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Abstract

Digital agents require diverse, large-scale UI trajectories to generalize across real-1

world tasks, yet collecting such data is prohibitively expensive in both human2

annotation, infra and engineering perspectives. Motivated by the view that environ-3

ment diversity exposing agents to varied and novel UI states is key to enhancing4

agent abilities, we introduce UI-SIMULATOR, a scalable paradigm that gener-5

ates structured UI states and transitions to synthesize training trajectories at scale.6

Our paradigm integrates a digital world simulator for diverse UI states, a guided7

rollout process for coherent exploration, and a trajectory wrapper that produces8

high-quality and diverse trajectories for agent training. We further propose UI-9

SIMULATOR-GROW, a targeted scaling strategy that enables more rapid and10

data-efficient scaling by prioritizing high-impact tasks and synthesizes informa-11

tive trajectory variants. Experiments on WebArena and AndroidWorld show that12

UI-SIMULATOR rivals or surpasses open-source agents trained on real UIs with13

significantly better robustness, despite using weaker teacher models. Moreover,14

UI-SIMULATOR-GROW matches the performance of Llama-3-70B-Instruct15

using only Llama-3-8B-Instruct as the base model, highlighting the potential16

of targeted synthesis scaling paradigm to continuously and efficiently enhance the17

digital agents. Code and data will be released upon acceptance.18
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1 Introduction19

Large Language Models (LLMs) have emerged as the backbone of digital agents that follow user20

instructions and interact with diverse User Interface (UI) environments to accomplish complex tasks,21

such as daily web and mobile navigation [Deng et al., 2023, Koh et al., 2024, Zhou et al., 2024]22

and computer use tasks [Xie et al., 2024]. A persistent bottleneck in training LLMs to become23

strong digital agents is the scarcity of large-scale, high-quality UI environment training trajectories.24

Collecting such data demands extensive human effort: for instance, Xie et al. [2024] report that25

designing 360+ realistic computer-use tasks, which usually involve long, complex sequences of UI26

actions, requires more than 1,800 human hours. This cost severely limits the scalability of agent27

development and has sparked interest [Ou et al., 2024, Murty et al., 2024, Sun et al., 2024, Pahuja28

et al., 2025] in automatic synthesis of training trajectories.29

When applying the automatic trajectory synthesis, what factors could significantly impact performance30

of the trained agent policies across different UIs? Motivated by Cobbe et al. [2020] and Kimi-31

K2 [Kimi et al., 2025], we argue that environment diversity would be a chief component, as exposing32

an agent to a wide variety of UI environments would increase its robustness and generalizability to33

unfamiliar tasks at test time. However, from infra and engineering aspects, deploying parallel real UI34

environments faces severe bottlenecks due to high resource demands, network instability, and the35

lack of native distributed support [Lai et al., 2025].36

We notice that world models which model the environment states and their transitions [Munro, 1987,37

Ha and Schmidhuber, 2018] may offer a promising solution. If the world models enable the generation38

of diverse synthetic UI states, it will allow digital agents to immerse themselves in rich simulations39

and improve their planning capabilities. How can such digital world models be constructed? We argue40

that LLMs can serve as the foundation of these simulators. Most digital UI environments, including41

web, mobile, and computer, can be represented as structured textual accessibility trees encoding42

visual, spatial, and dynamic states. Pre-training on front-end code and procedural knowledge makes43

LLMs suitable as a backbone model to synthesize reasonable UI states and state transitions triggered44

by user actions.45

In this paper, we introduce UI-SIMULATOR, a scalable UI trajectory synthesis paradigm for digital46

agents powered by an LLM-based digital world simulator. Given summaries of prior UI states and the47

next action, our digital world simulator generates future UI states in a hierarchical format without48

any additional fine-tuning. Each UI state encodes textual content, spatial coordinates, and dynamic49

attributes (e.g., focus status), organized into an accessibility tree structure that captures hierarchical50

relationships among regions and elements. To collect high-quality trajectories with UI-SIMULATOR,51

we run a step-wise guided rollout process where a teacher agent explores UIs generated by the world52

simulator under step-wise task control that prevents incoherent actions and promotes diverse, context-53

grounded behavior conditioned on prior actions and current state. Finally, a trajectory wrapper turns54

the rollouts into available training trajectories with user instructions, ground-truth UI actions, and55

step-wise reasoning.56

Beyond simply blindly scaling up trajectory sizes with UI-SIMULATOR scaling, we explore how57

to strategically and efficiently synthesize data to accelerate LLM agent improvement. We introduce58

UI-SIMULATOR-GROW, a targeted scaling paradigm that achieves faster gains using fewer but more59

contributive trajectories. At each iteration, UI-SIMULATOR-GROW selects target tasks that offer60

the greater learning potential based on teacher-forcing loss signals from dynamically constructed61

validation sets, and synthesizes diverse trajectory variants to guide the next training iteration.62

We evaluate UI-SIMULATOR on two widely used benchmarks, WebArena [Zhou et al., 2024] and63

AndroidWorld [Rawles et al., 2024], which cover web and mobile UI domains. UI-SIMULATOR64

achieves very competitive performance among all open-source agents of comparable model size.65

Notably, UI-SIMULATOR is solely used to synthesize training resources with a weaker teacher66

model, GPT-4o-mini, whereas prior methods rely on the more powerful GPT-4o teacher model.67

We also find that UI-SIMULATOR yields greater robustness than other baselines when evaluated on68

perturbed UI environments. Moreover, UI-SIMULATOR even outperforms variants trained directly69

on real downstream environments using the same trajectory synthesis pipeline. Further, our targeted70

scaling paradigm UI-SIMULATOR-GROW using only Llama-3-8B-Instruct base model matches71

Llama-3-70B-Instruct, and drives steeper performance gains on WebArena using only 66% of72

the original training trajectories, demonstrating significantly improved data efficiency.73
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2 Related Works74

World Models. Extensive prior work has explored learning dynamics models and using them to75

train decision-making policies [Werbos, 1987, Munro, 1987, Ha and Schmidhuber, 2018]. Recently,76

the structural consistency of videos across tasks, environments, and embodiments has fueled progress77

in large-scale video pretraining for world models [Hafner et al., 2020, OpenAI, 2024, Parker-Holder78

et al., 2024]. LLMs have also emerged as potential world models due to their rich encoding of79

physical and textual knowledge from massive corpora. Hao et al. [2023], Gu et al. [2024], Chae80

et al. [2025] explore the use of LLMs as both reasoning agents and inference-time world models81

that proactively identify optimal actions. In our paper, we emphasize more scalable, high-quality82

UI trajectory synthesis and investigates the broader potential of digital world simulation for agent83

training. While prior work such as Fang et al. [2025], Gao et al. [2025] also utilizes LLMs as world84

models for agent training, our approach emphasizes greater efficiency of building digital simulators.85

Instead of training a dedicated world model, which can be costly due to the need for large-scale data,86

we directly leverage the LLM’s prior knowledge, requiring little to no experience from downstream87

task environments. Moreover, our method supports a broader domain scope, extending beyond web88

interfaces to include mobile UIs. More importantly, we also introduce a targeted scaling paradigm89

that efficiently synthesizes the most contributive trajectories at each iterations, enabling faster agent90

improvement with significantly fewer resources.91

Synthetic Data for Digital Agent Training. To overcome the bottleneck of limited high-quality92

human-annotated UI trajectories, recent efforts focus on scalable synthesis of training data for digital93

agents. Synatra [Ou et al., 2024] and AgentTrek [Xu et al., 2025] address this challenge by converting94

indirect human-readable knowledge (e.g., web tutorials and manuals) into direct task demonstrations,95

enabling large-scale supervision without manual annotation. NNetNav [Murty et al., 2024], OS-96

Genesis [Sun et al., 2024], InSTA [Trabucco et al., 2025], and Explorer [Pahuja et al., 2025] adopt97

unsupervised approaches that autonomously explore real-world websites and retroactively annotate98

action sequences with suitable instructions. Different from these methods, which rely solely on prior99

experience in real digital environments, UI-SIMULATOR leverages an LLM-based digital world model100

to simulate diverse, plausible, and previously unseen UI states which enable broader generalization101

and more robust agent training.102

3 Digital World Models in UI-SIMULATOR103

In this section, we introduce how to build a digital world simulator fueled by LLMs in UI-SIMULATOR104

trajectory synthesis paradigm. The simulator construction process can be applied to a variety of105

digital and even non-digital agent tasks.106

3.1 Formulation107

We consider the task of simulating UI environment dynamics to support agent training. Let st108

denote the full UI environment state at timestep t, ot be the corresponding observation visible to the109

agent, and at be the corresponding action taken by the agent. Each element e ⊂ st is associated110

with a bounding box bbox(e) = (xe
min, x

e
max, y

e
min, y

e
max), representing its position on the page. The111

environment dynamics are governed by a transition function st+1 = T (st, at), where T is either112

the LLM used for digital world simulatorMLLM or rule-based transition function. The agent then113

receives a new observation ot+1, computed by extracting the visible UI elements from st+1 based on114

the positions (see §A).115

3.2 (Retrieval-Free) Simulation116

To bridge the gap between our digital world simulation and real-world UI transition, we design117

a hybrid approach that considers rule-based and model-based transitions. Concretely, for most118

UI actions, our framework empowers the LLMMLLM to generate realistic and diverse next-state119

transitions, serving as the core engine behind the simulator’s ability to produce valid and imaginative120

UI states. The transition follows a multi-step pipeline that guides the world simulator to anticipate121

outcomes, infer coherent and diverse next states, and render them into a structured format.122
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Figure 2: Overall process of how the retrieval-free/-augmented simulators predict the next UI state.

Predict an Overview of the Next State. The first step in modeling the effect of an action is to123

generate a high-level overview of the next state, conditioned on the current state and the selected124

action. For example, if the current state is a shopping website and the current action is typing the125

term sneakers into the search box and presses enter, the predicted overview of the next state would126

be, “a search results page for the keyword sneakers”.127

Generate Rich Draft in Natural Language. Based on the predicted overview, the LLM generates128

diverse and semantically rich content in natural language to populate the simulated webpage. The129

output of this step is intentionally unstructured and unconstrained by a fixed format, which encourages130

expressiveness and richness. The generated draft includes detailed descriptions of each element’s131

attributes, such as the element’s tag and content description, but without position information. For132

instance, a draft for a Reddit thread page might contain structural sections such as a heading section133

and a navigation section, as well as informative sections including the thread title, interaction area134

(e.g., upvote and comment buttons), and the main body of the post. This organization helps produce135

realistic and contextually rich simulated UI states in the next step.136

Convert Unstructured Draft into Structured Format. We treat the LLM as a style transfer model137

that converts the unstructured natural language draft into a well-defined structured format, which138

can be directly used as training states in agent trajectories. During this process, coordinates are also139

automatically assigned to each UI element to complete the specification of st+1.140

Note that some actions do not result in a completely new page but rather alter the view of the current141

state, e.g., a scroll action reveals content initially off-screen. To simulate deterministic actions with142

relatively fixed outcomes, we adopt rule-based transitions. See Appendix C for details.143

3.3 Retrieval-Augmented Simulation144

A common and realistic way to evaluate agent capability is by assessing how quickly it can adapt145

to a new test environment after limited experiences. Beyond the setting where no prior knowledge146

about the test environment is available, we also consider scenarios where a small amount of the147

test environment experience is known. For this scenario, we also introduce retrieval-augmented148

simulation, which conditions UI generation on a few real examples from the target environment.149

Compared to relying solely on the LLM world simulator’s internal knowledge, this approach allows150

the world simulator to generate UI environments that not only resemble the target domains but also151

support a diverse range of tasks grounded in those environments. See Appendix D for more details.152

4 Scalable Synthetic Training Trajectory Collection in Simulated World153

In this section, we detail how LLMs are used to autonomously and continuously explore the digital154

world simulated by the LLM-based world model, generating high-quality training trajectories through155

guided rollouts and a final trajectory wrapper.156

4.1 Overview and Formulation157

We formulate our data collection process in two stages. The first stage is an instruction-free rollout158

process, where a teacher agent interacts with the LLM-based digital world simulator to generate159
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synthetic trajectories without conditions on any predefined user instruction G. This goal-free setup160

allows more flexible and executable trajectory synthesis unconstrained by specific task types. At161

each timestep t, given the current environment state st, observation ot, and prior action history Ht =162

[a0, a1, . . . , at−1], the teacher agentMTeacher samples the next action as at ∼MTeacher(ot, Ht). The163

environment then transitions to the next state st+1 via the world simulator LLMMLLM prediction164

and deterministic static rules. The teacher continues the rollout until it determines that a semantically165

coherent task has been completed. In the end, we retrospectively derive a user task instruction G166

that summarizes the intent underlying the completed trajectory. Each collected trajectory is then167

represented as τ = [o0, a0, o1, a1, . . . , oT , aT ], where T is the trajectory length.168

Scaling the collection methods across multiple environments and teacher rollouts yields a large,169

diverse training dataset for downstream UI agent policy learning. However, this procedure still170

remains two critical questions: 1) How can we ensure both diversity and validity of the trajectories171

generated without explicit user instructions? 2) How can we generate plausible and goal-consistent172

user instructions G that accurately reflect the completed trajectories? To this end, we propose a173

step-wise guided rollout process and a final trajectory wrapper to address these challenges.174

4.2 Step-Wise Guided Rollout Process175

We notice that without proper guidance for each rollout step, LLMs often exhibit biased behavior,176

leading to homogeneous tasks and trajectories. For example, the teacher model, when no guidance is177

provided, always tries to create a project on the Gitlab website, rather than doing anything else. To178

mitigate the bias and increase the diversity and quality of our training set, we introduce a step-wise179

guided rollout process which proposes task controls to encourage exploration towards diverse yet180

reasonable directions. The pipeline involves the following steps (See more details in Appendix L):181

Step-Wise Task Control Proposal. At first we prompt the teacher agents to envision common daily182

tasks users might perform based on the initial state, regarded as first-step task control. Specifically,183

given an initial state s0, we prompt theMTeacher to propose a high-level task description, referred to184

as the mentioned task control,185

c0 =MTeacher(s0).

For example, if s0 is the home page of a shopping website, some examples of c0 are “Search for186

a certain product” or “Navigate to my account page”. When the first-step control is added, the187

second-step control is updated based on the current observation, and this process continues iteratively.188

Suppose the trajectory just reaches its t-th step, under the i-th control. We define a boolean function189

Done(ci) ∈ {True,False} that indicates whether the current control ci has been completed, which is190

judged byMTeacher. The control update rule is given by:191

ci =

{
MTeacher(st, ci−1 ) if Done(ci−1) = True,

ci−1 otherwise.

For example, after the Done function verified that the first-step control “Navigate to my account192

page” on the shopping website is completed, the proposed next-step control on the new page, or193

the My Account page in the shopping domain, could be “Check out my order history”, “Modify my194

address information”, etc. This iterative goal proposal enables complex tasks to be compiled based195

on semantically meaningful sub-goals.196

Thought & Action Generation. Under the current step’s task control ci and prior rollout history197

Ht, the teacher agentMTeacher is also prompted to produce its internal reasoning thought rt, along198

with an action at and the corresponding step summary ht in a CoT manner. Each thought provides199

a justification or plan for why the action is appropriate, and is recorded in the rollout history along200

with the step summary and action, at, rt ∼MTeacher(st, ci, Ht−1), Ht = Ht−1 ∪ [ht; at; rt], where ;201

indicates concatenation. To avoid endless rollouts, we allowMTeacher to autonomously decide when202

to terminate the trajectory. That is, the agent will generate a STOP action if it considers the task as203

completed, based on the current state and task control.204

4.3 Trajectory Wrapper205

The trajectory wrapper is designed to transform raw rollout trajectories into high-quality instances by206

inferring valid user instructions and reconstructing a coherent, step-by-step reasoning process. Since207
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the rollout process is initially not guided by an explicit user instruction, in our trajectory wrapping208

process, we first use a task summarizer to condense the agent’s actions into a concise description of209

what was accomplished and then further convert it as the final user instruction for the entire trajectory,210

denoting as G. To align the trajectory’s reasoning with this synthesized instruction, we then ask the211

teacher agentMTeacher to rewrite and refine their thoughts, ensuring they are well-conditioned on the212

newly generated instruction and reflect the agent’s internal decision-making.213

Besides, reasoning ability is often a critical component in agent tasks, e.g., tasks like “Tell me the214

most recent canceled order in the order history.” To support this capability, we allowMTeacher to215

insert intermediate reasoning thoughts when it deems such reasoning necessary or beneficial for216

conducting information query or analysis in the current UI state. In the end, we filter out low-quality217

trajectories based on the criteria: 1) actions must target valid elements and lead to meaningful state218

changes; and 2) the action mentioned in each step’s reasoning should match the action actually taken.219

5 UI-SIMULATOR-GROW: UI-SIMULATOR-Empowered Targeted Scaling220

In §4, we introduce UI-SIMULATOR for synthesizing diverse training trajectories. Rather than blindly221

increasing trajectory volume, we also explore how to strategically and efficiently scale to accelerate222

digital agent improvement. We propose UI-SIMULATOR-GROW, a UI-SIMULATOR–empowered223

targeted scaling paradigm that achieves faster gains with fewer synthesized trajectories.224

UI-SIMULATOR-GROW iteratively identifies which tasks, if synthesized at the current stage, would225

most effectively enhance agent performance, and generates diverse trajectories for those tasks and226

their variants in preparation for the next training phase. In the first iteration, UI-SIMULATOR-227

GROW collects an initial batch of trajectories following the procedure in §4 as UI-SIMULATOR. In228

subsequent iterations, it automatically selects target tasks based on dynamically updated validation229

signals, synthesizes relevant trajectories, and applies continual learning to ensure steady performance230

gains. We introduce this in detail as follows.231

5.1 Target Task Selection232

Target tasks for the next training iteration must satisfy two criteria: They are not trivial for the current233

agent to solve; They are not too difficult, which are beyond the agent’s current capabilities. Tasks234

the agent already excels at offer limited learning signal, while tasks that are too hard may not lead235

to meaningful progress. We identify such target tasks by measuring the teacher-forcing loss of a236

teacher agentMTeacher on the current validation set. Specifically, for each step, we treat the teacher’s237

prediction as ground truth, compute the cross-entropy loss against the student agent’s prediction,238

and average the loss over all steps for the tasks. Tasks are then ranked by loss, and those within the239

25%–75% percentile range are selected as targets to filter excessively easy or hard tasks. See more240

cases in Appendix G.241

As the agent improves after each iteration, the validation set is also updated to reflect the agent’s242

evolving capabilities. In the first iteration, it is an independent batch of tasks synthesized in the243

same way as the initial training set. For later iterations, we consider two construction strategies –244

Strategy 1: The validation set is composed entirely of a split from the newly synthesized data for245

the upcoming iteration; Strategy 2: The validation set includes 50% of trajectory variants from the246

previous iteration’s target tasks and 50% from new tasks. Both strategies aim to promote continual247

improvement and prevent future iteration evaluation from overfitting to earlier iterations.248

5.2 Synthesizing Diverse Target Task Trajectory Variants249

After identifying target tasks that can effectively challenge the agent, we synthesize additional250

trajectories focused on those tasks. One strategy we adopted is lightweight task rewriting, where the251

task instruction is slightly modified without changing its core structure or logic. The corresponding252

environment states, thoughts, and actions are adjusted accordingly, while preserving the overall253

reasoning flow. For example, a selected task like “search running shoes” might be rewritten as254

“search slippers”. Since the task logic remains consistent, the UI states and actions (e.g., entering a255

query, clicking a result) are similarly structured. We prompt the LLM to maintain the task’s action256

types and flow, modifying only content-specific elements in the UI states such as product names. This257

ensures meaningful variation while preserving alignment with the agent’s learning objectives.258
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5.3 Continual Learning259

As UI-SIMULATOR-GROW continuously incorporates new synthesized training trajectories through260

iterations, a key challenge is adapting the agent policies without catastrophic forgetting. We address261

this by exploring continual learning [Biesialska et al., 2020], focusing on replay methods, a widely262

used technique that revisits selected tasks from prior training stages.263

Following Dynosaur [Yin et al., 2023], we adopt a replay strategy that selects the most representative264

tasks from the previous iteration. Given N tasks from the prior iteration, we use Sentence Trans-265

former [Reimers and Gurevych, 2019] based on RoBERTa-large [Liu et al., 2019] to encode task266

instructions into a matrix Ip ∈ RN×d, where d is the embedding dimension. We then compute cosine267

similarities: Spp = cos _sim(Ip, Ip) ∈ RN×N . Tasks with the top row sums in Spp are representative268

and selected for replay.269

6 Experiments270

6.1 Experimental Setup271

Evaluation Benchmarks. We evaluate the LLM agents trained with the training trajectories synthe-272

sized by UI-SIMULATOR on two benchmarks across web and mobile digital domains: WebArena,273

which contains 812 complex yet realistic web navigation tasks across five self-hosted websites; and274

AndroidWorld, which consists of 116 challenging daily mobile usage tasks on a Google Pixel275

emulator. We report the success rate (SR) across all tasks. The temperature for model inference is276

set to 0.6; preliminary experiments suggest that varying the temperature does not significantly affect277

performance. Note that for a fair comparison, we reproduce and evaluate those methods under the278

original WebArena evaluation settings1, instead of BrowserGym or any lite versions.279

Digital World Simulation and Trajectory Collection. We use GPT-4o-mini for both state280

simulation and guided rollout. In the web environment, we collect 2K trajectories with an average281

length of 3.3 steps. In the Android mobile environment, we collect 1.3K trajectories averaging 5282

steps each. The collected states are adjusted to fit the domain and format as defined in WebArena283

and AndroidWorld benchmarks, and the collection process leverages a very limited amount of states284

from the two environments. More details are discussed in Appendix E.285

Agent Training. For WebArena, we train our digital agents and baseline agents us-286

ing Llama-3-8B-Instruct as the base model. For AndroidWorld, we choose to use287

Qwen-2.5-7B-Instruct due to its extended context length support beyond 8192 tokens,288

a common requirement in AndroidWorld which exceeds the maximum context length of289

Llama-3-8B-Instruct. More details are provided in Appendix I.290

6.2 Overall Performance291

Results are presented in Table 1. We denote the UI-SIMULATOR variants without and with retrieval-292

augmented simulation as UI-SIMULATOR-F and UI-SIMULATOR-R, respectively.293

UI-SIMULATOR-F. We observe that even without exposure to real-world test environments, training294

solely on LLM-simulated environments can significantly enhance its base model’s performance. This295

is particularly evident on AndroidWorld, where the success rate increases from 0% to 9%. UI-296

SIMULATOR-F even outperforms OS-Genesis, which is trained using trajectories synthesized directly297

from the AndroidWorld test environments. These show that LLMs possess sufficient knowledge to298

generate reliable and coherent digital environment simulations, offering a promising alternative when299

real test environments involve high latency or are difficult to access.300

UI-SIMULATOR-R vs. Larger & Proprietary Models. We observe that UI-SIMULATOR-R301

performs on par with Gemini-Pro on WebArena, as well as GPT-4o on AndroidWorld, despite302

being built on a much smaller 8B-scale LLM. This highlights the strong generalization capability of303

UI-SIMULATOR, even with limited exposure to the target environment.304

1The same as https://github.com/web-arena-x/webarena.
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Table 1: Overall success rate (SR) on the WebArena and AndroidWorld test sets. << indicates
methods with substantially less exposure to the real downstream test environments.

Models Teacher Agents Train Under Real Env.? WebArena SR (%) AndroidWorld SR (%)
Base Open-Source LLMs and Proprietary LLMs

Llama-3-8B-Instruct - ✗ 2.34 -
CodeLlama-34B-Instruct - ✗ 4.06 -
Lemur-chat-70B - ✗ 5.30 -
Llama-3-70b-Instruct - ✗ 7.02 -
Gemini Pro - ✗ 7.12 -
Qwen-1.5-72B-Instruct - ✗ 7.14 -

Qwen-2.5-7B-Instruct - ✗ 3.94 0.0
Qwen-2-VL-7B - ✗ - 5.0
Qwen-2-VL-72B - ✗ - 5.0
Gemma-2-27B - ✗ - 9.5
GPT-4o - ✗ 13.10 11.7

Digital Agent Training Data Synthesis Baselines

AgentFlan N/A ✓ 4.68 -
NNetNav Llama-3.1-70B ✓ 4.80 -
Synatra GPT-4-turbo ✓ 6.28 -

OS-Genesis GPT-4o ✓ 6.16 7.6
GUIMid (Post-Train) N/A ✓ 6.20 9.0

UI-Simulator-Series Variants

UI-SIMULATOR-F GPT-4o-mini ✗ 6.28 9.5
UI-SIMULATOR-R GPT-4o-mini ✓ (<<) 6.40 13.4
UI-SIMULATOR-GROW-R GPT-4o-mini ✓ (<<) 7.14 13.4

UI-SIMULATOR vs. Open-Source Agent Traj. Synthesis Baselines. UI-SIMULATOR-R sur-305

passes OS-Genesis, which relies on the stronger GPT-4o teacher to generate training trajectories306

within test environments, while even UI-SIMULATOR-F achieves superior performance on Android-307

World despite being trained only with trajectories from the weaker GPT-4o-mini. These results308

highlight the potential of UI-SIMULATOR when paired with stronger teacher agents. Moreover,309

unlike NNetNav and OS-Genesis, which generate synthetic training data through extensive unsu-310

pervised interaction with the test environments, UI-SIMULATOR-R restricts its data collection to a311

much smaller scope. Despite this constraint, it still outperforms NNetNav and OS-Genesis by 2.2%312

and 0.9% on WebArena, and surpasses OS-Genesis by 4.7% on AndroidWorld, demonstrating the313

effectiveness of our simulation-driven approach in enabling rapid adaptation to test environments.314

7 Analysis315

In this section, focusing on WebArena, we conduct a comprehensive analysis to evaluate the advan-316

tages and potential of the UI-SIMULATOR framework. We present a series of training experiments317

alongside qualitative studies to examine each core component of UI-SIMULATOR and illustrate how318

UI-SIMULATOR-GROW helps effective scaling. More rollout process design ablation study and319

human evaluation on synthesized training trajectory quality is discussed in Appendix F and J.320

7.1 Ablation Study321

Agent Robustness Brought From UI-SIMULATOR. Thanks to the flexibility of UI-SIMULATOR322

in generating diverse UI layouts, agents trained on its synthesized trajectories gain robustness to323

varied UI states. To test this, we perturb WebArena tasks by shuffling layout structures while324

preserving web content, ensuring validity and identical solutions. For a meaningful comparison325

with other strong baselines, we adopt WebArena as the benchmark and focus on OS-Genesis, whose326

performance is closest to ours (within a 0.12% success rate gap). We notice that UI-SIMULATOR-F,327

which synthesizes UI states without referencing downstream environments, suffers the smallest328

performance drop. UI-SIMULATOR-R, which incorporates reference states, shows a slightly larger329

drop but still outperforms OS-Genesis. This is partly because even when conditioned on reference330

states, UI-SIMULATOR-R can still generate diverse UI variants that preserve robustness.331

Simulated Digital Environment vs. Real Test Environment. What happens if we apply the same332

trajectory collection directly on the real test environments? Surprisingly, UI-SIMULATOR can even333

outperform this strong baseline. We identified one key reason for this performance gap: the real334

test environments may not be able to consistently provide useful state transitions or cover diverse335

interaction scenarios. For example, if the search query keywords do not match any entries in a336
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shopping website, the environment may return Search not found, and such search tasks are likely to be337

excluded; For tasks involving account pages, if the user is not logged in beforehand, those trajectories338

cannot be collected due to access restrictions. In contrast, both tasks can be easily synthesized in the339

digital world model without any such constraints. This highlights the potential of UI-SIMULATOR to340

go beyond the limitations of real environments by generating trajectories that are infeasible to obtain.341

Models SR (%)
UI-SIMULATOR-F 6.28

Perturbed Env. 5.54
Synthesize in Real Env. 4.31

UI-SIMULATOR-R 6.40
Perturbed Env. 4.80
Synthesize in Real Env. 4.31

OS-Genesis 6.16
Perturbed Env. 4.43
Same # of Experience 1.48

Table 2: Ablation study on test-
ing robustness and the comparison
with trajectory synthesis on real
test environment.

UI-SIMULATOR vs. OS-Genesis Sharing the Same Amount342

of Prior Experience on Test Environment. Both UI-343

SIMULATOR-R and OS-Genesis have access to the test envi-344

ronment; however, OS-Genesis benefits from significantly more345

exploration experience. To assess them under equal conditions,346

we control for the amount of exploration experience and compare347

their performance. We find that UI-SIMULATOR-R achieves348

around 4 times the performance of OS-Genesis, highlighting349

its ability to generate highly adaptive digital agents even with350

limited exposure to the real environment.351

7.2 UI-SIMULATOR-GROW352

vs. Standard UI-SIMULATOR Scaling353

We compare UI-SIMULATOR-GROW with the standard UI-354

SIMULATOR scaling on WebArena to examine which paradigm355

more effectively accelerates agent performance. For standard scaling, we use the full UI-SIMULATOR-356

R training set split it into three equal parts, and emulate a 3-iteration scaling process by progressively357

adding one more split at each iteration. For UI-SIMULATOR-GROW, the first iteration uses the same358

initial split as in standard scaling (one-third of UI-SIMULATOR-R). Subsequent iterations rely primar-359

ily on synthesized variants of target tasks selected from the last iteration, supplemented by portions360

of the remaining splits for constructing dynamic validation sets. Note that the process guarantees361

that UI-SIMULATOR-GROW draws only from UI-SIMULATOR-R and its generated variants, without362

introducing any external data beyond its scope for fair comparison.363

0.8x1x 1.4x 2x 3x
Scaling Rate

4.5

5.0

5.5

6.0

6.5

7.0

SR
 (

%)

Standard UI-Simulator Scaling
UI-Simulator-Grow

Figure 3: The effect of scaling
and targeted task synthesis with UI-
SIMULATOR-R on WebArena.

As shown in Figure 3, UI-SIMULATOR-GROW yields a steeper364

performance improvement than standard scaling. Notably, by365

the third iteration, it matches the performance of Qwen-1.5-366

72B-Instruct and surpasses Llama-3-70B-Instruct. Moreover,367

UI-SIMULATOR-GROW uses only 66% of the original UI-368

SIMULATOR-R trajectories, demonstrating more efficient data369

utilization compared to indiscriminate trajectory generation.370

Beyond overall success rates, we closely examine how perfor-371

mance improves under UI-SIMULATOR-GROW. In Appendix372

H, we further show that UI-SIMULATOR-GROW consistently373

avoids performance degradation across web task categories,374

and in some cases enables success on task types where stan-375

dard scaling fails. We attribute these gains to the combination376

of dynamic validation set construction and targeted task variant synthesis, which guide the agent377

toward underperforming task types and reinforce its capabilities in a focused manner.378

8 Conclusions379

We introduced UI-SIMULATOR, a scalable trajectory synthesis paradigm that uses LLM-based digital380

world simulators to synthesize diverse UI trajectories at scale through multi-step simulation, guided381

rollouts, and final trajectory wrapping. We further propose UI-SIMULATOR-GROW, a targeted382

scaling paradigm that prioritizes high-impact tasks for more data-efficient continuous improvement.383

Experiments on WebArena and AndroidWorld show that UI-SIMULATOR rivals or surpasses real-384

environment training despite using weaker teacher agents, while UI-SIMULATOR-GROW achieves385

more rapid improvement trend than standard UI-SIMULATOR scaling with only 66% training data and386

even matches 70B-scale models. Ablation study further highlight the promise of simulation-driven387

trajectory synthesis as a more adaptive and robust approach for advancing digital agents.388
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Appendix514

A Obtaining Observation ot From UI State st515

As defined in §3.1, the observation ot is obtained by extracting the UI elements visible within the516

current state st. Let the viewport at timestep t be517

Vt = [x0, x1]× [y0, y1].

The observation at step t is then calculated by,518

ot = {e ∈ st | bbox(e) ∩ Vt ̸= ∅} ,
i.e., capturing the set of elements whose bounding boxes intersect with the viewport region.519

B Action Spaces in UI Simulator520

As shown in Table 3 and 4, we summarize the supported action spaces for WebArena and Android-521

World, which span the common UI interactions (e.g., click, type, scroll).522

Table 3: Action space of WebArena environment.

Action Description
click [id] Click the element with the given ID.
type [id] [content] [0|1] Type content into the text box with the specified ID; press Enter

if the last argument is 1.
hover [id] Hover over the element with the given ID (often to trigger popups

or dropdowns).
press [key_comb] Press a keyboard combination (e.g., ctrl+c).
scroll [direction] Scroll the page in the specified direction: up, down, left, or

right.
go_forward Go forward to the next page (only after a prior go_back).
go_back Go back to the previous page.
new_tab Open a new empty browser tab.
tab_focus [index] Switch focus to the tab at the given index.
close_tab Close the current tab.
goto [url] Navigate to the specified URL.

Table 4: Action space of AndroidWorld environment.

Action Description
click [id] Tap the element with the given ID on the current screen.
open_app [app_name] Launch the app with the specified name.
input_text [id] [content] Enter content into the text box identified by id using the key-

board.
keyborad_enter Press the Enter key.
scroll [direction] Scroll the screen in the specified direction: up, down, left, or

right.
navigate_back Go back to the previous screen.
navigate_home Return to the app’s home screen.
wait Remain idle for a short duration.

C Details of Rule-Based Transition523

As discussed in §3.2, certain actions in the action space (e.g., Type, Scroll) involve deterministic524

state transitions. To better simulate this, we incorporate rule-based transitions that enhance realism in525

the simulation. The details of these rule-based transitions are introduced below.526

Type Action. This is the most straightforward case. The simulator updates the target element by527

appending the typed content into its content_description attribute.528
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Scroll Action. The simulator will keep on the same state after taking a Scroll action, i.e., st+1 =529

st. The simulator maintains a scroll offset (xoffset, yoffset) ∈ R2, which determines the visible region530

of the UI along with the window dimensions (wwin, hwin). Here we take (wwin, hwin) = (2400, 1080)531

Initially, the scroll offset is set to (xoffset, yoffset) = (0, 0). When a Scroll action is performed, the532

scroll offset is updated as follows:533

(xoffset, yoffset)← (xoffset +∆x, yoffset +∆y),

where (∆x,∆y) are the fixed scroll displacements in horizontal and vertical directions, respectively.534

For instance, scroll [down] corresponds to (∆x,∆y) = (0, 1080)535

The observation at timestep t, denoted ot, consists of all UI elements whose bounding boxes intersect536

with the current visible viewport:537

Vt = [xoffset, xoffset + wwin]× [yoffset, yoffset + hwin],
538

ot = {e ∈ st | bbox(e) ∩ Vt ̸= ∅} .

After the scroll offset is updated, the observation ot+1 is recomputed based on the new viewport539

Vt+1, and the state itself remains unchanged.540

New_tab, Navigate_back, Navigate_forward Actions. We model web browsing as a traverse541

process on the tree structure. To support this, the simulator maintains an explicit browsing stack to542

track session history. These actions deterministically alter the current tab state based on prior states543

stored in the stack.544

D Retrieval-Augmented Simulation545

As discussed in §3.3, we also study how quickly the simulator can adapt to a new test environment546

given only limited prior experience. Retrieval-augmented simulation addresses this by conditioning547

UI generation on a small set of real examples from the target environment, producing future states548

that resemble the target domain, coherent with the previous rollout steps, and support a diverse range549

of grounded tasks.550

Formally, we first construct an offline retrieval corpus of N state transitions from the test environment,551

denoted as, D =
{(

õ
(i)
t , H

(i)
t , õ

(i)
t+1, s̃

(i)
t , s̃

(i)
t+1

)}N

i=1
, where õ(i)t and õ

(i)
t+1 are the observations before552

and after an action in the downstream test environment; s̃(i)t and s̃
(i)
t+1 are their corresponding UI553

states; and H
(i)
t denotes the action history up to timestep t.554

During UI-SIMULATOR paradigm, when simulating the next UI state after a given action, we query555

this offline retrieval corpus with the current observation–action history pair (ot, Ht). A retriever556

then returns the most relevant observation õret and corresponding state s̃ret from the corpus D. The557

transition can be modelled as st+1 =MLLM(st, at, sret ), whereMLLM is prompted with both the558

current interaction context and the retrieved state sret, grounding the simulation in prior experience559

while still allowing the creation of novel, coherent UI states. The key distinction from retrieval-free560

simulation is the incorporation of the retrieved state sret into the simulation process.561

In practice, we employ a hybrid retrieval pipeline over D to retrieve the transition that is most562

semantically similar to the current trajectory simulation. The retrieval process proceeds in three563

stages: First, a coarse filtering step is performed using BM25 ranking, where the action history564

serves as the query, to retrieve the transitions with very similar action histories. Next, we use current565

action histories as the query again to further narrow down the more relevant transitions from the566

transitions stored in D by utilizing GPT-4o as the semantic retriever, which captures deeper semantic567

similarities with the current action history queries. Finally, we construct a composite retrieval key568

that incorporates both the current state and action history, and apply BM25 again to select the most569

relevant transition. Despite the small size of D, this hybrid strategy still improves the consistency and570

realism of the generated UI states.571
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E Key Statistics and Hyperparameters of Step-Wise Rollout Process572

Table 5: Step numbers of the collected trajectories and step-wise task control numbers across the
domains.

Shopping Gitlab Map Reddit Shopping admin Android
Step # 800 1500 1500 1300 1500 6500
Step-wise task control # per proposal 5 8 3 6 8 5

As we mentioned in §4, we introduce a step-wise guided rollout process to encourage exploration573

towards diverse yet reasonable directions for UI trajectory synthesis. Table 5 summarizes key statistics574

and hyperparameters of the rollout process. The first row reports the number of final synthesized575

trajectory steps for each domain, while the second row shows the number of task controls for rollout576

guidance when the teacher agent is going to propose such task controls. Variation in task control577

numbers reflects the complexity of website content: for instance, map websites are relatively simple,578

supporting only a few core functions such as search or navigation, whereas domains like Gitlab,579

Reddit, and shopping admin pages contain many more elements and support various functionalities,580

requiring more extensive task control.581

The estimated cost per web trajectory is $0.02 for retrieval-free simulation and $0.05 for retrieval-582

augmented simulation, and the estimated cost doubles for each AndroidWorld training trajectory.583

F Additional Ablation Study on Trajectory Collection Process584

Table 6: Ablation study about rollout process design on WebArena.

Models SR (%)
UI-SIMULATOR-R 6.40

w/o Step-Wise Task Control 1.72
w/o Multi-Step Simulation 4.06

In this section, we discuss more ablation study on the step-wise guided rollout process design to585

justify the effectiveness of our design.586

Step-Wise Task Control. In this experiment, we remove all step-wise task controls to collect587

a new set of training trajectories, aiming to assess whether the guided rollout process contributes588

to generating higher-quality data. From Table 6, we observe a performance drop of around 4.7%589

following the removal of task controls. Upon closer inspection of the newly collected trajectories, we590

find that trajectory diversity suffers significantly. Without user instructions as conditioning signals,591

the teacher agent tends to repeatedly sample the same one or two elements due to inherent model592

biases. This further highlights the importance and effectiveness of fine-grained, step-wise control in593

our trajectory collection process.594

Multi-Step Simulation. In this experiment, we replace multi-step simulation with single-step595

simulation to examine whether the simplified approach can still yield satisfactory simulations and596

benefit downstream tasks. As shown in Table 6, this modification results in a performance drop of597

approximately 2.4%. Single-step simulation, though cost-saving, would always generate common,598

biased content, thereby harming the diversity and content richness of the collected training set. In599

contrast, we encourage the world model to output rich, diverse content by splitting the simulation600

into multiple steps, resulting in trajectories with higher quality.601

G Analysis on Targeted Task Selection in UI-SIMULATOR-GROW Paradigm602

In this section, we describe how target tasks are selected for synthesizing new training trajectories603

in the next iteration of the UI-SIMULATOR-GROW paradigm. Figure 4 illustrates the task selection604

process between the first and second UI-SIMULATOR-GROW iterations. We begin by ranking all605

tasks in the current validation set by their teacher-forcing loss, from smallest to largest. Tasks below606

the 25th percentile are considered too easy or already well learned (e.g., simple actions like zooming607
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Figure 4: Illustration of overall target task selection process.
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Figure 5: Successful task numbers across the 5 main task categories through the three iterations of
the UI-SIMULATOR-GROW scaling.

on a map or searching for a location) and are excluded from further synthesis. Conversely, tasks608

above the 75th percentile are often overly challenging or ambiguous, and are likewise excluded. The609

remaining middle range of tasks is chosen as the target set for the next training iteration.610

H Qualitative Analysis on Successful Tasks Through UI-SIMULATOR-GROW611

Scaling612

Beyond overall success rates, we closely examine how performance improves under UI-SIMULATOR-613

GROW. As shown in Figure 5, a consistent upward trend appears across most major WebArena614

task categories. Notably, for code repository operations, the final iterations of UI-SIMULATOR-615

GROW demonstrate the ability to solve tasks that neither standard UI-SIMULATOR scaling nor616

earlier iterations could handle. This highlights the paradigm’s potential to enable agents to tackle617

increasingly diverse and complex tasks.618

I Training and Evaluation Details619

For digital UI state simulation, the LLM-based world simulator are run with a decoding temperature620

of 0.5. During the trajectory synthesis process, teacher agents also generate next action with the621

decoding temperature of 0.5.622

We train Llama-3-8B-Instruct and Qwen-2.5-7B-Instruct for WebArena and AndroidWorld,623

respectively, using a batch size of 48, learning rate 1× 10−5, and 2 epochs. Training is performed on624

4 A6000 GPUs (48GB each) with Liger-Kernel [Hsu et al., 2025] to improve throughput and reduce625

memory usage.626
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Table 7: Human evaluation dimensions with definitions and illustrative examples.

Dimensions Definitions Examples

Realism of Task
Whether the task resembles some-
thing a real user would encounter in
everyday app usage.

“Search for a product and add it to the cart”
is realistic; “click random buttons” is not.

State Reasonability
Whether the UI states and their tran-
sitions are reasonable given the app’s
typical structure and context.

A “checkout” button inside a map applica-
tion is unreasonable.

Action Validity
Whether each action logically corre-
sponds to the goal, the current state,
and the intended next state.

Clicking “submit” should occur only after
all required entries are filled.

Logical Consistency
(Thoughts)

Whether explanatory comments or
inferred logic are coherent and free
of contradictions.

“User clicks search to find item” followed by
“user wants to delete profile” is inconsistent.

Task Completion Whether the trajectory ends with the
task’s goal fully achieved.

If the goal is “send a message,” the message
should be sent in the final step.

Trajectory
Consistency

Whether actions and transitions
form a coherent flow, with no contra-
dictions or unexpected diversions.

The trajectory should not jump between un-
related tasks or contexts.

# Irrelevant Steps
Number of steps unrelated to the
goal; a high count indicates ineffi-
ciency or redundancy.

Clicking “About Us” is irrelevant to “creat-
ing an account.”

Topic Abstraction
Whether the task is generalized and
meaningful, not just low-level UI
manipulation.

“Complete login” is abstracted; “click input,
type name, click button” is not.

During inference on the downstream benchmarks, we set the generation temperature to 0.6 and the627

maximum output length to 1024 tokens.628

J Human Evaluation of Training Trajectories Synthesized by629

UI-SIMULATOR630

Beyond quantitative metrics which already demonstrate the effectiveness of training trajectories631

synthesized by UI-SIMULATOR, we further conduct a qualitative human evaluation of the training632

trajectories across 8 dimensions (Table 7). For each dimension, scores are computed as the proportion633

of trajectories that satisfy the corresponding evaluation criterion.634

We recruited three annotators, each holding a master’s degree or higher in computer science. Each635

annotator evaluated 40 trajectories from both UI-SIMULATOR-F and UI-SIMULATOR-R. To assess636

reliability, we measured agreement on 30 overlapping trajectories, yielding pairwise scores of 0.876,637

0.890, and 0.976, which indicate strong consistency.638

Table 8 presents the average human evaluation scores across all dimensions. The results indicate639

that UI-SIMULATOR-R, which leverages retrieval-augmented simulation, generates higher-quality640

trajectories than UI-SIMULATOR-F. This improvement stems from conditioning state simulation641

on references from real web environments. Nevertheless, even without exposure to downstream642

environments, UI-SIMULATOR-F still produces consistently strong trajectories: around 90% of states643

and tasks are judged reasonable and realistic, and the average number of irrelevant steps remains644

below one per trajectory. These findings suggest that, even without additional fine-tuning, LLMs645

are already capable of serving as effective digital world simulators for scaling high-quality training646

trajectory synthesis.647

K UI Simulation Issue Analysis648

While the digital world simulator significantly enhances agent training, it may still exhibit minor649

discrepancies in capturing certain real-world UI state transitions. Figure 6 and 7 demonstrate two650

cases where UI-SIMULATOR-F and UI-SIMULATOR-R may not simulate well.651
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Table 8: Average human evaluation scores across dimensions.

Dimensions UI-SIMULATOR-R UI-SIMULATOR-F

Realism of Task 0.914 0.942
State Reasonability 0.952 0.875
Action Validity 0.867 0.767
Logical Consistency (Thoughts) 0.867 0.733
Task Completion 0.938 0.908
Trajectory Consistency 0.971 0.917
# Irrelevant Steps 0.214 0.533
Topic Abstraction 0.990 1.000

Figure 6 shows a transition where UI-SIMULATOR-F mistakenly fuses irrelevant context into the652

next step simulation. The new webpage should be a list of all available forums in realistic Reddit653

after clicking the Forums link. However, UI-SIMULATOR-F makes an error by taking the context654

of current forum, \f\deeplearning, into account. As a result, the new webpage shows a bunch of655

information related to deep learning.656

Transition in Figure 7 shows that UI-SIMULATOR-R sometimes ignores the current context and refers657

too much to the retrieved reference state. The search results of Byte Blaze should be relevant to658

the keyword. However, in this case UI-SIMULATOR-R just simulates the search results from the659

reference state and ignores what the user is currently searching.660

[574] RootWebArea 'Should I continue with      
this?'  focused: True.

[637] image
[605] link 'Forums'
[644] link 'Submit'
[655] button 'MarvelsGrantMan136'

hasPopup: menu expanded: False
[736] main

[740] link '/f/deeplearning'
[748] article

[753] StaticText 'Should I
continue with this?'

[754] link 'Should I continue
with this?'

[503] StaticText 'Submitted by '
[759] link 'Eric-Cardozo'

expanded: False
[507] StaticText 't3_127uysh'
[762] StaticText 'March 31, 2023

at 2:44:26 PM EDT'
[511] StaticText ' in '
[763] link 'deeplearning'
[513] StaticText 'm a physics

student, and I started 
learning … 

[514] StaticText 'Here is the
code: '

[771] link
'https://github.com/ericcardoz
o/FastorML'  

[7636] RootWebArea 'Deep Learning Forums' 
    [5279] link 'Home'  
    [3133] link 'About Us'  
    [18623] link 'Contact'  
    [8494] link 'Sign Up'  
    [17722] link 'Login'  
    [12931] searchbox 'Search forums...' 
    [18394] button 'Search'  

[17570] generic 'Browse Discussion  
 Threads'  

[15867] link 'What are the best 
     frameworks for deep learning?' 
[13991] StaticText '18 replies'  
[900] StaticText 'Last active: 1

hour ago'
[4080] link 'Understanding 

    Convolutional Neural Networks' 
[10867] StaticText '27 replies' 
[3872] StaticText 'Last active: 4 

  hours ago'  
[7673] link 'Latest trends in AI 

    research'  
[19196] StaticText '9 replies'  
[3678] StaticText 'Last active: 3 

  days ago' 

Click [605] 

Figure 6: A case of failed simulation where UI-SIMULATOR-F generates the new page based on
irrelevant context.

L System Prompts661

In this section, we present the key system prompts used in our work. Tables 9–15 provide the prompts662

for the guided rollout process, Tables 16–19 detail those used during simulation, and Table 20663

illustrates how we generate targeted tasks for UI-SIMULATOR-GROW. Since the prompts for Android664

and web environments are nearly identical, we report only the web versions for clarity.665
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[320] link 'Dashboard'  

[394] button  hasPopup: menu expanded:  
    False 

[1507] textbox 'Search GitLab'  required:  
False 

[1468] generic 'Use the shortcut key  
<kbd>/</kbd> to start a search'  

    [401] link 'Create new...'  
    [403] link 'Issues'  
        [1100] generic '13 assigned issues'  
    [404] link 'Merge requests'  
        [1102] generic '8 merge requests'  
    [406] link 'To-Do List'  
        [1118] generic 'Todos count'  
            [1489] StaticText '5'  
    [407] link 'Help'  
    [409] link 'Byte Blaze'  
        [1152] img 'Byte Blaze' 
    [7] main  
        [302] StaticText 'Projects'  
        [305] link 'New project'  
        [411] link 'Yours 14'  
        [412] link 'Starred 3'  
        [413] link 'Explore'  
        [414] link 'Topics'  
        [312] searchbox 'Filter by name'  
        [374] button 'Name'  
        [458] link 'All' 

 
[6320] RootWebArea 'Search results for "Byte  

  Blaze" · GitLab'  focused: True 
    [9128] link 'Projects 7'  
    [5946] link 'Milestones 4'  
    [15074] link 'Users 15'  
    [2986] link 'O'  

[4708] heading 'Open Source Diversity /  
opensourcediversity.org'  

        [12492] link 'Open Source Diversity /  
opensourcediversity.org'  

        [18470] generic 'Public - The project  
can be accessed without any  
authentication.'  

            [2955] image  
        [12092] generic 'blossom'  
            [5288] StaticText '🌼'  
        [9996] StaticText ' Code of '  
        [15143] link  

  'https://opensourcediversity.org'  
        [5065] link '28'  
            [845] image  
        [5529] link '0' 
    [4353] heading 'Checkstyle /  

    checkstyle'  
            [18893] link 'Checkstyle /  

   checkstyle'  
        [901] generic 'Public  
            [17524] image 

Type [1507][Byte Blaze] 

Figure 7: A case of failed simulation where UI-SIMULATOR-R overly depends on the reference state
to generate the new page.

You are a Web task creation AI called AgentGrow. Assume that you have an a11y tree of this
website, generate some common tasks user perform on this web.
To be successful, it is very important to follow the following rules:
1. Suppose that you’ve already logged in the website, and you don’t want to sign out.
2. Note that we don’t want the task control to focusing too much on the elements that the state
contains. You should consider the functionalities behind the elements, and think of functionalities
that people use.
3. The number of the tasks should be no more than {Number of Task Controls} , so just keep the
most common ones. Besides, ideally the tasks are atomic independent, i.e. we don’t want a certain
task to be a subtask of another task, and the task shouldn’t contain two subtasks like “do A and
then do B”.

Example:
Initial state:
{Initial State}

Tasks:
1. Search for a place.
2. Find directions between two places.

Table 9: System prompt for First-Step Task Control Proposal. {Initial State} is the Initial State
for in-context example. {Number of Task Controls} limits the number of candidate task controls
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You are asked to modify a web task. You will be given a description of website and original task
that correspond to the website.

To be successful, it is very important to follow the following rules:

##Find the name of website and figure out what kind of website is given.
##Generate unique, diverse entity names and add to original task to make the task more specific.
For example, a specific entity name for shopping website is a product name, a specific entity name
for map website is a specific place name.
##Generate 15 examples. You should try to think of what kinds of terms are commonly searched.
##The search term should NOT be too complex, JUST the name. For example, we don’t want “the
Eiffel Tower in Paris”, but just “Effiel Tower”.

Examples:

Website Description: {Website Description}

Original task: Search for a certain product.

##Thought: I’ll try to search for a certain product. The candidiates should be diverse. People
often search foods, clothes, fruits, electric devices, toys, detergents, trip utilities on the shopping
website.

##Tasks:
• Foods

1. Search for OREO milk cookies.
2. Search for Crisco Oil 48 Oz.
3. Search for L’Oréal Paris Revitalift Anti-Aging Cream.
4. ...

• Fruits
1. Search for Driscoll’s Strawberries.
2. ...

• ...

{Example #2}

{Example #3}

Table 10: System prompt for Diverse Entity Specification. {Website Description} is a short
description of the current website for in-context example.
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You are a Web task creation AI. Assume you are browsing on a website with some or no guidance.
Based on the task control, the current webpage, and the browsing history, your task is to analyze
the current webpage and browsing history, and continue browsing according to the task control
and previous steps by giving the action on the current webpage.

Here are some requirements for output:

• You need to incorporate the following details in the Thought:
– the task control (if no task control is given, just skip it),
– what you learned from previous steps,
– what the current webpage is like (it is best to use some elements within the webpage

as evidence),
– and which action to take next (either guided or not).

• The Action should strictly follow the action format provided in the action space.

• You also need to generate a single sentence abstract to summarize what this action
does.

Note that Thought, Action and Task should not exceed one line. The summary should NOT
mention the content of task control (e.g. ‘Create a new project or issue’ shouldn’t appear in the
Task in the following example), just focus on what the action does.

Available actions: {Input Action List}

Example Input:
Task Control: {Input Task Control}
Current state: {Input Current State}
Previous steps: {Input Previous Steps}

Example Output:
Thought: Let’s think step by step. The task control is ‘Create a new project or
issue.’. From the previous steps, I clicked the ‘New Project’ button to step into the
project creation page. The current webpage contains elements like “Enter your project
name here” textbox with id 10 and “visibility_level” selection with id 12, which means
currently I’m at the project creation page, and it has many information entries to fill in.
To continue creating the project, I shall fill in the required information. I can first type a
name for the new project, and the corresponding input box id is 10. ’Web platform’ is a
good name. I can set the third parameter to 1 to press enter to submit.
Action: type [10] [Web platform] [1]
Task: Type “Web platform” as the name for new project, and press enter to submit it.

Table 11: System prompt for Thought & Action Generation. {Input Action List} is available action
space. {Input Task Control}, {Input Current State}, and {Input Previous Steps} are Current Step
Task Control, State, and Step History for in-context example.

21



You are asked to generate web task controls for the next step that are unrelated to visual adjustments.
You will be provided:

• Elements that are commonly used in current website.

• Original task control

• Previous steps you have taken.

You need to follow the following rules:

1. AVOID task controls related to visual manipulation.

2. You have completed the Original task control in previous steps. You should make use of
the given elements to propose reasonable new task controls to extend current trajectory.

3. Pay attention to “Newly appeared elements”, elements that appear in the new state
compared to the last step. You should propose as many task controls based on the
interactions with newly appearing elements as possible.

4. The new task controls SHOULD be consistent with previous steps and can form a single
complete task rather than multiple independent tasks. E.g., we don’t want to search for
one place and then explore related or nearby places.

5. The task controls should be diverse. We don’t want task controls doing the same thing
but on different entities. For example, we don’t want to have both view the detail of A
and then view the detail of B in the response.

6. Only give no more than task controls, just make sure you are proposing the most
common ones.

7. You should strictly follow the output format in the example.

8. Note that you cannot interact with a StaticText or generic. Interacting with it wouldn’t
cause any effect. So it is best not propose task controls related to them. Also we want
the tasks can be done on the computers.

Example:
Original task control:
Search for ‘PHILIPS H6509 Wireless Headphones, Over-Ear Bluetooth Headphones with Noise
Canceling Pro’
Previous steps:
[“Search ‘PHILIPS H6509 Wireless Headphones, Over-Ear Bluetooth
Headphones with Noise Canceling Pro”’]

##Thoughts:
Let’s think step by step. The original task control is to search ‘PHILIPS H6509 Wireless Head-
phones, Over-Ear Bluetooth Headphones with Noise Canceling Pro’, and I have completed the
original task control. The current webpage shows the search results related to the 6S Wireless
Noise Canceling Hi-Fi Headphones.
I need to take the next step that is consistent with the first step searching. The newly appeared
elements include the detail links of the product I want, together with functionalities like “Add to
Cart”, “Add to Wish List”, “Add Your Review”, “Add to Compare”, etc.
I can check the most relevant search result for its details. I can also choose to interact with the
product via functionalities like adding it to the cart, wishlist, etc.

##Task Controls:

1. View more details about ‘PHILIPS H6509 Wireless Headphones, Over-Ear Bluetooth
Headphones with Noise Canceling Pro’

2. Add ‘PHILIPS H6509 Wireless Headphones, Over-Ear Bluetooth Headphones with
Noise Canceling Pro’ to cart

3. ...

Table 12: System prompt for Step-Wise Task Control Proposal in later steps.
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You are a Web task creation AI. Assume you have step history, and try to summarize a high-level
intent.
The step history is in the format of “action: step summary”.
You should pay special attention to the content within action (e.g. the content that is typed in), and
the summarized task should reflect such content.

Here are some requirements for summarization:

• The high-level intent should faithfully follow the action sequence.

• The high-level intent should be succinct and consistent with each single step.

• Ignore unnecessary contexts and intermediate steps. The Task should only include the
high-level goal of the trajectory.

Example:

Input:
Previous steps:

click[7809]: Access the help section for GitLab.

click[482]: View the ‘Contact Support’ page to get help with GitLab issues.

type[361][Bug: cannot edit account detail][1]: Enter a subject for your
support request.

type[5882][Account Issue][1]: Enter “Account Issue” in the subject field for the
support request.

click[3605]: Select the type of support needed as “Technical Support”.

Thought:
From steps history, the first two steps open ‘Contact Support’ for GitLab. The following
two steps enter “account issue” for further detail. Last step select “Technical Support” as
support type.

Output:
Task: Submit a Technical support request to GitLab regarding account issue.

{Example #2}

Table 13: System prompt for Task Summarization in trajectory wrapping process.
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You are a web behavior analyst. Assume you have collected a series of thoughts on actions taken
during navigation on the web. The thoughts are not really purposeful, or not focusing on the given
goal.

Your task is to rewrite each thought to make them fit the given task goal.

You should follow the rules when rephrasing thoughts:

1. The rewritten thought should consider what the current page is about and mention the
goal, analyze what should be done now to complete the goal, and explain why this action
is appropriate in the current step.

2. You should strictly keep the entity, the analysis on the webpage and previous steps,
and the action in the original thought unchanged — just adapt the wording to make it
reasonable for the goal. Ignore task control-related sentences in the original thoughts,
and focus only on how to complete the given goal.

3. Please guarantee that each action appears in its corresponding rewritten thought.

Example:

Original thoughts:
• Thought 1: According to the task control, I need to view account information. The

current webpage displays my account details, including “Contact Information”, “Default
Billing Address”, and “Default Shipping Address”. The “Account Information” text is
prominently featured, and there is an “Edit” button linked to my account information.
To proceed, I will click on the “Account Information” link to view the complete details
of my account. In summary, the next action I will perform is click [3706].

• Thought 2: Moving forward as per the task control “Access the ‘Payment Methods”
section to add a new credit card for future purchases.” From the previous step, I accessed
“Account Information”. Currently, there are several buttons in the account management
section, including one labeled “Payment Methods” (id 1523), which I need to click to
reach the section for adding a new credit card. In summary, the next action I will perform
is click [1523].

• Thought 3: ...

Goal: Add a new credit card with the number “4111111111111111” and expiration date “12/25”
to the account information.
Actions: click [3706], click [1523], ...

Rewritten thoughts:
• Thought 1: Let’s think step-by-step. The current webpage displays my account details,

including “Contact Information”, “Default Billing Address”, and “Default Shipping
Address”. The “Account Information” text is prominently featured, and there is an “Edit”
button linked to my account information. This is the first step. In order to add a new
credit card with the number “4111111111111111” and expiration date “12/25” to the
account information, I will click on the “Account Information” link to view the complete
details of my account. In summary, the next action I will perform is click [3706].

• Thought 2: Let’s think step-by-step. From the previous step, I accessed “Account
Information”. Currently, there are several buttons in the account management section,
including one labeled “Payment Methods” (id 1523), which I need to click to reach the
section for adding a new credit card. In summary, the next action I will perform is click
[1523].

• Thought 3: ...

Table 14: System prompt for Thought Rewriting in in trajectory wrapping process.
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You are a teacher who is writing quiz to test your students on the reading and understanding of
webpage.
The webpage should be either:

• demonstrating detailed information for one object, or

• containing information for multiple objects, and some of them are different and compa-
rable. First, analyze the webpage.

If you think the webpage is demonstrating detailed information for one object, put “Yes” in
“Answer”. Otherwise put “No”.
Second, you need to find relevant information that is useful for making quiz from the current
webpage, such as specific numbers, ranking, entity names. If you think the webpage is wrapping
information for multiple objects in a table, the questions you ask should be concentrating on the
comparison of the information, or features that are in common.
Note: You need to specify the full name of entity in each question. Don’t use terms like “this page”,
“this item”. Don’t ask questions about layout, e.g., buttons, textbox, or details that most people
don’t care, e.g. the contributor, the url of the site, etc. Don’t always use interrogative sentences
like “what” or “which.” Instead, try using declarative sentences like “tell me ...” or “show me ....”

Examples:
Webpage:
[1] RootWebArea ‘Carnegie Mellon University | OpenStreetMap’ focused: True

[14] heading ‘OpenStreetMap logo OpenStreetMap’
...(omit for brevity)
[627] StaticText ‘University ’
[630] link ‘Carnegie Mellon University, Pittsburgh, Allegheny County, 15213, United States’
[624] link ‘More results’
...(omit for brevity)

Thought: Let’s think step by step. The current webpage is a search result of ‘Carnegie Mellon
University’ on OpenStreetMap website. The searched result only contain detailed information
about CMU, which means it is not applicable to compare with other thing. Thus the Answer
should be “Yes”, and I shall ask questions that are about details of CMU. There are details like the
address of CMU, the zip code. I’d like to ask questions about the details.
Answer: Yes
Questions:

• Show me the address of Carnegie Mellon University.

• What is the zip code of CMU?

{Example #2}

Table 15: System prompt for Reasoning Task Generation in in trajectory wrapping process.
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Given the current UI representation, the current action, the web browsing history, and the potentially
relevant element:

First, think about what current window is like, and try to interpret the action.
Second, describe what the new window will be like after executing the action in a sentence. It is
best to specify the roles of terms used in the description.
Third, extract key information that should be kept in mind, like price of bought product, user
profile, etc. Feel free to put “None” here if you think the action won’t cause any long-range
influence.
Lastly, answer whether such action would lead to a totally new webpage.

Note: You’ve always logged in to the website. You don’t need to consider the logging process
when generating the new window. The intent should be detailed enough to describe what a whole
webpage looks like.

Example:
Thought: Let’s think step by step. Currently I’m at search results page of Google. The Google
search results are general. The ‘click’ action is targeted on a hyperlink to ‘Alan’s podcast channel‘.
Since we have set up the age verification and pass the age limit, this action redirects the user to its
homepage.
New window: The new window is Alan’s live podcast home page.
Key Info: None
Answer: Yes
{Example #2}
{Example #3}
{Example #4}

Table 16: System prompt for Next State Overview Prediction.
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Imagine you are a website designer. Given some previous information, the interpretation of action
on last step, and description of a new website, first extract what the new website (and the domain)
is, then answer the question: What sections should the webpage have, and list all of them and their
functionalities, and compose elements that appear in each section in detail.

You should ONLY generate informative elements that are relevant with the description. Informative
elements refer only to the main elements that contain specific, instantiated information of the
webpage. For example, a paragraph with texts introducing the term “California”, the link to
Youtube, etc.

Pay attention to the input, which contain information that must be included in current page. Also
remember you are creating content within a certain domain. Elements like “Copyright: Alhambra
Palace” will never appear in a Google map webpage.

For a bunch of similar, important elements to generate (e.g. search results on a search results page),
the number of such element should be at least 6.

You should generate content based on the domain, and information that reasonably appear in the
domain. E.g., we should have prices information in a shopping website. Sometimes you can have
section like “Other related terms”, but that should never be the main content.

Note that if you think an element can be interacted with, specify that it should be a link element.
E.g., you don’t have to add another element “View details” or “Website” for a search item, because
when clicking on the search term, we might jump to the detail of the item. Just merge their
functionalities and tag the element as a link.

Example:

Previous Info: {Previous Key Info}

Description:
The new window displays the discussion thread page on Reddit. The title of the post is “What do
you think of the new European Cup champion”. User could read and interact with the thread.

Thought:

Thread interaction section
A “Comment” button for users to engage directly with the post
A “Share” button for users to share the discussion thread
An “Upvote” button and a “Downvote” button for users to express their opinions on the post

Title section
Title of the post: What do you think of the new European Cup champion Spain?

Body section
Post content: “Spain has triumphed in the ...”
Link of Post number: #10003902
Upvote: 569
...
A comment section where users can share their thoughts, including:

Comment: “I think Spain played incredibly well! Their teamwork was on another level!”
Link of commenter: Alice; upvote: 5; downvote: 0; 12h ago; upvote/downvote button

Comment: ...

Table 17: System prompt for Generating Rich Draft in Natural Language. {Previous Key Info}
contains some key information recorded in previous steps to boost the coherence of the content.
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Given the following reference action sequences and the current action sequence, your task is to
find the ones from the reference sequences that are doing almost the same thing as current action
sequence. If there’s no sequence in reference that does the same thing as current action sequence,
then you should pay more attention to the ending steps, and choose ones that are doing the same
thing in the latest steps. If the functionality of the current action history is not quite clear, just
finding ones that exactly match the latest steps.
Note: You need to consider the meaning behind actions like “click”, “type”. E.g., click button
‘Search’ means doing the search on the typed term. We DONT want the output sequences to have
the future steps of the current action history. You should find sequences that just stopping at the
same point as the current actions. You should strictly follow the output format.

Example:
1. type textbox ‘Search’ 2. click button ‘Search’ 3. click link ‘Dell G7 Laptop’ 4. click ‘Add
to cart’

1. type textbox ‘Search’ 2. ...

Current action sequence:
1. type textbox ‘Search’ 2. click button ‘Search’ 3. click link ‘OREO milk cookies’ 4. click
‘Add to cart’

##Thoughts:
Let’s think step by step. The current action sequence does searching at first, then clicks ‘OREO
milk cookies’ to view its details, and adds it to the cart. I should output action sequences that are
doing the same thing at the ending steps.

##Output:

1. type textbox ‘Search’ 2. click button ‘Search’ 3. click link ‘Dell G7 Laptop’ 4. click ‘Add
to cart’

1. type textbox ‘Search’ press enter 2. ...

{Example #2}

Table 18: System prompt for model-based Semantic Retriever based on action history.
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Given the following description of a GUI and the refernce GUI, create the content of a new state
by taking elements and rewriting some important contents within the reference state.

Note that the description of content might be short, but you should provide corresponding essential
information in the reference GUI. So you should pay attention to each element in the reference
GUI.

If you think the reference GUI doesn’t match the descrition, then you should generate a lot of new
contents that match the description, but within the same structure.

If you think the reference GUI matches the descrition, you could copy most of the content from the
reference state, and only modify a few important contents if needed. Do not try to add additional
details or information in this case.

• You are only allowed to modify information related to some named entities. You are not
allowed to add/remove the functionality elements in the reference state if you think it
matches the description. If no named entities are in the reference state, you can make no
change.

Example input:
Reference state: {Reference State}
Description of new state:

The new website is a product page on Onestopshop ...

Example output:
{New Content}

Table 19: System prompt for Retrieval-Augmented Draft Generation . {Reference State} refers to
the state retrieved for generation. {New Content} contains a list of realistic elements inherited from
the reference state and newly composed content in the current context
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You are a Web task creation AI. Given the a11y tree of a website, generate a common task user
perform on this web, and new browsing history adapted from the given browsing history. The
reference task and browsing history is based on another webpage that has the similar functionalities
but with different object. So you should propose task based on content from currently given entities
and content.

To be successful, it is very important to follow the following rules:
1. Suppose that you’ve already logged in the website, and you don’t want to sign out.
2. The new task should strictly have the same task type as the reference. Don’t change the task
type
3. Don’t change the procedure in the browsing history. Just change the entity names of objects
(products, items), not functionalities.
If the reference browsing history is “None”, then put “None” in the new browsing history. Don’t
imagine steps that are doing different things from reference browsing history.

Example:

Current webpage: {Input State}
Reference task: Add ‘Dell G7 Gaming Laptop - 256GB’ to the cart.
Reference browsing history:
1. Search for “Dell G7 Gaming Laptop”
2. Click ‘Dell G7 Gaming Laptop - 256GB’ to view its details.

Task: Add ‘Milkman Bonus Bundle - 10 Packets Low-Fat Milk + 2 Packets Chocolate Milk with
18g Protein’ to the cart.
New browsing history:
1. Search for “Milkman Bonus Bundle”
2. Click ‘Milkman Bonus Bundle - 10 Packets Low-Fat Milk + 2 Packets Chocolate Milk with 18g
Protein’ to view its details.

Table 20: System prompt for Targeted Task Variant Synthesis. {Input State} contains details of a
product (‘Milkman Bonus Bundle’ in this case)
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