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ABSTRACT

Graph limit models, like graphons for limits of dense graphs, have recently been
used as a tool to study size transferability of graph neural networks (GNNs). While
most existing literature focuses on message passing GNNs (MPNNs), we attend
to Invariant Graph Networks (IGNs), a powerful alternative GNN architecture. In
this work, we generalize IGNs to graphons, introducing Invariant Graphon Net-
works (IWNs) which are defined using a subset of the IGN basis corresponding
to bounded linear operators. Even with this restricted basis, we show that IWNs
of order k 4 1 are at least as powerful as the k-dimensional Weisfeiler-Leman
(WL) test for graphon-signals and we establish universal approximation results
for graphon-signals in £P distances using signal-weighted homomorphism densi-
ties. This significantly extends the prior work of Cai & Wang (2022), showing
that IWNs—a subset of their IGN-small—retain effectively the same expressivity
as the full IGN basis in the limit. In contrast to their approach, our blueprint of
IWNss also aligns better with the geometry of graphon space, for example facilitat-
ing comparability to MPNNs. We also highlight that, unlike other GNN architec-
tures such as MPNNs, IWNSs are discontinuous with respect to cut distance, which
causes their lack of convergence and is inherently tied to the definition of k-WL.
Yet, their transferability remains comparable to MPNNs.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as a powerful tool for machine learning on complex
graph-structured data, driving advances in fields like social network analysis (Fan et al., 2019),
weather prediction (Lam et al., 2023) or materials discovery (Merchant et al., 2023), among others.
Message Passing GNNs (MPNNs) (Gilmer et al., 2017; Kipf & Welling, 2017; Velickovi¢ et al.,
2018; Xu et al., 2019), in which node features are iteratively updated by aggregating messages from
neighboring nodes, are a popular architecture paradigm.

The question of size transferability—whether an MPNN generalizes to larger graphs than those
in the training set—has recently gained attention. Unlike extrapolation (Xu et al., 2021; Yehudai
et al., 2021; Jegelka, 2022), where generalization to arbitrary graph topologies is considered, size
transferability typically assumes structural similarities between the training and evaluation graphs,
such as them being sampled from the same random graph model (Keriven et al., 2021), topological
space (Levie et al., 2021), or graph limit model (Ruiz et al., 2020; 2023; 2021b; Maskey et al., 2024;
Le & Jegelka, 2024). For limits of dense graphs, graphons (Lovasz & Szegedy, 2006; Lovasz, 2012),
which extend graphs to node sets on the unit interval and have been used to study extremal graph
theory with analytic techniques, have also become a popular choice for studying transferability. In
contrast to sparse graph limits (Lovasz, 2012; Backhausz & Szegedy, 2022), they offer an established
framework with powerful tools, such as embedding the set of all graphs into a compact space and
having favorable spectral properties (Ruiz et al., 2021a). In such transferability analyses, a GNN is
extended to a function of graphons, and regularity properties of the GNN are then used to bound the
difference between outputs of the GNN applied to samples of different sizes from a graphon.

Existing works on transferability have been almost exclusively limited to MPNNs. However, their
expressive power has been thoroughly studied and is constrained by the 1-dimensional Weisfeiler-
Leman (1-WL) graph isomorphism test, also known as the color refinement algorithm (Xu et al.,
2019; Morris et al., 2019). Hence, standard MPNNs even fail at straightforward tasks such as
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counting simple patterns like cycles of a specific length. This motivates to extend generalization
analyses to more powerful architectures. Most prominent among these are higher-order extensions
of MPNNSs that are as powerful as the k-dimensional Weisfeiler-Leman (k-WL) test, k > 1, which
iteratively colors k-tuples of nodes (Morris et al., 2019). Invariant and Equivariant Graph Networks
(IGNS/EGNs) (Maron et al., 2018), on which we will mainly focus in this work, are another power-
ful choice, in which adjacency matrices and node signals are processed through higher-order tensor
operations that maintain permutation equivariance. IGNs and EGNs universally approximate any
permutation in-/equivariant graph function, and are at least as powerful as k-WL when its tensor
orders are restricted to k + 1 (Maron et al., 2019; Keriven & Peyré, 2019; Azizian & Lelarge, 2021).

The expressive power of a GNN can also be judged via its homomorphism expressivity, i.e., its
ability to count the number of homomorphisms from fixed graphs into the input graph. E.g., 1-WL
corresponds to counting homomorphisms w.r.t. trees, and its higher-order extensions are related to
counting homomorphisms w.r.t. graphs of bounded treewidth (Dvordk, 2010; Dell et al., 2018). In
the graphon case, similar results exist for homomorphism densities (Boker et al., 2023; Boker, 2023).

In this work, we present an extension of IGNs to graphons, and study their expressivity and con-
tinuity properties. The closest related work by Cai & Wang (2022) investigates the convergence
of IGNSs to a limit graphon using a partition norm, which is a vector of norms over all diagonals
of a graphon. They observe that convergence of IGNs applied to graphs sampled from a graphon
is not always achievable. As a remedy, they propose a reduced model class IGN-small, which al-
lows for convergence after estimating edge probabilities under certain regularity conditions. They
also demonstrate that IGN-small retains sufficient expressiveness to approximate spectral GNNs.
However, considering diagonals of graphons, which correspond to null sets in Lebesgue measure,
is somewhat misaligned with the larger body of work in graphon theory, significantly limiting its
applicability to their version of IGN limits. Furthermore, their expressivity analysis of IGN-small is
rather constrained, especially considering that IGNs are typically universal GNN architectures.

Contributions. We extend IGNs to graphon-signals (Levie, 2023), i.e., node-attributed graphons,
introducing Invariant Graphon Networks (IWNs). In contrast to Cai & Wang (2022), we take the
view of restricting linear equivariant layers to bounded operators, and, thus, our IWNs can be natu-
rally analyzed using £? and cut distances, enhancing comparability to the existing graphon literature.

Using only this reduced basis of IWNs, we show that IWNs up to order k£ + 1 are at least as powerful
as a natural extension of the k-WL test (Boker, 2023) to graphon-signals. We also establish universal
approximation results for graphon-signals (Levie, 2023). As IWNs are a subset of IGN-small, this
significantly extends the work of Cai & Wang (2022), resolving the open questions posed in their
conclusion: We show that the restriction to IGN-small comes at no cost in terms of expressivity, since
IGN-small maintains the same expressive power as its discrete counterpart IGN. As a tool for our
proofs, we use an extension of homomorphism densities to graphon-signals by signal weighting and
show that these signal-weighted homomorphism densities inherit important topological properties
from their equivalent in graphon space. We also highlight that IWNs are discontinuous w.r.t. the
cut distance and only continuous in the finer topologies induced by LP distances, which do not
accurately represent our intuitive notion of graph similarity (Levie, 2023). This discontinuity is not
unique to IWNs, but inherently tied to the way in which k-WL processes edge weights, and results
in a large class of higher-order GNNs exhibiting the absence of convergence under sampling simple
graphs as observed by Cai & Wang (2022). Yet, despite this discontinuity and the absence of a limit,
it is still possible to obtain transferability results for IWNs which are similar to MPNNs.

To the best of our knowledge, this work is the first to extend the framework of IGNs to graphons in
a way such that continuity, expressivity, and transferability can be studied and systematically com-
pared to MPNNSs, addressing the aforementioned shortcomings of Cai & Wang (2022). In summary,
we make the following contributions:

* We define signal-weighted homomorphism densities, link them to a natural extension of the
k-WL test to graphon-signals, and show how they capture graphon-signal topology.

* We introduce Invariant Graphon Networks (IWNs), restricting linear equivariant layers to
bounded operators. We show that (k + 1)-order IWNS are at least as powerful as k-WL for
graphon-signals, and obtain universal approximation, extending Cai & Wang (2022).

* We point out the cut distance discontinuity of IWNs, its fundamental connection to k-WL,
and demonstrate that IWNs are still transferable despite not converging.
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2 BACKGROUND

In this section, we provide background on graphon theory, homomorphism expressivity, and the k-
WL test for graphons, as well as on how to extend graphons to incorporate node signals. Contents
of § 2.1 and § 2.2 are mostly drawn from Lovasz (2012); Janson (2013); Zhao (2023), while in § 2.2
we also refer to Boker (2023). In § 2.3 we summarize key results of Levie (2023).

For n € N, write [n] := {1,...,n}. Unless stated otherwise, a graph always refers to a simple
graph, meaning an undirected graph G = (V, E) with a finite node set V(G) = V and edge
set B(G) = E C (Y). Define also v(G) = |V(G)|, e(G) = |E(G)|. We will also consider
multigraphs, for which the edges are a multiset. We consider graphs as a special case of multigraphs.
Write \* for the k-dimensional Lebesgue measure; A := AL, See also § A for a table of our most
important notation used throughout the work.

2.1 GENERAL BACKGROUND ON GRAPHON THEORY

Graphons. Informally, a graphon can be seen as a graph with a continuous node set [0, 1], and
the adjacency matrix being represented by a function on the unit square. Intuitively, graphons can
be obtained by taking the limit of adjacency matrices of dense graph sequences as the number
of nodes grows. Formally, we first define a kernel as a bounded symmetric measurable function
W :[0,1]* — R. Write W for the space of all kernels. A graphon is a kernel mapping to [0, 1]. We
define the cut norm of a kernel as

Wd\2
SxT

IW|g:= sup
S, 7C[0,1]

; )

where S, T are tacitly assumed measurable. Let S|o 1) be the set of measure preserving bijections
of [0,1], 1.e., ¢ : [0,1] — [0, 1] such that )\(apfl(Aﬂ) = A(A) for all measurable A C [0, l]l. Write

5[071Lf0r the set of all measure preserving functions and define W¥(z,y) := W(p(x), ¢(y)) for

© € S|o,1)- Since the specific ordering of the graphon values does not matter, we work with the cut
distance (see also Lovasz (2012, § 8.2)) between two graphons, defined as

oW, V) := inf [W—-V¥¢|g= min |[W?-V?|g, ()
#ES[0,1] ®:Y€So0,1)

where the infimum is only guaranteed to be attained in the last expression. Analogously, we can
define distances 6, on graphons based on £” norms. Note that 0g < §; < 6, where the first
inequality follows from moving |-| into the integral in Eq. 2. Among {d,},, the most commonly
used is &1, which corresponds to the edit distance on graphs. We identify weakly isomorphic
graphons of distance 0 to obtain the space W, of unlabeled graphons. The stricter concept of
(strong) isomorphism, namely that the minimum in the second term of Eq. 2 is attained and zero, is

less practical. The usefulness of 5 over any d,, lies in the fact that (W, dg) forms a compact space
(Lovasz, 2012, Theorem 9.23).

Discretization and sampling. Any labeled graph G can be identified with its induced step
graphon We := 370_1 > Ajil;«1, for a regular partition {I;}7_; of the unit interval, and
finite graphs are dense in the graphon space (Zhao, 2023, Theorem 4.2.8). Graphons can also be
seen as random graph models: Draw X ~ U(0,1)", and let W (X ) be a graph with edge weights
Wi = W(X;,X,). If e;; ~ Bernoulli(W;;) is further sampled, we obtain an unweighted graph
G(W, X). Write H,, (W) and G,,(IW) for the respective distributions. We have almost surely

og(H, (W), W) <6 (H, (W), W) — 0, n — 00 3)
(Zhao, 2023, Lemma 4.9.4). Also
o(G, (W), W) = 0, n — 0o %)

(Lovisz, 2012, Proposition 11.32), but this does not hold for d;: Take, e.g., W = 1/2, then
H(W,G,(W)) =1/2foralln € N.

Homomorphism densities. Let hom(F, G) denote the number of homomorphisms from a graph
F into a graph G. The corresponding homomorphism density is defined as ¢(F,G) :=
hom(F, G)/v(G)"*", i.., the proportion of homomorphisms in all maps V(F) — V(G). We
define the homomorphism density of a (multi)graph F' with V' (F') = [k] to a graphon W by
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HE,W) = / [T Wi z)d (). (5)
01" (i jyem(r)

This generalizes the discrete concept in the sense that t(F, G) = t(F, W¢). We also remark that
t(F,W) = P(E(Gr(W)) 2 E(F)), regarding the graphs as labeled. Notably, for a sequence
(Wy)n of graphons, og(W,,, W) — 0 if and only if ¢t(F,W,,) — t(F,W) for all simple graphs
F, and thus two graphons W,V are weakly isomorphic if and only if ¢(F, W) = t(F, V) for all
simple graphs F'. Hence, homomorphism densities can also be seen as a counterpart of moments of
a real random variable for W-random graphs, as they fix the distribution of G,, (W) similarly as the
moments would for a sufficiently well-behaved real random variable (Zhao, 2023).

2.2  k-WL AND HOMOMORPHISM EXPRESSIVITY

In the discrete setting, the I-dimensional Weisfeiler-Leman (1-WL) graph isomorphism test, also
known as color refinement algorithm, as well as its multidimensional extensions, are widely used to
judge the expressive power of a GNN model. Alternatively, the model’s homomorphism expressiv-
ity, i.e., its ability to count the number of homomorphisms from smaller graphs, called patterns, into
the input graph, can be considered. Via the pattern’s homomorphic images (Lovész, 2012, § 6.1),
this is also closely related to counting subgraphs of the input graph (Chen et al., 2020; Tahmasebi
et al., 2023; Jin et al., 2024). 1-WL expressivity corresponds precisely to distinguishing graphs for
which the values of hom(F, -) differ if F' are trees. More generally, k-WL can be precisely charac-
terized as being able to compute {hom(F, -)} r, with F' ranging over all simple graphs of treewidth
bounded by k£ (Dvoftdk, 2010; Dell et al., 2018). See also § B.3 for more information on treewidth
and the tree decomposition of a graph. A finer characterization for various MPNN architectural
choices was recently shown by Zhang et al. (2024).

For graphons, the color refinement algorithm can be generalized via distributions of iterated degree
measures (DIDMs) (Grebik & Rocha, 2022; Boker, 2023). Also, the notion of homomorphism
expressivity can be naturally extended, simply by considering ¢(F, -) instead of hom(F, -). We adopt
the definition of k-WL from Boker (2023), who recently generalized the k-WL test to graphons,
defining two graphons W, V" as k-WL indistinguishable if ¢(F, W) = t(F, V') for all multigraphs F’
of treewidth at most k.

2.3  EXTENSION TO GRAPHON-SIGNALS

Most common GNNs take a graph-signal (G, f) as inputs, i.e., a graph G with node set [n] :=
{1,...,n} and a signal f € R"**, with k being the number of features. Levie (2023) extends this
definition to graphons. They fix » > 0, consider signals in £2°(0, 1] := {f € £L>[0,1] | || fl|., < 7},

and set
/ fdX
S

with S measurable. They then let WL, := W, x ££°0, 1] and define the cut norm

W Hllo =Wz + 115 @)
Define the distances o and J,, step graphon-signals, and sampling from graphon-signals anal-
ogously to the standard case. E.g., write G, (W, f) for the distribution of (G(W, X), f(X)),
X ~ U(0,1)". Also, identify weakly isomorphic graphon-signals of cut distance zero to obtain

the space WL, of unlabeled graphon-signals. Central to their contribution, Levie (2023) proves
compactness of the graphon-signal space and provides a bound on its covering number. This is then
further used to derive a sampling lemma: Namely, for (W, f) € WL, and n € N, one has

E [0 (W, £), G (W, 1)))] < \/1%

3 SIGNAL-WEIGHTED HOMOMORPHISM DENSITIES

; (6)

[fllg = sup
SC[0.1]

®)

It is important to note that Boker et al. (2023); Boker (2023) focus exclusively on graphons and do
not consider graphon-signals, and Levie (2023) does not introduce a notion of homomorphism den-
sities for graphon-signals either. However, since most GNN architectures in the literature operate on
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node-featured graphs, we need a concept of homomorphism densities that reflects the properties of
the graphon-signal space well. This could then, e.g., be applied to characterize the homomorphism
expressivity of GNN models on graphon-signals, similar to the approach for graphons in § 2.2. As
in Lovasz (2012, § 5.2) for finite graphs, we introduce weighting by signals.

Definition 3.1 (Signal-weighted homomorphism density). Let F' be a multigraph with V (F') = [k],
d € Nk, and let (W, f) € WL,.. We set

HF,d, (W, f)) ;:/ H f ()% H Wz, 2;) | dN(z), 9)
015 \ ;v (F) {iYeB(F)

calling the functions t(F, d, -) signal-weighted homomorphism densities.

Note that setting d = 0 € NJ recovers the graphon homomorphism densities ¢(F, 0, (W, f)) =
t(F,W). d # 0 will allow us to consider moments of the signal, which could alternatively be
seen as considering a multiset of nodes, similarly to homomorphism densities of multigraphs. This
enables us to capture the distribution of the signal, coupled with the graph structure, which will
be crucial for Eq. 9 to separate non-weakly isomorphic graphon-signals. In contrast to common
approaches in the GNN literature, only considering d = 1 does not suffice in our case, as this only
distinguishes graphs under twin reduction. Restricting the exponents to be the same across all nodes
as in Nguyen & Maehara (2020) results in {¢(F,d, -)}r q not being closed under multiplication,
which would later pose challenges when proving universality.

As a first step, we derive a counting lemma similar to the standard graphon case (Lovasz, 2012,
Lemma 10.23), which shows that signal-weighted homomorphism densities from simple graphs into
a graphon-signal are Lipschitz continuous with respect to cut distance.

Lemma 3.2 (Counting lemma for graphon-signals). Let (W, f),(V,g) € WL, and F be a simple
graph, d € Ng(F). Then, writing D := ZieV(F) d;,

[H(F,d, (W, £)) ~ H(F,d, (V,g))| < 277 (20 e(F) [W = V][5 + DIIf ~glln ). (10)

We prove the counting lemma in Appendix § C.1. As ¢(F,d,-) is clearly invariant with respect
to measure preserving functions acting on the graphon-signal, the bound of Eq. 10 can be easily
extended to d. The proof of Lemma 3.2 is straightforward, with the only detail requiring a little
extra consideration being that, since the signals can take negative values, applying the same method
as in the standard graphon case results in a bound using the alternative cut norm ||-||5 2 (Janson,
2013, Eq. (4.3), (4.4)), which is norm-equivalent to ||-||g. In a similar but even simpler way, a
statement like Lemma 3.2 can also be shown for all multigraphs F using ||-||, instead.

However, the main justification for Definition 3.1 is Theorem 3.3 (in the style of Theorem 8.10
from Janson (2013)), as well as the following Corollary 3.4, demonstrating how signal-weighted
homomorphism densities capture weak isomorphism and the topological structure of the graphon-
signal space in a similar way as do homomorphism densities for graphons:

Theorem 3.3 (Characterizations of weak isomorphism for graphon-signals). Fix r > 1 and let
(W, 1), (V,g) € WL, Then, the following statements are equivalent:

(1) 6,((W, ), (V,g)) = 0 for any p € [1,00);

(2) 6a((W. f),(V,9)) = 0;

(3) t(F,d,(W, f)) = t(F,d, (V,g)) for all multigraphs F, d € N.";
4) t(F,d, (W, f)) = t(F,d, (V,g)) for all simple graphs F, d € N,
(5) Hp(W, f) 2 Hy(V, g) for all k € N;

(6) Cu(W, f) 2 Gi(V, g) forall k € N.

At first, the equivalence (1) < (2) in Theorem 3.3, which we show by extending the argument of
Lovasz (2012, Theorem 8.13), reveals that any 9,, distance (for p < oco) could be alternatively used to

define weak isomorphism of two graphon-signals. Thus, any J,, can also be seen as a metric on WZL,..
The other equivalences show that weak isomorphism of two graphon-signals can be alternatively
characterized by them having the same signal-weighted homomorphism densities, and the same
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random graph distributions. Specifically, {¢t(F,d,-)}rq fixes the distribution of (W, f)-random
graphs similarly as do homomorphism densities for 1¥-random graphs or moments for real-valued
random variables. Note that statements (3) and (5) are naturally related to d;, while (4) and (6) are
to 6g. See § C.2 for a full proof of Theorem 3.3. We also remark that the condition r > 1 stems
from the fact that we use the graphon-signal sampling lemma (Levie, 2023, Theorem 3.7).

The following corollary shows that signal-weighted homomorphism densities of simple graphs char-
acterize cut distance convergence (see § C.3 for the proof):

Corollary 3.4 (Convergence in graphon-signal space). For (W,,, fn)n, (W, f) € WL, andr > 1,
00 (W f2),(W. ) =0 & H(F.d, (W, f,)) = t(F.d, (W, f)) VF.de N (11

as n — oo, with F' ranging over all simple graphs.

Finally, we show that signal-weighted homomorphism densities also make sense on the granularity
level of the k-WL hierarchy, in the way that their indistinguishability is equivalent to the equality of
a natural generalization of DIDMs defined in Boker (2023) to graphon-signals.

Theorem 3.5 (k-WL for graphon-signals, informal). Two graphon-signals (W, f) and (V, g) are
k-WL indistinguishable if and only if t(F,d, (W, f)) = t(F,d,(V,q)) for all multigraphs F of
treewidth < k, d € NS(F).

Due to their technical nature, all details are deferred to § C.4. We note that while considering just
simple graphs does not make a difference for weak isomorphism (see Theorem 3.3), this is not the
case for k-WL, where considering multigraphs is strictly more restrictive (Boker, 2023, § 1.2).

4 INVARIANT GRAPHON NETWORKS

In this section, we introduce IWNs. The central building blocks of IWNs will be linear equivariant
layers, which we generalize from the original definition of Maron et al. (2018) to arbitrary measure
spaces and [0, 1] specifically in § 4.1, and derive their dimension as well as a basis. In § 4.2, we
define (multilayer) IWNs and draw connections to Cai & Wang (2022).

4.1 LINEAR EQUIVARIANT LAYERS

We start with generalizing the building blocks of IGNs—namely, the linear equivariant layers. For
IGNs, these are linear functions L : R™ — R™, such that L is equivariant with respect to all
permutations acting on the n coordinates. We now extend this notion from the set [n] to arbitrary
measure spaces. The suitable generalization of permutations will be measure preserving maps:

Definition 4.1 (Linear equivariant layer). Let (X, A, p) be a measure space, simply denoted by X,
and let Sx be the set of measure-preserving functions p : X — X. Let k,{ € No. Write X* for
(XF, ARk 1K) and note that £2 (X)®* = £2(X*). Define the linear equivariant layers

LEy ., = {L € B(L*(X*),£2(X")) |V € Sx : L(U¥) = L(U)? a.e.} (12)

as the space of all bounded linear operators that are equivariant with respect to all measure pre-
serving functions on X, i.e., all relabelings of X. Here, U®(x1,...,x) = U(p(x1),...,0(x)),
and B(-,-) denotes bounded linear operators.

Note that if we consider X' := [n] with a uniform probability measure (or counting measure), we
obtain £2([n]) = R", and LEE;i , can be identified with the space of linear permutation equivariant

functions R*" — R™, as measure preserving functions [n] — [n] are the permutations S,,. This
yields precisely the linear equivariant layers that are building blocks of IGNs, which were studied by

Maron et al. (2018). One of their main results is that dim LEL”L , = bell(k+¢), with bell(m) denot-
ing the number of partitions I',,, of [m], which does nor depend on n. They also describe a canonical
basis in which every basis element L(J‘) € LEE:i , corresponds to a partition v € 'y, with ba-
sis elements consisting of simple operations such as extracting diagonals, summing/averaging over
axes, and replication.

In our case of graphons, we are interested in LEj_,, := LEEQ]Z as building blocks of IWNs, where
[0, 1] is equipped with its Borel o-algebra and Lebesgue measure. The immediate question is what
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this space looks like in comparison to LEL"LE, i.e., what its dimension is and if there exists a canon-

ical basis we can use to parameterize IWNs later on. It turns out that this space can be seen as just

implementing a subset of the possibilities in the discrete setting, which is essentially a consequence

of [0, 1] being atomless.

Theorem 4.2. Let k, ¢ € Ny. Then, LE_,; is a finite-dimensional vector space of dimension
min{k,(}

K\ (¢
dim LE;_,, = Z s!<s> <s> < bell(k + ¢). (13)

s=0

Central to the argument is the observation that we can consider the action of any L € LEg_,, on
step functions, and apply the characterization from Maron et al. (2018) to a sequence of nested
subspaces, which fixes the operator on the entire space £2[0, 1]*. See § D.1 for the full proof.

A canonical basis of LE;_,¢. The proof of Theorem 4.2 also provides insight into constructing a
canonical basis of LE_,, which is indexed by the following subset of the partitions I'y,; of [k +]:

Bre = {7 €This ] VA€ AN <1, JAN (k+ ) <1}, (14)
For a partition v € fk,t’, suppose that « contains s sets of size 2 {i1,j1},...,{is,Js} with

i1y...y10s € [k], J1,..-,Js € k+ [¢], and let A = (i1,...,45), B = (j1,...,Js). Then, we
can write the corresponding basis element L., € LE;_,, as

L’Y(U) = [0, 1]€ Sy — _ U(iL‘A,iL‘[k]\A) d)\k_s(il:{k]\lo
0,1]k—s

(15)

TA=YB
In comparison to the basis of Maron et al. (2018) (see also § B.1), this corresponds precisely to the
basis elements for which no diagonals of the input are selected, and the output is always replicated
on the entire space. We also note that the choice p = 2 in Definition 4.1 is somewhat arbitrary, and
L., can indeed be seen as an operator £ — LP for any p € [1, co], with || L ||,—p = 1 (see § D.2).

Asymptotics of the dimensions. The dimension of LE,_, is asymptotically smaller compared to
its discrete counterpart. In the case when one of the variables k, ¢ grows more slowly, the difference
is tremendous. Assuming k& — oo but £ = O(1), we obtain

dimLE;_,, = dimLE,,;, = O(k"), (16)
while dim LEE;‘L , = bell(k + £) grows superexponentially. In the worst case k ~ £, we have
dimLEg_,; > k! > bell(k), 17)

however, the difference is still quadratic in the sense that dim LEL”L . ~ k% but dim LEg 5, ~ kF,
up to exponential terms. See also § F for the first values for the dimensions and a brief discussion.

4.2 DEFINITION OF INVARIANT GRAPHON NETWORKS

Using LE_,, as building blocks, we extend the definitions of IGNs from Maron et al. (2018) to
graphons. This also corresponds to the definition given by Cai & Wang (2022), with the restriction
that linear equivariant layers are limited to LE;_,,.

Definition 4.3 (In- and equivariant graphon networks). Let o : R — R be Lipschitz continuous and
non-polynomial. Let S € N, and for each s € {0,...,S}, let ks € No, hy € N. Set (ho, ko) :=
(2,2). An Equivariant Graphon Network (EWN) is a function

N WL 2 (W, f) = (T 0 go-000TW) (W, f), (18)

where for each s € [S],
T (£2(0, 1) 5 (£2(0, 1), U — LOU) + b, (19)
with L) € (LEx, ,5,)" "7, b € R, and LOU); := Y0 LP(U)) for i € [hy].
Here, the addition of the bias terms b'*) and application of o are understood elementwise. (W, f)is

identified with [(x,y) — (W (z,y), f(z))] € £2([0,1]* R?) = (£20, 1]2)2 in the first layer. An
Invariant Graphon Network (IWN) is an EWN with (hs, ks) = (1,0), i.e., mapping to scalars.

hs—l
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We call max¢(g) ks the order of an EWN A from Eq. 18, and k, the orders of the individual layers.

We write ZWN, for the set of all IWNs with nonlinearity o, and ZVWN, Zf for the restriction of IWNs
to order up to k € N.

Note that any IWN can be seen as a function N : WL, — R, as it is invariant with respect to all
pes [0,1] by the definition of LEj_,,. It should also be remarked that in contrast to Maron et al.
(2018); Cai & Wang (2022), we only consider real-valued (i.e., constant) bias terms, since U¥ = U
for all ¢ € S|g,1) only holds if U € £2[0,1])* is constant almost everywhere, i.e., only constant
functions are invariant with respect to all measure preserving maps (see Lemma D.1).

We also immediately observe that IWNs yield a parametrization that is closely related to IGN-small
proposed by Cai & Wang (2022), a subset of IGNs with more favorable convergence properties
under regularity assumptions on the graphon, see Cai & Wang (2022, Theorem 4). In their work,
they define IGN-small as continuous IGNs (i.e., defined on graphons with signals) for which grid-
sampling commutes with application of the discrete/continuous version of the IGN. For more details
on IGN-small, also refer to § B.2.

Proposition 4.4. Any IWN of the form Eq. 18 is an instance of IGN-small (Cai & Wang, 2022).

The proof of Proposition 4.4 is an application of invariance under discretization (Lemma D.2) and
representation stability of the basis elements. While the condition of IGN-small considers the entire
multilayer neural network, we impose our boundedness condition on the individual linear equivariant
layers. Therefore, a converse statement, i.e., that individual linear equivariant layers in IGN-small
have to be in LE;_,;, does not hold, as there is a lot of ambiguity: For example, a graphon W could
be embedded into a higher-dimension diagonal, and in a second step, the integral over this diagonal
could be used as output of the continuous IGN. While in this case the entire network as a whole
does fulfill the consistency requirement, the individual layers are not bounded linear operators.
Even though TWNs use just a subset of the original IGN basis (see § B.1, § F), we will show in the
following section that this suffices to prove strong expressivity results. By Proposition 4.4, these
results will also hold for IGN-small.

5 PROPERTIES OF INVARIANT GRAPHON NETWORKS

We start this section by discussing the expressivity of IWNs in § 5.1, relating them to k-WL. In
§ 5.2, we then investigate the continuity and transferability of IWNss.

5.1 EXPRESSIVITY OF INVARIANT GRAPHON NETWORKS

We prove expressivity results for IWNs, namely that IWNs up to order k + 1 are at least as powerful
as k-WL for graphons, and that they are universal approximators in the d,, distances on any com-
pact subset of graphon-signals. This will be done by assessing the signal-weighted homomorphism
expressivity of IWNs defined in § 3. Clearly, IWNs are continuous in all J,, distances:

Lemma 5.1. Let N : WL, — R be an IWN as defined in Eq. 18. Then, N is Lipschitz continuous
w.rt. 6, foreachp € [1,00].

See § E.1 for the proof. As a first step towards analyzing expressivity, we show that IWNs can
approximate signal-weighted homomorphism densities with respect to graphs of size up to their
order. For this, we take inspiration from Keriven & Peyré (2019), modeling the product in the
homomorphism densities explicitly while tracking which linear equivariant layers are being used by
the IWN. The final result then follows by using a tree decomposition of the graph:

Theorem 5.2 (Approximation of signal-weighted homomorphism densities). Letr >0, o : R — R

Lipschitz continuous and non-polynomial, and F' be a multigraph of treewidth k € N, d € NS(F).

Fix e > 0. Then there exists an INN N € IVV./\/ZfJr1 of order k + 1 such that for all (W, f) € WL,
t(F.d, (W, f)) =NW, f)| < e (20)

The proof in § E.2 proceeds by induction on the tree decomposition of a graph. As we traverse
the tree decomposition, we iteratively introduce IWN layers to incorporate the terms corresponding
to newly encountered nodes, while marginalizing over the nodes that have already been processed.
Note that as an immediate consequence we can see that IWNSs are at least k-WL-expressive:
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Corollary 5.3 (k-WL expressivity). ZWN ; L is at least as expressive as the k-WL test (Theo-
rem 3.5) at distinguishing graphon-signals.

Refer to § E.3 for a proof. As we know from Theorem 3.3 that two graphon-signals are weakly
isomorphic if and only if {¢t(F, d, -) } .4 agree for all simple graphs or multigraphs F', Theorem 5.2
gives us an immediate way to prove universal approximation when not restricting the tensor order.

Theorem 5.4 (§,-Universality of IWNs). Letr > 1, p € [1,00), ¢ : R — R Lipschitz continuous

and non-polynomial. For any compact K C (WL, 6,), IWN,, is dense in the continuous functions
C(K,R) wrt. || .

The proof in § E.4 is a straightforward application of the Stone-Weierstrass theorem: The span of
the signal-weighted homomorphism densities forms a subalgebra that, by Theorem 3.3, is point sep-
arating. This result also crucially implies that IWNs are capable of distinguishing any two graphon-
signals that are not weakly isomorphic. We also want to mention that while IWNs are continuous
with respect to d, our proof of Theorem 3.3 does not extend to this case as ||| is not a smooth
norm on [0, 1]? (see § C.2 for details).

5.2 CuT DISTANCE AND TRANSFERABILITY OF INVARIANT GRAPHON NETWORKS

In this section, we investigate the relation of IWNs to the cut distance and their transferability. As
already mentioned, all nontrivial IWNs are discontinuous in the cut distance:

Proposition 5.5. Let o : [0,1] — R. Then, the assignment Wy > W — o(W) € W, where g is
applied pointwise, is continuous w.r.t. ||-||g if and only if g is linear.

See § E.5 for a proof of Proposition 5.5. This discontinuity cannot be observed on finite graphs
of any bounded size (as all norms are equivalent there), but, e.g., it appears when sampling finite
simple graphs G,, (W, f) from a graphon-signal. In this case, by the sampling lemma (Eq. 8), for any
cut distance continuous function A" we would get E [N (G, (W, f)) = N (W, f)| — 0 as n — oo.
However, IWNs do not display this convergence. This is essentially similar to the result of Cai &
Wang (2022) on non-convergence under the “edge probability discrete model”.

Crucially, we note that this effect is not specific to IWNs, but inherently linked to k-WL. The k-WL
test for graphons (Boker, 2023) and graphon-signals (Theorem 3.5) considers multigraph homomor-
phism densities, which are discontinuous in the cut distance. As such, any k-WL expressive function
defined on graphon-signals would exhibit this discontinuity. The consideration of multigraphs arises
from a fundamental difference in how £-WL and 1-WL handle edges. For 1-WL, weighted edges
are treated simply as weights, i.e., function values of a graphon only act through its shift operator
and, thus, carry precisely the meaning of edge probabilities. In contrast, the k-WL test as well as
IWNs capture the full distribution of these edge weights.

Often, one may analyze the convergence of a graph ML model N to an underlying limit to study the
question of its transferability, i.e., it N (G, fn) & N (G, fm) holds when (G, £), (G, fin) ~
Gn(W, ), G (W, f) as n,m € N grows. For MPNNs that converge under their respective graph
limits, transferability is usually shown simply by invoking the triangle inequality (see, e.g., Ruiz
et al. (2023); Le & Jegelka (2024)), which is not possible for IWNs due to Proposition 5.5. Even
worse, it is not even guaranteed that random graphs sampled from a graphon-signal become close

in the 6, norms as they grow in size: For example, take G%l), ng) to be independent Erd6s—Rényi
graphs of size n € N. By combining Lavrov (2023) and Lovasz (2012, Theorem 9.30), we obtain
lim inf [51(05}>, Gﬁ?)] > L 1)
(note that the expectation in Eq. 21 would tend to zero in dg). As IWNs are universal on compact
spaces w.r.t. 47 by Theorem 5.4, one might expect there to be an adversarial IWN which does not
converge to the same value for all such random graphs. However, it turns out that we can “fix” the
discontinuity of IWNs and show their transferability with similar worst-case rates as MPNNSs.

Theorem 5.6 (Transferability of IWNs). Let ¢ > O and r > 1. Let p : R — R be continuous.
Let N' € ITWN,. Then, there exists a constant C. nr > 0 such that for any (W, f) € WL, and
(Gnv .fn)a (Gm’ .fm) ~ Gn(Wa f)ma(VVa f)’

E N (G ) = NG, £n)| < CE,N(

1 1
. 22
Vlogn * \/logm> e (22)
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See § E.6 for a proof. The proof relies on the fact that any IWN can be approximated arbitrarily
well by a linear combination of signal-weighted homomorphism densities. In any such ¢(F,d, ),
the multigraph F' can be replaced by its corresponding simple graph F$'™P! resulting in a function
of (W, f) € WL, which is cut distance continuous (see Lemma 3.2), while still yielding the same
function values on 0-1-valued graphons, which includes all graphs G, (W, f), n € N. Applying
the standard sampling lemma Eq. 8 then results in the transferability. While the asymptotics of
Theorem 5.6 are weak, they agree with the worst case for MPNNs (Levie, 2023), which is expected
as we do not impose any additional assumptions on the graphon-signal or model.

We also validate our theoretical findings with a proof-of-concept experiment on the graphons from
Figure 1. For continuity/convergence, we plot the absolute errors of the model outputs for the sam-
pled simple graphs in comparison to their graphon limits in Figure 2. Due to the dg-continuity of
MPNNS, their errors decrease as the graph size grows. For the IWN, however, this does not hold.
Yet, the errors for the IWN stabilize with increasing sizes, suggesting that the outputs converge (just
not to their graphon limit). For transferability, we further plot prediction interval widths of the out-
put distributions on simple graphs for each of the sizes in Figure 3. Here, the widths contract for
both models and there are only minor differences visible between the MPNN and the IWN. This
validates Theorem 5.6 and suggests that IWNs have similar transferability properties as MPNNSs,
and J,-continuity suffices to achieve transferability. For more details, see § G.

6 CONCLUSION

In this work, we introduce Invariant Graphon Networks (IWN5s) as an extension of Invariant Graph
Networks (IGNs) to the graphon-signal space (Levie, 2023). By framing IWNs through bounded
linear equivariant layers, we conduct a systematic analysis of expressivity, continuity, and transfer-
ability properties through £? and cut distances on graphons. Significantly extending the results of
Cai & Wang (2022), we demonstrate that IWNSs, as a subset of their class IGN-small, retain the same
expressive power as their discrete counterparts: IWNs up to tensor order k + 1 are at least as expres-
sive as the k-WL test for graphon-signals, and are universal approximators on graphon-signals with
respect to the ¢, distance, p € [1,00). We also introduce signal-weighted homomorphism densities,
an extension of the concept of homomorphism densities to graphon-signals, as a key tool.

‘We highlight that unlike MPNNs, IWNSs are discontinuous with respect to cut distance, and therefore,
standard size transferability arguments like Ruiz et al. (2023); Levie (2023); Le & Jegelka (2024) do
not generalize. This discontinuity is inherently tied to the way edges are handled by k-WL and, as
such, all k-WL expressive models on graphons will come with the same limitations. We demonstrate
that, nevertheless, cut distance discontinuity can be overcome for transferability purposes, and IWNs
are provably as transferable as MPNNSs in the worst case under the graphon model.

An intriguing avenue for future research could be to investigate parametrizations based on the simple
k-WL test (Boker, 2023) which are continuous in the cut distance, and compare expressivity and
generalization to IWNs and standard higher-order GNNs (Morris et al., 2019). Another direction
could be developing more quantitative bounds of Theorem 5.6 under additional assumptions on the
underlying graphon, or analyzing expressive spectral methods (Lim et al., 2022; 2024; Huang et al.,
2023) beyond spectral GNNS.

10
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REPRODUCIBILITY STATEMENT

We provide rigorous proofs of all our statements in § B, § C, § D, and § E of the appendix,
along with detailed explanations and the underlying assumptions. A comprehensive overview
of our notation is listed in § A. Details for the toy experiments are provided in § G, and an
anonymous version of the code is available under https://anonymous.4open.science/
r/Higher-Order-WNNs-950F.
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A NOTATION

Table 1: We list the most important symbols used in this work.

Natural, non-negative integer, rational, real numbers.

Set{1,...,n} forn € N.

Indicator function of a set A.

Node set of a graph; number of nodes of a graph G.

Edge (multi)set of a (multi)graph; number of edges of a (multi)graph G.
“Big-O” notation for asymptotic growth of a function.

Closure of a subset A of a topological space X'.

Borel o-algebra of a topological space X'.

Generated o-algebra.

Probability measure.

Expected value.

1-dimensional Lebesgue measure; k-dimensional Lebesgue measure.
Space of p-integrable functions on a measure space X', for p € [1, o0].
Space of p-integrable functions, with norm bounded by 7.

Cut norm.

L? norm of functions on a measure space, for p € [1, o0].

LP norm, with emphasis on the underlying space X’

Space of bounded linear operators from normed vector space V; to V5.
Operator norm of L € B(LP(X), L1()).

Space of continuous functions from compact topological space K into
R, with uniform norm ||-|| .

Space of kernels.

Space of graphons.

Space of graphon-signals Wy x £2°[0, 1].

Space of unlabeled graphons.

Space of unlabeled graphon-signals.
Measure preserving bijections of [0, 1].
Measure preserving bijections between co-null subsets of [0, 1].

Measure preserving functions X — X, for a measure space X.

Cut distance.

LP distance for graphons/kernels.

Step graphon of a graph G.

Distribution of weighted graphs/graph-signals of size k sampled from a
graphon W /graphon-signal (W, f).

Distribution of unweighted graphs/graph-signals of size k sampled from
a graphon W /graphon-signal (W, f).

Uniform distribution on the interval [0, 1].

Number of homomorphisms from graph F' to G.

Homomorphism density from a (multi)graph F' into graphon W.
Signal-weighted homomorphism density from a (multi)graph F, d €
NS(F), into graphon-signal (W, f).

Signal-weighted homomorphism density from a partially labeled
(multi)graph F', d € NS(F), A C V(F), into graphon-signal (W, f).
Linear equivariant layers on measure space X .

Linear equivariant layers on [0, 1].

Regular step functions in £2[0, 1]* at resolution n.

Set of partitions of [m], m € Np.

T |, i-e., number of partitions of [m].

Set of partitions of [k + (] that index a basis of LE,_,.

Set of IWNs with nonlinearity g.

Set of IWNs with nonlinearity g up to order k.
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B EXTENDED BACKGROUND

B.1 CHARACTERIZATION OF THE IGN BASIS

In this section, we restate the characterization of the IGN basis introduced by Cai & Wang (2022).

As described in the original IGN paper by Maron et al. (2018), dim LEEﬂ> , = bell(k +¢),i.e., the
number of partitions I'y.¢ of the set [k + £]. In the basis of Cai & Wang (2022), each basis element

L,(yn) associated with a partition v € 'y, ¢ can be characterized as a sequence of basic operations.

First, divide  into 3 subsets 71 := {A € v|A C [k]}, v2 = {A € v|A C k+ [{]}, 73 =
v\ (71 U72). Here, the numbers 1,. ..,k are associated with the input axes and k + 1,...,k + ¢
with the output axes respectively.

@ (Selection: U — U,). In a first step, we specify which part of the input tensor U € R™"
is under consideration. Take 7’[1«] ={AN[k]| A € v,AN[k] # 0} and construct a new

Il + el =1 0 |-tensor U., by selecting the diagonal of the k-tensor U corresponding
with the partition 7| ]

@ (Reduction: U, = U, rea). We average U,, over the axes y; C 7| resulting in a tensor

(k]

U, rea Of order |2, indexed by o | k-

(3 (Alignment: Uy rea = Uy atign). We align U, rea With a |72|-tensor U, align indexed by
'yg|k+m, sending for A € ~y, the axis A N [k] to AN [4].

@ (Replication: Usalign — Uy rep). Replicate the |y;|-tensor U, align indexed by 7o kt10)

along the axes in 3. Note that if v, U ~y3 contains non-singleton sets, the output

’k-&-[é]
tensor is supported on some diagonal.

The basis element L(Wn) : R"" — R can now be described by the assignment L(V") (U) := Uy rep-

B.2 IGN-sMALL (CAI & WANG, 2022)

Cai & Wang (2022) study the convergence of discrete IGNs applied to graphs sampled from a
graphon to a continuous version of the IGN defined on graphons. For this, they use the full IGN
basis and a partition norm, which is for W € £2[0, 1]* a bell(k)-dimensional vector consisting of
L2 norms of W on all possible diagonals. While they show that convergence of a discrete IGN on
weighted graphs sampled from a graphon to its continuous counterpart holds, they also demonstrate
that this is not the case for unweighted graphs with {0, 1}-valued adjacency matrix (which also
follows from our observation on continuity, see Lemma 5.1).

As a remedy, Cai & Wang (2022) constrain the IGN space to /GN-small, which consists of IGNs
for which applying the discrete version to a grid-sampled step graphon yields the same output as
applying the continuous version and grid-sampling afterwards.

In the following, we will formalize this. For n € N, let [ == [1=1 1) for j € [n — 1] and

I = [2=1,1] be a partition of [0, 1] into regular intervals. Let A, := o ({If"), e ,I,(Ln)}>
denote the o-algebra generated by this partition and let

]_—]in) = {W € £2[0,1]% | W is A®*-measurable} (23)

be the regular k-dimensional step functions on [0, 1], k € Ny.

Definition B.1 (IGN-small). Let N be defined as in Definition 4.3, with the only difference that
LEg_¢ is replaced by the full IGN basis (see § B.1), where averaging steps should be understood
as integration. Cai & Wang (2022) call such N a continuous IGN. For any basis element L.,

v € T4, denote its discrete version at resolution n € N by LQ") and the network obtained by
discretizing all equivariant linear layers by N'™). Let

S0 ROy 5P 7 s (U(ifn, j/n))? @

4,5=1

16



Under review as a conference paper at ICLR 2025

be the grid-sampling operator. Then, N is contained in IGN-small if
(S oM)W, f) = (N o S)W. f) (25)
forany (W, f) € WL, such that W € .7-"2(n), fe .7:1(”).

In this case, for a graphon-signal (W, f) € WL, the input to such an IGN is (x1,2z2) —
Wy, 22), H{zy = 22} f(21)).

Cai & Wang (2022) demonstrate that the convergence of IGN-small in a model, where a {0,1}-
valued adjacency matrix is sampled from the graphon, is achievable under certain restrictive as-
sumptions on the graphon and signal, such as Lipschitz continuity, along with the prior estimation
of an edge probability (refer to Theorem 4). Regarding the expressivity of IGN-small, they establish
that this model class can approximate spectral GNNs with arbitrary precision (see Theorem 5).

B.3 TREE DECOMPOSITION AND TREEWIDTH

In this section, we will recall the tree decomposition of a graph and the related notion of treewidth,
which essentially captures how “far” a graph is from being a tree. See for example Diestel (2017, §
12.3) for a more in-depth discussion of this fundamental graph theoretic concept. We use the specific
notation of Boker (2023).

Definition B.2 (Tree Decomposition of a Graph). Let G be a graph. A tree decomposition of G is
a pair (T, 3), where T is a tree and (3 : V(T) — 2V (%) such that

(1) foreveryv € V(QG), the set {t|v € (t)} is nonempty and connected in T,
(2) forevery e € E(G), there is anode t € V(T') such that e C [(t).

For t € V(T), the sets 5(t) C V(G) are commonly referred to as bags of the tree decomposition.
Note that every graph G has a trivial tree decomposition, given by a tree consisting of one node,
with the bag being the entire node set V' (G). However, we are generally interested in finding tree
decompositions with smaller bags. This leads us to the concept of treewidth:

Definition B.3 (Treewidth of a Graph). Let G be a graph. For any tree decomposition (T, ) of G,
define its width as
max{|B(t)| |t € V(T)} — 1. (26)

The treewidth of a graph G is then the minimum width of all tree decompositions of G.
Note that, the edge graph of a tree G can be seen as a tree decomposition of G, with each edge being

a bag. Hence, the treewidth of a tree is 2. It can also be shown that, e.g., the treewidth of a circle of
size at least 3 is 2.

As remarked by Boker (2023), while treewidth is commonly defined just for (simple) graphs, we
extend the definition to multigraphs by simply ignoring the edge multiplicities, i.e., considering the
set of edges instead of the multiset.
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C SIGNAL-WEIGHTED HOMOMORPHISM DENSITIES

In this appendix, we collect proofs of Lemma 3.2,Theorem 3.3, and Corollary 3.4, and provide fur-
ther background and explanations regarding our extension of homomorphism densities to graphon-
signal space from § 3.

C.1 PROOF OF LEMMA 3.2

Lemma 3.2 (Counting lemma for graphon-signals). Let (W, f),(V,g) € WL, and F be a simple
graph, d € NS(F). Then, writing D := ZieV(F) d;,

[HF,d, (W, ) = t(F,d, (V,g))| < 2P (20 e(F)IW = Vg +DIf = glg).  (10)

Proof. We split the L.h.s. into two parts, bounding the difference of the graphons and the signals
seperately:

/ I fG)* I W) - [ V)| df@)| @8
0.1% \ sev(F) {i,5}E€E(F) {i,5}EE(F)

@
+ /[0,1]k ]._.[ V(xi, z;) H f(z H g(xz)% | dNF(z)]. (29)

{i.j}eE(F) i€V (F) i€V (F)

@

For term (D, we set D := Y, d; and observe that for all z € [0, 1]*

TLD H f(xi)di € [_17 1]’ (30)

i€V (F)

and hence similarly to the standard proof of the classical counting lemma (see, e.g., Zhao (2023))
we can bound
D < rPe(P) W = Vg, < 4rPe(F) [[W = V]|g. (31)

In comparison to the standard proof, the usage of ||-||5 . an alternative definition of the cut norm,

stems from the fact that function values appearing in the integral in (1) (renormalizing by ) are
not necessarily in [0, 1], but [~1,1]. See also Equations (4.3), (4.4) in Janson (2013). For (2), we
bound the £! difference of the terms involving f and g:

/[0 " H V(zs, ;) H f(z H g(z) d' d)\k(w) (32)

{i,7}€E(F) i€V (F) i€V (F)
< / II viz)|| I] f@)® - Hg )% | dAF () (33)
0.10% | (s jyeB(F) i€V (F) eV (F
< > [ |ren® gt ) Lot | ax:(a) (34)
i€V (F) (0,1]* j<i J>i
< 3 T / |F () — g(z)" | dA(z) (35)
i€V (F) [0,1]

< S rZasdidg Tl f —glly = DrPTH|f —gll, < 2DrP7H I f —glln,  (36)
1€V (F)
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where () uses || f||oo, |9]loc < 7 and hence the Lipschitz constant of 2 ~— 2% is bounded by the
maximum of its derivative d;7%~1, and the last inequality uses ||-||; < 2||-||5 in one dimension.

Combining the two bounds for (D from Eq. 31 and 2 from Eq. 36, we obtain
t(F.d, (W, [)) —t(F.d,(V,9)| < 4rPe(F)|W = V|g+2DrP7 |f —gllg, 3D
which yields the claim. O

C.2 PROOF OF THEOREM 3.3

Theorem 3.3 (Characterizations of weak isomorphism for graphon-signals). Fix r > 1 and let
(W, £),(V,g) € WL,.. Then, the following statements are equivalent:

(1) 6,(W, f),(V.g)) =0 forany p € [1,0);

(2) oo((W, f),(V,9)) =0;

(3) t(F,d, (W, f)) = t(F.d, (V,g)) for all multigraphs F, d € N;*";
(4) t(F,d, (W, f)) = t(F,d,(V,qg)) for all simple graphs F, d € NS(F);
(5) Hi(W, f) 2 Hy (V. g) for all k € N;

(6) GL(W, f) 2 Gi(V, g) forall k € N.

To begin, we extend the characterization of é from Eq. 2 to graphon-signals, i.e., in the definition
of the unlabeled distance a minimum is attained when rearrangements over all measure-preserving
maps are taken into account for both involved graphons. We state this in greater generality, particu-
larly also for ¢, extending Lovasz (2012, Theorem 8.13).

Definition C.1 (Smooth and Invariant Norms). Two norms N = (N1, N3), where N is a norm on
L£°[0,1] and Ny on W, are called smooth if the two conditions

(1) Wy, > W eW, f, = f € L[0,1] almost everywhere,
(2) sup,en [[Whalloo < 00, sup,en || fallo < 00,
imply that
Ni(fn) — Ni(f), No(Wy,) — Nao(W). (33)
They are invariant if
Ni(f?) = Ni(f), No(W?)=No(W) Vo € Spo 1y, (39)
where (W, f) € W x L]0, 1].

The conditions clearly apply to ||-||g (with the one-dimensional definition from Eq. 6) and ||-||,, for
p € [1,00), but not for p = oo (take for example W,, = Ljo,1/n)2s fn = Ljo,1/n))- We set
On(W, ), (Vig) := dnf (No(W = V¥) + Ni(f = g%)). (40)
(0,11
Lemma C.2 (Minima vs. Infima for Smooth Invariant Norms). Let N be a smooth invariant norm
on W and L>°]0, 1]. Then, we have the following alternate expressions for d:

IN((W, £),(V,g) = eigf (No(W = V#) + Ni(f — ¢%)) 41)
13 [0,1]
= min (No(W? = VY)+ Ni(f% — g")). (42)
®,€S0,1]

Proof sketch. We follow the proof of Theorem 8.13 by Lovész (2012), briefly highlighting the nec-
essary adjustments to the argument.

To establish the first equality, approximations by step graphons that converge a.e. are considered, and
the crucial point is that any ¢ € S| 1) can be realized by a suitable ¢ € S|g 1) for such step graphons.
For graphon-signals, the argument can be transferred if one simply considers partitions respecting
each step graphon and step signal simultaneously when constructing the corresponding @ € S 0,1]-
For the second equality, which is proven in greater generality with coupling measures over [0, 1]2 by
Lovdsz (2012), note that the lower semicontinuity in (8.24) is just shown for kernels (i.e., £L>[0, 1]?),
but the argument extends verbatim to £°°[0, 1], and the sum of two lower semicontinuous functions
is still lower semicontinuous. The rest of the argument applies without modification. [
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Note that Lemma C.2 justifies our definition in Eq. 40, as dg on the graphon-signal space was
defined slightly differently as the infimum over all measure preserving bijections of co-null sets in
[0, 1] (with the function being set to zero otherwise) by Levie (2023), i.e.,

Sio. == 1{¥: A— B| A, B co-nullin [0, 1]}. (43)
Since _
Si0,11 € Sjo.1) € Spo.11» (44)
this coincides with the definition of 4 in Eq. 40 by the first equality of Lemma C.2.

Additionally, the following lemma will be useful on several occasions when comparing two proba-
bility distributions.

Lemma C.3 (Moments of Random Vectors). Let m € N and let X,Y be m-dimensional random
vectors which are almost surely bounded, i.e., there is some R > 0 such that P(]| X|| < R) =
P(|IY|| < R) = 1, for any norm ||-|| on R™. Suppose that for all d € N the moments of X, Y

agree:
m m
E lH X4 =K lH Yidi] : (45)
=1 =1

Then, X andY are identically distributed, i.e., X Zvy.

Proof. In the case of more general random variables/vectors, this is known in the literature as the
moment problem (see, e.g., Schmiidgen (2017)). Under boundedness, however, this is trivial and
can for example be proven via the characteristic functions of the random vectors, expanding the
exponential function in the definition. O

We are now ready to prove Theorem 3.3. To this end, we will show the following implications:

[ (3) {t(F7 d7 )}F multigraph j [ @) {t(F, d7 )}F simple j

same same

()
\

(5) Hi(-) same (6) Gi(-) same

Figure 4: Equivalence chain for the proof of Theorem 3.3.

Proof of Theorem 3.3.

(1) < (2): Lemma C.2 implies that for any p € [1, c0)
where equality in the middle holds in an A\-a.e. sense.
(2) = (4): This follows immediately from Lemma 3.2.

@) = (6): Let (W, f),(V,g) € WL, such that t(F,d, (W, f)) = t(F,d,(V,g)) for all simple
graphs F',d € N S(F). Fix some k € N. Clearly, the distribution of G (W, f) is uniquely determined
by
PG, p)nenw, ) (G = F), (47)
P, p~euwp(f €-1G=F), 48)

i.e., the discrete distribution of the (labeled) random graph G and the conditional distribution of
the node features given the graph structure, for every simple graph F' of size k. For Eq. 47, we
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remark that the standard homomorphism densities with respect to just the graphons W,V can be
recovered by taking d = 0. Thus, the inclusion-exclusion argument from the proof of Theorem
4.9.1 in (Zhao, 2023) can be used verbatim to reconstruct the probabilities from Eq. 47. With a
similar inclusion-exclusion argument, we see that for any F'

HG (W)= F} = Y (1) O1G(W) 2 F'} (49)
F/DF

and therefore

i ZF’DF(_l)e(F/)_e(F) t(F/a da (VV7 f))
EG,f)~cr(w.f fle=F| = = ~ (50)
Gy iel\;([F) P py~eiw,n(G=F)

as long as the denominator is positive (otherwise, the corresponding conditional distribution is
arbitrary). Since (f|G = F) is a bounded random vector (|| f||,, < 7 a.s.), its distribution is
uniquely determined by its multidimensional moments, i.e., precisely the expressions from Eq. 50

(see Lemma C.3). Thus, we can conclude G (W, f) z Gg(V,g) forall k € N.

(6) = (2): This implication follows from applying the graphon-signal sampling lemma (Levie, 2023,
Theorem 3.7): If (6) holds, we can bound

sa((W, £), (V,9)) < E[6a((W, £),Ge(W, )] + E[6a((V,9), Gr(W, f))] (51)
= E[og((W, f),Ge(W, /)] +E[6a((V,9),Gk(V,9))] = 0 (52)

—

as k — oo.

(1) = (3): With a technique as in Lemma 3.2, bounding the individual graphon terms in a similar
way as the signal terms, it is straightforward to show that the signal-weighted homomorphism den-
sity ¢(F, d, -) from any multigraph F is also Lipschitz continuous with respect to d;. Thus, statement
(3) follows immediately.

3) = (5): Let (W, ), (V,g) € WL, such that t(F, d, (W, f)) = t(F,d, (V, g)) for all multigraphs

F,d e N Fix k € N. Then, Hy(W, f) and Hy(V, g) can be seen as (k? + k)-dimensional
random vectors which are clearly bounded, since all graphon entries are in [0, 1] and all signal
entries in [—r,7]. We observe that {¢t(F,d, (W, f))}ra and {t(F,d, (V,g))}F.4, with F ranging
over multigraphs of size k, are precisely the multidimensional moments of these random vectors.
Lemma C.3 yields statement (5).

(5) = (6): This is trivial, since G(+) is a function of H(+). O

C.3 PROOF OF COROLLARY 3.4
Corollary 3.4 (Convergence in graphon-signal space). For (W, fu)n, (W, f) € WL, and r > 1,

So(Was ), (W, ) =0 & t(F,d,(Wn, f)) — t(F,d,(W, f)) VF,d e N\") (1)

as n — oo, with F ranging over all simple graphs.

Proof. The proof idea is essentially the same as in the classical graphon case (for example, see § 4.9
in Zhao (2023)): An application of Theorem 3.3 that uses compactness of the graphon-signal space.
For the sake of completeness, we restate the argument.

“=" follows immediately from the counting lemma (Lemma 3.2). For “<”, let (W,,, f,), be a
sequence of graphon-signals that left-converges to (W, f) € WL,.. By compactness (Levie, 2023,
Theorem 3.6), there exists a subsequence (W,,,, fn,); converging to some limit (V, g) in cut distance.
But then also all signal-weighted homomorphism densities of the subsequence converge, and hence

tF,d, (W, f)) = t(F,d,(V,g)) VF,deN". (53)
Theorem 3.3 yields 6o (W, f), (V,g)) = 0, i.e., also (W, f,) — (W, f) in cut distance. O
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C.4 DETAILS ON THEOREM 3.5

Theorem 3.5 (k-WL for graphon-signals, informal). Two graphon-signals (W, f) and (V, g) are
k-WL indistinguishable if and only if t(F,d, (W, f)) = t(F,d,(V,g)) for all multigraphs F of

treewidth < k, d € NJ&,

In the following, we will make the statement of Theorem 3.5 precise.

The 1-dimensional Weisfeiler-Leman graph isomorphism test can be generalized to graphons via
Iterated Degree Measures and their distributions (Grebik & Rocha, 2022). Recently, a similar
characterization for the k-WL test of graphons has been provided by Boker (2023), and related to
multigraph homomorphism densities. Inspired by this, we define a natural generalization of the
k-WL measure and distribution by Boker (2023) to graphon-signals and point out that their homo-
morphism expressivity can be described by signal-weighted homomorphism densities, as stated in
Theorem 3.5. This provides the final step in establishing the suitability of this extension of homo-
morphism densities for our analyses. Since the details are very similar to the arguments for the
graphon space, we will only highlight which definitions have to be adapted.

Definition C.4 (Weisfeiler-Leman Measures, cf. Boker (2023, Definition 26)). Let k > 1 and fix
r > 0. Let P¥ := |0, 1]([%1]) x [=r,7]**L. Inductively define M := [[,., PF and P¥ , =
P(ME)E+L for every n € N, where we consider PY with its standard topology and Borel o-algebra,
and P(-) denotes the set of all Borel probability measures, equipped with the weak topology. Let

MF .= [T.en Pik and define py, p, : MF — MP* 1o be the natural projection for n < m. Set

P* = {a e M | (ant1); = (Pnt1,n)s(Qns2)j forall j € [k+1],n € N} ) (54)

where (Pnn+1)« is the pushforward of measures.

One can think of P* as the space of all colors used by the k-WL test, where for o € P each entry
an, n € N, is a refinement of the previous one. We can now define the equivalent of the color
refinement for a specific graphon-signal.

Definition C.5 (k-WL, cf. Boker (2023, Definition 29)). Let k > 1, > 0, and let (W, f) € WL,..
Define Cfo) o 1 [0,1]FF — M by

wayf),(l(m) = ((W(x“xj)){i,j}e([k;rl])’ (f(irj))je[k—&-l]) (55)

for every x € [0, 1]*+L. We then inductively define C?Wf),nﬂ [0, 1] — ME L by
o = (Cf N /3l) A ) 56
(W,f),n+1(93) ( (W,f),n(w) (( (W,f)xnow[/]])* )je[k+1] 0
for every ® € [0,1]**' where X is the Lebesgue measure on [0,1] and x[-/j] :=
(T1,y ey @ty 1y ooy Tp1) € [0, 1L Let C?W,f) : [0, 1]*+1 — M* such that (CFW,f))n =

(wa,f)m)nfor alln € N. Call
Vi) = (wa’f))* AL e p(M*) (57)
the k-dimensional Weisfeiler-Leman distribution of the graphon-signal (W, f).

Intuitively, this corresponds with the multiset of colors that is obtained by the k-WL test for graphs
(note that, however, for graphons, the partitions do not need to stabilize after a finite number of
steps). One can show that I/(kW N (P*) = 1. Skipping all the technical details (due to similarity), we

get directly to the homomorphism expressivity of this k-WL test, which generalizes Boker (2023,
Theorem 5, (1) & (2)):

Theorem C.6 (Theorem 3.5, formal). Letr > 0and (W, f), (V, g) € WL, be two graphon-signals.
Then, VFW H= l/(kv 9 i.e. the graphon-signals are k-WL indistinguishable, if and only if

tEd, (W, f)) = t(F,d,(V,9)) (58)
Sfor all multigraphs F' of treewidth < k and d € NS(F),
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Proof sketch. The arguments of Boker (2023) transfer almost verbatim to this setting, as the span
of {t(F,d, ) }treewidth(F)<k,a defines an algebra. The crux is that in the k-WL test, both the distri-
bution of the graphon values W and the signal f are captured already in the first step (Eq. 55) and,
therefore, higher-order moments have to be considered. O
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D INVARIANT GRAPHON NETWORKS
We collect the proofs of our statements from § 4 in this appendix.

D.1 PROOF OF THEOREM 4.2

Theorem 4.2. Let k, ¢ € Ny. Then, LEj_,; is a finite-dimensional vector space of dimension

min{k,(}

E\ (¢
dim LE,_,, = Z 5!(8) <S> < bell(k + £). (13)

s=0

We will need some more preparations for the proof, in which we consider any L € LEj_,, only
on step functions using regular intervals first, which will allow us to use the existing results for the
discrete case. In order to prove Lemma D.2, we will need another preparation.

Lemma D.1 (Fixed Points of Measure Preserving Functions). If k € No and U € £2[0,1]% such
that U? = U for all ¢ € S|o,1), then U is constant. All involved equalities are meant NF-almost
everywhere.

Albeit somewhat tedious, the proof relies on basic measure theory and is rather straightforward. The
only aspect requiring additional attention is that ¢ acts uniformly across all coordinates.

Proof. Let U € L£2[0,1]* such that U is invariant under all measure preserving functions, and
suppose that U is not constant \*-almost everywhere. Then, there exist a < b such that A :=
U=Y((~00,a]), B := U~*(]b,oc)) have positive Lebesgue measure \*(A4) = A\¥(B) > 0. Set
o := N\F(A)/XF(B). For n € N, let IJ(-") = [Z2, Iy forje {1,...,n— 1} and i = [2=1,1]

be a partition of [0,1] into regular intervals, and set 7?,5”) = {IJ(.ln) X e X IJ(.:) | 1,00k €
{1,...,n}}. First, note that we have
QN A) # aN"(QnB) (59)

for some m € Nand @) € P,gm). Otherwise, equality in Eq. 59 would also hold for all hyperrect-

angles with rational endpoints, which is a N-stable generator of B([0, 1]¥). Consequently, equality
would hold for all sets in B([0, 1]¥) and thus, 0 < A\*(A) = aA*(AN B) = a\*()) = 0, which is a
contradiction. W.l.o.g. assume A\*(Q N A) > a\*(Q N B) in Eq. 59. As

Y OM(SNA) = M) = aX(B) = Y aX(SnB), (60)
sep™ sepi™
there must be another R € P]gm) such that \*(RN A) < aX*(R N B). Set
Ay = {z € [0,1)"| {zr,...,a}| <k}, AW = {QeP|QnA£0}  (©1)

to be the union of all diagonals on [0, 1]¥ and the elements of 77,5.") overlapping with Ay, respectively

forn € N. As )‘k(UQeA(k") Q) — N(Ay) = 0asn — oo, there must exist m* > m € N such that

thereare @ 2 Q* € P '\ A R D R* € P\ A" satisfying
MN(@Q*NA)>al(Q*NB), MN(R*NA)<aN(R*NB). (62)

Since Q" and R* do not overlap with any diagonal, we can now construct ¢ € Sjg 1] such that

©®*, which clearly defines a measure-preserving bijection from [0, 1] to itself, sends Q* to R*. By
invariance of U under all measure-preserving functions, we get

N(RY 1 A) = AF ((9%9) 71 (R N 4)) = AHQ" N A), (63)
N(R*NB) = N ((¢®F)""(R* N B)) = \*(Q* N B), (64)
which contradicts Eq. 62. Hence, U must be M_a.e. constant. ]
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We are now ready to prove Lemma D.2. Let k,/ € Ny and n € N. Let IJ(-n) = [ 1)
forj € {1,...,n — 1} and i = [2=1,1] be a partition of [0,1] into regular intervals. Let

A, =0c <{I . ,L(L")}) denote the o-algebra generated by this partition and let ]_-lgn) ={We
£2[0,1]% | W is A®*-measurable}; define F, [(") similarly.
Lemma D.2 (Invariance under discretization). Any L € LEj_,, is invariant under discretization,

which means that for any n € N, L(F, lgn)) C ]—'é"), where the inclusion should be understood up to
sets of measure zero.

Proof. Let L € LE;_,pandletU € f,gn). Then, if ¢ € 3[0,1] such that

(") c 1" (65)
for any j € {1,...,n}, we have U¥ = U and hence also L(U)¥ = L(U) \*-almost everywhere.
Take any hypercube ) = IJ(T') XX I](f') with ji,...,j¢ € {1,...,n} and any measure-preserving
function ¢ : [0,1/n) — [0,1/n). We replicate ¢ on the unit interval as

©*(z) = zdivl/n + p(xzmodl/n), (66)
which clearly satisfies Eq. 65, and thus L(U)¥ = L(U) almost everywhere. Since now
. ¢
— P —
LO)|g = LOY| | = (LO)ly) 67)

where we identify ¢ with ¢* ‘ 7 (which define measure preserving functions on [ ;")), we can use
j

translation invariance and scale equivariance of the Lebesgue measure to conclude by Lemma D.1
that L(U) | 0 is constant \‘-almost everywhere. As (Q was chosen arbitrarily, this implies the state-

ment of the lemma. O

Proof of Theorem 4.2. Letn € N and L € LEj_,;. By Lemma D.2, we know that L(F™”) € F\™.

Since ]-",En) ~ (R")®* =~ R"" we can regard L : ]-",5") — .7-"@(") as a linear operator R —

]_—Iin)
£ . . . .

R™ . Taking for any o € S, a measure-preserving transformation ¢, € Sjg 1) With . (I;) = I,(j),

we can see that L| F is also permutation equivariant, and we can use the characterization of the

basis elements fromk§ B.1.
Note that for any n,m € N we have F\") C F"™ and the canonical basis elements {L- },cr, .,
under the identification F ,E") ~ Rn" ]-",Em) ~ R™" are compatible in the sense that

(nm) )
L4 =1 (68)

Hence, the coefficients of L| ) with respect to the canonical basis {Lgn)}wepk .. do not depend
k

on the specific n € N. W.l.o.g. assume that L restricted to some F, ,En) is a canonical basis function
LE/Z) (where v* € I'4, does not depend on n).

We now take a closer look at the partition v* and its induced function Lffi) described by the steps
Selection, Reduction, Alignment, and Replication. Partition v* into the 3 subsets 77 := {4 €
vVIAC[k},vs ={A ey |ACE+ [} v ="\ (7 U~s). Forthe constant U = 1 €
.7-',51) C £2[0,1)*, LEJP(U ) # 0 must also be constant a.e. by compatibility with discretization, so
the partition v* cannot correspond to a basis function whose images are supported on a diagonal.
This is precisely equivalent to |[AN (k + [¢])] < 1 for all A € v*. Now suppose that the input
only depends on a diagonal. Denoting the restriction of the constant U = 1 to the diagonal under
discretization of [0, 1] into n pieces by Ungf),
() rr(n)y _ 7(n) - W
L2(U,") = Ly (U) = L2(U) # 0 (69)

Y
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is constant, but HUA(/:}) l2 — 0 for n — oo, which contradicts boundedness (i.e., continuity) of the
operator L € B(L?[0,1]*, £2[0,1]%). Hence, v* must correspond to a basis function for which the
selection step (D is trivial, i.e., |[A N [k]| < 1 for all A € y*.

This leaves us with only the partitions v € I', whose sets A € «y contain at most one element from
[k] and k + [¢] respectively. In the following Lemma D.3 we will check that for all of these partitions,
the Reduction/Alignment/Replication-procedure (with averaging in the sense of integration over

[0, 1]) indeed yields a valid operator L, € B(£2[0, 1]%, £2[0, 1]¢) which agrees with L") on F{™.

If we can now show that J,, ]-",g") C £20,1]* is dense with respect to ||-||2, we can conclude
that L = L.~, as L is continuous and agrees with L.~ on a dense subset. However, this follows
by a simple application of the martingale convergence theorem: Considering [0, 1]* with Lebesgue
measure A\ as a probability space and U € L?[0, 1]* as a random variable, we have E[U|A%*] €
FM . Also, o (Unen A%F) = B([0,1]%) is the entire Borel o-Algebra as A,, contains all intervals
with rational endpoints, so E[U|A®*] — E[U|B([0,1]*)] = U in £2.

Define now ~
Tee = {v el |VAEey  JAN[K]| <1, |ANk+ [ <1}. (70)
It is straightforward to show that
min{k,(}

~ kN (¢

r ’ _ ! , 71

’ e, ; s (S) <s> (71)
which can be seen as follows: Any partition on the Lh.s. can contain s € {0, ..., min{k, ¢} } sets of

size 2. Fixing some s, any of these sets can only contain one element from [k] and one from k + [£].
For the elements occuring in sets of size 2, there are (’:) (f) options, and there are s! ways to match

the s selected elements in [k] with the s elements in k + [¢], leaving us with the formula on the right.
This concludes the proof. O

D.2 CONTINUITY OF LINEAR EQUIVARIANT LAYERS

We first show that all L € LE_,, are also continuous with respect to any £P norm. Particularly, the
special case p = 2 is still needed to complete the proof of Theorem 4.2.

Lemma D.3 (Continuity of Linear Equivariant Layers w.r.t. ||-||,). Fix k,¢ € No. Let L € LEj_,,

and p € [1,0c). Then, L can also be regarded as a bounded linear operator LP[0,1]* — LP[0, 1]*.
Furthermore, all of the canonical basis elements from the proof of Theorem 4.2 have operator norm
ILllp—p = 1.

Proof. If suffices to show boundedness of all canonical basis elements. Let v € fk, ¢ be a par-
tition corresponding to a basis element L., in LEj_,,, and suppose that - contains s sets of size
2 {il,jl},...,{is,js} with il,...,’is S [k}, jh...,js S k + [g], and set A = (il,...,is),
B = (ji,...,Js). Then, we can write L., as

L,Y(U) = [0, 1]€ Sy — U(CL‘A,iL‘[k]\A) d)\k_s(iL‘Uc]\IO (72)
[0,1)5== TA=YB
Consider at first p < oo. Clearly, Eq. 72 is also well-defined for U € £P[0, 1]* and

P

L@l = [ ] Uesega) e | w03
[0,1]¢ [0,1]F = TA=YB

= / / U@, 2ppa)]” A (@ a) dX'(y) (74)

[0,1]¢ J[0,1]*=* wa—ys

) /[ i /[ sl N Gega) AN @a) = U159
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with Jensen’s inequality being applied in the second step. Note that equality holds, e.g., for U = 1,
80 ||L||p—p = 1. For p = oo, we also see

L)l = esssup| [ Ulaa, ) X (o a) 76)
yel0,1)¢ |J[0,1]k—> wa—ys
< esssup/ |U(a:A,m[k}\A)| d)\kfs(a:[k]\A) (77)
y€[0,1]¢ J[0,1]F 5 N eee—r
SNU oo ace. zai=ys
< [1Uloo (78)
again with equality for U = 1. O

D.3 PROOF OF PROPOSITION 4.4

Proposition 4.4. Any IWN of the form Eq. 18 is an instance of IGN-small (Cai & Wang, 2022).

Proof. Let N =T®) 0 po---0 90T be an IWN as in Definition 4.3. We verify that A" fulfills
the condition of IGN-small, see Definition B.1.
By invariance under discretization (Lemma D.2), we can see that IWNs fulfill a basis representa-

tion stability condition, and under the identification ]-'Iin) ~ R"" which precisely captures grid-
sampling, this directly implies that grid-sampling commutes with application of the IWN and its
discrete equivalent. ]
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E PROPERTIES OF INVARIANT GRAPHON NETWORKS

In this appendix, we will collect the proofs of our statements from § 5.

E.1 PROOF OF LEMMA 5.1

Lemma 5.1. Let N : WL, — R be an IWN as defined in Eq. 18. Then, N is Lipschitz continuous
w.rt. 6, for eachp € [1,00].

Proof of Lemma 5.1. Let
N=T®ocpo---0pgoT® (79)

be an IWN as in Definition 4.3. By Lemma D.3, each L € LEj_,, is Lipschitz continuous with
respect to ||-||,, on the respective input and output space, and this immediately carries over to all
TG, 5 € [S]. Hence, it suffices to check that the pointwise application of the nonlinearity, i.e.,
LP[0,1]* > U + o(U), is Lipschitz continuous for every k € N, where ¢ is applied elementwise.
If C, is the Lipschitz constant of g, we have

o) — el = [ o)~ ax< [ o axt =g ~wi

(80)
for p < 0o, and a similar argument shows the claim for ||| - O

E.2 PROOF OF THEOREM 5.2
E.2.1 GENERAL OUTLINE

In this section, we will prove the following theorem:

Theorem 5.4 (§,-Universality of IWNs). Letr > 1, p € [1,00), ¢ : R — R Lipschitz continuous

and non-polynomial. For any compact K C (1//\72707 bp), IWN, is dense in the continuous functions
C(K,R) wrt. |-

As a first step towards this, we show that IWNs can approximate signal-weighted homomorphism
densities with respect to graphs of size up to their order. For this, we introduce the notion of homo-
morphism densities from partially labeled graphs (Lovasz, 2012, § 7.2), which will later allow us
to “glue” together homomorphism densities from parts of a specific graph. Let F' be a multigraph
with V(F) = [k], d € N&, and let A C [k] denote the set of labeled nodes. Then

— k—|A|
ws(Fod, (W, ) : /[o,1]kA ( elv_[F)f x;) ><{”}1l )W(xz,xj)> d\ ([pa),

C1Y)
i.e., the integral is only formed over the unlabeled nodes, making the expression a function of x 4.

Lemma E.1. Letr > 0, o : R — R Lipschitz continuous and non-polynomial, and F' be a multi-
graph with V(F) = [k], d € NE, and A C [k]. Fix e > 0. Then there exists an EWN N of order k
such that for all (W, ) e WL,

Ht-A(F’dv (I/va)) (W f)” ,[0,1]14l S €. (82)

For the proof of Lemma E. 1 (see § E.2.3) we take inspiration from Keriven & Peyré (2019), modeling
the product in the homomorphism densities explicitly while tracking which linear equivariant layers
are being used by the IWN. Note that if we set A := (), this lemma specifically means that we can
approximate any signal-weighted homomorphism density from a multigraph of size k£ with an IWN
of order k, up to arbitrary precision. By using a tree decomposition of the graph, we can then get to
the statement of Theorem 5.4 (see § E.2.4).
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E.2.2 PREPARATIONS

We start with a few preparations for the proofs of Lemma E.1 and Theorem 5.2. Namely, our main
goal will be to show that if an EWN of a fixed order can approximate a set of functions, it can
also approximate their product (Lemma E.3). This will turn out useful to model signal-weighted
homomorphism densities later.

Lemma E.2. Let N be an S-layer EWN of order k € N as defined in Definition 4.3, such that
ko =2, ks = kfors > 1, and hg = 2, hg = 1. Let the nonlinearity o be differentiable at least

at one point with nonzero derivative. Let S* € N. Fix € > 0. Then, there exists an (S + S*)-layer
EWN N* of order k with ks = k for s > 1 such that for all (W, ) € WL,

INW, f) =N (W, f) o1 <€ (83)

ooy

Proof. The argument is an approximation of the identity function, using the nonlinearity o. Let

M = sup ||N(Wa f)”oo,[O,l]ka (84)
(W, f)eWL,

which is finite since ' is Lipschitz continuous in ||-||o by Lemma 5.1. Let o € R be a point at
which p is differentiable with ¢'(x¢) # 0. Fix § > 0. There exists some constant > 0 such that
|z| < r implies

lo(xo +2) — o(x0) — o (zo)z| < 2] (85)
Set "
. r
id,(z) = 2@y (Q (mo + Mx) - g(wo)) . (86)
Then, for any x € [—M, M], ﬁaﬁ| < r and hence
. _ M r ’ r
|1dg($) —z| = 7"@’(330)‘ ‘Q (950 + Mx) —o(zg) — 0 (xo)Mx‘ 87
M r
— | |—z| < 0. 88
e kbTe e ®
If we set .
N* =id o W, (89)

where application of id,, is pointwise, we can see that N'* can be clearly represented by an (S + .S*)-
layer EWN of order k, and

M s
N, )~ N W, Dl o < (Ma) , ©0)

(2o
which can be made arbitrarily small as 6 — 0. O

Lemma E.3. Let Ny, ..., N,, be m € N EWNs of order k € N, each with constant orders after
the first layer, and hidden output dimension of 1, i.e., realizing a function [0,1]* — R. Fix e > 0.
Then, there exists an EWN N* of order k with constant orders after the first layer, such that for all
(W, f) e WL,

< e. on

[TNeW. £) = N* (W, )
(=1

00,[0,1]*

For the proof, we will draw inspiration from Keriven & Peyré (2019). However, a crucial difference
to their proof is that our approach does not rely on modeling multiplication by increasing the tensor
orders.

Proof. We will exploit a property of cos that allows us to express products as sums. Namely, it is
well-known that for x4, ..., x,, € R we have

ﬁcos(mj) = 2% Z Ccos iajxj . 92)
=1 =1

oce{x1}m™
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Fix 6 > 0. At first, we will describe how to approximate any A/, using cos as a nonlinearity. By
the classical universal approximation theorem (see for example Pinkus (1999, Theorem 3.1)), we
can approximate o : R — R by a feedforward neural network g.,s with one hidden layer, using
the cosine function as nonlinearity. Fixing compact sets similarly as in Eq. 84 for each layer of the
EWNs A, we can see that replacing each occurence of ¢ by o.os and absorbing the linear factors
into the linear equivariant layers again yields valid EWNs. Call these EWNs AVf°5, ¢ =1,...,m
The underlying feedforward neural network g.os can now be chosen such that for all £ € [m],
(W, f) e WL,

[N £) = No(W. )l oo pouge < 6 93)

Note that each Nf°° might have different numbers of layers. Hence, we invoke Lemma E.2 to

equalize the number of layers, and add one more layer of the identity. We obtain EWNs /\7[‘3OS such
that

ideos(NF (W 1) = NG W )| <9 ©4)

00,[0,1]%
forall (W, f) € WL,. Using Eq. 92 and setting idcos () = ¢-cos(ax+b)+d for some a, b, ¢, d € R,
We can now write

H ldcog(NCOS(W f)) = H (C COS /V[,COS(W f) + b) + d) (95)
=1 =1
_ Z cAlgm—1Al (H cos(a - N§*S(W, f) + b)) (96)
AC[m) LeA
[A] gm—|A] ~ o8
_ Z CT Z cos (a SNFE(W, ) + b), 7
AC[m)] oe{+1}4

()

which can be represented by an EWN of order k£ and one layer more compared to {J\NQCOS} ¢, stacking
the expressions from (x), applying the nonlinearity cos and aggregating the outputs as determined
by the weighted sum. Let

M= mux  sup VAW, )l o (98)
Le[m] (w, fyew

Since for any (W, f) € WL,

H cos (NE= (W, f)) HN@ (W, 1) (99)
=1 =1 00,[0,1]*
<y (H ideos V(0 1) [ Ne(W, f)) (ideos (N>, 1) = No(W, 1))
/=1 >4 i<l 00,[0,1]%
(100)
< ST ideos (A=W, £) TT Ne(W. £) lideosNE= W, )y =N, )|
=1 |li>¢ i<t o0, [0,1] o0:[0,1]
(101)
Z(M+25)m ENE12g, (102)
=1
and since Eq. 102 goes to zero as § — 0, this shows the claim. O

E.2.3 PROOF OF LEMMA E.1

Lemma E.1. Letr > 0, o : R — R Lipschitz continuous and non-polynomial, and F be a multi-
graph with V(F) = [k], d € NE, and A C [k]. Fix e > 0. Then there exists an EWN N of order k
such that for all (W, ) e WL,

[t.4(Fd, (W, [) = NW, Fll s 017101 < & (82)
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The proof boils down to an application of Lemma E.3.

Proof. Fix a multigraph F with V (F) = [k], d € N§, and A C [k]. Let (W, f) € WL, Define
fi:[0,1)F = R, @ — f(x;) fori € V(F), (103)
Wi 0,1 > R, @ — Wz, z;)  for {i,j} € E(F). (104)

Clearly, both (W, f) = f; and (W, f) = Wy; ;1 can be exactly represented by EWNs of order &
with one layer (i.e., no application of the nonlinearity at all). By Lemma E.3, the product

w. = II # I Wun (105)
i€V (F) {i,j}€E(F)

can be approximated by an EWN N of order & up to € in ||-||oc. However,

b (Fd, (W, ) = / I fi@* [T Wen@ | a4 )
eV (F

(0.1 ) {i,7}EB(F)

(106)
and thus for any (W, f) € WL,

AR )= [ NV D) (@) N M) (107)

[0,1]k=14l so.[0.1]141
< II 7 II Wy - N5 <e, (108)
ieV(F)  {i,j}eE(F) 00,(0,1]*
which shows the claim, since the r.h.s. of Eq. 107 can also be implemented by an EWN. O

E.2.4 ASSEMBLING THE PIECES: PROOF OF THEOREM 5.4

Theorem 5.2 (Approximation of signal-weighted homomorphism densities). Letr >0, o : R = R

Lipschitz continuous and non-polynomial, and F be a multigraph of treewidth k € N, d € NS(F).

Fix e > 0. Then there exists an INN N € IVVJ\/';“Jrl of order k + 1 such that for all (W, ) € WL,

For the proof, we will proceed by induction over the graph’s tree decomposition. The base case
is covered by Lemma E.1, after which we can perform induction over the size of the tree in a tree
decomposition of graphs.

Proof. Fix k € N. To show the statement for all graphs of treewidth k, we perform induction over
the number of bags in the graphs’ tree decomposition, and show that the statement also holds for
partially labeled graphs, see Eq. 81, as long as the labeled nodes A are contained in one bag of the
tree decomposition.

As a base case, consider a multigraph F* whose tree decomposition only consists of one bag, and
de NS(F). This means that v(F) < k + 1, and invoking Lemma E.I immediately yields that we
can approximate the signal-weighted homomorphism density ¢. , (F, d, -) for A C V(F) to arbitrary
precision on WL, using an IWN of order at most k + 1.

For the induction step, fix m € N, m > 1. Suppose that we can approximate ¢. , (F, d, -) for any F’
of treewidth at most k such that its tree decomposition consists of at most m — 1 bags. Now, let F'
be a multigraph of treewidth k& such that F has a tree decomposition (7', 5), where T is a tree and

B:V(T) — 2V, (109)

such that forany t € V(T), |5(t)| < k+ 1 and |V (T')| = m, i.e., the tree decomposition consists of
m bags. Let t* € V(T), such that we approximate a signal-weighted homomorphism density from
a partially labeled graph with labels A C B(t*).
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Suppose removing t* from 7" induces ¢ subtrees 71, ...,Ty of T. Let Ty41 denote the subtree that
consists of just the bag t*. Let
ay :V(F) = [l+1], ag:E(F)—[+1] (110)

be assignments of nodes and edges to one of the ¢ + 1 subtrees, such that

weV(F):ve | B1), VecE(F):3teV(Taye): eCB(1), (111)
tEV (Tayy (v))

i.e.,each v € V(F) is mapped to a subtree that contains v in one of its bags, and each edge in E(F)
is mapped to a subtree that contains both ends of the edge in one bag. Then,

Vii={veV(F)|avw)=1i}, Ef :={ecE(F)|ag(e) =1} (112)
for ¢ € [¢ + 1] are partitions of V(F') and E(F) respectively. Further set
Vi = | B@®). (113)
teT;

Now, let s; € V(T4),...,s¢ € V(Ty) be the neighbors of t* in T. As the set of bags that contain a

Figure 5: We dissect the tree 7 into subtrees 77, . . ., Ty, coming from ¢*.

certain node from V' (F') is connected in 7', it must hold that

Further, define the vectors d; € N‘Ov'il to coincide with d on V;*, and to be zero on V; \ V;*, for
i € [+ 1]. By the induction hypothesis, for any ¢ € [¢ + 1] and § > 0 there exists an EWN of order
at most k£ + 1 that can approximate

Ly, (FIVi Bl d5,-) (115)

on WL, to precision ¢ in ||-|| ., since each T; defines a valid tree decomposition of the subgraph
F[V;, E¥] (obtained from F' by selecting the nodes in V; and edges in E}), consisting of < m bags
and with each bag containing at most & + 1 nodes. Replicating the output of Eq. 115 along the
axes in 3(¢t*) \ B; and padding d} with zeros, we can use Eq. 115 to create an EWN N; for each

i € [¢ + 1] mapping to functions [0, 1)/l — R, such that for any (W, f) € WL,

g0y (FLEZ) 7, (W, ) = NaW, | oy < 0 (116)
However,
{+1
It FIE ) =t (Fd-), (117)
=1

and we can invoke Lemma E.3 to conclude that there is an EWN of order k£ + 1 that can approximate
the product in Eq. 117 to arbitrary precision. Finally, integrating over the axes corresponding to the
set of unlabeled nodes 3(t*) \ A yields the claim. O
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E.3 PROOF OF COROLLARY 5.3

Having shown Theorem 5.2, k-WL expressivity can be obtained effectively by definition.

Corollary 5.3 (k-WL expressivity). ZWN. f“ is at least as expressive as the k-WL test (Theo-
rem 3.5) at distinguishing graphon-signals.

Proof. Let (W, f),(V,g) € WL, be distinguishable by k-WL. By Theorem 3.5, this means that
there exists a multigraph F' of treewidth at most k and d € N S(F) for which

t(r,d, (W, f)) # t(F,d,(V,g)). (118)

Lete := |t(F,d, (W, f)) —t(F,d,(V,g))| > 0. By Theorem 5.2, take an IWN A/ such that
sup  |N(U,h) - t(F.d, (U, h))| <¢/3. (119)

(Uh)EWL,
‘We obtain

N, f) = N(V, )] (120)
(121)
>e—¢/3—-¢/3=¢/3>0, (123)
which yields the claim. ]

E.4 PROOF OF THEOREM 5.4

Note that Theorem 5.2 tells us that IWNs of arbitrary order can approximate any signal-weighted
homomorphism density. As these separate points in VAVZ,« by Theorem 3.3, it is straightforward to
obtain universality on any set which is compact with respect to a distance on VT/ZT under which the
signal-weighted homomorphism densities are continuous.

Theorem 5.4 (§,-Universality of IWNs). Letr > 1, p € [1,00), ¢ : R — R Lipschitz continuous

and non-polynomial. For any compact K C (WL, 6,), IWN,, is dense in the continuous functions
C(K,R) w.rt. ||| -

Proof. We show this statement by applying the Stone-Weierstrass theorem (see for example Rudin
(1976, Theorem 7.32)). In principle, proving approximation of the signal-weighted homomorphism

densities (Theorem 5.2) is the main difficulty. Fix a compact subset K’ C (WL,,d,). Consider the
space of all graphon-signal motif parameters, i.e.,

D := span{t(F,d, )| F simple graph,d € NS(F)} C C(K,R). (124)

Clearly, D is a linear subspace, and D contains a non-zero constant function as we can take a
homomorphism density of a graph F' with no edges and d = 0. Also, it is straightforward to see that

D is a subalgebra, as for any two simple graphs F, F», d; € NS(FI), d; € NS(FZ),
t(Fladlv ) : t(F27d27 ) = t(Fl U FQa dl‘Ian ) S Da (125)

i.e., the product of homomorphism densities with respect to two simple graphs can be rewritten as
the homomorphism density with respect to their disjoint union. By Theorem 3.3, D also separates
points, and we can apply Stone-Weierstrass (note that K is a metric space and, thus, particularly
Hausdorff) to conclude that D C C'(K,R) is dense. However, by Theorem 5.2, any element of D
can be approximated with arbitrary precision by ZWAN/,, and thus

C(K,R) = D C IWN, C C(K,R). (126)
This concludes the proof. O
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E.5 PROOF OF PROPOSITION 5.5

Proposition 5.5. Let ¢ : [0,1] — R. Then, the assignment Wy 3 W — o(W) € W, where o is
applied pointwise, is continuous w.r.t. ||-||g if and only if o is linear.

Proof of Proposition 5.5. We will show that the assignment
Wod W = o(W)eW, (127)

where g is applied pointwise, is continuous if and only if p is linear. First, note that W € W
f[o 12 W dA? is linear and continuous with respect to ||-||g, since

/ W dA? / W d?
[071]2 SxT

Let o : [0,1] — R such that W +— o(W) is continuous and let p € [0,1]. Then, also W —
f[o 12 o(W) dA? is continuous. Let p € (0,1) and set W, := p to be a constant graphon. If we

< sup
S,TCl0,1]

= Wiz (128)

sample G](,n) ~ G, (Wp), i.e., from an Erd6s—Rényi model with edge probability p, G§,n) — W, in
the cut norm almost surely. But

[, eI 8 = p-e) +(1-p)-0l0), (129)
0,1 P
while [i 112 0(W3) d)\? = o(p). This implies

Vpe (0,1): o(p) =p-o(1) + (1 —p) - e(0), (130)
i.e., o is a linear function. It is trivial to check that if o(z) = ax + b is a linear function, W +— o(WW)
is indeed continuous. O

E.6 PROOF OF THEOREM 5.6

Theorem 5.6 (Transferability of IWNs). Let ¢ > O and r > 1. Let p : R — R be continuous.
Let N' € IWN,. Then, there exists a constant C. nr > 0 such that for any (W, f) € WL, and

(Gnv.fn)a (Gma fm) ~ Gn(W’ f)ma(VV’ f)’

1 1
E[N(Gn, fn) = N (G, fm)| < Cs,/\/(\/@-i- M) +e. (22)

Proof of Theorem 5.6. Let p : R — R be a polynomial such that the IWN A/, which is obtained
from N by replacing each occurrence of g with p fulfills

INp = Nllsowez, = sup [N (W, f) =N (W, f)| < e/2. (131)

(W,f)eWL,

Such a p exists: We can approximate ¢ : R — R uniformly arbitrarily well on compact subsets of R
by the standard Weierstrass theorem, and, as the domain of A/ only contains bounded functions W
and f, for any input (W, f) € WL,., o is only ever considered on some fixed bounded set (which
depends on the model parameters). The argument is the same as switching activation functions, as
done on multiple occasions in § E.2.2.

Now, observe that \/,, can be reduced to an integral over [0, 1] of a polynomial in the variables
W (z;,z;) and f(zy), for i,j,k € [n] and some n € N. This essentially means that N, is a
linear combination of signal-weighted homomorphism densities. Thus, there are finite collections

of {e; }; € R, multigraphs {F;};, and exponents {d; };, d; € NS(Fi), such that
No(W, f) = > i - t(Fy, dy, (W, f)) (132)
for any (W, f) € WL,. Set
No(W, ) = 3" aq - t(FP™" d;, (W, f)), (133)
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where F; — FF™P!° removes parallel edges. J\~fp is Lipschitz continuous in the cut distance by
Lemma 3.2 and, crucially, agrees with )V}, on 0-1-valued graphons (since any monomial z — xd

has 0 and 1 as fixed points). Let M > 0 denote the d5-Lipschitz constant of /\7,,.

Now, consider (G, fn), (Gm, fm) ~ G,(W, f), G,,(W, f). By the graphon-signal sampling
lemma (Levie (2023); Eq. 8), we can bound

< E[|N(Gn7fn) - p(Gnv fn)” +]E[|N (Gn7fn> p(va fm)” (135)
<e/2
EUNP(Gmy‘fm) _N(Gmafm>|] (136)
<e/2

§€+ME[(SD((Gn7fn)7(Gm7.fm))} (137)
<+ M- (EBD((Gos £), (W, £)] +E[60((W, ), (G, £))]) (138)
(2)5+M( L, B )<g+ 15M< ! L ) (139)
- Viegn  +/logm \/logn Viegm )’

where the sampling lemma was used in (x). This completes the proof. O
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F ASYMPTOTIC DIMENSION ANALYSIS OF LEEjL

In this section, we briefly analyze the asymptotic differences in dimension between LEEZLL 0> the
linear equivariant layer space of discrete IGNs, and LE;,_,¢ = LEECO’_?Z, of IWNs.

Recall that
dimLE]"., = bell(k + ), (140)
min{k,(}
. 0,1 k\ (¢
dimLE[>!, = ZZ:O s!(s> (S) (141)

For a comparison of the dimensions for the first few pairs (k, ¢), see Table 2.

Table 2: Dimensions of LEL@) , and LEE@Oj]é.

dmLEM™, o0 1 2 3 4 dmLE"Y 0 1 2 3 4
0 I 1 2 5 15 0 I
1 12 5 15 52 1 1 2 3 4 5
2 2 5 15 52 203 2 13 7 13 21
3 5 15 52 203 877 3 1 4 13 3 73
4 15 52 203 877 4140 4 15 21 73 209

The case of bounded % or /. Immediately visible from Table 2 is the vastly different behavior of
the two expressions as long as one of the variables k, ¢ is bounded: In the discrete case, whenever
k — oo or £ — oo, we have bell(k + ¢) — oo superexponentially. However, for the case of
[0, 1], suppose w.l.o.g. that only & — oo and ¢ = O(1) remains constant. Then, the corresponding
dimension growth is bounded by

dimLE"! = dimLE!] = oY), (142)

as Eq. 141 is dominated by () in this case.

The case of & ~ (. We will now consider the worst case, i.e., when k grows roughly as fast as /.
For simplicity, assume k£ = ¢, and thus

k 2
n . k
dimLE[",, = bel(2k), dimLE], =" s!< ) : (143)
s
s=0
The bell numbers grow superexponentially, as can be seen by one of its asymptotic formulas (e.g.,
refer to Weisstein, Equation 19):

bell(n) ~ % (W?n))nﬂ/z exp (W’Zn) —n— 1) : (144)

where W denotes the Lambert W-function, i.e., the inverse of z — x exp(z), or a simpler charac-
terization due to Grunwald & Serafin (2024, Proposition 4.7), which is not strictly asymptotically
correct but suffices in our case:

1 n \" 3 n \"
- < bell < |- 145
<elogn> < bell(n) < <4logn> ’ (145)

as long as n > 2. Therefore, the dimension of linear equivariant layers in the discrete case can be
bounded as

2k
dimLE["., > (iloZZk) : (146)

We will now provide bounds on the dimension in the continuous case. First note that by only
considering the last addend,

dimLE"!) > k! > bell(k) (147)
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still grows superexponentially. A well-known bound on the factorial (see, e.g., Knuth (1997, § 1.2.5,

Ex. 24)) is
nn nn-l—l

(148)

en—1 — t= en—l’

for n € N. For a rough upper bound on the dimension, we consider just an even tensor order k:

k k 2
dimLE!} = ZS!(S> (149)

s=0
gtk F 2 o1y R 150

< : =

<k 0r(,) = D (150)

Eq. 148 k3k+3 er—4 1 4 k
< — = _— 3 —_
< (k+1)63,€,3 2% e(k+1)l<; (ek) \ (151)

which still grows significantly slower than Eq. 146.
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G EXPERIMENT DETAILS

In this section, we provide details for the toy experiments shown in Figure 1, Figure 2, and Figure 3.
The purpose of these experiments is to empirically validate the findings from § 5.2 regarding the cut
distance discontinuity and the transferability of IWNs.

Data. We keep the signal fixed at a constant value of 1 and look at the following 4 different
graphons:

* Erdés-Rényi (ER): W := 1/2 constant.

* Stochastic Block Model (SBM): We take 5 blocks, each with intra-cluster edge probabili-
ties of p = 0.8 and inter-cluster edge probabilites ¢ = 0.3.

* Triangular: Here, W(x,y) = (z + y)/2 (the sets {W > z}, z € [0, 1] are triangles).

2
e Narrow: W (z,y) = exp (sin (@) ), with 7 := 0.05.

From each of these graphons, we sample 100 simple graphs of each of the sizes
{200, 400, 600, 800, 1000}. We use a weighted graph of 1000 nodes sampled from each graphon
as an approximation of the respective graphon itself.

Models. The following two models are compared:

* MPNN: A standard MPNN with mean aggregation over the entire node set, as used in the
analyses of Levie (2023); Boker et al. (2023).
e 2-IWN: An IWN of order 2, i.e., with a basis dimension of 7.

For both models, we use a simple setup of 2 layers, a hidden dimension of 16, and the sigmoid
function as activation.

Experiment. In Figure 2, we plot the absolute errors of the model outputs for the sampled simple
graphs in comparison to their graphon limits. Due to the cut distance continuity of MPNNs and
the sampling lemma (Levie, 2023, Theorem 4.3), the MPNN outputs decrease as the graph size
grows. While the convergence is slow, it is still significantly faster than the worst-case bound.
This is expected as the considered graphons are fairly regular, and the convergence rates can be
improved under additional regularity assumptions (Le & Jegelka, 2024; Ruiz et al., 2023). The
IWN, however, is discontinuous in the cut distance (Proposition 5.5) and, as such, the errors do not
decrease. In Figure 3, we further plot the difference between the 0.95 and 0.05 quantiles of the
output distributions on simple graphs for each of the considered sizes. Notably, there are only minor
differences visible between the MPNN and the IWN. This validates Theorem 5.6 and suggests that
IWNs have similar transferability properties as MPNNs (also beyond the worst-case bound), and
dp-continuity suffices for transferability.

Code. An anonymous version of the code used for the experiments is provided under https:
//anonymous.4open.science/r/Higher-Order—-WNNs—950F.
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