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Abstract
Large-scale deployment of generative AI tools001
often depends on costly API calls to a Large002
Language Model (LLM) to fulfil user queries.003
To curtail the frequency of these calls, one can004
employ a smaller language model – a student –005
which is continuously trained on the responses006
of the LLM. This student gradually gains profi-007
ciency in independently handling an increasing008
number of user requests, a process we term009
neural caching. The crucial element in neural010
caching is a policy that decides which requests011
should be processed by the student alone and012
which should be redirected to the LLM, subse-013
quently aiding the student’s learning. In this014
study, we focus on classification tasks, and we015
consider a range of classic Active Learning-016
based selection criteria as the policy. Our ex-017
periments suggest that Margin Sampling and018
Query by Committee bring consistent benefits019
over other policies and baselines across tasks020
and budgets.021

1 Introduction022

Large Language Models (LLMs) offer unique capa-023

bilities in understanding and generating human-like024

text. They have gained widespread use in a wide025

range of applications, such as assistive tools and en-026

tertainment bots. However, large models are often027

very challenging for all but a few companies and028

institutions to run on their infrastructure (Schwartz029

et al., 2020). Meanwhile, smaller models typi-030

cally under-perform in these applications, at least031

without additional fine-tuning on task-specific la-032

belled data. Consequently, many applications ac-033

cess LLMs via commercial APIs despite the costs034

involved and the exposure of their entire request035

stream to the API providers.036

To minimise the costs and data exposure asso-037

ciated with calling the API, we propose to train038

a smaller language model, which we refer to as039

student, on the LLM’s predictions and, as the stu-040

dent gets more accurate, it handles an increasing041
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Figure 1: Neural caching (one iteration): A student gen-
erates a response to a user request. The policy algorithm
determines whether to rely on the student’s response or
to call an LLM. LLM responses are stored and used to
re-train the student as more data becomes available.

number of requests. The knowledge of the LLM 042

gets continuously distilled into the smaller model. 043

We refer to this scenario as neural caching (see 044

Figure 1), as the student can be thought of as a 045

smart cache. Note though that the student not only 046

remembers what the LLM predicted but also gen- 047

eralises beyond these examples. The goal of this 048

paper is to formalise the neural caching problem 049

and investigate simple ways of approaching it. 050

The key element in the neural caching scenario is 051

the policy determining which requests the student 052

processes independently. A good policy should 053

weigh the expected immediate user benefit (i.e., 054

if the LLM is substantially more likely to make 055

a correct prediction than the student) and the an- 056

ticipated benefit for the student (i.e., whether the 057

LLM’s prediction will aid in training the student). 058

The latter underscores its relationship with Active 059

Learning (AL, Settles, 2009; Zhan et al., 2022), 060

although AL is typically associated with solicit- 061

ing human annotations. In particular, there is a 062

similarity to online AL (Cacciarelli and Kulahci, 063

2023), where new unlabelled data points arrive in 064
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a stream and are discarded immediately or sent to065

an annotator. However, online AL tends to focus066

on maximising the accuracy of the final model (i.e.067

student in our terminology). In contrast, what mat-068

ters in neural caching is the accuracy of the joint069

system (student, teacher, along with the policy)070

over its lifetime since this online accuracy reflects071

the average level of service offered to a user.072

Despite the aforementioned differences with AL,073

evaluating the existing AL algorithms – specifically074

the example selection criteria – remains valuable075

given the maturity of the AL field and the ease of076

implementation of some of the AL methods. This077

study aims to achieve this, as well as to investigate078

the potential shortcomings of these methods. For079

instance, will the AL methods end up selecting ex-080

amples that are too challenging even for the LLM?081

Would learning from these noisy examples be detri-082

mental to the student? Answering these questions083

can inform future research on this practically sig-084

nificant scenario.085

In this work, our focus is specifically on clas-086

sification tasks, as opposed to free text genera-087

tion. Many practical problems, such as routing088

user requests to relevant departments or answering089

questions about factual knowledge, can be framed090

as classification tasks. By confining our focus to091

classification, we can apply methods developed in092

AL without modification. This also allows us to093

circumvent additional challenges tied to the auto-094

matic evaluation of text generation (Celikyilmaz095

et al., 2020).096

Our findings reveal the benefits of using AL-097

based policies such as Margin Sampling (Scheffer098

et al., 2001) and Query by Committee (Seung et al.,099

1992). Across datasets and budgets, these methods100

consistently outperform baselines, such as routing101

examples randomly or training the student at the102

very start. Our analysis also reveals that the stu-103

dent appears robust to the noise introduced by an104

LLM. We also analyse a simplified practical sce-105

nario where the student is not retrained and observe106

even greater improvements in online accuracy from107

using AL-based policies. We release our code to108

encourage further work on this problem.1109

The key contributions of this work are:110

• We formulate the neural caching problem as111

a powerful extension of using static caches.112

In neural caching, LLM calls are optimised,113

1https://anonymous.4open.science/r/neural-caching-
780F/README.md

while the student model is periodically re- 114

trained on the labels. We believe online 115

Knowledge Distillation could play a key role 116

in saving calls to expensive models. 117

• We release a benchmark with LLM annota- 118

tions for classification tasks to facilitate future 119

research in this setup. 120

• We evaluate and analyse different instance se- 121

lection criteria for the neural caching setup. 122

• Our findings reveal that AL-based selection 123

criteria consistently improve performance 124

over baseline methods across various budgets 125

and datasets. 126

2 Related Work 127

Active Learning. Active Learning (AL) seeks 128

to reduce the amount of manual data annotation 129

needed. To accomplish this, it selects the most in- 130

formative examples from unannotated data. These 131

datapoints are then presented to an annotator and 132

the labels are subsequently used to train a model. 133

The most common scenario for AL is pool-based, 134

where a large unlabelled dataset is available from 135

the start and then a subset of examples is selected 136

for labelling. There has been extensive work on 137

applying pool-based techniques to NLP tasks, es- 138

pecially for classification problems (Settles, 2009; 139

Zhan et al., 2022; Zhang et al., 2022). 140

Online Active Learning. In single-pass online 141

AL (Cacciarelli and Kulahci, 2023), access to a 142

large unlabelled dataset is not available. Instead, 143

we are given one unlabelled instance at a time and 144

need to decide at that time whether to request an- 145

notation. Online AL was initially motivated by 146

scenarios in which an instance would not be avail- 147

able for annotation at a later time, such as in defect 148

detection or medical applications, where an item 149

might get shipped or the patient becomes unavail- 150

able (Riquelme, 2017). Online AL tends to focus 151

on the final accuracy of the model, rather than the 152

online accuracy of the student and teacher com- 153

bined, the measure more suitable for our scenario. 154

Knowledge Distillation of LLMs. Knowledge 155

distillation (KD), i.e., training a smaller model to 156

mimic a larger one, has garnered substantial atten- 157

tion (Bucila et al., 2006; Hinton et al., 2015). The 158

class of methods most closely related to ours is ac- 159

tive KD, which effectively applies AL to KD (Liang 160
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et al., 2021; Xu et al., 2023; Baykal et al., 2023).161

Similar to AL, the emphasis is placed on the pool-162

based setting, as opposed to the online setting, with163

a particular focus on optimising the final accuracy164

of the student model, rather than online accuracy165

as needed for our use case.166

Optimisation of Commercial LLM API Calls.167

Due to the high cost of commercial LLM APIs, sev-168

eral works have explored methods to reduce or oth-169

erwise optimise the cost of API calls. GPTCache170

(Bang, 2023) relies on a vector store of past query171

embeddings and retrieves their associated labels. It172

shares similarities with the Coreset version of our173

approach – which emerged as the weakest method174

in our experiments. FrugalGPT (Chen et al., 2023)175

implements a cascade of commercial LLMs, where176

bigger models are only called if the response from177

a cheaper model is deemed as too unreliable by178

a scorer that was trained with in-domain data. In179

contrast, in this work, we do not assume access to180

gold data to train a scorer. Zhu et al. (2023) present181

a method to allocate queries among multiple mod-182

els, together with traditional caching, in a scenario183

with highly repetitive queries. Šakota et al. (2023);184

Shnitzer et al. (2023) optimise routing calls through185

models by predicting their respective performance.186

Our work deviates from all these as we propose to187

use continuous KD in a student model.188

Concurrent work of Stogiannidis et al. (2023)2189

also presents a calling strategy that leverages KD190

to reduce API calls to an LLM. Unlike our pa-191

per, which offers a systematic analysis of existing192

AL criteria, their work concentrates on a specific193

model design. This design resembles a hybrid of194

our Coreset and Prediction Entropy, which do not195

perform well in our experiments. Even more signif-196

icantly, their method’s advantages are only shown197

in comparison to a scenario where no student model198

is used. This overlooks trivial baselines of front-199

loading and random allocation, both of which have200

shown hard to beat in our experiments. They also201

use very simple student models (kNN or a non-202

pretrained MLP versus our smaller pretrained LM),203

whose relative success may be attributed primarily204

to the simplicity of the two datasets in their study,205

which do not necessitate generalisation beyond the206

teacher model’s predictions.207

2Made public on the same day as ours.

3 The Neural Caching Problem 208

The objective of neural caching is to optimise the 209

usage of an LLM in a scenario where labels need 210

to be generated for a stream of inputs. As we get 211

more predictions from the LLM, a student model is 212

trained on them. Our goal is to achieve the highest 213

level of service possible within a set budget of LLM 214

calls; hence, calling the LLM serves both to attain 215

high accuracy for the incoming input as well as to 216

train a student model. 217

To put it formally, our goal is to establish a map- 218

ping between elements in the input space X and the 219

corresponding labels in the space Y . We start with 220

a student model S0, and we can access a teacher 221

model T on demand. Our task is to predict labels 222

for a sequence of n examples (x1, . . . , xn) iid∼ X . 223

We retrain the student model on the labels ob- 224

tained from the LLM every f processed requests. 225

This simulates the situation where the number of re- 226

quests is uniform in time, and there is a set time to 227

retrain the model, e.g. at night. For simplicity and 228

to follow the convention in AL to retrain the model 229

from scratch (Ren et al., 2022), every time we re- 230

train the student model, we reset it to the original 231

pre-trained model and then use parameter-efficient 232

fine-tuning. Although continual learning methods 233

could be employed (Biesialska et al., 2020; Zhou 234

and Cao, 2021), we believe this is largely orthogo- 235

nal to our primary focus on policies and resetting 236

enhances the reproducibility of our analysis. Im- 237

portantly, we do not assume access to ground truth 238

(or human annotation) at any point in learning to 239

simulate a fully automatic scenario. 240

For every new input xi, we use the student model 241

Si/f to obtain the predicted label ŷS
i . Then, we 242

have the option to request the label ŷT
i from the 243

teacher model (LLM), which incurs a cost of c(xi). 244

Finally, we return the label ŷi for xi: the teacher’s 245

label if requested or the student’s otherwise. 246

The processing of the n examples is subject to 247

a budget constraint, where the total cost must not 248

exceed a fixed budget b. We assess the effective- 249

ness of our querying strategy based on the accuracy 250

of our predicted label ŷi compared to the actual 251

label yi (online accuracy) on the online examples. 252

Additionally, we measure the accuracy of the final 253

student model Sn/f on a test dataset (final accu- 254

racy). Algorithm 1 describes the process. 255
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Algorithm 1: Pseudo-code for the neural
caching algorithm with budget b, retraining
frequency f , cost per query c, data from the
LLM DLLM and an initial student S0
Donline = ∅
for xi in Xonline do

if i mod f == 0 then
Si/f = Train(DLLM)

end
ŷi = Si/f (xi)
if Call_LLM(b, xi, ŷi) and b ≥ c(xi)

then
ŷi = LLM(xi)
b = b − c(xi)
DLLM = DLLM ∪ {⟨xi, ŷi⟩}

end
Donline = Donline ∪ {⟨xi, ŷi⟩}

end
Dtest = {⟨xj , Si/f (xj)⟩ | xj ∈ Xtest}
Acconline = Evaluate(Donline)
Accfinal = Evaluate(Dtest)

3.1 Instance Selection Criteria256

We use classical instance selection criteria from AL257

for the neural caching problem. We use the term258

selecting an instance to denote using the LLM to259

annotate that example.260

Front-loading (FR) This simple approach in-261

volves using the entire budget initially by selecting262

all instances for LLM annotation. Once the bud-263

get is used up, subsequent requests are handled264

by the student model alone. As the examples are265

i.i.d. in our experiments, this strategy has the same266

expected final accuracy as random selection.267

Margin Sampling (MS) MS (Scheffer et al.,268

2001; Luo et al., 2004) selects examples with high269

margin between the top two predictions made by270

the student model271

Margin(xi) = log P (yi = k∗
1 | xi)

− log P (yi = k∗
2 | xi)

(1)272

where k∗
1 and k∗

2 are the first and second most likely273

labels, respectively, according to the distribution274

P (yi | xi) computed by the student model. This275

is a popular selection criterion for AL (Roth and276

Small, 2006; Balcan et al., 2007). Schröder et al.277

(2022) evaluated different uncertainty-based strate-278

gies with Transformer models (Devlin et al., 2019)279

and found MS to be the best-performing one in280

an offline, pool-based setting. To adapt MS – as 281

well as the other criteria – to an online setting as 282

a selection policy, we define a threshold, and only 283

examples with a margin above this threshold are 284

selected until the budget is exhausted. We refer to 285

Appendix A.1 for more details. 286

Prediction Entropy (PE) In PE (Schohn and 287

Cohn, 2000; Roy and McCallum, 2001), we select 288

instances with high entropy of the output distribu- 289

tion: 290

Entropy(xi) =
−

∑
j

P (yi = k∗
j | xi) log P (yi = k∗

j | xi) (2) 291

Query by Committee (QBC) In QBC (Seung 292

et al., 1992; Burbidge et al., 2007), we select in- 293

stances relying on the disagreement among a com- 294

mittee of models. Our committee is the set of d = 4 295

previous student models plus the current – presum- 296

ably best – student. The disagreement is quantified 297

by computing the proportion of committee mem- 298

bers contradicting the current student. 299

Coreset (CS) CS (Sener and Savarese, 2018) 300

uses an encoder to obtain the embedding repre- 301

sentation of the new instance. Then, it calculates 302

the cosine similarity between the embedding of the 303

new input and the embeddings of past examples. 304

If the similarity with respect to the most similar 305

past instance xi annotated by the LLM is below a 306

certain threshold s, then it requests further annota- 307

tion from the LLM. To obtain the embeddings, we 308

average the encoder representation across tokens, 309

as this has been proven effective in sentence em- 310

bedding benchmarks (Ni et al., 2022). Similarity 311

with previous examples has been employed in AL 312

to encourage diversity and coverage (Kim et al., 313

2006; Zeng et al., 2019). GPTCache (Bang, 2023) 314

also uses the embedding representations to decide 315

whether an incoming instance should be labelled. 316

4 Experimental Setup 317

4.1 Datasets 318

We study the proposed setup on four classification 319

tasks. The first two tasks have been commonly 320

studied in AL for NLP: ISEAR (Shao et al., 2015) 321

and RT-Polarity (Pang and Lee, 2005). The remain- 322

ing two tasks showcase harder problems where 323

factual knowledge acquired during pre-training 324

of an LLM could be highly beneficial: the fact- 325

checking dataset FEVER (Thorne et al., 2018) 326
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ISEAR RT-Polarity FEVER Openbook

Accuracy, T5+LoRA (100 gold labels) 0.51 0.85 0.53 0.23
Accuracy, T5+LoRA (5000 gold labels) 0.67 0.90 0.74 0.68
Accuracy, LLM 0.68 0.91 0.78 0.80

Average margin (LLM labels) 10.0 15.4 9.2 10.3
Average margin when wrong (LLM labels) 4.2 10.3 6.9 5.3

Table 1: The accuracy of the LLM is similar to training the simple model with 5000 gold labels.

and the question-answering dataset Openbook (Mi-327

haylov et al., 2018). We split all datasets into online328

and test portions (80%-20%, except for Openbook,329

as it has fewer samples). The datasets are balanced.330

ISEAR (Shao et al., 2015) annotates personal331

reports for emotion (classes: joy, fear, shame, sad-332

ness, guilt, disgust, anger; 7666 examples).333

RT-Polarity (Pang and Lee, 2005) provides sen-334

timent polarity labels for movie reviews (classes:335

positive, negative; 10662 examples).336

FEVER (Thorne et al., 2018) is a fact-checking337

dataset (classes: true, false; 6612 examples) with338

claims that can be checked with 1-3 sentences from339

Wikipedia.340

Openbook (Mihaylov et al., 2018) is a challeng-341

ing question-answering dataset modelled after open342

book exams for assessing human understanding of343

a subject. Each instance consists of a multiple344

choice question (classes: A, B, C, D) and includes345

one fact that can help answer it. The full dataset346

consists of 5957 data points; we selected 5457 for347

the online set and 500 for testing.348

4.2 Annotation by LLM349

While we are interested in the online caching sce-350

nario, to facilitate comparisons between our meth-351

ods and ensure replicability in future work, we352

create a dataset in which we obtain LLM predic-353

tions for all data points; this dataset is then used to354

simulate the online setup.355

We generate soft labels using OpenAI’s356

text-davinci-003, an InstructGPT-based357

model (Zhan et al., 2022). For each task, we358

design a prompt that describes the task and the359

possible classes. Our prompts do not contain any360

in-context examples (zero-shot), but we use a361

small part of the dataset (up to 10 examples) for362

prompt engineering.363

On all datasets, we observe that the LLM 364

achieves better accuracy than the smaller model 365

trained on 5000 gold labels, suggesting that KD 366

would be useful in these datasets (Table 1). In our 367

benchmark, we store the log-probabilities of the 368

labels. We note that the average margin for the 369

generated labels is substantially lower when the 370

predicted label is wrong; we observe with addi- 371

tional experiments that the LLM annotations are 372

well calibrated (Figure 4). We release our bench- 373

mark with the generated labels to encourage further 374

work on the neural caching problem. 375

4.3 Experiment Details 376

We run all our experiments with three random 377

seeds, which also determine the ordering of ex- 378

amples; we present the average scores. For sim- 379

plicity, we use a retraining frequency f = 1000 380

and a constant cost per query c(xi) = 1. To avoid 381

a cold-start, we train the initial student model S0 382

with N = 100 (ISEAR, RT-Polarity) or N = 1000 383

(FEVER, Openbook) data points from the LLM; 384

we choose N so that S0 is better than random 385

choice. For the student model, we use T5base (Raf- 386

fel et al., 2020) as the backbone model; we freeze 387

the model weights and add LoRA adapter layers for 388

a parameter-efficient fine-tuning (Hu et al., 2022). 389

We fine-tune the student model with the cross- 390

entropy loss using the log-probabilities assigned by 391

the teacher to each class. Using hard labels seems 392

to work almost as well (Table 9). We split the 393

accumulated data from the LLM into training and 394

validation sets, and train each student from scratch 395

for 30 epochs with early stopping with patience of 396

five epochs. The rest of the hyperparameters can 397

be found in Appendix A. 398

5 Experiments 399

We first present our results and then their analysis. 400

To report accuracy across budgets, we use the cor- 401

responding Area Under the Curve (AUC) divided 402
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ISEAR RT-Polarity FEVER Openbook Average

Random 0.640 0.886 0.704 0.662 0.723

Margin Sampling 0.666 0.896 0.725 0.703 0.748
Query by Committee 0.656 0.889 0.725 0.687 0.739

Table 2: Online accuracy (AUC) for neural caching with
no student retraining.

by the budget range, thus obtaining an average ac-403

curacy.404

5.1 Neural Caching without Student405

Retraining406

We first study a simplified version of neural407

caching, where the student model is not retrained408

on new data points. This is a practical scenario, as409

retraining creates extra overhead for the application410

provider (e.g., consider a setting where the student411

is run on a portable device, which is not powerful412

enough to support retraining).413

We adapt the AL instance selection criteria in the414

following way. Given a criterion C, we calculate415

the respective values from the previous outputs of416

the student and call this list the history Ĉ. If we417

have a remaining budget b and n remaining online418

instances, we use as a threshold for an incoming419

instance the b
n -th percentile of the history Ĉ. The420

best possible scenario would imply having oracle421

threshold values for each budget (i.e. as if we had422

access to the full dataset offline). However, in423

additional experiments, we found that the above424

rule yields very similar scores.425

To use QBC in this setup, we simulate that we426

have four previous students trained on subsets of427

the data. For example, if the student is trained428

on N = 1000 examples, the previous students429

are trained on 900, 800, 700, and 600 data points,430

respectively. We find that MS yields results very431

similar to PE and that Coreset is similar to Random.432

To ease visualising the results, here we omit PE and433

Coreset.434

Table 2 and Figure 2 contain the results when435

we train the initial student with N = 1000 dat-436

apoints annotated by the LLM. Our experiments437

with different initial budgets N yield similar re-438

sults (Table 8 in Appendix), and Coreset performs439

poorly even with different encoders.440

We find that MS and PE are the best-performing441

methods on all datasets and across all the initial442

student models, followed by QBC, which outper-443

forms the baseline of random selection. Given the444

simplicity of these methods, these results make a445

strong case for using AL-based selection methods, 446

especially MS. Unlike QBC, MS does not require 447

storing multiple models and performing inference 448

with each of them. 449

5.2 Neural Caching with Student Retraining 450

We now turn to the complete setup proposed in 451

Section 3, in which the selected instances are used 452

to retrain a student model with some periodicity. 453

This creates the incentive to spend the budget early 454

to get a more proficient student model as soon as 455

possible. To observe this effect, we include a ran- 456

dom baseline with a uniform sampling rate. This 457

suggests waiting longer for informative examples 458

to arrive counterweights the benefits of getting a 459

strong student as quickly as possible. We select 460

thresholds to encourage spending more of the bud- 461

get early on (see Appendix A.1). 462

We show the results averaged across all datasets 463

in Figure 3 and per-dataset in Figure 5. We observe 464

that both MS and QBC substantially outperform the 465

other methods. Coreset (embedding-based) does 466

badly in all the studied setups and encoders (Ta- 467

ble 11). Table 3 summarises the results. 468

5.3 Analysis 469

Hard examples with noisy labels. We have ob- 470

served in our experiments that prioritising harder 471

instances for teacher annotation leads to clear gains 472

in online accuracy. However, as discussed in the 473

introduction, LLM accuracy may be significantly 474

affected by the increased ‘complexity’ of an ex- 475

ample, which can inflate the proportion of noisy 476

annotations in the data on which the student is 477

trained (see Figure 4). This problem is known in 478

KD as confirmation bias (Arazo et al., 2020; Liu 479

and Tan, 2021). Previous results from offline KD 480

suggest that this type of confirmation bias can be 481

mitigated by avoiding the hardest instances (Baykal 482

et al., 2023), improving the chances that the teacher 483

model makes a correct prediction. However, we 484

observe that the most significant advantage of the 485

LLM with respect to the student in terms of accu- 486

racy lies in these samples that are deemed hard by 487

the student (leftmost part of the plot in Figure 4); 488

since we are optimising the online accuracy, the 489

trade-off between providing hard or correct labels 490

may be different in our online case than in the of- 491

fline scenario. Given the above, we hypothesise 492

that MS and QBC would be more negatively af- 493

fected by the confirmation bias than front-loading, 494

which does not prioritise hard examples. To test 495
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Figure 2: Accuracy curve with respect to budgets for neural caching without student retraining.

ISEAR RT-Polarity FEVER Openbook Average

Random 0.614 0.872 0.723 0.703 0.728
Front-loading 0.637 0.879 0.734 0.731 0.745
Coreset 0.637 0.878 0.715 0.726 0.739
Entropy 0.657 0.886 0.728 0.693 0.741
Margin Sampling 0.658 0.889 0.753 0.726 0.757
Query by Committee 0.650 0.887 0.748 0.737 0.755

Table 3: Online accuracy (AUC) for neural caching with student retraining.

1000 1500 2000 2500 3000 3500
Budget (number of LLM calls)

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

 (o
nl

in
e)

Average across all datasets

Coreset
Entropy
Margin Sampling
Query by Committee
Front-loading
Random

Figure 3: Accuracy curve with respect to budgets, in the
neural caching problem with student retraining. Error
lines indicate variance.

0 2 4 6 8 10 12 14 16
Margin of the student

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Student
Teacher

0 1000 2000 3000 4000
Budget (number of LLM calls)

0.70

0.72

0.74

0.76

0.78

0.80

Ac
cu

ra
cy

 o
f t

he
 L

LM
 c

al
ls

Margin Sampling
Query by Committee
Random

Figure 4: On the left, we order data points by their mar-
gin and plot the accuracy of their respective labels gen-
erated by the student and teacher. We observe that the
greatest advantage of using the labels from the teacher
comes from examples with small margins. On the right,
the accuracy of the labels generated by the LLM calls in
neural caching with no student retraining. We observe
that MS and QBC are more likely to generate wrong
labels. We focus on Openbook for both plots.

this hypothesis, we designed an experiment to put 496

an upper bound on the effect of wrong LLM annota- 497

tions. For each strategy, we only retrain the student 498

model on correct labels, simulating an oracle that 499

discards incorrect examples. Table 5 shows the 500

absolute improvements in the online and final accu- 501

racy with respect to the values obtained without the 502

oracle (Table 3 and 4). We observe moderate abso- 503

lute improvements, but surprisingly MS and QBC 504

do not seem to improve more than front-loading, 505

suggesting that the hypothesis is wrong and that the 506

impact of confirmation bias is somewhat limited 507

and - what is surprising - similar across strategies. 508

As an additional test, we analyse the subset of 509

test examples where the teacher is incorrect. If 510

confirmation bias is a major issue for MS and QBC 511

than for front-loading, we would expect that they 512

are more prone to reproducing the teacher’s errors. 513

Again, we do not find any substantial differences 514

between these two strategies vs front-loading (Ta- 515

ble 10). 516

Online accuracy vs. final accuracy. Taking a 517

look at the accuracy of the final student (Table 4), 518

we observe that it is generally consistent with the 519

online accuracy (Table 3). However, MS has a low 520

final accuracy on FEVER while having the best 521

online accuracy on that dataset, confirming that in 522

some tasks, calling the LLM to obtain labels for 523

hard examples may improve the online accuracy 524

while not necessarily improving the student. This 525

result emphasises the differences between our set- 526
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ISEAR RT-Polarity FEVER Openbook Average

Front-loading 0.598 0.879 0.686 0.647 0.702
Coreset 0.599 0.879 0.680 0.641 0.700
Entropy 0.608 0.885 0.682 0.647 0.705
Margin Sampling 0.609 0.884 0.678 0.634 0.701
Query by Committee 0.609 0.882 0.687 0.646 0.706

Table 4: Final accuracy (AUC) of the last student model for neural caching with student retraining.

∆Online ∆Final

Front-loading 0.009 0.019

Margin Sampling 0.008 0.022

Query by Committee 0.008 0.018

Table 5: Absolute improvements for the online and
final accuracy using an oracle that allows us to discard
instances with wrong labels from the LLM, averaged
across datasets. The improvements are with respect to
values from Table 3 and 4.

Openbook FEVER

N=1000 N=2000 N=3000 N=500 N=1000 N=1500

Front-loading 0.731 0.769 0.751 0.716 0.734 0.734
Margin Sampling 0.726 0.777 0.764 0.718 0.753 0.751
Query by Committee 0.737 0.786 0.779 0.722 0.748 0.755

Table 6: Online accuracy (AUC) of different selection
criteria with different initial student models S0.

up and the setting normally studied in AL.527

5.4 Robustness of the Findings528

Vary initial training (S0). We study the effect of529

the quantity of LLM-annotated data on which the530

first student model is trained, focusing on the setup531

with retraining (Table 6). We consider the two532

more challenging tasks, FEVER and Openbook.533

We find that QBC performs best overall, and the534

performance of MS is more sensitive to the initial535

budget. This observation suggests that better deci-536

sion criteria for transitioning from a front-loading537

regime to MS can be beneficial; we leave this for538

future exploration.539

Higher retraining frequency f . We repeat neu-540

ral caching experiments, setting this time a higher541

frequency of retraining f = 100; this results in542

much longer runs as the student model has been543

retrained an order of magnitude more times. Ta-544

ble 7 shows the results. We observe that results are545

consistent and very similar to those with a lower546

frequency of retraining (Table 3).547

ISEAR RT-Polarity FEVER Openbook Average

Front-loading 0.637 0.879 0.734 0.731 0.745
Margin Sampling 0.661 0.892 0.750 0.728 0.758
Query by Committee 0.657 0.890 0.751 0.740 0.759

Table 7: Online accuracy (AUC) for neural caching with
retraining frequency f = 100.

6 Conclusions 548

In this work, we have studied how instance selec- 549

tion criteria from AL behave when they are used 550

to decide in real time whether we should perform 551

an LLM call or use a student model that has been 552

trained on previous LLM predictions. In the sce- 553

nario where we are not retraining the student model, 554

Margin Sampling performs the best, across differ- 555

ent datasets. In the scenario where we retrain the 556

student model with some time periodicity, Query 557

by Committee is the most robust option. In our ex- 558

periments we observe that, while Margin Sampling 559

outperforms the front-loading baseline on harder 560

tasks, it is more sensitive to the initial budget spent 561

to train the student model S0. 562

We find that the embedding-based strategy (Core- 563

set) consistently performs poorly across different 564

encoders; it is the only LLM caching approach 565

which is known to be adopted by practitioners (e.g., 566

GPTCache (Bang, 2023)). We believe these types 567

of strategies could be useful in certain contexts, e.g. 568

multiple near-identical calls to an LLM, a scenario 569

which has not been the focus of this work.3 570

Our results suggest that (i) there is room for 571

smart LLM query allocation in the context of con- 572

tinuously distilling an LLM into a student model 573

and (ii) previous literature in Active Learning can 574

transfer well to this setup. We believe that online 575

Knowledge Distillation could play a key role in 576

caching LLMs and saving unnecessary calls to ex- 577

pensive models. 578

3FEVER does contain paraphrases or statements entailing
each other but these constitute only a small fraction of the
dataset.
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Limitations579

Our experiments assume that there is no develop-580

ment set available for each task, which could help581

improve the results of non-baseline methods by in-582

troducing a task-specific hyperparameter for thresh-583

olds.584

Our experiments refer to a particular configura-585

tion with one student model and one LLM. We586

leave for future work configurations with other587

models. We also leave for future work experiments588

on text generation, which would require using text-589

based AL criteria.590

In this work, we focused on a stationary (i.i.d.)591

stream of requests. In practice, the distribution of592

requests is likely to change over time (Cacciarelli593

and Kulahci, 2023). As suggested by the online AL594

literature (Bifet and Gavaldà, 2007), this should595

further increase the gap between the AL-based ap-596

proaches and static strategies, e.g., front-loading.597

In those cases, we would expect improvements in598

both online and final accuracy.599

Ethics statement We anticipate that our pro-600

posed approach will be advantageous for smaller601

companies and will enhance user privacy by limit-602

ing the amount of data shared with API providers.603

However, we recognise the potential for misuse of604

this technology. For instance, it might contravene605

the service policies of API providers and poten-606

tially could decrease the revenue of creators if they607

are compensated for the usage of their content by608

the API provider. Furthermore, while the original609

model provided through the API may have been610

fine-tuned to diminish harmful biases and tailored611

for fairness across diverse user groups, there is a612

possibility that the student model derived through613

our process may not inherit these qualities.614
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A Experimental details and901

hyperparameters902

Student model We use the T5 implementation903

from Huggingface’s transformers library. We904

use LoRA adapters (Hu et al., 2022), as they have905

been considered one of the most parameter-efficient906

architectures in few-shot settings (Liu et al., 2022).907

Following Ponti et al. (2023), we add a LoRA908

adapter to the query, key, value and output weights909

in each self-attention layer of T5. We set the LoRA910

rank to r = 16, and the scaling to α = 0.25.911

We use learning rate η = 5 · 10−4, training batch912

size m = 16 and weight decay λ = 0.01. We913

validate this hyperparameter choice based on ex-914

periments using the soft labels from the teacher.915

Adaptation of strategies For Entropy, we nor-916

malise before computing it by applying a softmax917

over the classes.918

Reporting of results In order to report accuracy919

across budgets, we use the corresponding Area Un-920

der the Curve (AUC) divided by the budget range.921

By budget range, we refer to the biggest budget922

minus the smallest one for that task. Intuitively,923

this gives us an average accuracy across budgets.924

Normalisation, pre-processing and evaluation925

We do not apply normalisation or pre-processing926

before using the T5 tokeniser. This can be con-927

sulted in our code.928

A.1 Threshold values929

To encourage an early expense of the budgets in the930

setting with student retraining, we have selected931

threshold values to ensure initially a higher propor-932

tion of calls for LLM annotation (PE=0.5, MS=5,933

QBC=4, CS=0.9); we have selected these values934

so that the first student model selects at least 50%935

of instances for LLM annotation on RT-Polarity.936

However, we observe very similar results when we937

use the empirical threshold from Section 5.1.938

A.2 Labels from the LLM939

We use a budget for LLM annotation of $200. All940

the labels are obtained during May 2023. Since the941

OpenAI API can only return up to the five most942

likely tokens, we add a bias b = 100 to the tokens943

that represent each class:944

• ISEAR: ’ joy’, ’ fear’, ’ anger’, ’ sadness’, ’945

disgust’, ’ shame’, ’ guilt’946

• RT-POLARITY: ’ positive’, ’ negative’947

• FEVER: ’ true’, ’ false’ 948

• OPENBOOK: ’ A’, ’ B’, ’ C’, ’ D’ 949

If a class is not among the five most likely tokens, 950

it gets assigned in our experiments a log probability 951

of -100. 952

A.3 Computational resources 953

T5base has 220 million parameters. We addition- 954

ally added LoRA modules, which comprise 3.5 mil- 955

lion parameters. Only LoRA modules are trained, 956

making it a lightweight student overall. For our ex- 957

periments, we used clusters with NVIDIA Tesla 958

V100-SXM2-16GB and NVIDIA A100-SXM4- 959

40GB. Runs with frequency f=100 take between 1 960

and 4 hours to run. 961

B Additional results 962

B.1 Neural caching with no student retraining 963

We observe that Margin Sampling is the best- 964

performing method on all datasets and across all 965

the initial student models, followed by Query by 966

Committee and outperforming the baseline of ran- 967

dom selection (Table 8). The gap between Margin 968

Sampling and the baseline widens as we have a 969

better initial student. 970

B.2 Neural caching with retraining 971

Figure 5 shows the online accuracy per-dataset in 972

the setup with retraining of the student. 973

B.3 Soft labels 974

We conduct experiments to study the effect of us- 975

ing soft labels (using the logprobabilities for each 976

class from the LLM) or hard labels (only using the 977

first class from the LLM). To do this, we train a 978

student model on multiple budgets and obtain the 979

final accuracy. We observe this has some gains in 980

FEVER (Table 9). 981

B.4 Effect of confirmation bias in neural 982

caching with retraining 983

To study the confirmation bias, we select the sam- 984

ples from the test dataset where the LLM produces 985

a wrong answer. If the model performance is 986

affected by the noise of the labels it was trained 987

on, it is expected it will reproduce the mistakes 988

of the LLM; therefore, we would expect that it 989

will have a lower score in this subset of the test 990

dataset. We do not find that Margin Sampling and 991

Query by Committee have lower performance 992
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N ISEAR RT-Polarity FEVER Openbook Average

500

Random 0.629 0.882 0.679 0.567 0.689
Margin Sampling 0.656 0.895 0.698 0.587 0.709
Query by Committee 0.644 0.887 0.693 0.568 0.698
Entropy 0.657 0.895 0.698 0.586 0.709
Coreset (T5) 0.633 0.886 0.669 0.570 0.689
Coreset (SimCSE) 0.636 0.887 0.682 0.569 0.694
Coreset (MPNet) 0.632 0.886 0.675 0.566 0.690

1000

Random 0.640 0.886 0.704 0.662 0.723
Margin Sampling 0.666 0.896 0.725 0.703 0.748
Query by Committee 0.656 0.889 0.725 0.687 0.739
Entropy 0.665 0.895 0.726 0.700 0.747
Coreset (T5) 0.643 0.887 0.699 0.665 0.724
Coreset (SimCSE) 0.646 0.888 0.704 0.661 0.725
Coreset (MPNet) 0.641 0.888 0.704 0.661 0.724

2000

Random 0.652 0.884 0.724 0.729 0.747
Margin Sampling 0.673 0.896 0.751 0.764 0.771
Query by Committee 0.667 0.891 0.745 0.760 0.766
Entropy 0.672 0.893 0.747 0.756 0.767
Coreset (T5) 0.656 0.886 0.719 0.733 0.749
Coreset (SimCSE) 0.657 0.888 0.725 0.728 0.750
Coreset (MPNet) 0.655 0.888 0.724 0.727 0.749

3000

Random 0.648 0.885 0.738 0.734 0.752
Margin Sampling 0.669 0.895 0.757 0.767 0.772
Query by Committee 0.665 0.890 0.758 0.773 0.771
Entropy 0.664 0.893 0.752 0.760 0.767
Coreset (T5) 0.651 0.885 0.733 0.740 0.752
Coreset (SimCSE) 0.652 0.885 0.735 0.736 0.752
Coreset (MPNet) 0.653 0.885 0.735 0.732 0.751

Table 8: Online accuracy (AUC) for neural caching without retraining.

than front-loading in this subset of the dataset993

(Table 10).994

995

B.5 Experiments with different encoders996

To test the validity of results for Coreset, we997

repeat experiments from Section 5.2 with998

encoders SimCSE (Gao et al., 2021) and MP-999

Net (Song et al., 2020). For SimCSE, we1000

use sup-simcse-bert-base-uncased from1001

the project repository.4 For MPNet, we use1002

sentence-transformers/all-mpnet-base-v21003

from Huggingface. We use threshold = 0.9 for all1004

the methods and retraining frequency f = 100.1005

We show our results in Table 11. We observe that1006

front-loading outperforms Coreset with the three1007

4https://github.com/princeton-nlp/SimCSE

encoders. 1008

C Prompts used 1009

The following are the prompts we used when call- 1010

ing the LLM. We have marked in blue one example, 1011

and in red the expected answer. 1012

• ISEAR: This is an emotion classification task. 1013

Only answer one of: ’joy’, ’fear’, ’anger’, 1014

’sadness’, ’disgust’, ’shame’, ’guilt’. 1015

INPUT: During the period of falling in love, 1016

each time that we met and especially when we 1017

had not met for a long time. 1018

OUTPUT: joy 1019

• RT-Polarity: This is a sentiment classification 1020

task for movie reviews. Only answer either 1021

’positive’ or ’negative’. 1022
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Figure 5: Accuracy curve with respect to budgets, in the neural caching problem with student retraining. Error lines
indicate variance.

ISEAR RT-Polarity Openbook FEVER Average

Soft labels 0.598 0.880 0.617 0.670 0.691
Hard labels 0.598 0.879 0.616 0.659 0.688

Table 9: Final accuracy (AUC) of the last student model, taking either soft or hard labels from the LLM.
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ISEAR FEVER Openbook

Front-loading 0.171 0.513 0.339
Margin Sampling 0.180 0.497 0.340

Query by Committee 0.178 0.512 0.344

Table 10: Accuracy (AUC) over the subset of the test
dataset where the LLM produces wrong labels for the
last student model for neural caching with student re-
training.

FEVER Openbook

Front-loading 0.734 0.731
Coreset (SimCSE) 0.707 0.726
Coreset (MPNet) 0.716 0.724

Coreset (T5) 0.715 0.726

Table 11: Online accuracy (AUC) for neural caching
with student retraining.

INPUT: if you sometimes like to go to the1023

movies to have fun , wasabi is a good place to1024

start .1025

OUTPUT: positive1026

• FEVER: This is a fact-checking task. Only1027

answer either ’true’ or ’false’.1028

INPUT: On June 2017, the following claim1029

was made: Jeb Bush is former President1030

George H. W. Bush’s daughter. Q: Was this1031

claim true or false?1032

OUTPUT: false1033

• Openbook: This is a multiple-choice test.1034

You are presented a fact and a question. Only1035

answer one letter, producing no more output.1036

FACT: the sun is the source of energy for phys-1037

ical cycles on Earth1038

QUESTION: The sun is responsible for1039

A: puppies learning new tricks1040

B: children growing up and getting old1041

C: flowers wilting in a vase1042

D: plants sprouting, blooming and wilting1043

OUTPUT: D1044

D Additional information about1045

datasets1046

Datasets used RT-Polarity, FEVER and1047

Openbook were relased as NLP benchmarks1048

for classification. While ISEAR was orig-1049

inally released as part of a psychological1050

study on emotion across cultures, it has been1051

used as an Active Learning benchmark in the 1052

past (Ein-Dor et al., 2020; Bastos and Kaul, 1053

2021). 1054

We did not check if these datasets contain any 1055

information that names or uniquely identifies 1056

individual people or offensive content because 1057

the data we use comes from established clas- 1058

sification/multiple choice benchmarks. A cus- 1059

tom filtering or modification of the data would 1060

hamper comparability with other works using 1061

these benchmarks. 1062

Dataset generated We release the soft la- 1063

bels from the LLM under the CC BY 4.0 1064

DEED license. We refer to the original data 1065

sources for documentation such as coverage 1066

of domains, languages or linguistic phenom- 1067

ena. 1068
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