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ABSTRACT

Spatial transcriptomics (ST) is a cutting-edge technology that enables the mea-
surement of gene expression while preserving spatial context and generating
detailed tissue images. However, ST technology remains time-consuming and
costly. The ability to predict ST gene markers of cancer from histology-grade
H&E-stained tissue images is opening new horizons for precision and person-
alised pathology. Despite the success of foundation models in generating general-
purpose embeddings of H&E-images, these representations are not optimized for
gene expression prediction and lack task-specific adaptability. To address this lim-
itation, we introduce Biology-Guided Prototype Booster (BP-Booster), leveraging
biological prior knowledge to guide the construction and training of learnable pro-
totypes for embedding reconstruction, thereby improving gene expression predic-
tion. We demonstrate superior performance of BP-Booster across datasets, various
cancer tissue types and different ST platforms. We also show that BP-Booster can
flexibly integrate various foundation models to enhance their task-specific repre-
sentations, enhancing explainability and applicability in clinically relevant tasks
like predicting cancer biomarkers. Code will be released upon acceptance.

1 INTRODUCTION

Spatial transcriptomics (ST) technologies, such as Visium, overcome the inherent lack of molecular
information in H&E-stained images by enabling spatially resolved gene expression profiling and
linking tissue morphology to molecular function Ståhl et al. (2016). It reveals cellular heterogeneity
across tissue regions and has been globally recognized as the ”Method of the Year” Marx (2021),
highlighting its significant potential in both basic and translational research. However, current ST
protocols are costly and labor-intensive, posing challenges for large-scale and routine clinical de-
ployment. To address the challenges of acquiring ST data, several approaches have been proposed to
predict gene expression profiles directly from H&E-stained images using deep learning techniques.
For instance, ST-Net He et al. (2020) used a DenseNet-121 backbone pre-trained on ImageNet to
extract image features, followed by a fully connected layer to predict gene expression. HisToGene
Pang et al. (2021) incorporated spatial context by linking patch features to their tissue locations,
while TRIPLEX Chung et al. (2024) further improved performance through multi-scale feature in-
tegration. However, because these models rely solely on image information, their embeddings often
fail to align well with gene expression. To mitigate this gap, BLEEP Xie et al. (2023) employed
contrastive learning to embed both modalities into a shared space and retrieve expression profiles
via nearest-neighbor search.

In recent years, leveraging pathology foundation models (e.g., UNI Chen et al. (2024) and CONCH
Lu et al. (2024)) to extract image embeddings from H&E-stained slides and predict gene expression
has emerged as an active research direction. This line of work benefits from the strong representa-
tional power of foundation models but still yields suboptimal results. Foundation models are primar-
ily trained with self-supervised learning on large-scale pathology image collections, enabling their
embeddings to capture broad morphological patterns. However, these embeddings often contain re-
dundant information and are not explicitly optimized for downstream tasks such as gene expression
prediction. To mitigate this limitation, Stem Zhu et al. (2025) employed joint distribution model-
ing to align gene expression and image embeddings in a shared latent space, but its effectiveness
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depends heavily on large training datasets. As an alternative, dimensionality reduction techniques
such as Principal Component Analysis (PCA) reduce high-dimensional data by projecting it onto
directions of maximum variance, thereby preserving the most informative structures. Experiments
on the HEST benchmark Jaume et al. (2024) show that applying PCA to image embeddings from
pathology foundation models improves gene expression prediction, suggesting that the original em-
beddings may contain task-irrelevant components that hinder prediction performance. However, as
PCA prioritizes high-variance directions, it may also discard lower-variance but more biologically
meaningful features. Therefore, developing an effective strategy to directly reconstruct these embed-
dings by incorporating task-specific biological information has great potential to improve predictive
performance.

Motivated by these observations, we propose a lightweight module called the Biology-Guided Proto-
type Booster (BP-Booster), which incorporates biological prior knowledge to guide the construction
and learning of task-specific prototypes, thereby refining image embeddings from foundation mod-
els. By reconstructing the embeddings through BP-Booster, task-irrelevant information is removed,
while biologically meaningful semantic features are preserved, leading to improved gene expression
prediction. At the core of BP-Booster is a prototype-guided cross-attention module that facilitates
interaction between image embeddings and learnable prototypes. Supervised learning guided by
selected gene expression profiles enables the prototypes to capture image features most relevant to
the prediction task. Furthermore, we introduce a prototype initialization strategy that includes both
random initialization and gene program-guided initialization, offering flexibility to integrate either
purely data-driven signals or biologically informed priors during training, thereby establishing a
strong foundation for learning task-specific prototypes tailored to gene expression prediction. It is
worth noting that for gene program-based initialization, we construct gene programs by combining
spatially variable genes (SVGs) and biological pathways. SVGs capture spatial variations in gene
expression across tissues, while pathways group genes with coordinated biological functions. Pro-
totypes initialized in this way are not only biologically meaningful but also better aligned to interact
with image embeddings.

The main contributions of this work can be summarized as follows:

• We propose BP-Booster, a lightweight, biology-guided prototype-based cross-attention
module that directly reconstructs image embeddings from foundation models by incorpo-
rating biological prior knowledge, jointly optimizing reconstruction and regression losses
for improved gene expression prediction;

• We propose a prototype initialization strategy, where gene program-based initialization
imparts biological semantics to prototypes and improves their interaction with image em-
beddings;

• Extensive experiments demonstrate that BP-Booster achieves superior performance and
strong generalizability across diverse datasets and foundation models, while also proving
effective for gene expression signature prediction.

2 METHODOLOGY

2.1 PROBLEM FORMULATION AND METHOD OVERVIEW

2.1.1 PROBLEM FORMULATION.

Given a set of H&E image patches IN ∈ RH×W×3 and the corresponding gene expression profiles
G ∈ RN×C , where H ×W denotes the spatial resolution of each patch, C is the number of genes,
and N is the number of patches. We further define GHVG ∈ RN×KH and GSVG ∈ RN×KS as
subsets of G corresponding to highly variable genes (HVGs) and spatially variable genes (SVGs),
respectively, where KH and KS are the number of selected genes in each category.

The gene expression prediction task is typically formulated as a regression problem. Existing meth-
ods often leverage a pathology foundation model to extract image embeddings Zimg ∈ RN×L1 ,
where L1 is the embedding dimension. A regression model (e.g., Ridge regression) is then trained
on Zimg to predict G. While our method follows this general paradigm, it introduces a key innova-
tion: we propose BP-Booster to transforms Zimg into a refined latent embedding Zlatent ∈ RN×L2 ,
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Figure 1: The pipeline of our BP-Booster. The H&E image is split into patches, and each patch is
encoded into Zimg using a frozen pathology foundation model. Learnable prototypes are initialized
through a prototype initialization strategy and combined with Zimg via cross-attention and gating
to produce refined embeddings ZLatent. These embeddings are optimized with reconstruction and
regression losses guided by Zimg and GHVG, and subsequently used to train a regression model for
gene expression prediction. The pseudo-code for BP-Booster is provided in the Appendix A.3.

where L2 denotes the dimensionality of the latent space. This transformation enhances the robust-
ness and task alignment of the representations, ultimately improving predictive performance.

2.1.2 METHOD OVERVIEW.

An overview of the BP-Booster pipeline is presented in Figure 1. During training, the model lever-
ages the triplet IN , GHVG, GSVG. First, a foundation model extracts image embeddings Zimg from
IN . Then, a set of learnable prototypes P ∈ RM×L2 in BP-Booster is initialized by the prototype
initialization strategy (either randomly or based on gene programs derived from GSVG). BP-Booster
learns to project the image embedding Zimg into a refined latent space Zlatent through interactions
between image features and learnable prototypes, guided by GHVG. After training, Zlatent is com-
bined with G to train a regression model for gene expression prediction. At inference time, only
the H&E image patches are used. They are processed through the foundation model and the trained
BP-Booster to obtain Zlatent, which is then used by the regression model to predict gene expression.

2.2 BP-BOOSTER

Reconstructing Zimg using biological priors presents a core challenge: how to leverage one modality
(gene expression) to guide the latent space refinement of another (image embeddings). Inspired by
the Q-Former Li et al. (2023) designed to extract task-relevant visual features for text generation,
we propose BP-Booster, a novel biologically driven refinement module. BP-Booster consists of four
key components: a prototype-guided cross-attention module, gating mechanisms for prototypes and
latent dimensions, a decoder, and a regression head.

2.2.1 PROTOTYPE-GUIDED CROSS-ATTENTION MODULE.

The core of BP-Booster is a lightweight prototype-guided cross-attention module composed of:
a projection layer, a learnable prototype set P and a multi-head cross-attention layer. Since the
dimension of Zimg can vary across foundation models, we first apply a projection layer to align it
with the prototype dimension L2. The multi-head cross-attention module then computes prototype-
aware representations ZP ∈ RN×M×L2 by taking Proj(Zimg) and P as inputs, as follows:
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ZP = MultiHead(P,Proj(Zimg),Proj(Zimg))

= Concat(H1, . . . ,Hh)W
O

(1)

Where Hi = Attention(P,Proj(Zimg),Proj(Zimg))

= softmax
(
P (Proj(Zimg))

⊤
√
dh

)
Proj(Zimg)

(2)

Here, WO ∈ RL2×L2 is the output projection matrix, dh = L2/h is the head dimension, and
Proj(·) is the projection layer. This design allows each prototype to attend to distinct semantic
subspaces of the image embeddings, improving cross-modal alignment.

2.2.2 GATING MECHANISMS.

To improve representation quality and interpretability, BP-Booster incorporates two learnable gating
mechanisms:

Prototype Gate: Each prototype is associated with a learnable scalar gate gprototype ∈ [0, 1]M . The
gated prototype output is:

Z
′

P =

M∑
m=1

αmg
(m)
prototypeZ

(m)
P (3)

where α denotes the attention scores from the prototype-based cross-attention layer, and ⊙ repre-
sents element-wise multiplication. M is the number of prototypes.

Latent Dimension Gate: A second gate gdim ∈ [0, 1]L2 is applied to control each latent dimension:

ZLatent = Z
′

P ⊙ gdim (4)

These mechanisms selectively suppress uninformative prototypes and dimensions, enhancing both
model compactness and task-specificity.

2.2.3 DECODER AND REGRESSION HEAD.

To ensure that ZLatent preserves essential semantic information from Zimg while being predictive
of gene expression, we introduce a decoder that reconstructs Zimg from ZLatent, supervised with
a reconstruction loss LRecon. A regression head that maps ZLatent to the top 200 HVGs from the
training set, with prediction supervised by a regression loss LReg. Together, these losses enforce that
ZLatent is both faithful to visual input and biologically meaningful, driving improved generalization
on downstream gene expression prediction tasks.

2.3 PROTOTYPE INITIALIZATION STRATEGY

In BP-Booster, prototypes play a central role in transforming Zimg into the refined latent space
Zlatent. The strategy for initializing these prototypes is therefore an important design choice. To this
end, we propose a prototype initialization strategy that supports two modes: random initialization
and gene program-guided initialization. This strategy enables flexibility in leveraging purely data-
driven or biologically informed priors during model training.

2.3.1 RANDOM INITIALIZATION.

The baseline initialization strategy involves sampling the learnable prototypes from a Gaussian dis-
tribution, given by:

PInit ∼ N (0, 1)M×L2 . (5)

To ensure that the resulting latent representation ZLatent, constructed from these randomly initial-
ized prototypes and the image embeddings Zimg, encodes not only essential visual features but also
biologically meaningful information related to gene expression, we employ both GHVG and Zimg as
supervisory signals. These guide the prototypes to capture visual-biological correspondences during
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training. This strategy enables the model to learn biologically relevant abstractions in a data-driven
manner, without requiring prior domain knowledge for prototype initialization. However, random
initialization lacks semantic grounding and makes it difficult to interpret what each prototype rep-
resents, thereby limiting the interpretability of the learned latent space. To address this limitation,
we propose an alternative gene program–guided initialization strategy, driven by spatially variable
genes (SVGs).

2.3.2 GENE PROGRAM-GUIDED INITIALIZATION.

A gene program is a set of co-expressed genes associated with a specific biological process. It is
typically constructed by integrating biological pathways with data-driven co-expression patterns to
identify biologically meaningful and context-specific gene modules Gerber et al. (2007). Existing
gene program construction methods, such as ExpiMap Lotfollahi et al. (2023), primarily rely on
filtering highly variable genes (HVGs). While HVGs capture genes with significant expression
variation across samples, they often overlook the spatial organization of tissues. In contrast, spatially
variable genes (SVGs) capture expression differences across distinct tissue locations, thus better
reflecting spatial heterogeneity. The visualization is provided in the Appendix A.2.

Inspired by this, we propose a prototype initialization strategy driven by spatially variable genes
(SVGs) and enriched with biological priors at the pathway level. This strategy enables a seman-
tically meaningful initialization for prototypes, improving interpretability and providing a strong
starting point for subsequent training. Specifically, we first collect a set of biological pathways
GP = {GP1, GP2, . . .} from a pathway database such as MSigDB Liberzon et al. (2011). These
pathways are filtered by intersecting them with the SVG set GSVG, retaining only those that satisfy
the condition |GSVG ∩ GP | ≥ 10. Based on the filtered results, we build the pathway-SVG binary
matrix B ∈ RKS×J , where KS is the number of SVGs and J is the number of selected pathways.
Then, the gene program matrix is defined as:

A = GSVGB ∈ RN×J , (6)

Then, we apply Sigmoid activation to each gene program A:,ij , followed by normalization to com-
pute the spatial weights:

w(j) =
σ(A:,ij )∑N

n=1 σ(An,ij )
∈ RN , (7)

where σ(·) denotes the Sigmoid activation function. Using these weights, we define the j-th proto-
type as the weighted sum of SVG expression across spatial positions:

pj =

N∑
n=1

w(j)
n GSVG

n . (8)

Finally, by stacking all prototypes and passing them through a projection layer, we obtain the ini-
tialized prototype matrix:

PInit = Projector([p⊤1 , . . . , p
⊤
J ]) ∈ RJ×L2 , (9)

A key advantage of this initialization strategy is that, unlike random initialization, it eliminates
the need to manually specify the number of prototypes by directly leveraging gene programs as
semantically meaningful prototypes (i.e.,, M = J). Moreover, since each prototype corresponds to
a filtered pathway, the model gains clear biological interpretability by linking prototypes to known
pathways.

2.4 LOSS FUNCTION

In our approach, BP-Booster is optimized using a combination of a reconstruction loss and a regres-
sion loss, defined as follows:

LRecon =
1

N

N∑
i=1

∣∣∣Decoder(Z(i)
Latent)− Z

(i)
img

∣∣∣2 (10)
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LReg =
1

N

N∑
i=1

∣∣∣RegressionHead(Z(i)
Latent)−GHVG

i

∣∣∣2 (11)

The overall training objective is the sum of these two components:

LTotal = LRecon + LReg (12)

This combined loss encourages the model to learn latent representations that are not only faithful
to the original image embeddings but also predictive of biologically meaningful gene expression
patterns.

3 EXPERIMENTS

3.1 DATASET AND EXPERIMENT SETUP

Dataset. We evaluated our method on four cancer types from the HEST benchmark Jaume et al.
(2024): IDC (invasive ductal carcinoma of the breast), SKCM (skin cutaneous melanoma), PRAD
(prostate adenocarcinoma), and LUAD (lung adenocarcinoma). The benchmark provides a publicly
available, high-quality spatial transcriptomics (ST) dataset with standardized preprocessing. For
IDC, SKCM, and LUAD, data were generated using Xenium technology, comprising 4, 2, and 2
samples, respectively, and cross-validation was conducted following Jaume et al. (2024) to ensure
reliable evaluation of generalization. For PRAD, data were collected using Visium technology,
consisting of 23 samples, and evaluation was performed with leave-one-out as in Zhu et al. (2025).

Gene List Selection Strategy for Training. In our method, two biologically distinct gene sets are
utilized to initialize and train the prototypes: spatially variable genes (SVGs) and highly variable
genes (HVGs). SVGs are genes whose expression levels exhibit significant variation across spatial
locations within a tissue, capturing spatial heterogeneity. We use Squidpy Palla et al. (2022) to
identify the top 200 SVGs from the training set, which are employed for prototype initialization.
HVGs represent genes with high expression variability across samples and are commonly used to
capture key data structures. We select the top 200 HVGs from the training data using Scanpy Virshup
et al. (2023) and use them for prototype training.

Foundation Models. In this study, we evaluate our method using nine foundation models across
different experiments: ResNet-50 Lu et al. (2021), CTransPath Wang et al. (2022), Phikon Filiot
et al. (2023), CONCH Lu et al. (2024), GigaPath Xu et al. (2024), UNI Chen et al. (2024), Virchow
Vorontsov et al. (2024), Virchow 2 Zimmermann et al. (2024), and H-Optimus-0 Saillard et al.
(2024).

Implementation Details. Our model is implemented using the PyTorch framework and executed on
an NVIDIA L40 GPU (48GB memory). We use Adam optimizer to train our model for 50 epochs.
The batch size is 128. The hyperparameters related to the prototype (the dimension and number) and
the learning rate are adjusted based on the choice of foundation model and validation dataset. The
learning rate was selected from the range [0.00001, 0.005]. The prototype dimension was chosen
from {128, 256, 512}, and the number of prototypes from {16, 32, 64}. Detailed hyperparameter
configurations for each experiment are provided in the Appendix A.5. For evaluation, we follow the
HEST benchmark by using the top 50 HVGs to assess performance on the IDC, SKCM, and LUAD
tasks. For PRAD, we adopt the high mean and high variability gene (HMHVG) list, as defined in the
Stem, to evaluate all methods. To measure gene expression prediction performance, we use Mean
Squared Error (MSE) and Pearson Correlation Coefficient (PCC) as evaluation metrics.

3.2 EXPERIMENT RESULTS

In this section, we present comparisons with existing methods, evaluate the generalization of our ap-
proach across different foundation models, demonstrate its applicability to gene expression signature
prediction, and perform an ablation study.
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3.2.1 COMPARISON WITH STATE-OF-THE-ART.

We compare BP-Booster with existing methods, including ST-Net, HisToGene, TRIPLEX, Stem
and BLEEP.

As shown in Table 1, BP-Booster consistently outperforms all existing methods across all evaluation
metrics in both tasks, regardless of the foundation model used. This demonstrates the robustness of
our approach across different cancer and tissue types on the Xenium. In addition, prototype initial-
ization guided by gene programs (specifically those derived from SVGs) consistently yields better
performance than random initialization. This indicates that spatially informed gene programs more
effectively capture underlying spatial patterns, thereby facilitating more meaningful embedding re-
construction. In addition, we compare the visualizations of BP-Booster, the comparison methods,
and the ground truth, which is shown in the Appendix A.6.

Method IDC (HVG) SKCM (HVG)
PCC ↑ MSE ↓ PCC ↑ MSE ↓

ST-Net 0.4147 ±0.054 2.6918 ±3.43 0.5109 ±0.1518 3.914 ±5.0458

HisToGene 0.089 ±0.0204 2.9903 ±3.2483 0.2655 ±0.037 2.7275 ±2.304

BLEEP 0.4131 ±0.0596 2.6973 ±3.2692 0.3812 ±0.0325 3.2473 ±2.5385

Ours R(UNI) 0.5791 ±0.0755 2.3575 ±3.3278 0.6337 ±0.0107 1.5701 ±1.6459

Ours GP(UNI) 0.5845±0.0799 2.3128 ±3.2394 0.6239 ±0.0189 1.6127 ±1.723

Ours R(Virchow2) 0.5895 ±0.0834 2.0904 ±3.0457 0.6482 ±0.013 1.3768 ±1.3989
Ours GP(Virchow2) 0.5986 ±0.0844 2.0801 ±3.0375 0.6522 ±0.0171 1.3895 ±1.3511

Table 1: Comparison with state-of-the-art methods on the IDC and SKCM tasks from the HEST
benchmark dataset Jaume et al. (2024). Reported results correspond to the mean and standard de-
viation obtained from cross-validation. Our R denotes BP-Booster with random initialization and
Our GP is BP-Booster with gene program-guided initialization.

To further demonstrate the generalization of our proposed method across different ST platforms
and varying gene set sizes, we conduct an additional experiment on a Visium dataset (PRAD).
Table 2 shows that BP-Booster significantly outperforms other methods in all settings, indicating its
robustness across both platforms and prediction scales. Moreover, consistent with findings in Table
1, prototype initialization based on gene programs generally yields better performance than random
initialization. However, an exception is observed when using Virchow 2, where random initialization
is better than gene program-based initialization. We assume the reason could be the lower spatial
resolution of the Visium with a mixture of cell types per spatial spot, where prior information from
gene programs may restrict the representation ability of prototypes, limiting their ability to adapt to
the complex latent space from Virchow 2.

Method PRAD (HMHVG)
PCC-10 ↑ PCC-50 ↑ PCC-200 ↑ MSE ↓

HisToGene∗ 0.4035 0.3554 0.2235 1.4619
BLEEP∗ 0.5798 0.5102 0.3158 2.4754
TRIPLEX∗ 0.6173 0.4953 0.3601 1.4819
Stem∗ 0.6103 0.5315 0.3832 1.4873
Ours R(UNI) 0.6727 0.6164 0.478 0.5442
Ours GP(UNI) 0.6677 0.6171 0.4935 0.5384
Ours R(CONCH) 0.6538 0.5983 0.472 0.5599
Ours GP(CONCH) 0.674 0.6132 0.4946 0.5472
Ours R(Virchow2) 0.7308 0.6807 0.5628 0.4894
Ours GP(Virchow2) 0.7285 0.6759 0.5563 0.4981

Table 2: Comparison with state-of-the-art methods on the PRAD task from the HEST benchmark
dataset Jaume et al. (2024). Reported results are the mean values obtained from cross-validation.
The ∗ denotes results reported by Zhu et al. (2025).

3.2.2 GENERALIZATION FOR FOUNDATION MODELS.

To evaluate the adaptability of BP-Booster to different foundation models, we compared it with the
PCA reduction on the SKCM and LUAD tasks. As shown in Table 3, we first observe that apply-
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Method SKCM(HVG) PCC ↑ LUAD(HVG) PCC ↑
Ridge∗ + PCA∗ + Ours R + Ours GP Ridge∗ + PCA∗ + Ours R + Ours GP

ResNet 50 0.4117 0.4822 0.5139 0.5297 0.4001 0.4917 0.5406 0.5459
CTransPath 0.4038 0.5196 0.5512 0.5572 0.4026 0.4985 0.5745 0.5749
Phikon 0.3684 0.5355 0.5557 0.5729 0.4224 0.5468 0.5868 0.5973
CONCH 0.5079 0.5791 0.5811 0.5642 0.4957 0.5312 0.5566 0.569
GigaPath 0.2231 0.5538 0.5704 0.5706 0.3144 0.5399 0.5594 0.562
UNI 0.3433 0.6254 0.6337 0.6239 0.3714 0.5511 0.5565 0.5795
Virchow 0.3389 0.6088 0.6464 0.6573 0.2897 0.5459 0.6067 0.612
Virchow2 0.303 0.6174 0.6482 0.6522 0.3017 0.5605 0.5837 0.60
H-Optimus-0 0.2778 0.6432 0.6571 0.6632 0.3143 0.5582 0.5875 0.5907
Average 0.3531 0.5739 0.5953 0.599 0.368 0.536 0.5725 0.5813

Table 3: Generalization performance of the proposed method across various foundation models on
the SKCM and LUAD tasks from the HEST benchmark dataset Jaume et al. (2024). Reported results
are the mean values obtained from cross-validation. The ∗ denotes results reported by Jaume et al.
(2024).

Ridge PGCA module gdim gprototype GP initialization LRecon LReg Virchow2
✓ 0.303
✓ ✓ ✓ ✓ 0.638
✓ ✓ ✓ ✓ ✓ 0.6478
✓ ✓ ✓ ✓ ✓ 0.644
✓ ✓ ✓ ✓ ✓ ✓ 0.6482
✓ ✓ ✓ ✓ ✓ ✓ 0.6498
✓ ✓ ✓ ✓ ✓ 0.6492
✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.6522

Table 4: Ablation analysis of proposed method on the SKCM task from the HEST benchmark dataset
Jaume et al. (2024). Reported results are the mean values of PCC obtained from cross-validation.
PGCA module: the prototype-guided cross-attention module.

ing PCA substantially improves the performance of foundation models, resulting in average PCC
gains of 0.216 and 0.168 on the two tasks, respectively. This improvement is likely since raw image
embeddings from foundation models contain a considerable amount of task-irrelevant or redundant
information, which hinders effective learning by the regression model. Next, we notice that BP-
Booster (with both random and gene program-based initialization) consistently outperforms PCA.
For example, our method with gene program initialization increases the PCC by 0.0251 and 0.0453
on the two tasks, respectively. This indicates that BP-Booster is more effective at reconstructing
a task-relevant latent space, providing a more suitable feature representation for gene expression
prediction. As PCA focuses on directions of maximal variance, it potentially discards biologically
informative but low-variance features. However, BP-Booster leverages biologically informed pro-
totypes to guide latent space reconstruction. This approach improves the preservation of relevant
information about gene expression while simultaneously filtering out noise and redundancy.

3.2.3 PREDICTION OF GENE EXPRESSION SIGNATURE

A gene expression signature is a set of genes whose expression patterns characterize specific bio-
logical states or diseases. These signatures are widely used in disease classification, prognosis, and
treatment response, making their prediction with deep learning an important application. Therefore,
we evaluate our method on the PAM50 Parker et al. (2009) (a breast cancer gene expression signa-
ture panel). In the IDC task, 12 PAM50 genes are identified. We predict these genes using Virchow
2 alone and our BP-Booster (with both random and gene program initialization). As shown in Fig-
ure 2, BP-Booster consistently outperforms Virchow 2, highlighting its effectiveness for accurate
gene expression signature prediction.

3.3 ABLATION STUDY

In the ablation studies, we evaluate the contribution of each component within BP-Booster. The
results are summarized in Table 4. We employ a Ridge regression model as the baseline for com-
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Figure 2: Comparison between the proposed method and Virchow 2 on predicting PAM50 genes in
the IDC task.

parison. Each component is incrementally added to assess its impact on the overall performance,
allowing us to isolate the effectiveness of the prototype-guided cross-attention module, gating mech-
anisms, gene program initialization, and two loss functions. We began by incorporating a prototype-
guided cross-attention module into the baseline model, which led to significant performance im-
provements (PCC gain of 0.335). Next, we independently added the gprototype and gdim . The
results show that adding gdim yields greater performance gains than gprototype. When both gating
mechanisms were integrated into the prototype-guided cross-attention module, the resulting model
is called BP-Booster with random initialization. It further improves performance, achieving PCC
gain of 0.0102. Then, initializing the prototypes using gene programs (GP) led to additional per-
formance gains, demonstrating the effectiveness of incorporating biological priors into the repre-
sentation learning process. Finally, we evaluate the contributions of each loss function. Using the
LRecon and LReg individually produces slightly lower performance than their combined use. This
likely reflects their complementary objectives: LRecon ensures the BP-Booster embedding retains
information from the original image embedding, while LReg enforces gene expression relevance in
the embedding.

Additionally, we analyze three types of embeddings (i.e., image embeddings from Virchow 2, image
embeddings of Virchow 2 after PCA, and embeddings from BP-Booster) using t-SNE and k-means
clustering (see Appendix A.7). The results show that BP-Booster embeddings form clearer clusters,
with tighter intra-cluster compactness and sharper inter-cluster boundaries, which may contribute to
improved gene expression prediction performance.

4 CONCLUSION

In this study, we propose BP-Booster, a lightweight refinement module that reconstructs latent repre-
sentations from existing pathology foundation models through biologically guided prototype learn-
ing to improve gene expression prediction. Experimental results show that integrating BP-Booster
not only enhances prediction performance across different ST platforms and tissue types but also
strengthens the task-specific representational capacity of various foundation models, further demon-
strating its applicability in the context of gene expression signatures. We expect that BP-Booster,
which reconstructs foundation model image embeddings by incorporating biological knowledge, can
offer new insights into leveraging foundation models and H&E images for computational pathology.
In future work, we plan to extend this approach to related tasks such as cell type classification.

9
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REPRODUCIBILITY STATEMENT

The appendix provides hyperparameter settings and algorithmic pseudo-code to enhance repro-
ducibility. We will release the code upon acceptance.

REFERENCES

Richard J Chen, Tong Ding, Ming Y Lu, Drew FK Williamson, Guillaume Jaume, Andrew H Song,
Bowen Chen, Andrew Zhang, Daniel Shao, Muhammad Shaban, et al. Towards a general-purpose
foundation model for computational pathology. Nature medicine, 30(3):850–862, 2024.

Youngmin Chung, Ji Hun Ha, Kyeong Chan Im, and Joo Sang Lee. Accurate spatial gene expression
prediction by integrating multi-resolution features. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 11591–11600, 2024.

Alexandre Filiot, Ridouane Ghermi, Antoine Olivier, Paul Jacob, Lucas Fidon, Axel Camara, Alice
Mac Kain, Charlie Saillard, and Jean-Baptiste Schiratti. Scaling self-supervised learning for
histopathology with masked image modeling. MedRxiv, pp. 2023–07, 2023.

Georg K Gerber, Robin D Dowell, Tommi S Jaakkola, and David K Gifford. Automated discovery
of functional generality of human gene expression programs. PLoS Computational Biology, 3(8):
e148, 2007.
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A APPENDIX

A.1 PRELIMINARY: PROTOTYPE-BASED REPRESENTATION LEARNING

A prototype refers to a representative instance that captures the shared characteristics of data points
belonging to the same type or category, and is often used to encode semantic or conceptual in-
formation Song et al. (2024a). Recently, prototype learning has gained significant attention in
computational pathology and has become a widely adopted approach for H&E image analysis.
For example, AttnMISL Yao et al. (2020) and H2T Yao et al. (2020) performed k-means clustering
on patch embeddings and use the resulting cluster centroids as prototypes. PANTHER Song et al.
(2024a) employed a Gaussian mixture model (GMM) to summarize patches from whole-slide im-
ages (WSIs) into a set of compact morphological prototypes. MMP Song et al. (2024b) extended
PANTHER by incorporating pathway-level prototypes and integrating them with morphological pro-
totypes for downstream tasks. In contrast to these approaches, we propose to construct learnable pro-
totypes directly guided by biological information. These prototypes are used to reconstruct image
embeddings from foundation models, thereby enhancing their utility for gene expression prediction.

A.2 SPATIALLY VARIABLE GENE

Spatially variable genes (SVGs) capture expression differences across tissue locations, thereby re-
flecting spatial heterogeneity, as visualized in Figure 3. Incorporating SVGs makes gene programs
more closely aligned with image embeddings from foundation models.

Figure 3: Visualizations of spatially variable genes (SVGs) demonstrate that their expression pat-
terns align well with the underlying spatial organization of the tissue.

A.3 PSEUDO CODE OF BP-BOOSTER

Algorithm 1 illustrates the training procedure of BP-Booster and how it generates the latent repre-
sentation ZLatent from image embeddings. During training, ZLatent is obtained from H&E images
via BP-Booster and used together with ground truth gene expression to train a regression model. At
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test time, the trained BP-Booster generates ZLatent from test H&E images, which is then fed into
the trained regression model to predict gene expression.

Algorithm 1 A pipeline of BP-Booster.
BP-Booster: Prototypes P , project layer Proj, prototype gate gprototype, latent dimension gate
gdim, decoder D, regression head R, prototype-guided cross-attention layer MultiHead
Input: Foundation models FM , patches from train H&E images IN , highly variable genes
GHVG, spatially variable genes GSVG

Output: Reconstructed image embeddings ZLatent

Prototype Initialization:
if random initialization then

P ∼ N (0, 1)
else if gene program-guided initialization then

GP = {GP1, GP2, . . .} ▷ GP denotes gene program
if |GSVG ∩GP | ≥ 10 then

A = GSVGB ▷ B denotes pathway-SVG binary matrix

w(j) =
σ(A:,ij

)∑N
n=1 σ(An,ij

)
▷ σ(·) denotes the Sigmoid activation function

end if
P = Proj([p⊤1 , . . . , p

⊤
J ]) ▷ pj =

∑N
n=1 w

(j)
n GSVG

n
end if

Training:
for epoch ∈ 1, 2, . . . , n do

ZLatent = gdim ⊙
[∑

α · gprototype·

MultiHead(P,Proj(Zimg),Proj(Zimg))
]

▷ α denotes the attention score
where Zimg = FM(IN ),
Compute LRecon using Zimg and D(ZLatent) to train BP-Booster
Compute LReg using GHVG and R(ZLatent) to train BP-Booster

end for

A.4 DATA PREPROCESSING

We follow the HEST benchmarkJaume et al. (2024) to preprocess data across four cancer types.
Highly variable genes (HVGs) and spatially variable genes (SVGs) are selected only from training
data. For datasets with multiple training samples, we retain genes that are commonly identified as
HVGs or SVGs across all samples.

A.5 HYPERPARAMETER SETTINGS

We detail the hyperparameters used in our experiments, including learning rate, prototype dimen-
sions, and prototype counts (for random initialization only).

A.5.1 LEARNING RATE

Different learning rates are used based on the dataset and initialization strategy (i.e.,random and
gene program-guided initialization):

• IDC (random): 0.01;

• LUAD (both): 0.001;

• IDC (gene program): 0.0001;
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• SKCM (random, gene program): 0.0005;

• PRAD (random): 0.0001;

• PRAD (gene program): 0.00001.

A.5.2 PROTOTYPE DIMENSION

The prototype dimension is set to 256 for most foundation models. Exceptions: ResNet-50 (512),
CONCH and UNI (128).

A.5.3 NUMBER OF PROTOTYPES

The gene program-guided strategy automatically determines the number of prototypes. For random
initialization:

• Most of the foundation models: 64;

• CONCH and UNI: 32.

A.6 VISUALIZATION RESULTS

In this section, we present visualization results in Figure 4, comparing BP-Booster, comparison
methods, and the ground truth for cancer-related gene expression predictions.

Figure 4: Visualization of cancer-related gene expression predictions (e.g.TYRP1 and CEACAM6)
from different methods on the IDC and SKCM tasks.

A.7 ABLATION STUDY FOR ANALYZE EMBEDDINGS

We employed t-SNE and k-means clustering to assess the representation power of different embed-
dings on the SKCM task. As shown in Figure 5, raw embeddings from Virchow 2 were highly dis-
persed with substantial cluster overlap, leading to blurred boundaries. PCA reduced this overlap and
produced more compact clusters, though separation remained limited. In contrast, embeddings from
our method yielded clearly separated clusters with higher intra-cluster density and sharper bound-
aries, demonstrating superior representational capability. These improvements suggest potential
benefits for downstream gene expression prediction, as further validated in our main experiments.
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Virchow 2 Virchow 2 + PCA Virchow 2 + Ours_GP

Figure 5: T-SNE visualization with k-means clustering of different embeddings on the SKCM task.

A.8 THE USE OF LARGE LANGUAGE MODELS (LLMS)

The large language models (LLMs) are used solely to improve grammar, spelling and wording.
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