0.
Additionally, we keep the variance of the reverse process conditional fixed and equal to β̂t as proposed in
(Ho et al., 2020). Since Lt−1 ∝ ‖µ̂t(xt, x0, y)− µ̂θ(xt, x0, y, t)‖2, the DDPM training objective in our formu-
lation remains unchanged from the simplified denoising score matching objective proposed in (Ho et al., 2020).
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B.2 Choice of the decoder, L0

One possible choice for the decoder is to set pθ(x0|x1) to be a discrete independent decoder derived from the
GaussianN (µ̂θ(x1, x̂0, 1), β̂1I) (Ho et al., 2020). However, at t = 1, we have µ̂θ(x1, x̂0, 1) = x0(x1, x̂0, εθ)+x̂0.
Therefore, to account for the VAE reconstruction bias in the final DDPM output, we set our decoder
pθ(x0|x1) = N (µ̂θ(x1, x̂0, 1) − x̂0, β̂1I). Without using this adjustment, we found the final DDPM samples
to be a bit blurry in our initial experiments.The final training and inference algorithms are summarized in
Algorithms 1 and 2 respectively. In Algorithm 2, the coefficients γ0, γ1 and γ2 denote the coefficients of the
forward process posterior in Eqn. 29.

B.3 Integration with DDIM

We now derive the updates for the DiffuseVAE formulation-2 when combined with DDIM sampling. Given
the form of the forward process marginal as in Eqn. 27, we assume the following form of the forward process
posterior:

q(xt−1|xt, x̂0, x0) = N (µt, σ2
t ) (31)

µt =
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t

[
xt −

√
ᾱtx0√

1− ᾱt

]
+ κx̂0 (32)

σ2
t = η

[
1− ᾱt−1

1− ᾱt

][
1− ᾱt

ᾱt−1

]
(33)

We now have,

q(xt−1|x0, x̂0) =
∫
q(xt−1|xt, x0, x̂0)q(xt|x0, x̂0)dxt (34)

Since both the distributions within the integral are gaussians, the resulting marginal will also be a gaussian
with the following form:

q(xt−1|x0, x̂0) = N (µ̄t, σ̄2
t ) (35)

µ̄t =
√
ᾱt−1x0 +

[
κ+

√
1− ᾱt−1 − σ2

t√
1− ᾱt

]
x̂0 (36)

σ̄2
t = 1− ᾱt−1 (37)

However, we already know the form of the marginal q(xt−1|x0, x̂0) from Eqn. 27 as follows:

q(xt−1|x0, x̂0) = N (
√
ᾱt−1x0 + x̂0, 1− ᾱt−1I) (38)

Therefore it implies that,

κ = 1−
√

1− ᾱt−1 − σ2
t√

1− ᾱt
(39)

This completes the analysis of the modified DDIM forward process posterior which is compatible with
DiffuseVAE formualation-2

B.4 Primary Intuition

The primary intuition behind constructing such a formulation is that by initializing the base distribution
from a VAE reconstruction, we can hope to speed up the reverse diffusion process. In the low time-step
regime, DiffuseVAE (Form-2) usually performs better than (Form-1) (See Tables 3, 11 and 12). These results
indicate our hypothesis might hold valid in the low-time-step regime in diffusion models.
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C Related Work

Recent work in DDPMs also includes improving the speed vs sample quality tradeoff in the DDPM sampling
process (Song et al., 2021a; Watson et al., 2021; Luhman & Luhman, 2021; Salimans & Ho, 2022; Xiao et al.,
2022). We consider these advances in speeding up diffusion models are complementary to our work and can
also be used to improve the sampling efficiency of DiffuseVAE. However, on the contrary, a majority of such
methods were designed for improving sampling speeds in DDPMs while DiffuseVAE improves this tradeoff
inherently. Similarly for VAEs (Kingma & Welling, 2014; Rezende & Mohamed, 2016), there has also been
progress in improving the ELBO estimates (Sinha & Dieng, 2021; Burda et al., 2016; Masrani et al., 2021)
and image synthesis (Child, 2021; Vahdat & Kautz, 2021; Lee et al., 2020b; Xiao et al., 2021). Next, we
compare our proposed approach in detail with several of these related existing model families.

Unconditional DDPM: DDPM/DDIM as introduced in (Ho et al., 2020; Song et al., 2021a) lacks a low-
dimensional latent code which limits model application scope in several downstream tasks. In contrast,
DiffuseVAE equips diffusion models with a low dimensional latent code that can be utilized for downstream
tasks including but not limited to controllable synthesis. Moreover, we demonstrate a better speed vs
quality tradeoff in DiffuseVAE as compared to standard unconditional DDPM/DDIM models and that the
conditioning signal in DiffuseVAE helps in generalization to noisy conditioning signals.

Conditional DDPM: Conditional DDPM as introduced in (Ho et al., 2021) and (Saharia et al., 2021) uses
a cascade of multiple diffusion models (CDMs) for generating high-resolution images. However, for even a
two-stage pipeline, the sampling time of such models would be effectively much higher than DiffuseVAE.
Given the flexibility of our approach, we hypothesize that a single-stage VAE can also be replaced by a
complex multi-stage VAE architecture as proposed in (Child, 2021; Vahdat & Kautz, 2021) for comparable
sample quality to cascaded diffusion models without affecting the sampling time significantly. Moreover,
such cascades lack a low-dimensional latent code which might be a limiting factor for certain downstream
applications. It is worth noting that, (Ho et al., 2021) use a conditioning augmentation scheme where the
high-resolution image is generated by conditioning on a blurred/noisy low resolution image. In contrast, our
model is already conditioned on a reconstruction generated by a VAE (which is inherently blurry) and in
some sense resembles the heuristic employed in CDMs.

VAE based methods Hierarchical VAEs (Sønderby et al., 2016; Vahdat & Kautz, 2021; Child, 2021;
Razavi et al., 2019) can suffer from posterior collapse and heuristics like gradient skipping and spectral
normalization (Miyato et al., 2018) might be required to stabilize training. Moreover, these models require
a large dimensionality of the latent codes to generate high-fidelity samples (Vahdat & Kautz, 2021; Razavi
et al., 2019). In contrast, DiffuseVAE training does not suffer from such instabilities and provides access
to a single latent code layer (with dimensionality comparable to GANs) to generate high-fidelity samples.
Among other recent works, VAEBM (Xiao et al., 2021) uses EBMs (Du & Mordatch, 2020; Nijkamp et al.,
2019) to refine VAE samples while LSGM (Vahdat & Kautz, 2021) perform score-based modeling in the
latent space of a VAE backbone. However, both VAEBM and LSGM use NVAE (Vahdat & Kautz, 2021)
as the base VAE architecture which also lacks a low-dimensional latent code. (Lee et al., 2020b) distill the
disentanglement properties in the VAE latent code to the latent space of a GAN-based generator. However,
this approach would also suffer from existing problems of training stability and mode-collapse in GAN-based
models. On the other hand, DiffuseVAE does not suffer from such problems
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D Detailed Proofs

D.1 Derivation of the DiffuseVAE objective

Given a high-resolution image x0, an auxiliary conditioning signal y to be modelled using a VAE, a latent
representation z associated with y, and a sequence of T representations x1:T learned by a diffusion model,
the DiffuseVAE generative process, p(x0:T , y, z) can be factorized as follows:

p(x0:T , y, z) = p(z)pθ(y|z)pφ(x0:T |y, z) (40)
where θ and φ are the parameters of the VAE decoder and the reverse process of the conditional diffusion
model, respectively.The log-likelihood of the training data can then be obtained as:

log p(x0, y) = log
∫
p(x0:T , y, z)dx1:T dz (41)

Furthermore, since the joint posterior p(x1:T , z|y, x0) is intractable to compute, we approximate it using a
surrogate posterior q(x1:T , z|y, x0) which can also be factorized into the following conditional distributions:

q(x1:T , z|y, x0) = qψ(z|y, x0)q(x1:T |y, z, x0) (42)

where ψ are the parameters of the VAE recognition network (qψ(z|y, x0)). Since computation of the likelihood
in Eq. (41) is intractable, we can approximate it by computing a lower bound (ELBO) with respect to the
joint posterior over the unknowns (x1:T , z) as:

log p(x0, y) ≥ Eq(x1:T ,z|x0,y)

[
log p(x0:T , y, z)

q(x1:T , z|x0, y)

]
(43)

Plugging the factorial forms of the DiffuseVAE generative process and the joint posterior defined above in
eqn. (43), we can simplify the ELBO as follows:

log p(x0, y) ≥ Eq(x1:T ,z|y,x0)

[
log p(x0:T , y, z)

q(x1:T , z|y, x0)

]
(44)

≥ Eq(x1:T ,z|x0,y)

[
log p(z)pθ(y|z)pφ(x0:T |y, z)

qψ(z|y, x0)q(x1:T |y, z, x0)

]
(45)

≥ Eq(x1:T ,z|x0,y)

[
log p(z)

qψ(z|y, x0) + log pθ(y|z) + log pφ(x0:T |y, z)
q(x1:T |y, z, x0)

]
(46)

≥ Eq(z|y,x0)

[
log p(z)

qψ(z|y, x0) + log pθ(y|z)
]

+ Eq(x1:T ,z|x0,y)

[
log pφ(x0:T |y, z)

q(x1:T |y, z, x0)

]
(47)

≥ Eqψ(z|y,x0) [pθ(y|z)]−DKL(qψ(z|y, x0)||p(z))︸ ︷︷ ︸
LVAE

+Ez∼q(z|y,x0)

[
Eq(x1:T |y,z,x0)

[
pφ(x0:T |y, z)
q(x1:T |y, z, x0)

]
︸ ︷︷ ︸

LDDPM

]

(48)

D.2 Derivation of the DiffuseVAE (Formulation-2) marginals

Given:
q(x1|x0, x̂0) = N (

√
1− β1x0 + x̂0, β1I) (49)

q(xt|xt−1, x̂0) = N (
√

1− βtxt−1 + (1−
√

1− βt)x̂0, βtI) (50)
From Eqn.(50), we can write,

xt =
√

1− βtxt−1 + (1−
√

1− βt)x̂0 + ε
√
βt, where ε ∼ N (0, I) (51)
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Taking expectations both sides,

E(xt) =
√

1− βtE(xt−1) + (1−
√

1− βt)x̂0 (52)

E(xt) =
√

1− βt
[√

1− βt−1E(xt−2) + (1−
√

1− βt−1)x̂0

]
+ (1−

√
1− βt)x̂0

E(xt) =
√

(1− βt)(1− βt−1)E(xt−2) +
(

1−
√

(1− βt)(1− βt−1)
)
x̂0

... (53)

E(xt) =

√√√√ t∏
t=2

(1− βt)E(x1) + x̂0

1−

√√√√ t∏
t=2

(1− βt)

 (54)

Substituting E(x1) =
√

1− β1x0 + x̂0 from Eqn.(49) into the above formulation we get,

E(xt) =

√√√√ t∏
t=1

(1− βt)x0 + x̂0 =
√
ᾱtx0 + x̂0 (55)

Similarly it can be shown that V ar(xt) = (1− ᾱt)I. Therefore,

q(xt|x0, x̂0) = N (
√
ᾱtx0 + x̂0, (1− ᾱt)I) (56)
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Method FID@10k ↓
DiffuseVAE (x̂0) 5.94

DiffuseVAE (x̂0 + Latent code) 6.07

Table 7: FID (10k samples) comparison between dif-
ferent DiffuseVAE conditioning schemes on CIFAR10.

Method FID@10k ↓
DiffuseVAE (Two-stage) 6.81
DiffuseVAE (End-to-end) 8.12

Table 8: FID (10k samples) comparison between two-
stage and end-to-end training on CIFAR10.

E Justification of the design choices in DiffuseVAE

Here we justify the design choices made in the DiffuseVAE model specification.

1. Choice of the conditioning signal y: The choice of assuming the conditioning signal y in Eq.
10 to be the training data x0 is motivated by the task of refining the blurry samples generated by
a simple VAE model using a DDPM model.

2. Choice of the conditioning signal z: The choice of conditioning the DDPM model on x̂0 (the
VAE reconstruction of the training data x0) instead of the VAE inferred latent code z (usually lower-
dimensional) allows us to condition the second stage DDPM directly on samples drawn from another
model (not necessarily VAE) or on real images, which can be quite useful as illustrated in Section
4.5. Additionally, there can be a variant of our method in which the DDPM model is conditioned on
both z and x̂. We conditioned the DDPM decoder on z using Adaptive group normalization layers
(Dhariwal & Nichol, 2021; Wu & He, 2018) as follows:

y = MLP(z) + et (57)

AdaGN(h, y) = ysGroupNorm(h) + yb (58)

where h is the output of the first convolution in the residual block and y = [ys, yb] is obtained from
the latent code z and the time-step embedding et. On benchmarking this DiffuseVAE (Formulation-
1) variant on CIFAR-10 trained for around 1.1M steps, we found that the resulting model exhibited
slightly worse performance compared to the DiffuseVAE variant conditioned only on the VAE recon-
structions (x̂0) (See Table 7). Therefore, we only condition the DDPM model in DiffuseVAE only
on the VAE generated reconstructions.

3. Two-stage training: The choice of a two-stage training approach in DiffuseVAE is motivated by
two reasons. Firstly, in our early experiments on CIFAR-10, we observed that the end-to-end model
exhibited much worse performance than its two-stage counterpart during inference (See Table 8)
where both models were trained for 400k steps. Secondly, from a computational standpoint, using
a two-stage training formulation would be more amenable to training on limited compute resources
as end-to-end training would require both models to fit in memory.
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CIFAR-10 CelebA-64 CelebA-HQ-128 CelebA-HQ-256 LHQ-256

Stage-I VAE Hyperparameters

Data
Resolution 32 x 32 64 x 64 128 x 128 256 x 256 128 x 128
Data Range [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]

Model Architecture See Code See Code See Code See Code See Code
# of parameters 9.2M 14M 21.1M 32.7M 36.3M

Training

Random Seed 0 0 0 0 0
Mixed Precision No No No No No

Effective Batch Size 128 128 128 32 256
# of epochs 500 250 500 500 500
Optimizer Adam(lr=1e-4) Adam(lr=1e-4) Adam(lr=1e-4) Adam(lr=1e-4) Adam(lr=1e-4)

Latent code size 512 512 1024 1024 1024
Ex-PDE GMM(N=50) GMM(N=75) GMM(N=100) GMM(N=100) GMM(N=100)
KL-weight 1.0 1.0 1.0 1.0 1.0

Stage-II DDPM Hyperparameters

Data
Resolution 32 x 32 64 x 64 128 x 128 256 x 256 256 x 256

Horizontal Flip Yes Yes Yes Yes Yes
Data Range [-1, 1] [-1, 1] [-1, 1] [-1, 1] [-1, 1]

Model

# of channels 128 128 128 128 128
Scale(s) of attention block [16] [16] [16] [16] [16,8]

# of attention heads 8 8 8 8 8
# of residual blocks per scale 2 2 2 2 2

Channel multipliers (1,2,2,2) (1,2,2,2,4) (1,2,2,3,4) (1,1,2,2,4,4) (1,1,2,2,4,4)
# of parameters 35.7M 84.6M 95.2M 113M 114M

Dropout 0.3 0.1 0.1 0.1 0.1
Noise Schedule (default) Linear(1e-4, 0.02) Linear(1e-4, 0.02) Linear(1e-4, 0.02) Linear(1e-4, 0.02) Linear(1e-4, 0.02)

# of time-steps (T) 1000 1000 1000 1000 1000

Training

Random seed 0 0 0 0 0
Mixed Precision No No No No No
EMA decay rate 0.9999 0.9999 0.9999 0.9999 0.9999

Effective batch size 128 128 64 64 64
# of steps 1.1M 0.54M 0.46M 0.36M 0.35M
Optimizer Adam(lr=2e-4) Adam(lr=2e-4) Adam(lr=2e-5) Adam(lr=2e-5) Adam(lr=2e-5)

Grad. Clip Threshold 1.0 1.0 1.0 1.0 1.0
# of lr annealing steps 5000 5000 5000 5000 5000
Diffusion loss type Noise prediction (L2) Noise prediction (L2) Noise prediction (L2) Noise prediction (L2) Noise prediction (L2)

Evaluation Variance fixedlarge fixedlarge fixedsmall fixedsmall fixedsmall

Table 9: Hyperparameters for the training setup in DiffuseVAE

F Training and Hyperparameter details

All hyperparameters details related to VAE and DDPM training in DiffuseVAE are listed in Table 9.
Moreover, all hyperparameters (model and training) were shared between both DiffuseVAE formulations.

Data preprocessing: During the first stage VAE training, all training data was normalized be-
tween [0.0, 1.0]. For the second stage DDPM training, the training data was scaled between [-1.0, 1.0]
(including unconditional baselines and DiffuseVAE formulations). We also applied random horizontal flips
as a form of data augmentation to the training images during the second stage DDPM training

Model architecture: We use the same network architectures as explored in prior work in diffusion models
(Ho et al., 2020; Dhariwal & Nichol, 2021; Nichol & Dhariwal, 2021). The VAE architecture used for
Stage-1 training consists of residual block architectures inspired from (Child, 2021) (Refer to our code for
exact architectural details). The VAE latent code size was set to 1024 for LHQ-256 and CelebA-HQ (both
128 and 256 resolution variants) and 512 for the CIFAR-10 and CelebA (64 x 64) datasets. We do not
investigate the effect of the size of the latent code in this work. Similar to prior work (Ho et al., 2020), for
all datasets except CIFAR-10 models used in SoTA comparisons, we use the U-Net (Ronneberger et al.,
2015) decoder implementation from (Nichol & Dhariwal, 2021) in the reverse process in Stage-II DDPM
training. For the CIFAR-10 dataset, we used the U-Net decoder implementation from DDIM (Song et al.,
2021a) (https://github.com/ermongroup/ddim/blob/main/models/diffusion.py). The U-Net decoder
model hyperparameters are listed in Table 9.

Training and Inference: Unless specified otherwise, we use the same hyperparameters during training as
proposed in (Ho et al., 2020). All DDPM models were trained using the simplified objective proposed in (Ho
et al., 2020). We used a mix of 4 Nvidia 1080Ti GPUs (44GB memory), a cloud TPUv2-8 (64GB memory)
and a cloud TPUv3-8 (128GB memory) for training the models. Specifically, we used the GPU setup
for training our CIFAR-10 and CelebA-64 models while we utilized the TPUv2-8 for training CelebA-HQ
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models at the 128 x 128 resolutions. Finally, we utilized the TPUv3-8 model for training on CelebA-HQ
and LHQ models at 256 x 256 resolution.

Evaluation: For FID (Heusel et al., 2018) score computation, we utilized 10k samples for the CelebA-
HQ-128 dataset and 50k samples for state-of-the-art comparisons on the CIFAR-10 and the CelebA-64
datasets. For CelebA-HQ 256 comparisons we computed FID scores on 30k samples since the CelebA-HQ
dataset contains 30k images. We used the torch-fidelity (Obukhov et al., 2020) package for FID and
IS score computations. In this work, when saving samples to disk, we used standard denormalization (i.e.
0.5 ∗ img + 0.5) for all datasets. We used our GPU setup primarily for evaluation.
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CIFAR-10
(FID@50k)

CelebA-64
(FID@50k)

CelebA-HQ-256
(FID@10k)

Baseline VAE 137.68 72.11 97.07
DiffuseVAE (Form-1, Ex-PDE) 2.83 4.05 11.28

Table 10: Quantitative comparison between sample quality of first stage VAEs in DiffuseVAE (Generator)
and the final DiffuseVAE samples (Refiner)

CelebA-64 CIFAR-10

10 25 50 100 10 25 50 100

DDPM (uncond) 37.31 17.06 10.99 8.26 42.66 15.97 9.98 7.76
DiffuseVAE (Form-1, Ex-PDE) 26.09 14.16 9.58 7.54 34.19 16.74 11.00 8.48
DiffuseVAE (Form-2, Ex-PDE) 25.79 13.89 9.09 7.15 34.22 17.36 11.00 8.28

Table 11: Speed vs quality tradeoff comparison between DDPM and DiffuseVAE for the CIFAR-10 and
CelebA-64 datasets. FID reported using 10k samples

G Additional Results

G.1 Generator-Refiner Framework

Some additional qualitative results demonstrating the generator-refiner framework in VAEs are shown in
Fig. 13. Table 10 further supports our qualitative results for several other benchmarks by comparing the
FID scores between Stage-1 VAE generated samples and the corresponding final DiffuseVAE samples.

G.2 Controllable synthesis

The directions for meaningful concepts (or image attributes like gender, age, hair style) are obtained by
considering pairs of attribute negative and positive training samples. For each such pair, we compute the
latent code representation for the positive and the negative sample and compute the difference between the
attribute positive and the negative latent. We repeat this procedure for all such pairs and compute the
average of the difference between the latent codes to obtain the direction vector for the attribute. Formally,
given an attribute of interest a and the a set of tuples (x(i)

pos, x
(i)
neg)Ni=1 of attribute positive and negative

images, the latent direction za is given by:

za = 1
N

N∑
i=1

[
f(x(i)

pos)− f(x(i)
neg)

]
(59)

where f denotes a mapping from the image to the latent space (the VAE encoder in this case). Given this
latent direction, we can manipulate an attribute negative image by simply adding this vector to the latent
code representation of the attribute negative image and decoding the resulting latent code representation as
follows:

zp = zn + λza (60)

where zn is the latent code representation of the atribute negative image, zp is the new latent code containing
the missing attribute and λ is a scalar which controls the coarseness of the controllable generation (higher
values usually result in more coarse generations). In this work, we use the attribute annotations provided by
the CelebAMask-HQ dataset (Lee et al., 2020a) and a value of N=100 to construct the set of positive and
negative samples for any attribute of interest. Additional controllable synthesis (including single attribute
manipulation and composite manipulations) results for the CelebA-HQ dataset at the 128 x 128 resolution
are shown in Fig. 14. Figure 15 compares between composite edit-based samples generated from our first
stage VAE and the corresponding refined samples generated from DiffuseVAE.
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10 25 50 100

DDIM (uncond) 15.19 8.00 6.76 6.24
DiffuseVAE (DDIM, Form1, Ex-PDE) 11.79 7.44 6.51 6.14
DiffuseVAE (DDIM, Form2, Ex-PDE) 12.15 7.63 6.62 6.22

Table 12: Speed vs quality tradeoff comparison between DDIM and DiffuseVAE for the CIFAR-10 dataset.
FID reported using 10k samples

10 25 50 100

DiffuseVAE (DDIM, Form-1) 26.07 19.75 18.90 18.85
DiffuseVAE (DDIM, Form-1, GMM=100) 24.09 17.47 16.65 16.63

Table 13: FID scores (on 10k samples) for DiffuseVAE (Form-1) using DDIM sampling for the CelebA-HQ-
256 dataset

G.3 Speed vs quality tradeoffs

Reverse Process subsequence selection: We use the linear and quadratic time-step selection as discussed
in DDIM (Song et al., 2021a), when running the reverse process for only a subsample of the time-steps for
efficient sampling. We call this spaced sampling. For benchmarking both DiffuseVAE and the baseline
DDPM/DDIM models for the speed vs quality tradeoff, we selected the scheme which yielded lower FID
values. Hence, we use the quadratic time-step schedule for all datasets when benchmarking DiffuseVAE
while we used the quadratic schedule for the CIFAR-10 and the CelebA-64 datasets and linear schedule
for the CelebA-HQ dataset when benchmarking the baseline DDPM/DDIM. There is also a possibility of
using truncated sampling in which only the last t time-steps are used for sampling. However, we found that
the latter yielded inferior results than spaced sampling, so we do not report the FID scores for truncated
sampling here.

Additional results on speed vs quality tradeoff : Table 11 shows a speed vs quality tradeoff comparison
between DiffuseVAE (with Ex-PDE) and the DDPM baseline for the CIFAR-10 and the CelebA-64 bench-
marks. Both methods use the fixedsmall variance type as discussed in (Ho et al., 2020). On the CelebA-64
dataset, DiffuseVAE again provides a much better speed vs quality tradeoff than a standard DDPM. How-
ever, on the CIFAR10 dataset, DiffuseVAE lags behind the standard DDPM (except at T=10) in terms of
FID scores. This is surprising, since for T=1000, our DiffuseVAE model outperforms our baseline DDPM.
However, when using DDIM sampling, DiffuseVAE outperforms the unconditional DDIM (See Table 12). For
completeness, we also report the FID scores on 10k samples for our CelebA-HQ-256 DiffuseVAE (Form-1)
model using DDIM sampling in Table 13

G.4 State-of-the-art Comparisons

Model size and Runtime comparison: LSGM and DiffuseVAE: Here we compare model sizes between
DiffuseVAE and LSGM (Vahdat et al., 2021). Table 14 compares the model sizes between the LSGM and
DiffuseVAE models on the CIFAR-10 and the CelebA-HQ-256 benchmarks. LSGM utilizes an order of
magnitude larger VAE backbones and denoising decoders in comparison to DiffuseVAE. When computing
the LSGM model size, we compute the size of the best FID model (See https://github.com/NVlabs/LSGM).
To examine the performance gains when using larger models, we trained a DiffuseVAE (Form-1) model with
an unchanged VAE baseline but with a larger DDPM decoder with around 73M parameters on CIFAR-10.
Indeed, when using a larger model, DiffuseVAE with Ex-PDE achieves a FID of 2.62 and a mean IS of 9.75
on CIFAR-10 which shows that our model can take advantage of larger model sizes as well.

We further benchmarked DiffuseVAE and LSGM CIFAR-10 models in terms of the wall-clock time and
memory required for sample generation on a batch size of 64 samples on a single Nvidia 1080Ti GPU.
In terms of memory consumption, the LSGM model consumes 5.1GB in comparison to around 2.00GB
consumed by DiffuseVAE. This is to be expected due to a larger LSGM model size. Interestingly, LSGM
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CIFAR-10 CelebA-HQ-256

LSGM (VAE backbone) 86.6M 50.9M
LSGM (Denoising decoder) 375.6M 408.4M
DiffuseVAE (VAE backbone) 9.2M 32.7M

DiffuseVAE (Denoising decoder) 35.7M 113.3M

Table 14: Model size comparison (in terms of the number of parameters) between DiffuseVAE and LSGM
on the CIFAR-10 and CelebA-HQ-256 benchmark

(using 140 NFEs) only takes 67.03s to generate a batch of 64 samples as compared to around 103.13s required
by DiffuseVAE (using 1000 NFEs). We hypothesize that this gain is primarily due to the efficacy of applying
diffusion in the latent space in LSGM as compared to the pixel-space in DiffuseVAE. However, this design
choice also prevents access to a compact latent space in LSGM.

G.5 Temperature Sampling in DiffuseVAE

: We experiment with a temperature scaling technique where during the DDPM sampling stage in Diffu-
seVAE, we sample the initial DDPM latent xT from a base Gaussian distribution with standard deviation
scaled by λ. This is a common technique utilized in prior works (Vahdat & Kautz, 2021; Kingma & Dhari-
wal, 2018) to tradeoff between sample quality and diversity. Interestingly, we found that for CelebA-HQ-256
dataset, samples generated during intermediate training stages (and even after convergence) suffer from color
bleeding as shown in Fig. 10 (Top Row). We found that by applying temperature annealing in the second
stage DDPM latents alleviates this problem (See Fig. 10(Bottom Row)). Therefore, we compute FID for
state-of-the-art comparisons on this benchmark with a scaling factor of 0.8. We did not observe such color
channel bleeding in samples of other benchmarks. In such cases, we observed that temperature scaling did
not help and thus was not used to report FID scores.

Figure 10: Effect of temperature sampling in DDPM latents in DiffuseVAE. (Top Row) Samples generated
with λ = 1.0. (Bottom Row) Samples generated with λ = 0.8

G.6 DiffuseVAE Training Dynamics and Stability

Although hierarchical VAEs (Vahdat & Kautz, 2021; Child, 2021) generate significantly better samples than
a standard VAE (with a single stochastic layer) (Kingma & Welling, 2014), the former can be unstable
to train and often require carefully designed heuristics like spectral normalization, gradient clipping etc.
However, even with these heuristics, stable training is not guaranteed. In contrast, standard VAEs often
do not suffer from training instability issues. Indeed our empirical results in Figure 11 suggest the same.
Figure 11 shows VAE training dynamics during training for the CIFAR-10 (Top Row) and the CelebA-HQ
256 (Bottom Row) datasets. As expected, the reconstruction loss (Middle column) and the total loss (Right
column) for both the datasets decrease as training progresses. On the other hand, the KL loss increases for
both the datasets early during training (Left column). This can be expected since during training, the VAE
posterior q(z|x) becomes more complex so as to obtain a better reconstruction loss. Therefore, the divergence
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Figure 11: Illustration of VAE training dynamics on the CIFAR-10 (Top Row) and the CelebA-HQ 256
dataset (Bottom Row) datasets. The columns from left to right represent the variation in KL loss, Recon-
struction Loss and Total Loss during training respectively.

between q(z|x) and the prior p(z) (in our case a standard gaussian) increases, leading to a higher KL Loss.
Therefore, DiffuseVAE is more stable to train than the corresponding hierarchical VAE and GAN-based
counterparts.

G.7 Learning curve comparison between DiffuseVAE formulations

Figure 12 shows comparison between the learning curves between DiffuseVAE formulations for the CIFAR-10
and CelebA-HQ 128 benchmarks. We used this analysis to assess model convergence. For the CIFAR-10
dataset, our models started to slightly overfit after 2000 epochs, so we utilize the corresponding checkpoint for
all analysis. For the CelebA-HQ 128 dataset, we stopped training after exhaustion of our maximum compute
budget of 1000 epochs and utilize the corresponding checkpoint for subsequent analysis and comparisons.

Epochs

FI
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k

CIFAR-10 CelebAHQ-128
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D
@
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Form-1 Form-2

Figure 12: Learning curve (FID vs epochs) comparison between DiffuseVAE formulations for the CIFAR-10
(Left) and the CelebA-HQ-128 dataset (Right). T=1000 during inference

G.8 Additional Samples

To demonstrate generalization to more complex scenes, some qualitative samples generated using a Diffu-
seVAE model trained on the LHQ-256 dataset with T=1000 and a temperature scaling factor of 0.8 are
shown in Figure 17. Some additional samples from our CelebA-HQ model using DDIM sampling with 50
steps in the reverse process are shown in Figure 18. Figure 19 shows some additional samples from the
same model with T=1000 and a temperature scaling factor of 0.8. Lastly, Figure 20 shows samples from the
CelebAHQ-256 model but with shared latents in the DDPM stage (so effectively the generation is driven
completely by low-dimensional latents from the VAE model).
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CIFAR-10 (VAE) CIFAR-10 (DiffuseVAE)

CelebaA-64 (VAE) CelebA-64 (DiffuseVAE)

CelebaA-HQ-128 (VAE) CelebaA-HQ-128 (DiffuseVAE)

CelebaA-HQ-256 (DiffuseVAE)CelebaA-HQ-256 (VAE)

Figure 13: Additional results demonstrating the generator-refiner framework in DiffuseVAE32
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Composite Edits

Original Black Hair Male Pale Skin Smiling Young

Original Smiling Black Hair Male Eyeglasses Goatee

Figure 14: Additional results demonstrating controllable synthesis in the CelebA-HQ-128 dataset. Green
boxes denote the vector addition operation while Red boxes denote the vector subtract operation
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VAE

DiffuseVAE

Original Black Hair YoungMale Eyeglasses Receding
Hairline

Original Smiling Black Hair Male Eyeglasses Goatee

VAE

DiffuseVAE

Figure 15: Comparison between composite edit samples generated using the first stage VAE vs the corre-
sponding refined samples generated by DiffuseVAE.
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8 x 8 16 x 16 32 x 32

Figure 16: Illustration of DiffuseVAE generalization to different noise types in the conditioning signal on
CelebA-HQ-128. σ denotes the standard deviation of the gaussian noise added to the conditioning signal.
As noise becomes more severe, the output generated by DiffuseVAE becomes significantly worse. All final
samples generated using T=100 with DDIM sampling.
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Figure 17: Samples generated from DiffuseVAE trained on the LHQ-256 dataset. T=1000 during sampling
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Figure 18: Additional samples from generated from DiffuseVAE trained on the CelebAHQ-256 dataset. T=50
using DDIM sampling.
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Figure 19: Additional samples from generated from DiffuseVAE trained on the CelebAHQ-256 dataset
(T=1000, Temp. Scaling factor was set to 0.8 during sampling).
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Figure 20: Additional samples from generated from DiffuseVAE trained on the CelebAHQ-256 dataset with
the DDPM latents shared between samples. The generation is effectively driven by low-dimensional VAE
latent space (T=1000, Temp. Scaling factor was set to 0.8 during sampling).
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