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Abstract

Collaborative learning (CL) enables multiple participants to jointly train machine learning
(ML) models on decentralized data sources without raw data sharing. While the primary goal
of CL is to maximize the expected accuracy gain for each participant, it is also important
to ensure that the gains are fairly distributed. Specifically, no client should be negatively
impacted by the collaboration, and the individual gains must ideally be commensurate
with the contributions. Most existing CL algorithms require central coordination and focus
on the gain maximization objective while ignoring collaborative fairness. In this work,
we first show that the existing measure of collaborative fairness based on the correlation
between accuracy values without and with collaboration has drawbacks because it does not
account for negative collaboration gain. We argue that maximizing mean collaboration gain
(MCG) while simultaneously minimizing the collaboration gain spread (CGS) is a fairer
alternative. Next, we propose the CYCle protocol that enables individual participants in a
private decentralized learning (PDL) framework to achieve this objective through a novel
reputation scoring method based on gradient alignment between the local cross-entropy and
distillation losses. We further extend the CYCle protocol to operate on top of gossip-based
decentralized algorithms such as Gossip-SGD. For the simple mean estimation problem with
two participants, we also theoretically show that CYCle performs better than standard
FedAvg, especially when there is large statistical heterogeneity. Experiments on the CIFAR-
10, CIFAR-100, and Fed-ISIC2019 datasets empirically demonstrate the effectiveness of the
CYCle protocol to ensure positive and fair collaboration gain for all participants, even in
cases where the data distributions of participants are highly skewed.

1 Introduction

Collaborative learning (CL) refers to a framework where several entities can work together by pooling their
resources to achieve a common machine learning (ML) objective without sharing raw data. This approach
offers particular advantages in domains like healthcare and finance that require access to extensive datasets,
which can be difficult to acquire for any single entity due to the costs involved or privacy regulations such as
HIPAA (Centers for Medicare & Medicaid Services, 1996) and GDPR (European Parliament & Council of
the European Union, 2016; Albrecht, 2016). Federated learning (FL) (McMahan et al., 2017) is a specific case
of CL that enables multiple entities to collectively train a shared model by sharing their respective model
parameters or gradients with a central server for aggregation. However, FL methods can lead to information
leakage associated with sharing gradients/parameter updates with an untrusted third-party server that can
potentially carry out reconstruction attacks (Zhu et al., 2019; Zhao et al., 2020). Furthermore, most CL
algorithms assume that all participating agents are contributing equally to the learning process. When
this assumption is violated, there is little incentive for collaboration because the gains are not distributed
fairly. To avoid these pitfalls, a fully decentralized learning algorithm that fairly rewards the contributions of
individual participants is required.

Recent works have attempted to tackle the challenge of collaborative fairness (CF) in FL settings. Shapley
value (SV) (Shapley et al., 1953) is often used to estimate the marginal utility of participants in FL. However,
computing the SV involves high computation and communication costs. To mitigate this problem, variants
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Figure 1: Illustration of the proposed Choose Your Collaborators Wisely (CYCle) protocol for Private
Decentralized Learning (PDL).

of SV have been proposed in (Wang et al., 2020; Kumar et al., 2022; Xu et al., 2021; Tastan et al., 2024).
But these methods only focus on FL with a central server. Existing private decentralized learning (PDL)
algorithms such as CaPriDe learning (Tastan & Nandakumar, 2023), CaPC (Choquette-Choo et al., 2021),
and Cronus (Chang et al., 2019) emphasize on confidentiality, privacy, and utility, while ignoring collaborative
fairness.

In this work, we aim to bridge this significant gap by designing the CYCle protocol for knowledge sharing
in the PDL setting. We focus on three goals - maximizing the mean accuracy gain across all participants,
ensuring that no participant suffers performance degradation due to collaboration, and the accuracy gains
are evenly distributed. To achieve these goals, we make the following contributions:

• We analyze the collaborative fairness metric based on correlation coefficient between the contributions
of participants and their respective final accuracies, and show that it fails in cases where the
collaboration gain is negative.

• We introduce the CYCle protocol that regulates knowledge transfer among participants in a PDL
framework based on their reputations to achieve better collaborative fairness. The proposed reputation
scoring scheme uses gradient alignment between cross-entropy and distillation losses to accurately
assess relative contributions made by collaborators in PDL.

• We extend the CYCle protocol to operate seamlessly on top of gossip-based decentralized algorithms
such as Gossip-SGD, enabling fair collaboration.

• We theoretically study the CYCle protocol in the context of mean estimation between two participants
and show that it outperforms FedAvg in the presence of data heterogeneity.

2 Related Work and Background

Several challenges associated with CL have been addressed recently, including privacy (Dwork et al., 2014;
Choquette-Choo et al., 2021; Chang et al., 2019; Tastan & Nandakumar, 2023; Kairouz et al., 2021; Erlingsson
et al., 2020; McMahan et al., 2018), confidentiality (Tastan & Nandakumar, 2023; Choquette-Choo et al.,
2021; Chang et al., 2019), communication efficiency (McMahan et al., 2017), robustness (Lakshminarayanan
et al., 2017; Athalye et al., 2018; Bagdasaryan et al., 2020), and fairness (Xu et al., 2021; Zhou et al.,
2021; Lyu et al., 2020). Most existing works focus only on FL algorithms with central orchestration such
as FedAvg (McMahan et al., 2017). Due to the potential harm caused by gradient leakage in FL (Zhao
et al., 2020; Zhu et al., 2019), which can result in the disclosure of sensitive user data, there is a growing
interest in decentralized learning algorithms that do not require centralized orchestration. Focus has been
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mainly on ensuring confidentiality, privacy, and utility in decentralized learning (Tastan & Nandakumar,
2023; Choquette-Choo et al., 2021; Chang et al., 2019). While frameworks like Cronus (Chang et al., 2019)
offer robustness and privacy in decentralized settings, they do not address fairness, which are central to our
work. To our knowledge, CYCle is the first to explicitly target collaborative fairness in decentralized learning.

To achieve collaborative fairness in CL, it is critical to evaluate marginal contributions of participants (Jia
et al., 2019; Xu et al., 2021; Shi et al., 2022; Jiang et al., 2023; Tastan et al., 2024; Donahue & Kleinberg,
2021). The main reason to have a robust data valuation technique is the heterogeneous nature of data
distribution across clients, meaning that some clients may contribute more useful data than others. In vanilla
FL, all participants receive the same global model irrespective of their contributions, which can potentially
discourage collaboration and increase resistance to practical adoption. While Shapley Value (SV) can be
used for data valuation, SV computation is expensive and hard to employ (Shapley et al., 1953). In CGSV
(Xu et al., 2021), cosine similarity between local and global parameter updates is used to approximate the
SV. The same cosine similarity approach is used in RFFL (Xu & Lyu, 2021) for reputation scoring. Kumar
et al. (2022) used logistic regression models as proxies for client data and utilized an ensemble of them to
approximate the SVs.

Compared to prior work that either assumes centralized orchestration or overlooks fairness, CYCle introduces
a fully decentralized protocol that ensures fair collaboration by regulating knowledge transfer based on
participant reputations. It departs from correlation-based fairness metrics that fail under negative collaboration
gain and instead proposes a metric specifically designed for fair collaborative learning. CYCle extends naturally
to Gossip-SGD, and we show both empirically and theoretically that it achieves better alignment between
contribution and reward, particularly under data heterogeneity.

2.1 Preliminaries

Notations. Let M̃θ : X → Y be a supervised classifier parameterized by θ, where X ⊆ Rd and Y =
{1, 2, · · · , M} denote the input and label spaces, respectively, d is the input dimensionality, and M is the
number of classes. Let Mθ : X → Z denote a mapping from the input to the logits space (Z ⊂ RM ) and σT

be a softmax function (with temperature parameter T ) that maps the logits into a probability distribution
p = σT (z) over the M classes. The sample is eventually assigned to the class with the highest probability.
Given an input sample x ∈ X and its ground truth label y ∈ Y, let LCE denote the cross entropy (CE) loss
based on the prediction σT (Mθ(x)) and y. We denote LDL(i,j) as the pairwise distillation loss between two
models Mθi

and Mθj
. For example, the distillation loss (DL) could be computed as KL divergence between

σT (Mθi(x)) and σT (Mθj (x)). Note that other types of distillation losses (Gou et al., 2021) can also be used
in lieu of KL divergence.

Decentralized Learning. Let N be the number of collaborating participants and N = {1, 2, ..., N}. We
assume that each participant Pn, n ∈ N has its own local training dataset Dn and a hold-out validation
set D̃n. Based on the local training set, each participant can learn a local ML model Mθn

by minimizing
the local cross entropy loss LCEn

. The validation accuracy of this standalone local model Mθn
on D̃n is

denoted as Bn. The goal in a typical FL algorithm is to build a single global model Mθ∗ that has a better
accuracy than the standalone accuracy of all the local models. In contrast, the goal of each participant in
decentralized learning is to obtain a better local model Mθ∗

n
, which has a higher local validation accuracy

An after collaboration. In other words, each participant Pn aims to maximize its collaborative gain (CG),
which is defined as Gn = (An − Bn). This is typically achieved by minimizing the following objective:

Ln = LCEn + λnLDLn , (1)

where LDLn
denotes the total distillation loss of Pn and λn > 0 is a hyperparameter that controls the relative

importance of the cross-entropy and distillation losses. Note that the term DL in the above formulation is
used generically (without restricting to any specific loss function) and it intuitively captures the differences
between the local model of a participant and the models of all its collaborators. The total DL of Pn can in
turn be computed by aggregating the pairwise distillation losses as follows:

LDLn =
∑

k∈N \{n} λ(n,k)LDL(n,k) , (2)
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Figure 2: Illustration of confidential and private decentralized (CaPriDe) learning framework for N participants,
showing the learning process for only participant P1. Here, D1 = (X1,Y1) = {xj,1, yj,1}|D1|

j=1 is the local data of
P1, E(X1) denotes the collection of encrypted unlabeled samples of P1, and p(1,l) and z(1,l) are the prediction
probabilities and logits obtained by applying modelMθl

of participant Pl to X1. Black dashed line represents
exchange of encrypted data between participants in each round, and blue dashed line denotes a single transfer
at the beginning of the protocol. d is a decryption method. LCE and LDL represent the cross-entropy and
distillation losses, respectively. In the context of our paper, LDL(1,k) := L̂KL1 − d

(
E
(
L̃KL(1,k)

))
.

where LDL(n,k) is the pairwise DL between Pn and Pk and λ(n,k) are the weights assigned to the pairwise
losses between different participants.

Private Decentralized Learning (PDL). In the PDL framework, the total DL is computed in a privacy-
preserving way without leaking the local data of participants. For example, CaPC learning (Choquette-Choo
et al., 2021) leverages secure multi-party computation, homomorphic encryption, and differential privacy (DP)
to securely estimate LDLn

. However, CaPC learning requires a semi-trusted third-party privacy guardian
to privately aggregate local predictions and the pairwise distillation losses are not accessible. In contrast,
CaPriDe learning (Tastan & Nandakumar, 2023) utilizes fully homomorphic encryption (FHE) to securely
compute an approximation of the pairwise DL losses. However, all existing PDL algorithms lack a mechanism
to assess the contributions of different participants within the CL framework. Hence, λ(n,k) is usually set to

1
(N−1) and λn = λ0, ∀ n ∈ N . λ0 is typically determined through hyperparameter search. We refer to the
above scenario as vanilla PDL (VPDL).

CaPriDe Learning. CaPriDe learning framework (Tastan & Nandakumar, 2023), as described above, uses
a knowledge distillation approach and homomorphic encryption to enable secure and private computations.
Figure 2 illustrates how CaPriDe learning works. Let E(Xn) = {E(xj,n)}|Dn|

j=1 be the collection of encrypted
input samples of participant Pn. Here, the encryption is based on a FHE scheme with the public key of Pn.
In CaPriDe learning, each party initiates the collaboration by publishing E(Xn) to the other participants. Let
zj,(n,k) and pj,(n,k) denote the logits vector and probability vector obtained when modelMθk

of Pk is applied
on the input sample xj,n, i.e., the jth training sample of Pn. Assume that at round (t + 1), 0 ≤ t < τ of the
collaboration, the current model of Pn is Mθt

n
. Then, Pn performs one forward pass on its own training set

Dn to obtain the predictions {pj,(n,n)}
|Dn|
j=1 . To enable knowledge transfer between participants, CaPriDe
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learning makes use of the knowledge distillation (KD) approach (Hinton et al., 2015), where a student model
learns to mimic the predictions of a teacher model. In CaPriDe learning, there is no designated teacher
model, and mutual KD between multiple peer models is used for knowledge transfer. Let LDL(n,k) denote the
pairwise distillation loss between predictions of Pn and Pk, which is defined as:

LDL(n,k) =
|Dn|∑
j=1

DDL

(
pj,(n,n), pj,(n,k)

)
= L̂KLn − d

(
E
(
L̃KL(n,k)

))
(3)

where DDL(p1, p2) denotes the mimic distance between two predictions p1 and p2 and

L̂KLn
=

|Dn|∑
j=1

(
pj,(n,n) · log pj,(n,n)

)
, E

(
L̃KL(n,k)

)
=

|Dn|∑
j=1
E
(
pj,(n,n)

)
·
E
(
zj,(n,k)

)
T

, (4)

where T is a temperature parameter and L̃KL(n,k) is encryption-friendly, approximate KL divergence as per
CaPriDe learning (Tastan & Nandakumar, 2023).

3 Towards a Better Fairness Metric

In (Lyu et al., 2020; Xu & Lyu, 2021), collaborative fairness (CF) is defined as follows:
Definition 1 (Collaborative Fairness). In a federated system, a high-contribution participant should be
rewarded with a better performing local model than a low-contribution participant. Mathematically, fairness
can be quantified by the correlation coefficient between the contributions of the participants and their
respective final model accuracies.

In the above CF Definition 1, the contribution of a participant is typically evaluated based on its standalone
local accuracy (Bn). Thus, the CF metric attempts to ensure that participants with higher standalone
accuracy receive a model with higher final accuracy (An) compared to that received by other participants.
However, the problem with this approach can be illustrated using a simple example. Consider two participants
P1 and P2 with standalone accuracy of 60% and 80%, respectively. Suppose that after collaboration, P1 (P2)
receives a model with an accuracy of 70% (70.1%). In this scenario, the system is considered perfectly fair
(with a fairness measure of 1) according to the above CF definition, because P2 receives a model with higher
accuracy compared to P1. However, it is obvious that only P1 benefits from this collaboration and achieves a
CG of G1 = 10%, whereas P2 gains nothing. Strictly speaking, P1 has a negative CG of G2 = −9.9%, but
it can always dump the collaboratively trained model and use its own standalone model to achieve zero
CG. This scenario cannot be considered fair, because the participant with the lower contribution benefits
significantly without helping the participant with higher contribution.

The problem with CF quantification in Definition 1 is that it overlooks the scenario where the collaboration
gain is negative. This is usually not the case in FL with iid settings, because all the participants have similar
standalone accuracy, and the accuracy of the collaboratively learned model is much higher than any of the
individual standalone accuracies. However, in extreme non-iid settings (which is where collaborative fairness
is most needed!), the problem of negative CG can be encountered often. Hence, there is a need for a better
metric to quantify collaborative fairness.

One possible solution is to measure the rewards in terms of CG, instead of the final model accuracies.
Consequently, fairness can be quantified by the correlation coefficient between the contributions of participants
(Bn) and their respective collaboration gains (Gn). However, the drawback of this approach is that it is
inherently much harder to improve the performance of the higher contribution participant who starts with a
much higher standalone accuracy. Going back to the earlier example, if P1 improves from 60% to 70%, P2
has to improve its accuracy from 80% to more than 90% to achieve a fairness score of 1. While it is much
easier to satisfy the first condition, it is hard to meet the second condition using any CL algorithm. Hence,
the fairness metric based on the correlation between standalone accuracy and CG is likely to be negative for
most cases, indicating poor fairness.
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A better alternative is to minimize the probability that the CG is negative or zero, i.e., P (Gn ≤ 0) should
be small. Let µ = E[Gn] and ν =

√
Var[Gn] denote the mean and standard deviation of the collaboration

gains, respectively. Intuitively, this is possible only when µ is a large positive value and if ν is small.
Mathematically, using the well-known Chebyshev single-tail inequality, we can show that P (Gn ≤ 0) is
bounded by ν2

ν2+µ2 = 1
(1+(µ/ν)2) , provided µ > 0. Thus, minimizing P (Gn ≤ 0) requires maximizing µ and

minimizing ν. Let the mean collaboration gain (MCG) and the collaboration gain spread (CGS) be defined
as the sample mean and standard deviation of CG across participants, i.e.,

MCG = 1
N

N∑
n=1
Gn, CGS =

√√√√ 1
(N − 1)

N∑
n=1

(Gn −MCG)2. (5)

Hence, an ideal decentralized learning scheme should maximize MCG (achieve better utility), while at the
same time minimize CGS (ensure that all participants benefit fairly). This minimizes the likelihood of a
participant being negatively impacted by the collaboration (having negative CG).

4 Proposed CYCle Protocol Algorithm 1 CYCle
(
t, k,∇θn

LCEn

)
Input: Momentum factor α

1: ϕ← Is Update Available from Pk?
2: Reputation Scoring
3: if ϕ = 0 then
4: LDL(n,k) ← 0
5: else
6: LDL(n,k) ← Get DL from Pk

7: if (t mod R) = 0 then

8: s←
1− cos(∇θn

LCEn
,∇θn

LDL(n,k))
2

9: r̃ ← h(s)
10: rt

(n,k) ← αrt−1
(n,k) + (1− α)r̃

11: end if
12: end if
13: Adaptive Sharing
14: if (t mod R) = 0 then
15: Share predictions with Pk

16: else
17: z ← Uniform

(
[0, 1]

)
18: if z ≤ r(k,n) then
19: Share predictions with Pk

20: end if
21: end if
22: return

(
rt

(n,k),LDL(n,k)

)

Assumptions and Scope. In this work, we
restrict ourselves to the PDL framework pre-
sented in Eqs. 1 and 2. We also assume a cross-
silo setting, where the number of participants
is relatively small (N < 10) to ensure the prac-
tical feasibility of PDL. Our method requires
a PDL algorithm that can compute pairwise
DL in a privacy-preserving way. While we em-
ploy CaPriDe learning (Tastan & Nandakumar,
2023) as the baseline method for PDL in this
work, other alternatives can also be used. Com-
plete description of the baseline PDL method
and discussions about its convergence, commu-
nication efficiency, or privacy guarantees are
beyond the scope of this work.

Rationale. To maximize its individual CG
(and hence maximize MCG), each participant
must intuitively give more importance to dis-
tillation losses corresponding to other reliable
participants, while de-emphasizing distillation
losses corresponding to unreliable participants.
To minimize CGS, each participant must penal-
ize other unreliable participants (who do not
contribute to its own learning) by sharing less
knowledge with them. To achieve both these
goals, we need to solve the following two sub-problems: (i) Reputation Scoring (RS): How to efficiently
evaluate the reliability/reputation r(n,k) of participant Pk in the context of collaborative learning of model
Mθ∗

n
belonging to Pn?, (ii) Adaptive Sharing (AS): How to regulate knowledge transfer among participants

based on the reputation score to achieve collaborative fairness?.

4.1 Reputation Scoring

Several reputation scoring methods have been proposed in the FL literature (Xu & Lyu, 2021; Zhang et al.,
2021). These reputation scores are generally used by the FL server either for client selection or for weighted
aggregation. In contrast to FL, where a global model is learned by a central server, each participant builds its
own local model in PDL. Hence, it is not possible to compute a single reputation score for a PDL participant.
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Instead, each participant has its own local estimate of the reputation of other participants. Hence, the same
participant may be assigned different reputation scores by its collaborators.

Algorithm 2 Private Decentralized Learning (PDL) based
on Proposed CYCle Protocol
Input: Number of participants N , maximum communication
rounds tmax, and learning rate η

Assumption: Each Pn has Dn = {xj,n, yj,n}|Dn|
j=1

1: Mθ0
n
← Local training at Pn, ∀ n ∈ N

2: for each round t = 0, 1, · · · , tmax do
3: for each participant n ∈ N do
4: LCEn

← Compute cross-entropy loss of Pn

5: ∇θn
LCEn

← Compute the gradient of LCEn

6: for each participant k ∈ N\{n} do
7: (rt

(n,k),LDL(n,k)) ← CYCle(t, k,∇LCEn)
8: end for
9: λ(n,k) ← rt

(n,k)
10: LDLn ←

∑
k∈N \{n} λ(n,k) · LDL(n,k)

11: Ln ← LCEn
+ λ0 · LDLn

12: θt
n ← θt−1

n − η∇θn
Ln

13: end for
14: end for

The proposed reputation scoring is based on the
intuition that the gradient alignment between
local CE loss and pairwise DL is a strong indi-
cator of the utility of Pk to Pn. For example,
if the two gradients are completely misaligned
(either because the data distributions of Pk and
Pn do not have any overlap or because Pk is
malicious), attempting to learn from Pk is likely
to harm the learning of Pn, rather than being
beneficial. On the other hand, if there is per-
fect alignment, the two gradients reinforce each
other and accelerate the model learning at Pn.
In fact, if KL divergence is used for pairwise
DL computation, the gradients based on the
local CE loss and pairwise DL will be closely
aligned only when the predictions made by Pk

on Pn’s data closely match the ground-truth la-
bels available with Pn. This is because CE loss
measures the “distance” between σT (Mθn

(x))
and y, while DL loss measures the “distance”
between σT (Mθn(x)) and σT (Mθk

(x)). These
losses will lead to aligned gradients only when σT (Mθk

(x)) is close to y. This justifies our choice of using the
gradient alignment between CE loss and pairwise DL as the basis for reputation scoring.

The reputation of a participant Pk from the perspective of Pn (denoted as r(n,k)) is computed in two steps.
First, the gradient (mis)alignment metric s(n,k) is computed as:

s(n,k) =
1− cos

(
∇θn
LCEn

,∇θn
LDL(n,k)

)
2 , (6)

where ∇θnLCEn and ∇θnLDL(n,k) are the gradients of cross entropy and distillation losses, respectively, with
respect to the current parameters θn of the participant Pn, n ∈ N , and k ∈ N\{n}. Note that s(n,k) → 0
indicates better gradient alignment. We empirically observed that when the gradient alignment s(n,k) is below
a threshold τopt, collaboration with Pk is mostly beneficial to Pn. This is because as long as the predictions
of Pk are closer to the ground-truth at Pn, learning from Pk will help Pn. In contrast, when s(n,k) is above a
threshold τmax, collaboration with Pk becomes harmful to Pn. Based on these observations, we compute
the reputation score by applying a soft clipping function to s(n,k). Specifically, the reputation score in the
current round r̃(n,k) = h(s(n,k)), where h is defined as:

h(s) = max
(

0, min
(

1,
s− τmax

τopt − τmax

))
. (7)

To minimize variations due to stochasticity, the reputation score is updated using a momentum factor, i.e.,
rt

(n,k) = αr
(t−1)
(n,k) + (1 − α)r̃(n,k), where 0 < α < 1 is the momentum hyperparameter and rt

(n,k) is the final
reputation score in round t (t > 0). When t = 0, rt

(n,k) = r̃(n,k). Henceforth, we drop the index t for
convenience. A higher reputation score r(n,k) implies that updates from Pk are useful for model learning at
Pn. Hence, Pn can directly utilize r(n,k) to weight (λ(n,k)) the pairwise distillation loss. While it is possible
to perform reputation scoring and dynamically update the weights λ(n,k) after every collaboration round, it
can also be performed periodically (after a fixed number of rounds) to minimize computational costs.

4.2 Adaptive Sharing

Once the reputation scores are computed, Pn can use r(n,k) to choose its collaborators wisely. Specifically,
Pn can decide if it needs “to share or not to share” the distillation loss LDL(k,n) with Pk. To be precise,
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Pn computes and sends LDL(k,n) to Pk with probability r(n,k). This adaptive sharing mechanism plays a
key role in ensuring collaborative fairness. In order to receive updates from Pn in the current collaboration
round, participant Pk needs to maintain a high reputation score with Pn. This in turn requires the sharing
of updates that are useful for model learning at Pn in the previous round.

The above reputation-based adaptive sharing scheme has the following advantages: (1) It incentivizes Pk

to share honest and useful updates with Pn. Sharing noisy or malicious updates will hurt Pk’s reputation
score and hence, dampen Pk’s ability to learn from Pn. (2) If Pn finds that Pk has a low reputation score, it
will send updates less frequently to Pk, thereby saving valuable computational and communication resources.
Note that in the PDL framework, privacy-preserving DL loss computation is often computationally expensive.
However, there is one limitation in the proposed protocol. If Pn is malicious, it can deviate from the protocol
and stop sending updates to Pk even though r(n,k) is high. While this can be addressed by penalizing
participants (by reducing their reputation score) for not sharing updates, such an approach is not desirable
because it will force participants to keep sharing updates even if they are not benefiting from the collaboration.
Hence, we go for a compromise solution, where all the parties are forced to share updates after every R
collaboration rounds and the reputation scores are re-calibrated based on these responses.

4.3 Theoretical Comparison with FedAvg via Mean Estimation

To illustrate the theoretical benefit of CYCle over traditional FL approaches such as FedAvg (McMahan
et al., 2017), we consider a simple mean estimation problem with two clients (N = 2), each minimizing
fk(w) = (w − θk)2 using limited local samples. Let θ̂1 ∼ N (θ1, γ2) and θ̂2 ∼ N (θ2, γ2) denote the empirical
estimates of each client, where γ2 = ν2/N is the estimation variance.

In FedAvg, the clients compute the global model as w = (θ̂1 + θ̂2)/2. However, as shown in prior work (Cho
et al., 2022), the probability that this shared model outperforms a standalone estimate is exponentially
suppressed with increasing data heterogeneity:

P
(

Fk(w) ≤ Fk(θ̂k)
)
≤ 2 exp

(
− γ2

G

5γ2

)
, (8)

where γ2
G = ((θ1 − θ2)/2)2 quantifies heterogeneity. This shows that FedAvg performs poorly when the client

distributions are dissimilar.

In contrast, CYCle uses a reputation-weighted aggregation: w = (1− r/2) · θ̂1 + r/2 · θ̂2, where the reputation
score r depends on the empirical distance between θ̂1 and θ̂2.
Theorem 4.1. The probability that the model obtained through CYCle’s collaborative aggregation improves
upon a standalone model is lower bounded as

P
(

Fk(w) ≤ Fk(θ̂k)
)
≥ 1

8 exp
(
− 1

4γ2

)
.

Unlike FedAvg, this bound is independent of heterogeneity γ2
G, highlighting CYCle’s robustness to client

diversity. Full derivations and proofs are provided in Appendix A.

4.4 Extension to Gossip-SGD

CYCle can be integrated with decentralized optimization algorithms such as Gossip-SGD (Boyd et al., 2006;
Koloskova et al., 2019) by modifying the communication mechanism through a dynamic, reputation-driven
mixing matrix. In classical Gossip-SGD, each client averages model updates with neighbors using a static
mixing matrix. We replace this matrix with one that evolves based on alignment scores between gradient
directions, capturing the degree of collaborative benefit.

Formally, during each communication round, each node computes the pairwise cosine similarity with its
neighbors’ gradients and maps the resulting score using a softmax function controlled by a hyperparameter β.
The updated mixing matrix W is then used to sample a binary interaction mask S ∼ Bernoulli(W ), ensuring
that communication occurs only with beneficial peers. This mechanism balances collaboration and robustness
by probabilistically encouraging high-alignment links while discouraging noisy exchanges.
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We detail full algorithm and its integration into Gossip-SGD in Appendix C, where we also describe the
mapping functions and sampling strategy. Empirical results on the Fed-ISIC2019 dataset confirm that this
extension maintains fairness and improves utility under realistic, non-i.i.d. data conditions.

5 Experiments

Datasets. CIFAR-10 (Krizhevsky et al., 2009) is a dataset consisting of 60000 images of size 32 × 32
pixels, categorized into 10 classes with 6000 images per class. It has 50000 training and 10000 test samples.
CIFAR-100 dataset (Krizhevsky et al., 2009) shares similarities with the CIFAR-10 dataset, but it consists of
100 classes with 600 samples per class. The training and test sets are divided in the same way as in CIFAR-10.
CIFAR-100 dataset is used with data augmentation (random rotation (up to 15 degrees), random crop, and
horizontal flip). Fed-ISIC2019 (Ogier du Terrail et al., 2022) (from FLamby benchmark) is a multi-class
dataset of dermoscopy images comprising 23, 247 images with 8 different melanoma classes and high label
imbalance (ranging from 49% to less than 1% for class 0 to 7). The dataset is designed for 6 clients based on
the centers. Train/test split is: (9930/2483), (3163/791), (2691/672), (1807/452), (655/164), (351/88).

5.1 Experimental Setup

Baseline approaches. We consider several existing FL algorithms as baselines: vanilla FL based on FedAvg
(FedAvg) (McMahan et al., 2017), FL based on cosine gradient Shapley value (CGSV) (Xu et al., 2021),
collaborative fairness in FL (CFFL) (Lyu et al., 2020), and robust and fair FL (RFFL) (Xu & Lyu, 2021).
The above methods are designed for FL with central orchestration. As mentioned earlier, the baseline VPDL
method is based on CaPriDe learning (Tastan & Nandakumar, 2023). We also evaluate standalone (SA)
accuracy, where each participant trains its ML model on its local dataset without any collaboration with
others. Furthermore, we report the results for these baseline methods on CIFAR-10 and CIFAR-100. We do
not compare against Cronus or similar decentralized methods, as they focus on robustness under adversarial
conditions and omit fairness evaluation. Since our goal is to promote fair collaboration, we instead benchmark
against fairness-aware FL methods. We leave integration with robustness-centric frameworks for future work.

Participant data splitting strategies. We implement three types of strategies to split the training dataset
among the participants: (i) homogeneous, (ii) heterogeneous, and (iii) imbalanced dataset sizes
(denoted as ‘imbalanced’). Homogeneous setting refers to the case where each participant gets an equal
number of data points per class. In contrast, the heterogeneous method assigns a varying number of data
points to each participant, based on a Dirichlet(δ) distribution. The parameter δ reflects the degree of non-IID
characteristics within the dataset, where smaller values of δ lead to a more heterogeneous setting, while larger
values tend towards an IID setting. To determine the specific allocation, we sample p ∼ DirN (δ) and assign
a fraction pn of the total data samples to Pn. We employ these settings for CIFAR-10 and CIFAR-100 with
the following number of participants: N = 2, 5, 10. In all our experiments, we utilize all training samples
(e.g., all 50000 samples of CIFAR-10 and CIFAR-100). In the case of the imbalanced data distribution, we
utilize a custom function that relies on parameters κ and m, where κ determines the proportion of data
points received by each of the m chosen participants. The remaining (N −m) participants then share the
remaining data among themselves. We explore this setting with N = 5 participants and consider the following
configurations: (i) imbalanced (κ = 0.8, m = 1), (ii) imbalanced (κ = 0.35, m = 2), and (iii) imbalanced
(κ = 0.6, m = 1). For example, in the last case, one participant holds 60% of the data, while the remaining 4
participants get 10% of the data each.

Evaluation metrics. We assess the accuracy of the trained models based on their mean validation accuracy
(MVA) and mean collaboration gain (MCG) across all participants. To evaluate collaborative fairness, we
use the collaboration gain spread (CGS). Reputation scores are reported in a matrix form to determine the
relative contribution of each client.

5.2 Experimental Results

We start by benchmarking existing algorithms on the CIFAR-10 dataset. Table 1 summarizes the results for
different splitting strategies that involve N = 5 participants. Our key findings are as follows:
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Table 1: Performance comparison on CIFAR-10 dataset: Validation accuracy evaluated with N = 5
participants. The top section of the table presents the performance of our proposed framework compared to
the FedAvg algorithm. The bottom part of the table compares collaboration gain and fairness of our proposed
CYCle algorithm with existing works (rows 6-9). We use MVA (↑), MCG (↑) and CGS (↓) as eval. metrics.

Setting Homogeneous Dirichlet (0.5) Imbalanced (0.8, 1) Imbalanced (0.35, 2) Imbalanced (0.6, 1)
Metric MVA MCG CGS MVA MCG CGS MVA MCG CGS MVA MCG CGS MVA MCG CGS
FedAvg 90.60 7.20 0.48 88.76 21.40 4.31 90.17 26.35 14.51 90.34 13.12 9.61 90.16 16.28 9.11
VPDL 84.98 1.58 0.71 74.27 6.91 2.31 67.18 3.36 3.58 78.71 1.49 4.01 75.43 1.55 2.45
CYCle 86.33 2.93 0.32 76.93 9.57 2.07 69.26 5.44 2.56 81.12 3.89 2.65 76.72 2.83 1.38
CFFL 62.65 2.21 0.87 49.04 2.49 2.35 58.66 3.48 4.39 65.08 9.99 9.95 65.20 14.35 9.79
RFFL 61.50 1.05 0.95 48.52 1.96 1.63 56.27 1.08 2.45 58.51 3.43 7.46 51.35 0.50 6.74
CGSV 63.27 2.83 0.94 54.45 7.90 3.40 55.96 0.78 9.32 61.99 6.91 11.34 61.34 10.49 11.23
CYCle 71.95 11.51 0.58 51.21 4.65 1.11 61.80 6.62 2.79 68.26 13.17 7.12 64.93 14.08 6.22

Figure 3: Per-participant performance comparison on CIFAR-10 dataset: Validation accuracy evaluated with
N = 5 participants.

• We assess the performance of three algorithms – FedAvg, VPDL, and CYCle – using the ResNet18
architecture. These results are shown in Figure 3 and in the upper section of Table 1 (rows 3-5).
FedAvg has better MCG compared to other methods due to its centralized FL approach, which
involves aggregating and sharing full model parameters, resulting in good overall utility. However,
when it comes to collaborative fairness, FedAvg falls short of being fair to participants who contribute
a larger amount of data. In particular, the CYCle approach exhibits significantly lower CGS values
compared to the FedAvg algorithm in the imbalanced settings. Additionally, our method consistently
provides positive collaboration gains to all participants in various settings. This is not the case for
FedAvg or VPDL, which is evident in the outcomes for P1 in the imbalanced (0.8, 1) and (0.6, 1)
settings.

• For comparison with other fairness-aware FL algorithms, we utilize a custom CNN architecture used
in Xu et al. (2021). This is necessary because CGSV works better on simpler architectures. The
results are shown in Fig. 4 and the bottom part of Tab. 1 (rows 6-9). Our method has better or
comparable CG values when compared to CFFL, RFFL, and CGSV in most of the scenarios. In
terms of fairness, we surpass other approaches by achieving the lowest CGS values in all but one
scenario: the imbalanced (0.8, 1) setting, where it is on par with RFFL. Notably, CYCle consistently
achieves positive gains for all participants, whereas other methods degrade performance for the most
contributing participant (see Figure 4).

Next, we assess the performance of our approach on the CIFAR-10 and CIFAR-100 datasets with different
numbers of participants (N ∈ {5, 10}) and data splitting scenarios (Table 2). In all settings, we consistently
achieve a positive collaboration gain for all participants, and the CYCle method consistently has lower CGS
compared to VPDL, demonstrating improved fairness across participants. Furthermore, we observe that when
integrated with Gossip-SGD (DSGD), CYCle maintains this trend: while the baseline DSGD achieves high
MCG values due to aggressive mixing, it often results in large CGS values, indicating significant disparity
among participants. In contrast, CYCle significantly reduces CGS without compromising MCG, highlighting
its ability to regulate knowledge flow more equitably in decentralized and peer-to-peer settings.
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Figure 4: Per-participant performance comparison on CIFAR-10 dataset using custom CNN architecture
from (Xu et al., 2021): Validation accuracy evaluated with N = 5 participants.

Table 2: Collaboration gain and spread (MCG, CGS) on CIFAR-10 and CIFAR-100 datasets and the given
partition strategies for N = {5, 10} using our proposed algorithm. DSGD refers to the Gossip-SGD algorithm.

Dataset CIFAR-10 CIFAR-100
N 5 10 5 10

Split Method MVA MCG CGS MVA MCG CGS MVA MCG CGS MVA MCG CGS

Homogeneous

VPDL 84.98 1.58 0.71 71.01 1.92 1.58 56.74 7.58 1.20 40.87 10.42 2.48
CYCle 86.24 2.84 0.37 73.66 4.57 0.71 57.56 8.40 0.69 41.17 10.72 1.15
DSGD 84.05 8.86 0.16 80.57 13.75 0.48 56.45 19.28 0.19 49.79 23.95 0.38
CYCle 84.22 9.03 0.16 79.84 13.02 0.30 56.07 18.90 0.12 49.41 23.57 0.23

Dirichlet (0.5)

VPDL 74.27 6.91 2.31 50.64 1.24 2.24 46.36 10.51 2.59 27.70 3.41 2.80
CYCle 76.93 9.57 2.13 53.82 4.42 1.98 47.98 12.13 0.68 28.47 4.18 1.07
DSGD 81.83 22.98 3.54 77.16 28.26 4.92 50.16 21.74 2.84 44.38 24.12 2.11
CYCle 81.14 22.30 2.60 75.82 26.92 3.71 49.61 21.19 0.95 43.91 23.65 1.16

Dirichlet (2.0)

VPDL 81.26 3.38 3.72 69.36 5.51 5.00 56.31 12.43 2.31 39.34 9.71 3.16
CYCle 83.13 5.25 2.42 72.33 8.48 4.83 57.61 13.73 2.14 39.93 10.30 1.97
DSGD 83.66 12.64 0.97 79.86 18.25 2.29 55.53 21.19 0.97 50.21 25.89 0.61
CYCle 83.48 12.45 0.68 79.64 18.03 1.87 56.36 22.01 0.89 50.59 26.27 0.57

Dirichlet (5.0)

VPDL 83.32 2.39 1.94 72.37 4.54 3.96 58.18 9.80 1.38 41.86 10.03 2.92
CYCle 84.80 3.86 1.15 74.83 7.00 3.72 59.67 11.29 1.08 41.92 10.09 1.38
DSGD 83.72 10.02 0.56 80.38 15.65 1.17 56.06 20.02 0.54 50.33 24.94 0.67
CYCle 83.85 10.15 0.33 80.46 15.73 0.77 55.87 19.83 0.48 49.62 24.24 0.43

Reputation scoring visualization. Figure 5 visualizes the reputation scores computed in three collabora-
tion rounds: t = 0, 25, 75 using heatmap plots. In Figure 5a, where participants have imbalanced data (with
P1 having 80% of the data), our method can already identify distinct patterns of each participant’s data value
from the beginning of the collaboration. The heatmap figure emphasizes that higher importance is given to
P1 by all the other participants. As the collaboration progresses, the reputation of P1 intensifies further,
while the reputation scores of other participants decrease. Toward the end of the collaboration, the values
converge to a state in which participants with an equal amount of data receive equal reputation scores. A
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Figure 5: Heatmap visualization of reputation scores for imbalanced settings when N = 5.
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similar pattern can be observed in Figure 5b, where the first two participants possess larger amounts of data.
While the first five rows of the heatmap figures depict the raw reputation scores calculated using Equation 7,
the sixth row at the bottom represents the average reputation scores aggregated over all the rounds.

Table 3: Validation accuracies of participants (P1, ..., P5)
with P5 having varying rates of label flipping. The last col-
umn refers to the average accuracy of honest participants
(P1, ..., P4). The corresponding figure with reputation
scores: Fig. 6.

Setting P1 P2 P3 P4 P5 avg
Standalone (Bn) 83.42 83.67 83.15 83.13 83.63 83.34

Flip rate = 0.0 86.12 87.03 86.33 85.62 86.10 86.28
Flip rate = 0.2 84.95 84.5 84.5 86.45 60.95 85.10
Flip rate = 0.5 84.25 84.65 84.65 83.25 55.80 84.20
Flip rate = 1.0 83.9 84.5 83.95 85.1 10.75 84.36
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Figure 6: Heatmap of reputation scores when P5
undergoes label flipping. Higher flip rates lead to
P5 being rapidly identified as malicious by others.

P1 P2 P3 P4 P5 P6
Participants

0.0

0.2

0.4

0.6

Ba
la

nc
ed

 A
cc

ur
ac

y

Pearson Corr.: 0.9577, p-val: 0.0026

SA CYCle

Figure 7: Per-participant accuracy
under CYCle (Fed-ISIC2019).

Free Rider Study. In this study involving N = 5 participants with
a homogeneous data splitting scenario, we simulate varying degrees of
label flipping at participant P5. We tested the label flipping rates of
0.2, 0.5, and 1.0. From Figure 6, it is evident that honest participants
(participants P1, ...,P4) quickly discern the anomaly with P5, detecting
it as a potential threat. Consequently, they assign a reputation score
of 0.0 to P5, indicating a cessation of updates to this participant. On
the other hand, P5 accurately recognized that the other participants
were beneficial when the label flipping rate was at 0.2, but this positive
assessment drops to zero for the case when the label space of P5 becomes
completely different.

Table 3, aligned with Figure 6, details the values of Bn and An. It reveals that, in the presence of flipped
labels, the collaboration gain declines, reflecting a loss of a participant that holds 20% of the data.

Table 4: CYCle vs. Gossip-SGD on
MCG/CGS (Fed-ISIC2019).

Method MCG CGS
Gossip-SGD (Complete) 30.26 15.64

CYCle 23.79 10.94

Evaluation on Real-World Medical Dataset (Fed-ISIC2019).
To validate our framework in real-world heterogeneous settings, we
evaluate CYCle on the non-IID Fed-ISIC2019 dataset (Ogier du Terrail
et al., 2022). This benchmark features complex inter-client shifts in
class distributions and image types.

Figure 7 shows the per-client validation accuracy using our CYCle
extension on top of Gossip-SGD. Despite differences in client data sizes and class coverage, CYCle maintains
high fairness across participants, as evidenced by a strong correlation between client contribution and reward
(ρ = 0.9577). Table 4 confirms that CYCle achieves the lowest CGS while preserving collaborative utility.

The complete experimental setup, alternate topologies, and detailed visualizations (including reputation
dynamics and data distribution) are provided in Appendix G.3.

6 Conclusion

This paper proposed a novel reputation-based adaptive sharing algorithm to promote collaborative fairness,
specifically tailored for decentralized learning scenarios. By leveraging gradient alignment, CYCle dynamically
adjusts knowledge transfer based on participants’ contributions, ensuring positive and equitable collaboration
gains. We further extended the protocol to operate seamlessly over gossip-based decentralized learning
algorithms. Through theoretical and empirical analyses, this work has illustrated the algorithm’s superior
capabilities in achieving collaborative fairness.
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Privacy Protection Measures. CYCle inherits the secure knowledge-sharing protocol of the CaPriDe
learning framework (Tastan & Nandakumar, 2023), which uses fully homomorphic encryption (FHE) to
safeguard sensitive data. Specifically, each client only transmits encrypted prediction logits to peers, never
raw data (e.g. medical images from Fed-ISIC2019) or model parameters. These encrypted outputs
are used solely to compute a local distillation loss on peer-held datasets, and they are never decrypted by any
party. This ensures that all sensitive information remains protected throughout the training process.

Abuse Risk and Mitigation. A common concern in collaborative learning is the potential for knowledge
monopolization, where dominant participants attempt to suppress or filter contributions from less performant
peers. CYCle directly addresses this risk via its similarity-based, bidirectional collaboration mechanism.
Specifically, clients benefit most when they are aligned with others (as defined by gradient similarity),
which discourages unilateral exclusion. Furthermore, the soft contribution mapping function h(s) makes it
suboptimal for any client to reject collaboration entirely, as doing so reduces their own update quality. This
design promotes a balanced and inclusive exchange of knowledge.
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A Mean Estimation under CYCle Protocol

Standard FL. The vanilla FedAvg algorithm, a standard FL approach, does not ensure an optimal final
model for all participants in a federated setting. Consider a simple scenario involving two clients, N = 2, each
aiming to estimate the mean of their data distribution by minimizing the loss function fk(w) = (w − θk)2.
However, these clients can’t compute the true mean directly due to having only Nk samples from their
distributions, denoted ek,j ∼ N (θk, ν2),∀j ∈ [Nk]. Consequently, they minimize the empirical loss function
Fk(w) = (w − θ̂k)2 + (θ̂k − θk)2, where θ̂k = 1

Nk

∑Nk

j=1 ek,j , leading to ŵk = θ̂k as the minimizer of Fk(w).

Additionally, the following quantities are defined:

γ2 := ν2

N
; γ2

G =
(

θ1 − θ2

2

)2
(9)

Note that the distribution of the empirical means themselves is distributed normally, due to the linear
additivity property of independent normal random variables. This setting is similar to (Cho et al., 2022;
2024), albeit with a few modifications.

θ̂1 ∼ N (θ1, γ2); θ̂2 ∼ N (θ2, γ2) (10)

Lemma A.1. (Cho et al., 2022) The probability (likelihood) that the model obtained from collaborative

training outperforms the standalone training model is upper-bounded by 2 exp
(
− γ2

G

5γ2

)
in a standard FL

framework.

Proof. We analyze the probability that the global model obtained using FedAvg algorithm is superior to one
trained independently (standalone). The model in the standard FL approach is defined as:

w = θ̂1 + θ̂2

2 (11)

Then, the usefulness of the federated model can be measured in the following way:

P
(

(w − θ1)2 ≤ (θ̂1 − θ1)2
)

= P

((
θ̂1 + θ̂2

2 − θ1

)2
≤ (θ̂1 − θ1)2

)
(12)

= P

((
θ̂1 + θ̂2

2 − θ1

)2
− (θ̂1 − θ1)2 ≤ 0

)
(13)

= P

((
θ̂2 − θ̂1

2

)2
+ 2(θ̂1 − θ1)

(
θ̂2 − θ̂1

2

)
≤ 0
)

(14)

= P

({(
θ̂2 − θ̂1

2

)2
+ 2(θ̂1 − θ1)

(
θ̂2 − θ̂1

2

)
≤ 0
}
∩
{

θ̂2 > θ̂1

})

+ P

({(
θ̂2 − θ̂1

2

)2
+ 2(θ̂1 − θ1)

(
θ̂2 − θ̂1

2

)
≤ 0
}
∩
{

θ̂2 ≤ θ̂1

})
(15)

= P

({(
θ̂2 − θ̂1

2

)
+ 2(θ̂1 − θ1) ≤ 0

}
∩
{

θ̂2 > θ̂1

})

+ P

({(
θ̂2 − θ̂1

2

)2
+ 2(θ̂1 − θ1)

(
θ̂2 − θ̂1

2

)
≤ 0
}
∩
{

θ̂2 ≤ θ̂1

})
(16)
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≤ P

((
θ̂2 − θ̂1

2

)
+ 2(θ̂1 − θ1) ≤ 0

)
+ P

(
θ̂2 − θ̂1 ≤ 0

)
(17)

= P(Z1 ≤ 0) + P(Z2 ≤ 0) where Z1 ∼ N
(

γG,
5
2γ2

)
, Z2 ∼ N (2γG, 2γ2) (18)

≤ exp
(
− γ2

G

5γ2

)
+ exp

(
− γ2

G

γ2

)
≤ 2 exp

(
− γ2

G

5γ2

)
(19)

where (15) uses P(A) = P(A ∩B) + P(A ∩BC), (17) uses P(A ∩B) ≤ P(A), (18) uses the linear additivity
property of independent normal random variables and (10), (19) uses a Chernoff bound.

CYCle Algorithm. The CYCle algorithm uniquely incorporates the reputations of each client during
the aggregation of their computed means. Considering the scenario from the perspective of Client 1, who
possesses an estimate θ̂1 and receives θ̂2 from Client 2, the aggregation is expressed as:

w1 =
(

1− r1,2

2

)
θ̂1 + r1,2

2 θ̂2 (20)

As CYCle operates on a decentralized principle, each client develops its final model based on individual
reputations denoted by r. For example, for Client 2, the model is:

w2 =
(

1− r2,1

2

)
θ̂2 + r2,1

2 θ̂1 (21)

Notably, w1 and w2 are not necessarily the same due to the distinct reputation scores. The following discussion
will simplify the notation by dropping indices and focusing on the aggregation process from the perspective
of Client 1.

Reputation Scoring. In the CYCle algorithm, each participant calculates the reputation of their collabo-
rators by assessing the distance between their shared means, denoted as d =

(
θ̂2−θ̂1

2

)2
. This distance is then

used to determine their reputations as follows:

r =


1.0 if d ≤ 1
2− d if 1 < d ≤ 2
0.0 if d > 2

(22)

Here, d represents the empirical heterogeneity parameter, referred to as γ̂2
G. The rationale for the assigned

values is based on the degree of heterogeneity (22):

• If γ̂2
G < 1, it indicates minimal heterogeneity, suggesting that participants can benefit significantly

from collaboration.

• If γ̂2
G > 2, it signals substantial heterogeneity, advising participants to avoid collaboration.

Thus, the reputation scores are directly influenced by the empirical heterogeneity observed between the
participants.

Cost Function. To evaluate the CYCle algorithm against the standard, centralized FL algorithm, we
consider the empirical losses each participant ends up solving. In FedAvg, all clients achieve the common
mean:

w = θ̂1 + θ̂2

2 (23)
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and the empirical loss for Client 1 is:

F1(w) = F1

(
θ̂1 + θ̂2

2

)
= γ̂2

G + (θ̂1 − θ1)2 (24)

This formulation shows that each client encounters non-reducible loss terms in the FedAvg algorithm. For the
CYCle algorithm, the model aggregation is reputation-weighted:

w =
(

1− r

2

)
θ̂1 + r

2 θ̂2 (25)

yielding the empirical loss:
F1(w) = r2γ̂2

G + (θ̂1 − θ1)2 (26)

In CYCle, the empirical heterogeneity parameter γ̂2
G is adjusted using the reputation scores r, allowing

each client to potentially achieve a final model that is as good as or better than their standalone model.
Conversely, in FedAvg, all clients share the same final model. As the heterogeneity between clients increases
(γ2

G), the efficacy (usefulness) of the global model significantly diminishes, as highlighted in Lemma A.1. This
comparison illustrates the advantage of CYCle in managing heterogeneity among the participants to enhance
individual outcomes.

Minimizing the CYCle Objective: Ensuring Positive Outcomes. Unlike standard FL where
increasing true heterogeneity γ2

G drastically reduces the usefulness of the global model (as noted in Lemma
A.1), CYCle modulates the aggregation phase using reputation scores which are derived from the empirical
heterogeneity parameter γ̂2

G (22).
Theorem A.1 (Restated Theorem 4.1). The probability (likelihood) that the model obtained through collabo-
ration (w) surpasses a standalone-trained model (θ̂) is lower bounded by 1

8 exp
(
− 1

4γ2

)
in CYCle algorithm.

Proof. We assess the performance (usefulness) of the collaborative model for client i using:

P
(

(wi − θi)2 ≤ (θ̂i − θi)2
)

(27)

This analysis includes both of the scenarios: (i) θ̂1 = θ̂2 which directly implies a probability of 1.0, and (ii) a
significant difference between θ̂1 and θ̂2 (γ̂2

G ≫ 0), leading to no collaboration, also resulting in a probability of
1.0. The CYCle algorithm is not interested in obtaining a final global model and each client is self-interested
in minimizing their own objective functions.

Case 1: γ̂2
G ≤ 1

P
(

(w1 − θ1)2 ≤ (θ̂1 − θ1)2
)

(28)

= P
(

(w1 − θ̂1)2 + 2(w1 − θ̂1)(θ̂1 − θ1) ≤ 0
)

(29)

= P

((
θ̂2 − θ̂1

2

)2
+ 2
(

θ̂2 − θ̂1

2

)
(θ̂1 − θ1) ≤ 0

)
(30)

= P

({(
θ̂2 − θ̂1

2

)2
+ 2
(

θ̂2 − θ̂1

2

)
(θ̂1 − θ1) ≤ 0

}
∩
{

θ̂2 > θ̂1
})

+ P

({(
θ̂2 − θ̂1

2

)2
+ 2
(

θ̂2 − θ̂1

2

)
(θ̂1 − θ1) ≤ 0

}
∩
{

θ̂2 ≤ θ̂1
})

(31)

≥ P
({

1 + 2(θ̂1 − θ1) ≤ 0
}
∩
{

θ̂2 > θ̂1
})

(32)

= P
({

θ̂1 − θ1 ≤ −
1
2
}
∩
{

θ̂2 > θ̂1
})

(33)
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= P(θ̂1 < θ̂2) P
(
θ̂1 − θ1 ≤ −

1
2 |θ̂1 < θ̂2

)
(34)

≥ P(θ̂1 < θ̂2) P
(
θ̂1 − θ1 ≤ −

1
2
)

(35)

= P(θ̂1 < θ̂2) P
(
Z >

1
2γ

)
where Z ∼ N (0, 1) (36)

≥ 1
8 exp

(
− 1

4γ2

)
(37)

where (30) uses the reputation score r = 1 when γ̂2
G < 1 (refer to (22)), (31) uses P(A) = P(A∩B)+P(A∩BC),

(32) uses the definition of γ̂2
G ≤ 1 and the second part of the expression can be dropped since γ̂G can take

values from −1 to 0, it can be assigned zero probability, (35) uses P(A|B) ≥ P(A), (36) uses θ̂1−θ1 ∼ N (0, γ2),
(37) P(θ̂1 < θ̂2) ≥ 1

2 and P(Z ≥ x) ≥ 1
4 exp(−x2) where Z ∼ N (0, 1). The similar bound can be found for the

second client.

Case 2: 1 < γ̂2
G ≤ 2

In this case, we can follow the similar approach above and we get:

P
(

(w1 − θ1)2 ≤ (θ̂1 − θ1)2
)

(38)

= P
(

(w1 − θ̂1)2 + 2(w1 − θ̂1)(θ̂1 − θ1) ≤ 0
)

(39)

= P
((r

2(θ̂2 − θ̂1)
)2

+ r(θ̂2 − θ̂1)(θ̂1 − θ1) ≤ 0
)

(40)

= P
(

r
( θ̂2 − θ̂1

2

)2
+ 2
( θ̂2 − θ̂1

2

)
(θ̂1 − θ1) ≤ 0

)
(41)

≥ P
({

1 + 2(θ̂1 − θ1) ≤ 0
}
∩
{

θ̂2 > θ̂1
})

(42)

≥ 1
8 exp

(
− 1

4γ2

)
(43)

The reason behind getting the same bound as in Case 1 is that the expression in (41) is maximized when
r = (2− γ̂2

G) = 1, which necessitates γ̂G ≈ 1, when θ̂1 < θ̂2.

Case 3: γ̂2
G > 2

P
(

(w1 − θ1)2 ≤ (θ̂1 − θ1)2
)

=
(

(θ̂1 − θ1)2 ≤ (θ̂1 − θ1)2
)

= 1 (44)

where w1 =
(

1− r

2

)
θ̂1 + r

2 θ̂2 = θ̂1, since r = 0 for γ̂2
G > 2 (Eqs. 25, 22).

As such, CYCle effectively adapts to various degrees of heterogeneity, ensuring that collaboration invariably
enhances or matches the standalone training performance. This is quantitatively supported by a lower bound
of 1

8 exp
(
− 1

4γ2

)
, demonstrating robustness against heterogeneity effects.

Scope and Limitations. The result in Theorem 4.1 is derived under a simplified two-client mean estimation
setting. While this toy model is useful to illustrate how collaboration may fail under heterogeneity and how
CYCle can mitigate that through similarity-based reputation, it is not intended as a universal lower bound
for all learning scenarios. In particular, the lower bound on success probability does not generalize trivially
to more complex settings (e.g., neural networks, high-dimensional tasks, or N > 2 clients).

Extending the analysis to larger populations introduces new technical challenges. Specifically, when N > 2,
(i) the reputation becomes a full matrix rather than a scalar, (ii) true-mean gaps form a vector rather
than a single γG, and (iii) the same noisy estimate θ̂i appears in multiple clients’ aggregates, introducing
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cross-correlations. The bias term then depends on the worst-case alignment across all pairs, while the variance
term includes complex cross-terms from covariance expansion. Bounding these quantities is non-trivial and
remains an open problem.

We include this example primarily to explain the mechanism by which data heterogeneity undermines fairness
in standard FL approaches, and to motivate our design choices in CYCle. Developing more general guarantees
is an exciting direction for future work.

B Numerical Experiments

B.1 Varying Degrees of Heterogeneity

For the first experiment, we adopt the scenario outlined in previous studies (Cho et al., 2022; 2024). For the
simulation involving two clients, we define the true means of the clients as θ1 = 0, θ2 = γG where γG ∈ [0, 5].
The empirical means, θ̂1 and θ̂2, are sampled from the distribution N (θ1, 1) and N (θ2, 1) respectively, with
equal sample sizes (N1 = N2 = N). The average usefulness is calculated over 10000 runs.

The results, depicted in Figure 8, highlight the differing impacts of heterogeneity on the final model’s
usefulness. Under the FedAvg protocol, as heterogeneity increases, the global model’s usefulness drops
drastically, potentially disadvantaging each client by diverging from their optimal solutions (empirical means).
Conversely, the CYCle approach exhibits an increase in the usefulness of the resultant models (wi) irrespective
of the heterogeneity level. This indicates an effective mechanism within CYCle for clients to discern and
select good collaborators based on the proximity of their updates. In scenarios of pronounced heterogeneity,
resulting in low reputation scores, clients are incentivized to rely more heavily on their own updates, effectively
mitigating collaboration when it proves detrimental.

B.2 Imbalanced Data

In this experiment, we consider a scenario where both clients share the same true mean θ1 = θ2 = 0,
effectively setting the true heterogeneity parameter γ2

G = 0. Despite this, the clients differ in their number of
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(b) Over 10000 runs

Figure 8: Numerical study on the usefulness of the model obtained after collaboration (P((wi−θi)2 ≤ (θ̂i−θi)2))
in two client mean estimation. In FedAvg, a single global model is used, whereas in CYCle, each client
computes their model (wi) independently.
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Figure 9: Numerical study on the impact of data imbalance on model usefulness (P((wi − θi)2 ≤ (θ̂i − θi)2))
and the depiction of θi, σi estimates for wi ∼ N (θi, σ2

i ) in two client mean estimation across varying degrees
of data ratios.

samples, influencing their empirical means. Specifically, θ̂1 and θ̂2 are drawn from distributions N (0,
σ2

N1
)

and N (0,
σ2

N2
), respectively, with σ2 set to 5.

The results, presented in Figure 9, illustrate the differential impacts of collaboration based on sample size.
Collaboration tends to benefit Client 2 more than Client 1, with Client 1 being the higher-contributing client
in terms of data. The variance of Client 1 decreases as their data ratio increases, suggesting that Client 1
would benefit from limiting trust in Client 2’s contributions under significant data imbalances. In contrast,
the variance for Client 2 remains relatively the same regardless of the data ratio.

Figure 9 (right side) demonstrates the varying utilities of collaboration for each client. For Client 1, the
usefulness of collaboration decreases as the data ratio becomes more skewed, whereas it remains constant
for Client 2, implying that the collaboration is useful for Client 2. Notably, the FedAvg approach generally
results in worse outcomes compared to both clients in the CYCle scenario, especially as imbalances in data
contribution increase.

C Extension to Gossip-SGD

This appendix provides detailed background on decentralized optimization and describes how the proposed
CYCle protocol is integrated with Gossip-SGD. We include a full derivation of the update rules, communication
graph structures, and Algorithm 3. This section supports the main discussion in Section 4.4.

Unlike the distillation-based approach described in Equations 1 and 2, which focuses on federated distillation
settings, decentralized algorithms typically aim to solve the average consensus problem. This problem is
formalized as:

x := 1
N

N∑
i=1

xi, (45)

where xi ∈ Rd are local vectors distributed across N nodes.

C.1 Gossip-SGD

Description of Gossip-SGD. Classic decentralized algorithms for solving the average consensus problem
are often based on gossip-based algorithms (Xiao et al., 2005; Boyd et al., 2006; Koloskova et al., 2019; 2020;
Ying et al., 2021) that generate sequences {x(t)

i }t≥0 on every node i ∈ [N ] through iterative updates of the
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Participant Participant 

SGD step: SGD step: 

Participant 

SGD step: 

Mixing matrix, row 1: Gossip step: 
 

Figure 10: Illustration of the Gossip-SGD algorithm for N participants, focusing on the learning process
of participant P1. As depicted in the figure, each participant performs SGD updates locally, followed by a
gossip step where they share and exchange with other participants.

form:

x
(t+1)
i := x

(t)
i + η

N∑
j=1

wij∆(t)
ij , (46)

where η ∈ (0, 1] is a stepsize, wij ∈ [0, 1] are the weights, and ∆(t)
ij ∈ Rd is the vector (e.g. gradients) sent

from node j to node i at iteration t.

Communication occurs only if wij > 0, and no communication is needed when wij = 0. If the weights are
symmetric (wij = wji), they define a communication graph G = ([N ], E) with edges {i, j} ∈ E if wij > 0
and self-loops {i} ∈ E for i ∈ [N ]. The matrix W ∈ RN×N , known as the mixing matrix or gossip matrix,
specifies the connectivity of the network, with (W )ij = wij .

The objective in decentralized optimization is to minimize the global function:

min
x∈RN×d

F (x), where F (x) =
N∑

i=1
fi(xi), (47)

where fi represents the local objective at node i.

To solve the optimization problem in Equation 47, the Gossip-SGD algorithm alternates between the following
two steps:

x
(t+1/2)
i = x

(t)
i − ηg

(t)
i

(
E
[
g

(t)
i

]
= ∇fi

(
x

(t)
i

))
▷ SGD step (48)

x
(t+1)
i =

N∑
j=1

wijx
(t+1/2)
j ▷ Gossip step (49)

Combining both steps, the Gossip-SGD update in matrix form becomes:

x(t+1) = W
(

x(t) − ηg(t)
)

, where g(t) =
(

g
(t)
1 , g

(t)
2 , . . . , g

(t)
N

)T

∈ RN×d. (50)
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RingFully Connected Exponential

Figure 11: Different types of communication graphs/topologies: fully connected graph, ring graph and
exponential graph.

Communication topologies. Communication graphs play a critical role in decentralized learning, where
these graphs define the communication topology, specifying which nodes (clients) can exchange model updates
during training. Unlike standard federated learning (FL), where updates are aggregated by a central server,
decentralized FL relies on peer-to-peer exchanges guided by the graph structure. Common topologies, as
depicted in Figure 11, include

• complete graphs, where all nodes communicate directly;

• ring graphs, where nodes only communicate with their immediate neighbors; and

• exponential graphs, which optimize connectivity while minimizing communication overhead.

The mixing matrix W is constructed using uniform weights based on the graph topology:

[W ]ij =


1

|N (i)|+ 1 , if (i, j) ∈ E or i = j,

0, otherwise.
(51)

where |N (i)| denotes the number of neighbors of node i.

In our work, we initialize the communication graph as a fully connected graph but incorporate two key
mechanisms to make the topology dynamic: (i) reputation scoring and (ii) adaptive sharing (detailed in
Section 4). These mechanisms allow the communication graph to evolve during training, enabling improved
fairness. We detail the specifics in Section C.2.

C.2 Integrating CYCle with Gossip-SGD

The algorithm 3 illustrates how we extend the Gossip-SGD algorithm within the framework of our proposed
CYCle protocol. The central modification involves the use of a dynamic mixing matrix, which is updated
every R communication rounds. This update is guided by a reputation scoring mechanism based on gradient
alignment and an adaptive sharing strategy. In this version of CYCle, we adopt a different mapping
function than Equation 7, emphasizing the flexibility to use any mapping function, provided it preserves the
probabilistic nature (i.e., maps values to the range [0, 1]). Specifically, we use a softmax function with a
hyperparameter β. The parameter β controls the trade-off between utility and fairness: higher values of β
penalize smaller cosine similarities, thereby promoting fairness, while lower values prioritize equity in updates,
effectively emulating a fully-connected graph topology as a special case. During each communication round,
we stochastically sample a binary matrix S from the mixing matrix W using Bernoulli sampling (or a coin
toss). The resulting binary mask S determines the communication partners for that round, where updates
are exchanged only between nodes corresponding to the entries of 1.0 in S. This adaptive sharing mechanism
enhances efficiency by facilitating productive collaborations and minimizing unproductive exchanges. Unlike
PDL-based methods, which conduct multiple communications within a single FL round and sample updates
for distillation, our approach in Gossip-SGD performs the sampling over the communication rounds T . We
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Algorithm 3 Gossip-SGD algorithm based on CYCle Protocol
Input: for each node i ∈ [N ] initialize x

(0)
i ∈ Rd, number of communication rounds T , stepsize η, and mixing

matrix W (0)

1: for round t = 0, 1, · · · , T do
2: for each participant i ∈ [N ] in parallel do
3: Compute g

(t)
i ← ∇fi

(
x

(t)
i

)
4: for each neighbor j : {i, j} ∈ E and (t mod R = 0) do
5: sij ←

(
1 + cos

(
g

(t)
i , g

(t)
j

))
/2

6: rij ← arbitrary mapping function(sij) ▷ softmax function
7: w

(t)
ij ← αwij + (1− α)rij , with α = 0.5

8: end for
9: x

(t+1/2)
i = x

(t)
i − ηg

(t)
i ▷ stochastic gradient updates

10: end for
11: Construct W , (W )ij ← wij

12: Generate stochastic binary mask S ← Bernoulli(W )
13: Construct W̃ ←W ⊙ ST and normalize each row to sum up to 1
14: x(t+1) = W̃xt+1/2, where xt+1/2 =

(
x

t+1/2
1 , . . . , x

t+1/2
N

)
▷ gossip averaging

15: end for

evaluated this approach in Section G.3 on the Fed-ISIC2019 dataset. This dataset, being naturally partitioned
and inherently non-IID, serves as a challenging and realistic benchmark for assessing federated learning
algorithms.

D Notation Summary

To improve clarity and readability throughout the paper, we provide Table 5 as a reference for the main
notation. This table summarizes the symbols introduced in Section 2.1 and used consistently throughout
the paper. By consolidating key mathematical symbols and definitions in one place, the table is intended to
serve as a quick reference resource for readers, especially in later sections where several variables reappear in
extended formulations. This addition also responds to reviewer feedback requesting improved accessibility of
the notation throughout the manuscript.

Table 5: Summary of key notation used throughout the paper.

Symbol Description
Participants and Datasets
N Total number of participants/clients
N = {1, 2, . . . , N} Index set of participants
Pn Participant/client indexed by n ∈ N
Dn Local training dataset of participant n
D̃n Local validation (hold-out) dataset of participant n

Input and Output Spaces
x ∈ X Input sample from input space X ⊆ Rd

y ∈ Y Ground-truth label; Y = {1, 2, . . . , M} with M classes
d Dimensionality of input features
M Number of output classes
Z ⊆ RM Logits space (output of Mθ)
Models and Predictions
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Table 5: continued from previous page

Symbol Description

M̃θ : X → Y Supervised classification model with parameters θ
Mθ : X → Z Logits-generating model mapping inputs to Z ⊆ RM

θn Parameters of participant n’s model Mθn

z Logit vector output by Mθ(x)
σT Temperature-scaled softmax function: σT (z) = softmax(z/T )
p Predicted class probabilities: p = σT (z)
T Temperature parameter controlling softmax sharpness
Losses
LCEn

Cross-entropy loss of participant n on Dn

LDL(n,k) Pairwise distillation loss from k to n
LDLn

Total distillation loss for participant n
Ln Total training loss of participant n
λn Weight on distillation loss in Ln

λ(n,k) Weight assigned to collaborator k’s contribution in DL for n
KL(·|·) Kullback-Leibler divergence used for distillation
Evaluation Metrics
Bn Standalone accuracy of Mθn

on D̃n

An Post-collaboration accuracy of Mθ⋆
n

on D̃n

Gn = An − Bn Collaborative gain (CG) of participant n

E Computational and Communication Complexity

This section expands on the computational and communication implications of the proposed CYCle protocol,
particularly in comparison to baseline methods such as CaPriDe learning (Tastan & Nandakumar, 2023)
and Gossip-SGD (Boyd et al., 2006). We quantify overhead associated with encrypted operations, gradient
alignment, and communication costs introduced by our protocol, and clarify where CYCle improves upon or
matches the efficiency of existing techniques.

E.1 Computational Complexity

The most significant computational component introduced in CYCle[PDL] stems from its reliance on encrypted
distillation loss computations, inherited directly from CaPriDe learning (Tastan & Nandakumar, 2023). As
detailed in Table 2 of their work, the per-sample inference time under FHE-based encryption on a commodity
CPU is approximately 110 seconds, which represents the cryptographic bottleneck of such secure collaborative
schemes. Though recent advancements in the cryptographic field have led to improvements by using GPU-
accelerated CKKS libraries, reducing the timing by more than 10 times (Kim et al., 2024; Yang et al., 2024;
Jin et al., 2024).

However, unlike CaPriDe learning, where encrypted predictions are computed and transmitted at every training
round regardless of peer behavior, CYCle strategically reduces this cost by avoiding encrypted inference in
rounds where peer reputation does not warrant a response or when they do not get sampled. This modification
reduces the frequency of FHE operations without compromising convergence, leading to substantially lower
per-round cryptographic overhead. In practice, this enables CYCle to remain computationally viable at scale,
especially in large or heterogeneous client networks.

Another computational addition in CYCle is the use of gradient alignment to guide selective sharing. This is
implemented via cosine similarity computations between local gradients obtained with respect to cross-entropy
loss and received peer gradients obtained with respect to distillation losses, which scale linearly with model
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size. These operations are performed once every R rounds (where R = 5 in experiments), and in aggregate,
introduce less than a 5% overhead per local step. The periodic nature of these operations, coupled with modest
cost, ensures they do not become a computational bottleneck. Similarly, sharing decisions are computed
locally and stochastically, requiring no inter-client coordination or additional encryption.

Thus, compared to CaPriDe learning, CYCle significantly reduces encrypted inference load, and compared to
Gossip-SGD, it introduces only marginal overhead through lightweight, periodic gradient comparisons.

E.2 Communication Complexity

In terms of communication, CYCle adheres closely to the decentralized communication patterns of CaPriDe
learning and Gossip-SGD but incorporates reputation-aware mechanisms that reduce message exchanges
without altering the underlying protocol structure.

CYCle[PDL]. Similar to CaPriDe learning, CYCle requires clients to share encrypted predictions (logits)
with selected clients for participant distillation. However, unlike CaPriDe learning where every client responds
to every query, CYCle introduces a reputation-aware mechanism to selectively respond, thus reducing the
number of encrypted transmissions. This strategy directly reduces the volume of encrypted data exchanged
per round. Empirically, we observe a 35− 50% reduction in encrypted communication relative to CaPriDe
learning across our experimental settings. Each encrypted prediction, typically represented as an FHE
ciphertext, incurs a payload size of 1−2KB, depending on the number of classes M , since the pairwise
distillation loss is an M -dimensional vector.

CYCle[Gossip-SGD]. When integrated with Gossip-SGD, CYCle does not incur any additional com-
munication overhead beyond what is already required by the baseline. Clients continue to exchange model
updates every round, as in standard Gossip protocols. Crucially, the reputation-weighted mixing matrix is
never transmitted; each client computes it locally based on observed peer behavior. Additionally, clients may
selectively omit update transmissions to low-contributing clients, thereby reducing communication frequency
in practice. This selective sharing leads to lower average communication volume per round, especially in
heterogeneous or adversarial environments where client contribution quality varies significantly.

F Experimental Setup. Implementation Details

We keep the same training hyperparameters for all experiments. Cross-entropy loss is used for local model
training in all methods. The PDL algorithms (VPDL and CYCle) use Kullback-Leibler (KL) divergence based
on predictions as the distillation loss. The optimizer is stochastic gradient descent (SGD) with momentum.
The learning rate is initially set to 0.1 and is updated every 25 rounds using a scheduler with a learning rate
decay of 0.1. For FL algorithms, we set the number of collaborating rounds to tmax = 100 and the local
update epoch to 1. For the decentralized algorithms, we use 25 epochs of local training before collaboration,
followed by 75 rounds of collaboration. The batch size is set to 128 for CIFAR-10 and CIFAR-100, and 32 for
the Fed-ISIC2019 dataset. Furthermore, α = 0.5, λ0 = 50, τopt = 0.25, and τmax = 0.75. In the experiments
involving Gossip-SGD, we set β = 15 and R = 5. We conduct our experiments on NVIDIA A100-PCIE-40GB
GPUs on an internal cluster server, with each run utilizing a single GPU. The execution time for each run
averages around 1.35 hours.
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G Additional Experimental Results

This section is organized in the following manner:

1. Heatmap visualizations of reputation scores for the remaining data splitting scenarios, which include
homogeneous, Dirichlet (0.5), and imbalanced (0.6, 1) cases.

2. Remaining results of Table 2.

3. Details of the Fed-ISIC2019 data distribution and heatmap visualization of reputation scores for
Fed-ISIC2019.

4. Experimental results on the CIFAR-100 dataset.

5. More analysis of the imbalanced data splitting scenario.

6. More analysis of the free rider scenario.

7. Scalability to larger client populations.

8. Trade-off between MCG and CGS.

9. Hyperparameter sensitivity.

G.1 Reputation Score Visualization

In Figure 12, we present the reputation scores calculated on the CIFAR-10 dataset for a group of five
participants (N = 5). The figure illustrates the results at rounds t = 0, 25, 75, under different data partitioning
schemes: (i) homogeneous, (ii) heterogeneous (Dirichlet (δ = 0.5)), (iii) imbalanced (κ = 0.6, m = 1). In the
homogeneous setting, participants have similar reputation scores that correlate with the sizes of the datasets
they hold. Over time, these scores trend downwards as the cross-entropy loss gains prominence over the
total distillation loss (Eq. 1). The heterogeneous and imbalanced (0.6, 1) scenarios exhibit a similar pattern,
where the reputation scores align with the size of the data they possess. In the latter scenario, since P1 holds
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Figure 12: Heatmap visualization of reputation scores for the given number of participants N = 5 and data
partition schemes: (a) Homogeneous, (b) Dirichlet (0.5) and (c) Imbalanced (0.6, 1).
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60% of the data, its reputation remains consistent, prompting other participants to engage more actively in
collaboration to receive updates from this major contributor.

It must be noted that even when dataset sizes are identical among participants, as seen in homogeneous (P1
to P5) and imbalanced (0.6, 1) (P2 to P5) data splitting scenarios, there may be stochastic variations in data
quality resulting in higher reputation scores for some participants compared to others. For instance, in Fig.
12c, P3 is assigned a marginally higher reputation score by the other participants, despite having an identical
dataset size as P2, P4, and P5.

G.2 Remaining Results of Table 2

This section extends our analysis of collaboration gain and spread (MCG, CGS) for the CIFAR-10 and
CIFAR-100 datasets using our proposed algorithm. While Table 2 focused on scenarios with N ∈ {5, 10}
participants, the additional results presented in Table 6 cover the scenario with N = 2 participants. This
study provides further insight into the performance dynamics under a smaller number of participants and
complements the study shown in Table 2.

Table 6: Collaboration gain and spread (MCG, CGS) on CIFAR-10 and CIFAR-100 datasets and the given
partition strategies for N = 2 using our proposed algorithm. This table supplements Table 2, which covers
N = {5, 10}.

Dataset CIFAR-10 CIFAR-100
Split Method MVA MCG CGS MVA MCG CGS

Homogeneous VPDL 91.99 0.41 0.08 71.52 4.87 0.55
CYCle 92.58 1.00 0.01 72.03 5.38 0.22

Dirichlet (0.5) VPDL 84.90 1.45 1.88 64.99 8.95 0.31
CYCle 88.82 5.37 0.76 66.37 10.33 0.25

Dirichlet (2.0) VPDL 89.93 0.09 0.22 70.57 5.52 0.66
CYCle 91.00 1.16 0.15 72.09 7.04 0.18

Dirichlet (5.0) VPDL 90.36 0.24 0.08 71.45 4.95 0.89
CYCle 91.29 1.17 0.03 72.12 5.62 0.36

Dataset CIFAR-10 CIFAR-100
Method MVA MCG CGS MVA MCG CGS

DSGD 86.26 3.55 0.27 59.52 7.59 0.16
CYCle 86.36 3.64 0.21 59.53 7.61 0.12
DSGD 84.03 16.92 12.51 55.95 10.73 8.13
CYCle 81.63 14.52 9.24 52.63 7.42 5.11
DSGD 85.89 5.10 1.51 57.91 13.59 0.71
CYCle 86.53 5.73 0.99 57.81 13.50 0.52
DSGD 85.92 3.77 0.91 58.93 9.83 0.33
CYCle 86.15 4.00 0.58 58.82 9.72 0.11

G.3 Fed-ISIC2019 experiments

Fed-ISIC2019. We evaluate our framework on the real-world non-IID Fed-ISIC2019 dataset. Note that for
easy visualization, the participants in this experiment are sorted in the decreasing order of their dataset size.
Figure 14 illustrates the probability that each participant shared updates with their neighbors over T = 100
communication rounds. The reported values represent averages; for example, a value of 0.51 indicates that
P1 shared updates with P2 during 51 out of 100 communication rounds. We observe that our framework
captures distribution shift, as evidenced by the fact that the data held by the first client does not overlap
with that of other clients (as shown in the UMAP visualization in Figure 1f of Ogier du Terrail et al. (2022)).
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Figure 13: Fed-ISIC2019 data distribution.

Data Distribution. Figure 13 displays a heatmap
plot illustrating the distribution of data by class
among participants. In Figure 14, it is evident that
despite P1 having the bulk of the data, it has a
noticeable distribution shift compared to other par-
ticipants. This indicates that other participants are
not allocated certain classes due to the specific distri-
bution settings employed in (Ogier du Terrail et al.,
2022). It is noteworthy that initially, P1 assigns a
lower reputation score to P4. However, over time,
P4’s reputation improves, a change attributable to the exclusive knowledge of class 8 shared only by P1 and P4.
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Figure 14: Illustration of communication graph over T communication rounds, representing the percentage of
times each participant shared updates with its neighbors.
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Figure 15: Per-participant performance plots on the Fed-ISIC2019 dataset comparing different methods:
standalone training, Gossip-SGD with various topologies (fully connected, ring, exponential), and the proposed
CYCle protocol. SA stands for standalone training.

Experimental Results. Figure 15 illustrates the performance of the following methods: (i) standalone
training, (ii) Gossip-SGD with a complete graph topology, (iii) Gossip-SGD with a ring topology, (iv)
Gossip-SGD with an exponential graph topology, and (v) our proposed CYCle algorithm integrated with
Gossip-SGD. The experiments span 100 communication rounds, and we report balanced accuracy as the
primary metric due to the highly imbalanced nature of the classes. The results are derived from a global test
set created by pooling the test sets of all participants to ensure a fair comparison.

Table 7: MCG and CGS values (Figure 15).

Method MCG CGS
Gossip-SGD (Complete) 30.26 15.64

Gossip-SGD (Ring) 27.72 14.80
Gossip-SGD (Exponential) 29.45 14.24

CYCle 23.79 10.94

As shown in the plots, participants 5 and 6 struggle signifi-
cantly, achieving performance below 20%. Interestingly, par-
ticipants 3 and 4 achieve the best performance despite having
smaller datasets compared to participants 1 and 2. Among
the methods, Gossip-SGD with a complete graph topology
achieves the highest overall performance. However, in terms of
fairness (as shown in Figure 16a), it fails to provide equitable
outcomes (Pearson’s corr. coefficient of −0.2649), as all par-
ticipants converge to a uniform final performance regardless
of their contributions.

In contrast, our CYCle algorithm mitigates this issue by suppressing the collaboration gains of participants
contributing less or providing low-quality updates. This results in a high correlation coefficient of 0.9577,
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(a) Gossip-SGD with Complete Graph.
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(b) Gossip-SGD with Ring Graph.
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(c) CYCle with Dynamic Topology.

Figure 16: Per-participant accuracy and Pearson’s correlation coefficient of the Gossip-SGD algorithm with
fully connected and ring topologies, alongside the performance of our proposed CYCle algorithm. SA stands
for standalone training.

with a small p-value of 0.0026, successfully rejecting the null hypothesis (that there is no correlation) at a
significance level of 0.05 (see Figure 16c). These results highlight the efficacy of our approach in balancing
both performance and fairness across participants. We also report the same plot for Gossip-SGD with a ring
topology in Figure 16b, which fails to deliver fair outcomes for all participants. For the results on the MCG
and CGS metrics, we refer the reader to Table 7.

Figure 17: Per-participant performance comparison on CIFAR-100 dataset: Validation accuracy evaluated
with N = 5 participants.

Table 8: Per-participant performance comparison on CIFAR-100 dataset: Validation accuracy evaluated with
N = 5 participants.

Partition No. SA FedAvg VPDL CYCle

Homogeneous

1 48.85 70.25 57.05 56.10
2 47.65 70.10 56.00 57.05
3 48.45 69.55 57.30 57.10
4 50.25 69.85 57.25 58.55
5 50.60 70.35 56.10 59.00

Dirichlet (0.5)

1 39.40 69.20 48.15 50.35
2 31.30 69.25 46.80 44.15
3 38.00 67.80 47.00 49.80
4 39.50 67.70 50.10 52.00
5 31.05 67.60 39.75 43.60

Partition No. SA FedAvg VPDL CYCle

Imbalanced (0.8, 1)

1 74.50 71.80 70.05 75.30
2 20.80 73.45 27.40 29.85
3 21.25 72.10 28.40 29.70
4 22.25 72.10 28.50 30.20
5 20.35 73.55 29.70 30.40

Imbalanced (0.35, 2)

1 61.45 70.00 62.10 67.15
2 59.30 70.60 59.35 65.95
3 29.65 70.55 40.15 39.80
4 28.10 70.95 41.05 40.30
5 32.05 69.55 39.75 41.95

Partition No. SA FedAvg VPDL CYCle

Imbalanced (0.6, 1)

1 68.25 70.80 65.80 70.80
2 29.90 70.90 39.30 39.00
3 30.15 71.80 38.70 40.70
4 28.50 71.35 39.45 38.05
5 29.40 69.15 39.80 39.85
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G.4 Experiments on CIFAR-100

We perform the same experiment outlined in Table 1 and Figure 3 on the CIFAR-100 dataset. Our goal
is to assess the effectiveness and fairness of CYCle under increased label granularity and distributional
heterogeneity. Figure 17 and Table 8 depict the performance of each participant within the N = 5 group
across the various data partitioning strategies detailed in Section 5.1. Similar to the observations in Figure 3,
in the imbalanced (0.8, 1) scenario, the FedAvg algorithm results in a decline in accuracy for P1, indicative
of a negative collaboration gain. Following this, we compile the mean validation accuracy (MVA), mean
collaboration gain (MCG), and collaboration gain spread (CGS) for each method and data splitting scenario
in Table 9.

As in CIFAR-10 experiments, we observe that FedAvg often achieves the highest mean validation accuracy
(MVA), particularly in homogeneous and moderately in imbalanced settings. However, this comes at a
significant fairness cost. VPDL, while privacy-preserving and decentralized, underperforms in both MVA and
MCG across all scenarios. Although it avoids extreme gain inequality (moderate CGS), it fails to leverage
meaningful collaboration in data-heterogeneous environments, largely due to its uniform treatment of client
contributions.

Table 9: Performance comparison on CIFAR-100 dataset: Validation accuracy evaluated with N = 5
participants. The table presents the performance of our proposed framework compared to the FedAvg
algorithm. We employ MVA (↑), MCG (↑) and CGS (↓) as evaluation metrics.

Setting Homogeneous Dirichlet (0.5) Imbalanced (0.8, 1) Imbalanced (0.35, 2) Imbalanced (0.6, 1)
Metric MVA MCG CGS MVA MCG CGS MVA MCG CGS MVA MCG CGS MVA MCG CGS
FedAvg 70.02 20.86 1.07 68.31 32.46 3.98 72.60 40.77 21.77 70.33 28.22 15.06 70.80 33.56 15.54
VPDL 56.74 7.58 1.20 46.36 10.51 2.59 36.81 4.98 4.84 48.48 6.37 5.19 44.61 7.37 4.98
CYCle 57.56 8.40 0.69 47.98 12.13 0.68 39.09 7.26 3.30 51.03 8.92 2.40 45.68 8.44 3.00

G.5 Imbalanced Data Study

In this study, we explore a range of values for the parameters κ and m in imbalanced settings, involving
five participants (N = 5), as detailed in Section 5.1. The purpose of this variation is to demonstrate the

Table 10: Performance comparison on CIFAR-10 dataset under imbalanced data: Validation accuracy
evaluated with N = 5 participants. We employ MVA (↑), MCG (↑) and CGS (↓) as evaluation metrics.

Setting Imbalanced (0.4, 1) Imbalanced (0.12, 1) Imbalanced (0.41, 2) Imbalanced (0.23, 2) Imbalanced (0.14, 2)
Metric MVA MCG CGS MVA MCG CGS MVA MCG CGS MVA MCG CGS MVA MCG CGS
FedAvg 91.04 10.38 4.93 90.98 8.02 4.00 90.17 17.48 13.99 91.23 7.73 1.96 90.89 8.42 4.94
VPDL 83.36 2.69 3.04 86.18 3.22 2.74 74.90 2.22 4.17 85.82 2.33 2.09 86.18 3.70 3.67
CYCle 85.02 4.35 2.26 86.78 3.82 2.41 76.71 4.02 2.27 86.48 2.98 1.17 86.92 4.44 3.47

Figure 18: Per-participant performance comparison on CIFAR-10 dataset using the given imbalanced splitting
scenarios.
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effectiveness of our proposed CYCle method in ensuring positive collaboration gains for each participant,
showcasing a higher degree of fairness in comparison to FedAvg and VPDL. For a comprehensive view of
these results, please see Figure 18 and Table 10. Table 10 reports performance across five different imbalance
settings using three metrics: MVA, MCG, and CGS. FedAvg suffers from a higher CGS and, in some scenarios,
a large variance in individual participant outcomes, indicating fairness issues. VPDL offers stronger privacy
guarantees but significantly underperforms in both accuracy and fairness. CYCle, in contrast, achieves a
compelling balance. It consistently improves fairness over both baselines, as evidenced by its lower CGS
across all five settings. This suggests that CYCle more equitably distributes collaborative benefits.

These findings confirm that CYCle not only preserves collaboration benefits but also effectively mitigates the
challenges of unequal data distributions, an essential feature for practical decentralized learning algorithms.

G.6 Free Rider Study

In Table 11 and Figure 19, we examine the outcomes using our CYCle approach under the varying degrees of
label flipping (ranging from 0.0 to 1.0) when two participants (P4 and P5) are free riders. The findings show
that the honest participants (P1, P2, and P3) maintain positive collaboration gains, despite the presence of
malicious users / free riders. It’s observed that when the flip rate is greater than 0, the collaboration gain
decreases relative to scenarios where the flip rate is 0. This decline is linked to the fact that these three
participants collectively hold only 60% of the total dataset. In this experiment, we use the CIFAR-10 dataset
and a homogeneous data splitting approach, with other parameters remaining consistent with those detailed
in Section 5.1.

Table 11: Validation accuracies of participants (P1 −P5)
with P4 and P5 having varying rates of label flipping.
The last column refers to the average accuracy of honest
participants (P1 − P3).

Setting P1 P2 P3 P4 P5 avg
Standalone (Bn) 83.42 83.67 83.15 83.13 83.63 83.41

Flip rate = 0.0 86.12 87.03 86.33 85.62 86.10 86.49
Flip rate = 0.2 84.25 84.20 84.10 63.10 65.40 84.18
Flip rate = 0.5 84.30 84.00 83.95 38.95 35.75 84.08
Flip rate = 1.0 84.15 84.20 83.45 3.40 3.10 83.93
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Figure 19: Heatmap visualization of reputation
scores with corrupted labels at P4 and P5.

G.7 Scalability to Larger Client Populations

To evaluate the applicability of CYCle beyond cross-silo federated learning, we conducted additional experi-
ments on CIFAR-10 and CIFAR-100 with N = 20 clients. Data was partitioned using a Dirichlet distribution
with α = 0.5 to simulate non-i.i.d. heterogeneity across clients. We compare three methods: standalone (no
collaboration), Gossip-SGD (with full connectivity), and CYCle.

Figure 20 displays the per-participant accuracies on CIFAR-10 and CIFAR-100 datasets. In particular, clients
2, 7, and 15 exhibit significantly lower standalone performance (Figure 20a) – indicating limited data quality
or quantity. CYCle is able to identify such low-contributing clients through a reputation mechanism and
adjusts collaboration accordingly. This ensures that while these clients benefit from collaboration, they do
not disproportionately influence others, thus maintaining fairness and robustness.

These results demonstrate that CYCle maintains robust fairness and stable performance when scaled to larger
client populations beyond the cross-silo setting. In contrast to Gossip-SGD, which exhibits a degradation
of fairness (indicated by a negative correlation in Table 12), CYCle achieves a significantly more equitable
distribution of collaborative gains.

For CIFAR-10, both methods achieve similar MCG values (28.59 for Gossip-SGD vs. 27.87 for CYCle),
indicating comparable average collaborative benefits. However, the collaboration gain spread (CGS) is
considerably lower for CYCle (6.06 vs. 7.70), showing that it reduces the inequality in the results of
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Figure 20: Per-participant performance radar plots for N = 20 clients on (a) CIFAR-10 and (b) CIFAR-100
datasets using three methods: standalone (no collaboration), Gossip-SGD (with a complete graph), and
CYCle.

collaboration. Moreover, the strong positive correlation (ρ = 0.9353) under CYCle implies that participants
with more useful or valuable data tend to receive proportionally higher rewards, signaling a fairness-aligned
reward mechanism. In contrast, Gossip-SGD shows a negative correlation (ρ = −0.4637), which implies
misalignment between client contribution and received gains.

A similar trend holds for CIFAR-100. The MCG values are again comparable, but CYCle achieves a markedly
lower CGS, indicating greater consistency in how benefits are distributed. Pearson’s correlation improves
dramatically from ρ = −0.7297 (Gossip-SGD) to ρ = 0.8164 (CYCle), further supporting that CYCle not
only promotes fairness, but aligns collaboration rewards more effectively with actual client contribution.

We also note that CYCle can be naturally extended to scenarios with significantly larger client populations
and partial participation. In such cases, a subset of clients can be sampled in each round and CYCle can be
applied by constructing a subgraph over the active clients. This involves computing a sub-mixing matrix
using only the participating clients and running the CYCle protocol locally on this induced set of clients.
Reputation and gradient alignment remain local and round-specific, requiring no global state. This design
makes CYCle compatible with the standard partial participation strategies commonly used in cross-device
FL. However, since our focus is on cross-silo settings with full participation, we leave empirical evaluation
under partial participation for future work.

Dataset Method MCG CGS Pearson corr. (ρ)

CIFAR-10 Gossip-SGD 28.59 7.70 -0.4637
CYCle 27.87 6.06 0.9353

CIFAR-100 Gossip-SGD 22.68 2.12 -0.7297
CYCle 22.88 1.25 0.8164

Table 12: Comparison of collaborative fairness metrics for N = 20 clients.
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In summary, CYCle preserves average performance while significantly improving fairness and reward alignment
between participants. These gains are particularly important in federated settings with data heterogeneity
and varying client quality, as they help prevent both under- and over-compensation in collaborative learning.

G.8 Trade-off between MCG and CGS

Figure 21 presents a plot depicting the MCG and CGS values for 10 different data-split scenarios, which
are specified in Table 1 and Table 10. Each point in the plot corresponds to the average performance of a
method under one scenario, with the x-axis representing the mean collaboration gain (MCG) and the y-axis
representing the collaboration gain spread (CGS). The bottom right region of the plot, indicating high MCG
and low CGS, represents the ideal operational regime, where all participants benefit meaningfully and fairly
from collaboration. It must be emphasized that the results of our CYCle approach fall predominantly towards
the bottom-right corner of the plot. On average, CYCle achieves the highest MCG and the lowest CGS in the
10 scenarios. While baseline methods such as CFFL, RFFL, and CGSV may outperform CYCle in one of the
two metrics under certain scenarios, they exhibit a clear trade-off: improvements in collaborative gain often
come at the cost of high inequality (larger CGS) and vice versa. For example, CGSV may occasionally achieve
a higher MCG, but its CGS is substantially worse, indicating that a few participants benefit disproportionately,
while others gain little or even suffer negative outcomes. In contrast, methods such as RFFL may better
control CGS but fail to deliver sufficient gain, as reflected in lower MCG values.

The directionality of the arrows overlaid on the figure further emphasizes the optimization goal: to move
toward the bottom right.

Figure 21: Plot of MCG and CGS values for 10 distinct data splits, ranging from homogeneous to a spectrum
of imbalanced scenarios.

G.9 Hyperparameter Sensitivity

CYCle (PDL). We have defined only two hyperparameters in our model, τopt and τmax, which have
a geometric interpretation (degree of gradient alignment required for beneficial collaboration). In our
experiments, we set τopt = 0.25 and τmax = 0.75. Figure 22a shows the sensitivity analysis for these
hyperparameters, where it is evident that increasing the values of τmax and τopt correlates with improved
MCG in a homogeneous setting. This is expected as higher values of these parameters bring our algorithm
closer to the VPDL framework. However, the MCG and CGS (Figure 22b) values for different hyperparameter
settings are comparable, indicating that the reported results are robust.

These parameters play a well-defined and interpretable role in our framework through the mapping function
(Equation 7). The parameters τopt and τmax define a soft acceptance region over the similarity space (e.g.,
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Figure 22: Sensitivity analysis to τopt and τmax parameters.

give full credit to highly aligned clients h(s) = 1, while blocking collaboration with poorly aligned ones
h(s) = 0). As shown in Figure 22, we explored a range of reasonable values and found that going below
τopt = 0.25 results in degraded collaboration fairness and utility, as unqualified updates are included too
permissively. The selected values are therefore informed by both the empirical similarity statistics and the
theoretical geometry of the collaboration space. For these reasons, we did not conduct exhaustive tuning and
instead used principled, task-informed choices.

CYCle (Gossip-SGD). The only hyperparameter in the gossip-based variant of our protocol is β,
which controls the sharpness of the softmax function used to derive the communication probabilities from
gradient alignment scores. Higher β values assign greater weight to stronger alignments, enforcing more
selective and fairness-oriented peer interactions, while lower values yield more uniform communication,
resembling a fully connected topology. Figure 23a shows the performance across participants under varying
β ∈ {5, 15, 35, 50, 100}. Although participant-level performance varies slightly, all configurations exhibit
reasonable fairness, validating the robustness of CYCle under different settings. Figure 23b further illustrates
the trade-off between utility (MCG) and fairness (Pearson correlation of pre- and post-collaboration accuracies).
We observe that intermediate values of β (e.g., 35-50) strike a favorable balance, delivering high collaboration
gain without sacrificing fairness.
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(a) Performance of CYCle under different β parameters ∈ {5, 15, 35, 50, 100}.
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Figure 23: Study on the impact of parameter β on performance and analysis of the utility versus fairness
trade-off using the CYCle algorithm.

G.10 Additional Results

The accuracy metrics for the individual participants for the experiments on the CIFAR-10 dataset (corre-
sponding to Figures 3 and 4) are summarized in Table 13 for greater clarity. These results clearly demonstrate
the negative gain experienced by the participant P1 in the imbalanced settings under most existing FL
algorithms and how the proposed CYCle approach overcomes this problem.
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Table 13: Per-participant performance comparison on CIFAR-10 dataset: Validation accuracy evaluated with
N = 5 participants. The left table presents the performance of our proposed framework compared to the
FedAvg algorithm. The right table compares collaboration gain and fairness of our proposed CYCle algorithm
with existing works (columns 4-6). We employ MVA (↑), MCG (↑) and CGS (↓) as evaluation metrics.

Split No./Metric SA FedAvg VPDL CYCle

H
om

og
en

eo
us

1 83.42 91.02 85.82 86.12
2 83.67 90.32 84.02 87.03
3 83.15 90.63 84.70 86.33
4 83.13 90.82 85.27 85.62
5 83.63 90.23 85.12 86.10

MVA 83.40 90.60 84.98 86.24
MCG 0.00 7.20 1.58 2.84
CGS 0.00 0.48 0.71 0.37

D
iri

ch
le

t
(0

.5
)

1 68.47 88.92 74.47 79.48
2 65.25 88.48 74.17 73.55
3 73.92 88.35 77.17 79.87
4 67.55 88.68 74.17 78.70
5 61.62 89.35 71.40 73.05

MVA 67.36 88.76 74.27 76.93
MCG 0.00 21.40 6.91 9.57
CGS 0.00 4.31 2.31 2.13

Im
ba

la
nc

ed
(0

.8
,1

) 1 92.77 90.23 89.87 93.80
2 56.85 90.33 60.77 63.02
3 53.82 90.07 62.08 62.82
4 58.00 90.15 61.52 63.35
5 57.68 90.07 61.68 63.30

MVA 63.82 90.17 67.18 69.26
MCG 0.00 26.35 3.36 5.44
CGS 0.00 14.51 3.58 2.56

Im
ba

la
nc

ed
(0

.3
5,

2) 1 89.30 90.45 85.50 89.90
2 88.98 90.53 86.00 89.73
3 69.07 89.83 73.97 75.35
4 69.23 90.40 74.53 75.58
5 69.53 90.48 73.55 75.02

MVA 77.22 90.34 78.71 81.12
MCG 0.00 13.12 1.49 3.89
CGS 0.00 9.61 4.01 2.65

Im
ba

la
nc

ed
(0

.6
,1

) 1 92.27 90.38 89.25 92.80
2 68.65 90.73 71.58 71.80
3 69.12 89.92 71.53 72.65
4 68.78 89.33 72.85 73.45
5 70.60 90.43 71.95 72.87

MVA 73.88 90.16 75.43 76.72
MCG 0.00 16.28 1.55 2.83
CGS 0.00 9.11 2.45 1.38

Split No./Metric SA CFFL RFFL CGSV CYCle

H
om

og
en

eo
us

1 60.98 62.05 61.65 63.32 72.42
2 59.87 63.60 62.32 63.67 70.88
3 59.20 61.58 61.07 63.08 71.48
4 60.50 62.50 60.80 61.88 72.55
5 61.67 63.53 61.65 64.42 72.43

MVA 60.44 62.65 61.50 63.27 71.95
MCG 0.00 2.21 1.05 2.83 11.51
CGS 0.00 0.87 0.95 0.94 0.58

D
iri

ch
le

t
(0

.5
)

1 48.17 47.65 48.45 55.30 51.78
2 48.72 49.28 50.07 53.10 53.20
3 49.15 51.15 50.70 53.60 53.82
4 44.17 49.30 45.72 54.70 47.95
5 42.57 47.82 47.65 55.57 49.28

MVA 46.55 49.04 48.52 54.45 51.21
MCG 0.00 2.49 1.96 7.90 4.65
CGS 0.00 2.35 1.63 3.40 1.11

Im
ba

la
nc

ed
(0

.8
,1

) 1 74.32 69.38 71.47 56.55 77.15
2 52.95 56.08 52.80 56.92 57.10
3 48.95 55.52 52.13 54.77 58.73
4 48.40 54.97 52.40 55.33 57.93
5 51.30 57.35 52.53 56.23 58.08

MVA 55.18 58.66 56.27 55.96 61.80
MCG 0.00 3.48 1.08 0.78 6.62
CGS 0.00 4.39 2.45 9.32 2.79

Im
ba

la
nc

ed
(0

.3
5,

2) 1 69.43 66.38 64.22 63.10 74.13
2 69.70 68.52 63.55 62.15 74.07
3 45.17 62.18 53.70 60.58 64.93
4 44.02 63.93 54.12 61.53 63.93
5 47.12 64.37 56.98 62.60 64.23

MVA 55.09 65.08 58.51 61.99 68.26
MCG 0.00 9.99 3.43 6.91 13.17
CGS 0.00 9.95 7.46 11.34 7.12

Im
ba

la
nc

ed
(0

.6
,1

) 1 74.23 69.30 61.58 62.33 76.22
2 45.08 65.70 49.05 61.43 64.17
3 46.08 62.05 47.15 60.40 61.88
4 43.80 63.97 48.67 60.53 59.10
5 45.05 64.98 50.30 61.98 63.30

MVA 50.85 65.20 51.35 61.34 64.93
MCG 0.00 14.35 0.50 10.49 14.08
CGS 0.00 9.79 6.74 11.23 6.22
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