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Abstract

Activation steering is a promising family of methods for controlling LLM outputs
via targeted interventions on model activations. We introduce a toy multi-label
classification setup to systematically study activation steering methods, and ex-
periment with several types of steering adapters — from steering vectors (adding
a fixed vector to activations) to more expressive adapters involving projections.
We evaluate the adapters across steering tasks of different complexities, for three
notions of complexity: 1) how densely the features are packed in the representation
space (roughly, number of features divided by the dimensionality of the activations),
2) number of attributes steered, and 3) number of values the steered attribute can
take. We find that as task complexity is increased, steering vector methods perform
worse, while the more expressive methods only take a performance hit when there
is not enough data. On the other hand, steering vectors usually outperform the
more expressive methods in the low-data regime, regardless of task complexity.
We conclude by discussing this work’s limitations, which include our toy setup not
modeling features represented in superposition or continuous features, and the lack
of experiments with LLMs.

1 Introduction

Activation steering methods, also known as representation engineering, are promising to become a
new major paradigm for controlling LLMs’ outputs, alongside prompting, finetuning, and training
data curation. Most works so far have focused on steering vectors — essentially, adding a fixed vector
to the model’s activations at a given layer, which is equivalent to modifying the layer’s bias [Turner
et al.,|2024, |Zou et al.| 2023 [Liu et al., [2024, [Todd et al., 2024, Templeton, |2024]]. Others propose
more expressive steering adapters. For instance, |Singh et al.| [2024] propose MIMIC, a method that
uses an oblique projection matrix together with translation by a fixed vector to steer the model.

The majority of prior works compare their proposed steering method to few other methods, and often
use tasks different from those used in other papers. Because of this, it is hard to tell which steering
methods might work best and why [Brumley et al.,|2024]. To rectify this issue, our paper introduces
a toy setup designed for an in-depth study of the properties of the various steering adapters.

Concretely, our study relies on a toy multi-label classification setup, where we attempt to steer
the model’s activations such that one attribute’s value is changed to the desired one, and the other
attributes’ values are unchanged. This is similar to how steering methods applied to LLMs usually try
to change one attribute at a time, such as the tone or the toxicity of the model’s response, without
changing the contents of the generated text. We consider synthetic data with m attributes, each with
multiple possible values, so our model has m output heads — one for each attribute.

We train a four-layer ResNet on such data, apply different steering adapters at layer 3, and report the
steering performance (whether all m labels are correct) across a variety of settings. Our experiments
show a clear tradeoff between maximum attainable steering performance and data efficiency across
four types of steering adapters with different levels of expressiveness.
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Our contributions include:

1. A simple toy setup that allows for a systematic study of activation steering methods across several
notions of task complexity.

2. Experiments comparing steering methods CAA [Rimsky et al.,[2023]], MIMIC [Singh et al., 2024],
ReFT [Wu et al.l 2024], and a new baseline we call low-rank orthogonal representation steering
(LOReSt). We show that steering vectors (CAA) have a fairly low performance ceiling, and work
worse than the more expressive methods when features are more densely packed in the activation
space or when steering requires a larger change to source activations. However, steering vectors
can be more data efficient, especially for easy steering tasks.

2 Multi-label classification setup as a testbed for model steering

Synthetic multi-label dataset. Our dataset consists of samples with m attributes (60 to 120 in our
experiments), where each attribute can take multiple possible values. Each attribute is represented
by an 8-dimensional feature vector, making the total input dimensionality 8 x m. To generate these
features for an attribute with k possible values, we first create k& anchor vectors p,; € R® 1<i<k
for that attribute. Then, for a datapoint where that attribute should take value ¢, we sample its
corresponding 8-dimensional features from a multivariate Gaussian with mean g, and diagonal
covariance. The full input vector for each datapoint is formed by concatenating the 8-dimensional
features for all m attributes. The model has m output heads, one for each attribute, and the dataset is
approximately balanced across all possible attribute values.

Steering task. The goal of steering is to modify one attribute’s predicted label while keeping other
attributes intact. For instance, if the original datapoint had labels [3, 1, 2] for the three attributes, and
we are steering it to label O on the first attribute, we hope to get [0, 1, 2] as the label after steering.
We measure total accuracy: the fraction of test examples where all labels are correct, such that the
steered attribute takes the desired target value and the other attributes’ values are unchanged.

Contrastive datapoints. Steering methods considered in this work rely on pairs of contrastive
datapoints, which differ only in the value of one of the labels (or several labels, in case we want to
steer several attributes at the same time). For instance, a pair of contrastive datapoints could have
labels [3, 1, 2] and [0, 1, 2] respectively — in this case we are steering the first attribute to value 0. We
refer to the latter datapoint — one where the steered attribute equals the target value — as the positive
example, and the former datapoint as the negative example.

3 Steering methods

Contrastive activation addition (CAA). We study CAA [Rimsky et al.l [ 2023]] as a representative
steering vector method. CAA works as follows: given a dataset of activations from contrastive
datapoint pairs {(al™, a}*)} ., the steered activations are computed as a**! = a + av, where
a is the steering magnitude and v = & SN (aP — a*®): the average of the differences between
activations of contrastive training datapoints.

Minimally modified counterfactuals (MiMiC). [Singh et al.|[2024] introduce the steering method
MiMiC that uses an affine function to steer a distribution of activations with an undesired property
(e.g. toxicity) such that after steering, the resulting distribution matches the mean and the covariance
of a distribution of activations with the desired property (e.g. non-toxic). The steering adapter has
the form a****! — Wa + b, where W is an oblique (non-orthogonal) projection matrix, and both
‘W and b are computed in closed form. Obtaining W involves computing covariance matrices for
datasets of activations of positive and negative examples. When the number of datapoints available is
smaller than the dimensionality of our activations, these covariance matrices are rank-deficient. Our
experiments show that this results in null performance for MiMiC in the low-data regime, but can
be fixed by adding a diagonal matrix of epsilon=1 to the covariance matrices when in the low-data
regime as a regularizer. In the plots below, we show both the performance of the original MiMiC
method, as well as our version utilizing this simple regularization strategy.



Representation finetuning (ReFT). |[Wu et al|[2024] propose ReFT as method for parameter-
efficient finetuning. In this work, instead of learning the parameters of the ReFT adapter with an
end-to-end loss, we train the adapter to take un-steered activations as an input and return the modified
activations a*°¢ using the MSE loss on target activations. The LoReFT adapter has the following
form: a*®® = a + R"(Wa + b — Ra), where R € R"*¢ is constrained to orthonormal rows (we
accomplish this with differentiable QR decomposition), and parameters W € R"*? and b € R" are
not constrained. Note that unlike the previous two methods that can in principle work with unpaired
data (e.g. two sets of points with and without the desired behavior), ReFT requires paired datapoints.

Low-rank orthogonal representation steering (LOReSt). As a baseline inspired by ReFT, we
introduce a steering method based on learned orthogonal projections with Gumbel-Softmax dimension
selection. Key parts of this adapter are the learned rank-r orthogonal basis Q € RY*" (obtained
via differentiable QR decomposition) and dimension-wise drop probabilities p € {0, 1}" obtained
through Gumbel-Softmax sampling. Steering is performed as a**™d = a — (aQ)diag(p)Q" + b.
Here b € R%is a learned bias, and p is a binary vector sampled from the Gumbel-Softmax distribution
with learned logits £ € R" and temperature 7. The probability of keeping dimension ¢ is given
by p; = GumbelSoftmax([£;,0];7);. This computation is equivalent to applying an orthogonal
projection matrix P = I — Qdiag(p)Q " (with the resulting projection of rank between d —  and d,
depending on how many dimensions are dropped) and shifting by the bias. Similarly to our usage of
ReFT, LOReSt is trained with the MSE loss on target activations, and requires paired datapoints.

4 Results

This section discusses our results comparing the four steering methods described above on variants of
our toy setup. We are especially interested in the steering methods’ performance as the complexity of
the steering task is increased. Varying the task complexity is operationalized in three ways:

* Varying the "density" of features in the representation space (more attributes packed into repre-
sentations of the same dimensionality means higher density).

* Varying the number of steered attributes.
* Varying the number of values an attribute can take.

Training the model we steer. All experiments start by training a four-layer feedforward MLP with
residual connections [He et al.,[2016]] on 2M datapoints sampled according to §2] We train for 50
epochs using AdamW [Loshchilov, [2017]] with learning rate 0.0001 and batch size 4096, and use
the model from an epoch with the best validation loss. The hidden dimensions of the resnet are
512-512-256-512. We use the GELU nonlinearities [Hendrycks and Gimpel, 2016, and use layer
normalization [Lei Ba et al.l 2016] after the last residual block (right before the output layer); the
residual blocks themselves do not have layer normalization.

Setting up steering adapters. Activations of the contrastive datapoints are collected at the residual
stream after the third layer (with d = 256). The steering adapter is inserted at the same location. We
did not experiment with steering adapters inserted in several locations at the same time. Adapters
without closed-form solutions, ReFT and LOReSt, are trained for 2k epochs with AdamW, and the
adapter from the epoch with the best training loss is selected. We found the large number of epochs
especially beneficial when there are very few training datapoints.

Varying the density of features in the representation space. Each row of subplots in Figure|T]
varies the number of attributes that the model needs to pack into the 256-dimensional space. For the
densest configuration, the model needs to represent 120 attributes with 8 possible values each, so
approximately 2 dimensions per attributeﬂ We observe that when features are packed more densely,
more expressive steering methods substantially outperform steering vectors when there is enough

“Note that because our data is not sparse (all 8'%° label combinations can occur in principle), the learned
representation cannot easily benefit from superposition (encoding more than two features per dimension [Elhage
et al.} 2022]]). In fact, training a model of the same architecture on data with 150 8-dimensional attributes already
results in fairly low overall performance. In a future version of this paper, we will show how data sparsity can
dramatically increase the number of attributes that can be packed into the activations.
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Figure 1: Total accuracy: fraction of test examples where all labels are correct. Values per attribute
of [8]*60 means that there are 60 attributes, each with 8 possible values. Each point is an average
over 20 steering attempts, each for a different attribute. We observe that as the number of attributes
that need to fit into the representation with dimensionality d = 256 increases, steering becomes
harder, especially for steering vectors — and also for the more expressive methods when the amount
of training data is small. The same happens when we increase the number of attributes we steer;
additionally, more expressive methods turn out to be necessary here, as we see from ReFT and
LOReSt working only when their rank is sufficiently high. Note the inflection in performance that
occurs for ReFT and MiMiC when the number of training datapoints becomes larger than d.

training data. However, steering vectors perform better when the number of training datapoints is
small, with steering magnitudes « greater than 1 performing best. LOReSt offers a middle ground
between steering vectors and ReFT & MiMiC in terms of data efficiency, and is capable of obtaining
performance similar to MiMiC and ReFT. It is notable that for MiMiC and ReFT, there is a clear
inflection point in steering performance when the number of training datapoints is equal to the
dimensionality of the steered layer. This suggests that these methods may be less suitable for steering
LLMs, which often have high-dimensional residual streams (e.g. d = 4096). Another curious
observation is that our regularized version of MiMiC works substantially better than the original in
the low-data regime, and specifically, the low-data regime performance of this method appears to
align with the performance of CAA with steering magnitude 1.



Varying the number of steered attributes. Columns of Figure |l| vary the number of steered
attributes by sampling contrastive datapoints that differ on two or three attributes in addition to just
one attribute (the current version of the experiment only uses contrastive datapoints that differ on
all target attributes, instead of e.g. differing on one attribute of interest but matching on another).
Similarly to above, we observe a data efficiency VS performance ceiling tradeoff across the differently-
expressive steering adapters — with steering vectors on one side of the tradeoff, ReFT and MiMiC
on the other, and LOReSt somewhere in between. Relatedly, we see that as the number of steered
attributes is increased, ReFT and MiMiC require higher ranks r to reach the same level of performance
(see the rightmost column of Figure I)).

Varying the specificity of the target attribute. Informally, steering an attribute with 2 possible
values requires changing 1 bit in the model’s hidden state, while steering an attribute with 8 values
requires changing 3 bits. Our experiment in Figure 2] shows that as the required change gets larger, all
steering methods perform worse, similarly to when steering for several attributes simultaneously. The
less expressive steering adapters end up with a lower performance ceiling, and the more expressive
adapters perform worse in the low-data regime. It is interesting to compare the rightmost subplot of
Figure 2] with the middle subplot of Figure[I] Both suplots show steering attempts trying to change
6 bits (one 6-bit attribute VS two 3-bit attributes) in models with similar "attribute density" (8%4
possible label combinations VS 8%9). We see that the results are rather similar.
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Figure 2: We steer a model trained on data with attributes of six different sizes (there are 12 attributes
of each size). As precision required for steering increases for attributes with more values, steering

vectors end up with a lower performance ceiling, while ReFT and LOReSt require higher rank to
work well.

5 Discussion

Limitations. The main limitation of our work is the lack of experiments with LLMs: it is unclear
whether our results regarding the relative performance of the various steering methods would hold
up in realistic settings. Two issues specifically make our setup less realistic: not modeling features
represented in superposition, and not modeling continuous features. Additionally, it is unclear how
the typical "task complexity" for an LLM looks like: if it is more like the top left subplot of Figure|[T]
then steering vectors would likely work best, and if it’s closer to the bottom right subplot, the more
expressive steering methods might come on top.

In addition to making our setup more realistic and LLM experiments, future work could study
non-linear steering adapters, as well as explore losses other than MSE for training the adapters — for
instance by including additional end-to-end loss terms aimed at reducing the performance penalty
arising from steering (like the loss in [Braun et al.,[2024] for sparse autoencoders). Furthermore, the
adjustable steering magnitude common in steering vector methods might offer substantial convenience
when steering for continuous features, and our experiments show that even for discrete attributes,



steering magnitude other than 1 often results in the best steering performance. MiMiC, ReFT and
LOReSt could benefit from modifications allowing for such control over the steering impact.

Other limitations are common to the activation steering paradigm. First, activations of contrastive
datapoints may have multiple differing salient features, and steering methods that need to choose
which features to focus on, like in-context vectors [Liu et al., 2024] via PCA, and ReFT & LOReSt
via the low-rank transformation, may focus on the wrong feature. [Farquhar et al.|[2023]] discuss this
issue for a different setup utilizing contrastive datapoints. Second, the benefits of activation steering
over finetuning have not been clearly articulated: is there a benefit of avoiding end-to-end training
(e.g. DPO [Rafailov et al.l 2024]) using the same contrastive datapoint pairs? We suspect there are
benefits related to process supervision [Stuhlmiiller and Byun| [2024]], and are interested in future
work clarifying this.

Conclusion. We introduced a toy multi-label classification setup for studying activation steering,
and used this setup to investigate how four different steering methods fare as task complexity is
increased. Our work highlights the drawbacks of steering-vector-based methods: poor performance
when 1) the features are tightly packed in the activation space, and 2) when the goal is to change a
larger amount of information in the activations. However, steering vectors can be more data-efficient
than the more expressive methods when there are very few training datapoints. Our study offers
unique insight into the challenges of model steering, and is a small step on the path towards more
controllable Al systems.
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